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Abstract: We consider complex structures with totally real zero section of the tangent bundle. We assume that
the complex structure tensor is real-analytic along the fibers of the tangent bundle. This assumption is quite
natural in view of a well-known result by Bruhat and Whitney. We provide explicit integrability equations for
such complex structures in terms of the fiberwise Taylor expansion. In a particular geometric case considered
in the literature, we explicit much further the fiberwise Taylor expansion of the complex structure as well as
the integrability equations.
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1 Introduction and statement of the main result

Let (E, iz, M) be a smooth vector bundle over a manifold M. Let E, be the fiber of E over a point p € M, and let
n € E,. We consider the transition map 7,(v) = n + v acting over E,, and we consider its differential

d()T,, . TEI,,O — TEp:"I’

at the point 0. Composing do7, with the canonical isomorphism E, = Tg, o, we obtain an isomorphism map
Ty Ep = Tg,p an

We denote by 0y, the zero section of E. Differentiating the identity id »; = 7z © 0y, we obtain I, = d()pﬂ'E ° d,0p.
This implies the decomposition

TE,OI] = deM(TM,p) &) Kerdopﬂ'g.

We notice also the obvious equalities Kerd,g = do7)(Tx,0) = Ty(Ep) = Ep, for any n € E,. Now applying this to
n = 0,, using the previous decomposition and the canonical isomorphism d,0y(Ty ) = Ty p, We infer the
existence of the canonical isomorphism T, = Ty, ® Ep, Which we rewrite as follows:

Tey =Ty ®E. 1.2)

Definition 1. A real sub-manifold M of an almost complex manifold (X, J) is called totally real if Ty;,, N J(Tar,p) = Op
for all p € M. A totally real sub-manifold M of an almost complex manifold (X, J) is called maximally totally real
lfdlmRM = dlmCX
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1.1 M-totally real almost complex structures over Ty,

We consider M included inside Ty, via the zero section. We know by the isomorphism (1.2) with E = Tj;, which
this embedding induces the canonical isomorphism Tz, ;y = Tyy @ Ty. The vector bundle Ty, is a complex one
with the canonical complex structure " : (u,v) — (-v, u) acting on the fibers.

Any almost complex structure that is a continuous extension of " in a neighborhood of M inside Ty,
makes M a maximally totally real sub-manifold of Tj,.

Over an arbitrary small neighborhood of M inside Ty, the complex distribution T%ll is horizontal with
respect to the natural projection 77 : Ty — M.
We remind that the data of a smooth complex horizontal distribution over Ty, coincide with the one of section

A € C*(Ty, T'CTyy ®¢ CTy),

such that drr - A = l¢g,,.

For any complex vector field & € C*(M, CTy), we will denote by abuse of notation A(§) = A +(§ ° n).
Section A evaluated at the point n € Tj; will be denoted by A,.

We notice that we can write A = a + i, with

a’ﬁ € Cm(TM) T[*T]t/[ ®[R TTM)’

such that drr - a = l'7,, and ﬁq = T;B,, with B € C*(Ty;, m*End(Ty)). Section A determines an almost complex
structure J, over Ty such that

Thgun = ArCThra) € CTryp,
if and only if
Aq(CTM,n(q)) N Aq(CTM,n(q)) =0. 1.3)
This condition is equivalent to the property:
An(gl) = Aq(fz); 1.4)

implies & = & = 0. Taking d,7 in the equality (1.4), we infer & = &. Thus, equality (1.4) is equivalent to
(A - A)(&) = 0, and the previous property is equivalent to Ker(4 - A) = 0, i.e,

B e Coo(TM, * GL(TM))

We notice that with respect to the canonical complex structure of T, 5, we have the equality (u, v)*! = (¢, i),
with ¢ = (u - iv)/2. Then ], is an extension of this complex structure over an open neighborhood U C Ty of
M if and only if for any point p € M, we have ao, = d,0y and By, = Iy, ,. We denote by

T € C*(Ty, Ty ®r Try,)s
the canonical section which at the point n € Ty, takes the value T,

Definition 2. Let M be a smooth manifold. An M-totally real almost complex structure over an open neighbor-
hood U C Ty, of the image of the zero section 0y is a couple (a, B) with

a € C°(U, m*Ty ®r Try,)
and
B € C*(U, m* GL(Ty)),

such thatdrn - a = 1, over U and such that ag, = d,,0y, B, = 1, ,, for all p € M. With A = a + iTB, the almost
complex structure J, associated to (a, B) is the one which satisfies

0,1 —
Tty g0 = An(CTy () € Clhyyp,

foralln € U C Ty,.
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Every almost complex smooth extension of the canonical complex structure J " of T,y over a neighbor-
hood of M inside Ty, can be expressed, over a sufficiently small neighborhood U C Ty, of M, as the almost
complex structure associated with a unique M-totally real almost complex structure over U.

We provide below an explicit formula for the almost complex structure J,. For this purpose, we notice first
that for any vector ¢ € Ty, ,

01 =2 Aldgr - BT, 1y, - ad gl
&= %Zn [y + B, T, (I, — aydy)E.
Indeed E}Zl € TR o Eio € Tgpy,p and & = f}/;o + 2;1. We deduce the expression
Jan = ~@B, T, (g, = aydym) + TByd,r. (1.5)
This shows that for any a-horizontal vector ¢ € T, , ie., & = a,;d,ié, we have
]A,qf = TyBydyrs.
In equivalent terms,
T @y = TyByy, (1.6)
for any n € U C Ty and any v € Ty »(y. Moreover, (1.5) implies
Jan Kerdm = _anBi;lTn_l' @7

A well-known theorem by Bruhat and Whitney [6] states that for any real-analytic manifold M there exist a
complex manifold (X, J) and a real-analytic embedding of M in X such that as a sub-manifold of X, M is
maximally totally real. In addition, one can arrange that X is an open neighborhood U € Tj, of the zero section
and f,, =]

Moreover, Bruhat and Whitney [6] show that if X is a real-analytic manifold equipped with two different
real-analytic complex structures J; and J,, which contains a real analytic sub-manifold M, which is maximally
totally real with respect to both J; and J,, then there exist neighborhoods U; and U, of M inside X and a real-
analytic diffeomorphism k : Uy — U,, which is the identity on M and is a holomorphic mapping of (U3, J;)
onto (U, J,).

In other words, the structure J constructed by Bruhat and Whitney [6] is unique up to complex
isomorphisms.

We state below our results on the integrability conditions for J.

1.2 The integrability equations for M-totally real almost complex structures

Let (E, iz, M) be a vector bundle over a manifold M. For an arbitrary section B € C*(E, nz(Ty ® E)), we
define the derivative along the fiber

DB € C*(E, mz(E* ® Ty ® E)),

by the formula

DB(v) = Bjioy € Ty ® Ep,

dth:o
for any n, v € E,. We denote by Alt, the alternating operator (without normalizing coefficient!), which acts on
the first two entries of a tensor. For any morphism A : Ty — E and any bilinear form f : E x Ty — E, we
define the contraction operation:
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A-p = Alty(p ° A),

where the composition operator ° act on the first entry of f. For a given covariant derivative operator V acting
on the smooth sections of Ty;, we denote by HV the linear projection to the associated horizontal distribution.
(See Lemmas 14 and 16 and Definition 5 in subsection 9.1 of the Appendix for precise definitions and properties
of H')

Theorem 1. Let M be a smooth manifold and let ], with A = a + iTB be an M-totally real almost complex
structure over an open neighborhoodU C Ty, of the image of the zero section. Let also V be a covariant derivative
operator acting on the smooth sections of Ty. Then ], is integrable over U if and only if the complex section
S = TY(HY - A) satisfies the equation

Hy - (VEndTorg), — 8 = DS + Sz7 + RV -y = 0, (18)

for any point n € U, where VEMIDT s the covariant derivative operator acting on the smooth sections of
*End(Tyy) induced by V and where V7 and R' are, respectively, the torsion and curvature forms of V.

We notice that Sy = iy, by the conditions ap, = H(X] = dy0y and By, = Iy, .
Notation for the statement of the main theorem.

For any A € Ty @ End(CTy) and for any 0 € 21 ® CTy, the product operations of tensors
A-0,A-6¢€ T;*?"? @ CTy are defined by

(A - Dy, ...,Up, vy, ..., V) = A(lly, ..., Up) OV, ..., V),

q
(A = 0) (U, ooy Up, Vi, ooy V) = D OV, o, AUy oy Up) Vjy oeny V).
j=1

We will denote for notation simplicity RY. 8 = RY-6 - RV -~ 6. We will denote by Circ the circular operator
(CircO)(vy, vo, v3,¢) = 6(v, Vo, V3, ¢) + O(v2, V3, V1, 0) + 0(v3, vy, V3, *),
acting on the first three entries of any g-tensor 6, with q > 3. We define also the permutation opera-
tion B2(vy, Vo, ) = 0(va, vy, *).
For any covariant derivative V acting on the smooth sections of CT};, we define the operator
dy: (M, Ty ®r CTyp) — C=(M, KT}, or T12* Y @ CThp),
with k > 1 as follows:

dYAG, & 1) = VA, 1) - V5AG, 1),

a(k-1)

with &, & € Ty and with u € T . Moreover, for any

AecM, Ti*Por CTy),
Bec™M, Ty P or CTy),
we define the exterior product
A N B € C*(M, NTy; @ Tyi* '™ @p CTyp),
as
(A N BY(&, 2,1 1) = A&, B(So, ), 1) = A(S, B(&, ), 1),

with&, & € Ty,n € TH and u € 1% We denote by Sym, . the symmetrizing operator (without normal-
izing coefficient!) acting on the entries r,..., s of a multi-linear form. We use in this article the common
convention that a sum and a product running over an empty set is equal to 0 and 1, respectively.

With these notations, we can state our main theorem.
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Theorem 2. (Integrability in the fiberwise real analytic case) Let M be smooth manifold equipped with a torsion
free covariant derivative operator V acting on the smooth sections of the tangent bundle Ty, let U C Ty be an
open neighborhood of the image of the zero section with connected fibers, let J, be an M-totally real almost
complex structure over U, real-analytic along the fibers of U, and consider the fiberwise Taylor expansion at the
origin

T'HY - A)y &= i€+ ) Si(Enb),

k21

with n € Ty in a neighborhood of the image of the zero section, with & € Ty z(y arbitrary, with

Sk € C*(M, T]T/I ®R SkTX/I ®r CTyyp),
withnk = p* e T,i‘}f{n(n) and let V51 be the complex covariant derivative operator acting on the smooth sections
of CTy defined by

Vi = Ven + SiE ).
Then J, is integrable over U if and only if S; € C*(M, S?Ty; ®r CTyy), (i.e. VS is torsion free), and for all k = 2,
i

i
Sk = ;Vslqu + ms}’m 2. k+1Br-1(Ti=2) + Ok,

ok € C*°(M, ST, @g  CTyy),
Cire B, 1(a) = 0,

where a; = 0, B,(gy) = R", B,(01) = —é(visvsl)z, and for all k = 3,

i
Bi(Ox-1) = ERvsl- Ojc-1 Sym;  js20k(Ok-1),

1
+ —
(k+ D'k!

k1 (7‘ + 1)' S1 S1 S1 S1
B(O-) =1 Y~ (id" ) TR 07-) = 20(id} ) HTSRT,
r=3

k+1 r-2
BN
+ 1Y (! YT(pS, Ay Sp-p).
r=4 p=2
In more explicit terms,
S, =8+ gy, (1.9)
i
S, & &) = E[Rvsl(fl, &) + RV'(&, )&, (1.10)
g, € C*(M, S3TX/[ ®r CTy), 1.11)
Circp,y(ay) = 0, 1.12)
i 1
By(0) = R™'. 0+ L Symy, 0x(0y), (113)
03(d;) = 247 (VSR™™), + 4128, A, S, 1.14)

The assumption that the complex structure tensor is real-analytic along the fibers of the tangent bundle is
quite natural. Indeed if M is real analytic, then the M-totally real complex structure constructed by Bruhat and
Whitney [6] is also real analytic with respect to the real analytic structure of the tangent bundle induced by M.

In this article, we request from the readers very good knowledge of the geometric theory of linear
connections. Basics of such theory can be found in the Appendix.
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1.3 Application of the main integrability result

Over a Riemannian manifold (M, g), we denote by
VED (0, 1) — DF(n) € Ty,

the geodesic flow, where V8 C Ty, x R is an open neighborhood of Ty, x {0}. Let V& be the Levi-Civita con-
nection of the metric g. We denote by H? the liner projection to the associated horizontal distribution. We
state the following corollary of the main Theorem 2.

Corollary 1. Let (M, g) be a smooth Riemannian manifold, let U C Ty be an open neighborhood of the image of
the zero section with connected fibers, let J = J, be an M-totally real almost complex structure over U, real
analytic along the fibers of U, and consider the fiberwise Taylor expansion at the origin

T,"(HE = &)y E= i€+ Y Si&, 1),
k=1

with € Ty in a neighborhood of the image of the zero section, with & € Ty z(y arbitrary, with
S € C°(M, Ty; ®r SkT3; ®r CTyy),

and with n* = n** € Tg¥ .. Then statements (a) and (b) are equivalent.
(a) The almost complex structure ] is integrable over U and for any ) € U the smoothmap i, : t + is — sDE(),
defined in a neighborhood of 0 € C is J-holomorphic.
(b) The components Sy satisfy S; = 0,
i

S = kr ik

Sym, . +10x(8),

for all k > 2, with ©,(g) = 2RE and with

k r-2
O(g) = —2i(id)3(VERS), + Y 11 Y (idT )T (pSy A1 Sr-p)s
r=4 p=2

for all k > 3, and the equations CircSym ,.,0x(g) = 0 are satisfied for all k > 4.

It has been 64 years since the existence of complex structures on Grauert Tubes was proven for the first
time by Bruhat-Whitney [6]. Still, up to now, the explicit form of the Taylor expansion has remained myster-
ious. This is finally clarified in the main Theorem 1.5 in [18], which is based on the statement of Corollary 1.
Indeed in the study by Pali and Salvy [18], Theorem 1.5, we obtain a rather simple and explicit global expres-
sion for the complex structure on Grauert tubes.

The expression in Theorem 1.5 in the study by Pali and Salvy [18] (see also Theorem 1.6 there for a more
general statement) is important for applications to analytic micro local analysis over manifolds. It allows
indeed an explicit global construction of the complex extension of a given global Fourier integral operator
defined on a real analytic manifold.

The expression in Theorem 1.5 in the study by Pali and Salvy [18] allows also to perform useful explicit
global intrinsic operator computations in the sense of Pali [17]. In more explicit terms, given a global intrinsic
section over the Grauert tube, an explicit formula for the complex structure such as the one in Theorem 1.5 in
[18], allows to determine if the section is holomorphic or not.

The proof of Corollary 1 will be given in the Section 6.2. In the case (M, g) is a compact real analytic
Riemannian manifold, the complex structure in the statement of Corollary 1 exists thanks to the works of
Guillemin and Stenzel [10], Lempert [13], Lempert and Szoke [14,15], Szoke [20,21], as well as Bielawski [5].
Thus, in this case, the integrability conditions

I = CircSymy _,410k(g) = 0
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in the statement of Corollary 1 are satisfied for all k > 4. We notice in particular that in the case k = 4, the
equation I = CircSym; ,;04(g) = 0, expands out to

CircSym , , §[3d" (VRS), - 2R® A R¥] = 0, (1.15)

with R® = Sym ,,3Ré. We will show in a quite general set-up that the previous equation is an identity. We
have indeed the following result, which shows the vanishing of .

Proposition 1. Let V be a torsion free complex covariant derivative operator acting on the smooth sections of the
bundle CTy; with curvature operator R'(-,)- = R'(,-,-). Let R’ = Sym 23R"- Then

CircSym ; , 5[3d(VR"), - 2R" A R'] = 0. (1.16)

The proof will be provided in Section 7. In subsection 5.1 in the study by Pali and Salvy [18], we provide a
shorter proof of the vanishing of I, in Proposition 1 by using some more advanced combinatorial techniques.
In Section 5.2 in the study by Pali and Salvy [18], we show also the vanishing of ;. Using computer algebra (see
Sections 2 and 5 in the study by Pali and Salvy [19]), we can show the vanishing of I for k = 4,..., 7. In Section 5
in the study by Pali and Salvy [19], we use the explicit expression in Theorems 1.5 and 1.6 in the study by Pali
and Salvy [18] and we observe that in the case k = 7, the computer perform the computation in approximately
1s, but we expect that the case k = 8 would take a computation of approximately 2 weeks. We feel confident at
this point to formulate the following conjecture.

Conjecture 1. Let M be a smooth manifold and let V be a torsion free complex covariant derivative operator acting
on the smooth sections of the bundle CTy;. Then the sequence of tensors S € C*(M, Ty; ®r S¥Ty; ®r CTy), k = 2,
defined by the inductive rule

Sk = (k + Dk! Sym,  441O%ks
Wlth @g = ZRV and Wlth
kK r-2
Of = ~2i(idD} (TR, + Y1 Y () T(PS, A S-p)
r=4 p=2

for all k > 3, satisfies the identities
I = CircSymg 46§ =0,

for allk > 4.

A general mathematical proof for the vanishing of all the integrability conditions I is part of a long and
difficult work in progress. A corollary of the solution of the aforementioned conjecture and of the main
Theorem 2 will be the following striking result that allows canonical construction of maximal totally real
embeddings.

Corollary 2. (Canonical maximal totally real embeddings). Let M be a real analytic manifold and let V be a
torsion free complex covariant derivative operator acting on the real analytic sections of the complexified
tangent bundle CTy;. Then there exists an open neighborhood U C T, of the image of the zero section with
connected fibers and a fiberwise real-analytic section S of w*End (Ty;) over U with fiberwise Taylor expansion at
the origin

Sy &= D Sk nb),

k=2

for any n € U and any & € Ty nqy, with S € C*°(M, Ty ®r SkTy ®r CTy) for all k =2, (we denote by
nk = pke Tj‘}f‘n(m) given by the recursive formula
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i

= v
Sk = (k + DIK! Sym, k416
Wlth @g = ZRV and
kK r-2
@Z = —Zi(idlv)k—3(VRV)2 + Zr! Z (idlv)k—r(psp N Sr—p),
r=4 p=2
for all k > 3, such that J, with
A = -iTlg, + HY - TS,

is an M-totally real complex structure over U, which is real-analytic over U.

Indeed in the statement of the main Theorem 2, we set g = 0 for all k > 2 and we identify the torsion free
complex covariant derivative V51 with the arbitrary torsion free complex covariant derivative V in the state-
ments of Corollary 2 and Conjecture 1. Then the integrability equations in the statement of the main Theorem 2
reduce to the identities Iy = 0, for all k > 4 in the statement of the Conjecture 1.

We notice that the notation H in the aforementioned definition of the section A is slightly abusive. We
mean there by HY the restriction to Ty of the horizontal map over CTy; associated with the complex covariant
derivative operator V. We must observe here the obvious inclusion Ter, 5, € CTy,.

The expression of Sx above can an should be replaced with the explicit global expression in the Theorems
1.5 and 1.6 in [18]. That expression shows that in the case (M, V) with smooth regularity we can assume weaker
conditions on the growth of the covariant derivatives of the curvature and still obtain convergence along the
fibers.

We obtain in this more general setting a canonical M-totally real complex structure over U which is real-
analytic along the fibers of U. This is sufficient for the applications to micro local analytic analysis over
manifolds.

We wish to point out that in the general setting of a torsion free complex covariant derivative operator V
acting on the sections of the complexified tangent bundle CTy, there are no geodesics associated with V.
(Cauchy’s existence theorem does not apply).

Therefore there exist no geodesic flow associated with V and the Jacobi field techniques of the authors
[5,10,13-15,20,21] do not apply.

We wish also to point out that in mathematics and in theoretical physics there are many important natural
complex differential operators that are defined via complex connections as above.

The set up of Corollary 1 is inspired by the articles [10,13-15,20,21]. The genesis of their approach will be
reminded in Sub-section 6.1 and is needed for the proof of Corollary 1.

The long series of articles due to Guillemin and Stenzel [10], Lempert [13], Lempert and Szoke [14,15]

Szoke [20,21], Burns [2,3], Burns et al. [4] as well as Aslam et al. [1] are inspired by the fundamental work of
Grauert [9].

Their existence results are needed in a crucial way in analytic micro-local analysis, in pluri-potential
theory (see the work by Zelditch [22]) as well as in Hamiltonian dynamics and in geometric quantization (see
the work by Morao and Nunes [16], Hall and Kirwin [11]).

2 General connections over vector bundles

2.1 Basic definitions

Definition 3. Let (E, iz, M) be a smooth vector bundle over a manifold M. A connection form over E is a
section y € C*(E, Tf ® Tr) such that dmz - y = 0 and Vi Kerdm; = I Kerdm-
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We will denote by y, the connection form y evaluated at the point § € E.

Lemma 1. For any connection y € C*(E, Tf ® Tg) the map

dqﬂEI Kery, : Keryn - TM,nE(q); 2.1
is an isomorphism for alln € E.
Proof. The assumption Vi Rerdrmy = I Kerdr: implies y (I, —y)=0. Thus Im(yz - y) € Kery. Then

Im(ly, — y) = Kery. Indeed if y(u) = 0 then u = (I, - y)u. On the other hand we notice that the condition
dmg - y = 0 implies drg -(I7, — y) = drmg and thus

Ayt kery, (17, = y) = A 2.2)
This equality shows that the map (2.1) is surjective. The injectivity follows from the fact that ifu, v € Kery, and

dye(u - v) = 0 thenu — v = y(u - v) = 0 by the assumption ), Kerdmy = | Kerd- O

We denote by HY = (dyg Keryq)‘1 the horizontal map. We deduce the existence of a section
HY = C*(E, miTy @ Tg),

such that drig - H =l ;7,,. (We notice that dr; € C*(E, T ® 7z Ty)). Composing both sides of (2.2) with H) we
infer

y=|]TE_Hy'd7TE:

and the smooth vector bundle decomposition Tz = Kerdny @ Kery.
The data of a connection form y is equivalent with the data of a horizontal form H?. The connection form
is called linear if the horizontal form H? satisfies

deg,ny(sme)-(H} ® HY) = HY .., H}, = d,(Alp)- H),

where smg : E @ E — E is the sum bundle map where n,, n,, n € E with mg(n,) = 7e(n,), and A is a scalar.

Definition 4. The curvature form 0¥ € C*(E, A’T; ® Tg) of a connection form y is defined as

0v(&, &) = -yl - Y&, U - Pé&,
for all &, & € C*(E, Tg).

The definition is tensorial. Indeed if f € C*(E, R) then
(A7 = Ve, g, = Y)&] = fldz = Y&, A, = Y&l = [z = Y& fldz, - yé.
The conclusion follows from the fact that y (I, — y) = 0. We notice that
0¥ € C*(E, N(Kery)* ® Kerdr),
and such element is uniquely determined by the curvature field ©” defined as
(&, &)1 = T;'6)(H)&, H)E),
for all &, & € Ty, p- In the case y is linear then
e € C*(M, N’T;; ® End(E)),

is called the curvature operator. The terminology is consistent with the fact that if we denote by V¥ the
covariant derivative associated with y then the identity R¥ = ©” holds, thanks to Lemma A6 in the Appendix.
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Parallel transport. Given any horizontal form a € C*(E, 7*Ty; ®r Tr) over a vector bundle E, the parallel
transport with respect to a is defined as follows. We consider a smooth curve ¢ : (¢, €) — M and the section
0 € CY((-¢, £), c'E) which satisfies the equation

J=(ae°o0)c,

over (-¢, £) with d(0) = n € E). We define the parallel transport map 7¢; : Eco) — Ecr), t € (—€, €) along ¢
with respect to a as 7,(n) = o ().
We consider now a Cl-vector field & over M and let g, be the associated 1-parameter subgroup of

transformations of M. Let @¢ , : E — E be the parallel transport map along the flow lines of ¢ ,. In equivalent
terms the map @, is determined by the ODE

d)?,t =(a- ‘D?,t)'(f ° Qg ° Tlg),

with initial condition ®F, = ;. We observe that by definition of parallel transport, the map @7, satisfies
g © ®F = @g, ° 7. This follows also from the equalities

(drg o ®F ) B, = E° @, © = P, ° .
Moreover the vector field 2* = a (¢ ° mr) over E satisfies é?y[ = E% o @f . Indeed
E% e @F, = (a° F)(§ o mp o D) = (a° DF)(E ° @, © 7E)

We deduce that t — @, is also a 1-parameter subgroup of transformations of E.

2.2 The geometric meaning of the curvature field
The following result provides a clear geometric meaning of the curvature field.

Lemma 2. Let (E, iz, M) be a smooth vector bundle over a manifold M and consider a horizontal form
a € C*(E, m*Ty; ®r Tg) over bundle E. Then the curvature field ©% associated with a satisfies

2
(&, E)) = T;'=2

" 3tds hzszo(q’%l-s ° Df - © D5 D, (M)

for any &, & € C*(M, Ty) such that [&, &) = 0 and for any n € E.

Proof. We observe first that if we have a family of transformations (%); over a manifold with ¥, = id and a
curve ¢ then

d . . . .
s W(cs) = Wo(co) + d¥o(Co) = Wo(Co) + Co.

5=0
By applying the last equality to % = ¢, _; and ¢s = @z _, ° @, ; ° @y ., We infer

d d
N ((pfz,—s ° gofl,—t ° (pfz,s ° q)flyt) = _EZ + %ls:u(q){l,—t ° (pfz,s ° q)fl,t):

ds ls=0
and thus,
_d
[El) EZ] - Eh:o%h:o((pﬁ’_t ° (pfz,s ° q)fbt)
d d

) Eh:()gk:o((pfz’_s * Pt ° Do ° (pfbl)'

In a similar way,
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I B
:‘(21’ 5%] = E|t-0%| —o(q)%’_s ° q)?z,‘t ° q)?l,s ° q)gz»f)’

with £f = a-(§ ° i), j = 1,2. Let n € E, and observe that
(I)?l’_s ° (I)gZy_[ ° (bgl,s ° gz,[(rl) € E 3

for all parameters t, s, since @, _c ° @ _, ° @ ; ° @, (p) = p thanks to the assumption [&, &;] = 0. We con-
clude the required geometric identity. O

2.3 Comparison of the curvature fields of two connections

We consider now two connection forms Vp» j=12over E, and letq; = H?Y be the corresponding horizontal
forms. The fact that drmz(a; - a;) = 0 implies that there exist a section

B = T m - ay) € C°(E, mp(Ty ® E)),
which satisfies
V.=V, — IB - drng.

We want to compare the curvature fields ®; = ©Y. We will denote by abuse of notation a;¢ = a; -(§ ° 7z) and
B¢ =B (¢ ° mp) for any & € C*(M, Ty).

Lemma 3. In the aforementioned set up, the identity

01(&, &) = (8, = B = DB)(&, &) - T W([aé&y, TBE,] - [aod,, TBE]) + Bl&, &al, 23)
holds for any &, & € C*(M, Ty).

Proof. We notice first the equalities

T01(&, &) = M(mé, méy)
= —plaiér, aiéo]
= =yl a&] + TB - dmg[awéy, )
=T0y(81, §2) = Vo([aedy, TBE] + [TBG;, aby] + [TBG, TBS,]) + TB[&, &l

In the last line, we use the well-known identity dmg[a&, é;] = [&, & ° 7, which follows from the fact that
dmgaié; = & ° 1, j = 1, 2. Let now &gy, be the one-parameter subgroup of transformations of E associated
with the vertical vector field TB¢,. It satisfies iz © ®rpg,; = 7. Using the standard expression of the Lie bracket

d d
[axé1, TBE] = b d| :0(‘1’%2,—[ ° Drpg,s © DL,

we deduce that this vector field is vertical. In the same way, [TB&, a,¢;] is vertical. It is obvious that the vector
field [TB¢&,, TB,] is also vertical. We infer the identity

T01(&, &) = TOx(&, &2) = [TBGy, TBG] — [aeéy, TBE] = [TBGy, aéa] + TB[&, &l
The required formula (2.3) follows from the identity
[TB&, TBS;] = T(B ~ DB)(&, &2), 2.4)

which we show now. We first remind the reader that for any vector space V, the canonical translation operator
T:C*(V,V)— C*(V,Ty) defined as (T¢)(v) = T)§, is a Lie algebra isomorphism, where the Lie algebra
structure over C*(V,V) is defined by [, n]l, = Dwp-& — D¢+ n,. Indeed if we define the action of
C*(V, V) over C*(V,R) as follows:
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€)W =Dof &=L

g, S+ 6) = [(T0)- Fl),

then

EnNm=L g Ho+E)=2

a, at,,, Lo Moeeg) = Dif G 1) + Dof - Doty - &

The fact that the bilinear form D?f is symmetric implies
S f-n-&f=1&nlf
On the other hand, by definition,
E-Tn-f-Tn-T-f=&-n-f-n-&f,
(&, nl f =TI n] f.

We conclude the required identity [T¢, Tn] = T[, n]. We apply this remark to our setup. For any point p € M,
we denote by B¢(p) € C*(Ep, Ep) the map n € E, — By{(p) € E, and we denote by TB{(p) € C*(Ep, Tg,) the
section n € E, — T,B,{(p) € T, . Then for any n € E,

[TBé, TB&]y = [TB&(p), TBE(P)ly
=T[B&(p), B&(p)ly
= [ DyB(Byéi(p))E2(p) — DyB(Bya(p))éu(p)l,

which shows (2.4). O

We notice now that for any covariant derivative V over E, the identity (A8) can be expressed as follows:
[HYE, Trps] = Trp(Vgs), (2.5

for any vector field { € C*(M, Ty,) and any section s € C*(M, E). We need to show the following more general
formula.

Lemma 4. Let (E, iz, M) be a smooth vector bundle over a manifold M, and let V be a covariant derivative
operator acting on the smooth sections of E. Then the equality holds

[HY¢, Ta] = TVj.0, (2.6)

for any vector field £ € C*(M, Ty) and for any section o € C*(E, nigE).

We observe that (2.6) implies (2.5), since V j,0 = mz(Ves), thanks to the functorial property (A6).

Tt
H

Proof. To show the identity (2.6) we notice first that the assumption o € C*(E, nzE) means that o is a map
0 : E — E such that 1z ° g = m. Then the one-parameter subgroup of transformations of E associated with
the vector field To satisfies @, (7)) = n + ta(n). Moreover, with the notation in the proof of identity (A8),

d d
HY¢, Tol=— — (Pr o ® o @ ).
[ E ] dt|z:0 dSls:o( &t Ta,s f,t)

The fact that ®; _; is linear on the fibers of E implies
(I)f,—t ° q)Z,S ° q)f,t = (I)E,—I[q)f,t + 80 ° (I)f,t] =g + Sq)f’—[ g ° (I)E’[.

We infer

d
al (@51 © Pro5 © Pe)(N) = TyPe— - T ° D (1),
s=0

for any n € E,. We observe that g o &g (n) € Eg, (p)- Indeed, using the property 7z ° o = 7z, we deduce
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T © 0 ° O (1) = 7 © g () = @ (D).

We remind now that if t — n, € E is a smooth curve such that ¢; = mz(n,), then
Ty Yplho = %lt=0(rc',%nt),
thanks to formula (A7). We apply the previous identity to the curve n, = o ° ®¢(n) € Ey, (). We obtain
Ty, [0 @] = 5o (@500 0+ 0] = T Tl
Moreover,

d :
a6, 107 @] = dyg- o) = dyo - HYE(p),
=0

We conclude the equality
TotVoundn® - HYE(D) = T,'[HYE, Tal(n),

which represents the required formula (2.6). O
We can show now the following result.

Lemma 5. Let (E, iz, M) be a smooth vector bundle over a manifold M, and let V and V' be covariant derivative
operators acting, respectively, on the smooth sections of the bundles E and Ty,.
Then for any section B € C*(E, ;(Ty; ® E)) the curvature field 8% of the horizontal forma = H' + TB satisfies

©¢ = -H" - VIw®E%B — B = DB - Bt"" + RY, @7
where VTW®ET: is the covariant derivative acting on the smooth sections of the bundle niz(Ty; ® E), induced by V and
V7, where TV is the torsion form of VTu.

Proof. In the case a; = H" in the identity (2.3), we can apply the formula (2.6) to the sections B¢; € C*(E, m;E).
We obtain
©1(&, &) = (R" - B ~ DB)(&, &) ~ Vi, (BE) + Vi, (B&) + Bl&y, &l

By using functorial properties of the pull-back, we have (with no abuse of notation)

* Ty®E, * Ty, sz _ oTu®E, * P
VZIEVQ(B " Mp&2) = VH%Q "B m& + B 'V}%gE(ﬂEEZ) = VHA% "B m& + B TE(Vg'S).

We conclude by (2.3) that if @y = @ = HY + TB, then the curvature field 8% of a satisfies the identity
08, &) = (R - B ~ DB)(&, &) - Ve "B, + Vit "BE - Br""(§, &),

We infer the required formula (2.7). O

3 First reduction of the integrability equations
Proof of Theorem 1

Proof. Let y# be the connection form associated with the horizontal form A. Then the integrability of J, is
equivalent to the condition

VA&, AL = 0, 3.1



14 — Nefton Pali DE GRUYTER

for all smooth complex vector fields &, & over M. (We remind here the use of the abusive notation
A& = A(§ » ).) We denote, respectively, by 84 and ©¢ the curvature fields of the horizontal distributions A
and a. The integrability condition (3.1) is equivalent to the condition 4 = 0. Then by applying the identity (2.3)
with @ = A, @y = a and separating real and imaginary parts, we deduce that the integrability of ], is equivalent
to the system

©*+B-DB=0,
TB[&, &] = [a&, TBE] - [a&,, TB&].

LetT € C*(U, m*End(Ty)) such thata = HY — TT. By using the formula (2.7) in the case E = Ty; and V = Vi we
can write the previous equation of the system (3.2) as follows:

(3.2)

HY - VEMd@AT — T = DT + TtV + B~ DB + R' = 0.
We express the second equation of the system (3.2) as follows:
TBl&, &] = [H&, TBE,| - [TT&, TBE,] - [HYE, TB&G] + [TTE,, TBE).

By using formula (2.6), we infer

B&, &]= Ve "7BE, ~ Vint WTBE + B(VpE, - Ved)

- DB(T$1)é, + DI(BS)é + DB(TE2)é1 — DI(B&)S,,
which can be expressed as follows:
HY - vEMdG).mg — T - DB - B - DI + Br" = 0.

We conclude that the system (3.2) is equivalent to the system

HY - VEMT)AT — T < DT + T2 + B~ DB+ RV = 0,

33)
HY - VEM(T)AB - T - DB - B - DT + BV = 0.

It follows that, using the identification S =T + iB, the system (3.3) is equivalent to the complex equation
(1.8). O

Remark 1. We notice that in the case (a, B) = (H", 1), i.e., in the case ], = Jv, the system (3.3) reduces to

In this way, we re-obtain the statement of Lemma 13.

Lemma 6. Under the assumptions of the Theorem 2, the M-totally real almost complex structure ], is integrable
over U if and only if
S1 € C°(M, S?Ty; ®r CTyy),

(i.e., V5 is torsion free),

Rv81 = —ZiAltzsz, (34)
s k-1
dY 'Sk + Y PSy A1 Siper + 1Kk + DALt Sk |(&, &, 7F) = 0. 35)
p=2

forallk > 2 and for all &, &, n € Ty np.

Proof. Let S = T Y(H" - A). In the case the connection V is torsion free, equation (1.8) reduces to

HV . vEnd(TM),Hs - S-DS + RV =0. (36)



DE GRUYTER On maximal totally real embeddings

The identification Sy, - & = Si(¢, %) shows that Sk € Tj,,,ﬂ(q) ® CTynqy), 1€,
Sk € C*(Ty, 1" (Ty; ®r CTyy))
and

S=) Sk
k=0

We remind the reader of the formula
Ve (Sk - &) = Ve " Sic- & + Sic Vel
for any vector field &, & over M. On the other hand, by definition,
Vire(Skc - & = Tgi, oV g, o 0n(Sic - E)HE)
- T;;@,,,k)ysi@,,,k)%hzo[sk(fz © 00 © ), Dy ()]

Let now n be the vector field over Im (¢, , ° 7(n)) defined by

N@g . ° 1) = Dg,e(n).
Then

Ve (Sk - &2y = Ve[ Si(Ea, e = VeSk(& ° (), %) + Sk(Veainimy 1),
since Vgn = 0. We conclude the identity
(Ve TS & = VeSi(E, ),

&, & € Ty nqp- We infer the formula

HY = VEd@Drs, = dys;.

We notice now the equalities

d K ‘ ‘
DySi(v) & = @t [Sk(E, (0 + )] = Y Sk(€, i, v, nkT) = kS(&, v, nkY),
t=0 j=1

and
(St~ DS(&1, &) = kSi(&2, Sip - &, 1K) = kSi(&, Sy - &, 17D,

We infer the equality
(81~ DS(&, &) = ~k(Sk A S)(&, &, n<171).

15

(3.7

(3.8

(3.9

Let W C U be any set containing the zero section of Ty; such that W N Ty, is a neighborhood of 0, for any
p € M and such that the fiberwise expansion (3.7) converges over W N Ty . The fact that by assumption
U N Ty, is connected implies by the fiberwise real analyticity of S that S is a solution of (3.6) over U if and only

if it satisfies (3.6) over W.
By using (3.8), we can write the equation (3.6) under the form

2diSk— Y (S~ DSy + R =0,
k=1 L,p=0

over W. We decompose the sum

(3.10)
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Y (Si-DSp)= ) (Si~DSy)

Lp=0 1>0,p>1
= 2 (51~ DSy) + i) (g, ~ DSks)
Lp>1 k=0

k
=Y D (Sk-ps1 7 DSp) + i D (g, = DSks1)
k>1p=1 k=0

k
==Y Y DSy M Skeper) = 1 2 (k + D(Sker A1 g,),s
kz1p=1 k=0

thanks to the equality (3.9). If we denote by deg, the degree with respect to the fiber variable ) € Ex(;), we have
de%,,df Sic = deg,(Sp A1 Si-p+1) = k,
deg,(Sk+1 A1 ) = K,
deg,R" = 1.
Thus, by homogeneity, equation (3.10) is equivalent to the countable system
Sinlg, =0,
dlel + SN S+ 28 N [ITM +R = 0,

Yo . S . 311)
dYSk + D P(Sp A Skpe1) + ik + DSt A1 Iy, (&, &, 0F) = 0,
p=1
Vk 22, V&, &, n € Ty

The first equation in the system means S; € C*(M, §*Tj; ®r CTy), i.e., the complex connection V*: is torsion
free. The second equation in system (3.11) rewrites as (3.4). We show now that the equation for k > 2 in system
(3.11) rewrites as (3.5). Indeed using the formula

14
vge(‘}l) ---1Vp) = vfe(le --':Vp) + r(f: 9(‘)11 --':Vp)) - Ze(Vl, "*)Vj—ly F(E, V]), vj‘rl) ---1Vp);
j=1

where T € C*(M, Ty®* @r CTy), 6 € C°(M, Th™" ®r CTy) and &, vk € Ty, we infer
dFSISk(fl) EZ’ r)k) = vﬁsk(fb ’]k) - vfzsk(fl’ nk) + Sl(fl) Sk(EZJ rlk)) - Sk(sl(flx EZ)’ r’k)

= kSu(&, S1(&, m), 7Y = S1(&2, Sk(&, 1)) + Si(S1(&, &), n*) + KSi(&r, S1(&, ), nFY)
=[dSk + S1 A1 Sk + kSk A1 S1l(&, &, 1),

since S is symmetric and S is symmetric in the last k variables. We conclude (3.5). O

Remark 2. In the case Sx = 0, for all k > 2, the previous system reduces to the equation
dyS; + Sy A S1+ RV = 0. (3.12)

The equation (3.12) means that the complex connection VS acting on sections of CTj, is flat. In the case
B = l;1,, the second equation in system (3.11) implies

AT+ AT+ R =0,

with I} = ;. This means that the real connection V% is flat.

4 Second reduction of the integrability equations

In this section, we will prove the following result.
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Proposition 2. Under the assumptions of the Theorem 2, the M-totally real almost complex structure J, is
integrable over U if and only if

S1€C™(M, §*Ty; ®r CTy), Le., VSt is torsion free,
Sy =87 + o,

i

S2&, &, &) = E[Rvsl(fly E)& + RV(&, &)&),

g, €C*(M, SSTI& ®r CTy),

i 1
S3 = EVSIGZ ¥ msym 2,3,4(V81Rv81)2 + 03,
03 € C™(M, S*Ty; ®r CTyyp),

(VSR )&, &, &, £4) = VERV (&, &)&u, for all &, &, &, & € Ty and for allk > 3,

k-1
N .
A7 'S+ Y PSp A1 Sipar + ik + DALt Sk (&, &, 1) = 0,
p=2

for all &, &, n € Ty qqp-
We first remind the reader that for any complex connection V acting over the sections of C Ty its torsion ¥
satisfies the identity
v = dy,,
where dV is the covariant exterior differentiation and Iy, € C*(M, Tj; ® Ty). Then
d'77 = RV A lg,,

and

RY A g, )&, &, &) = RV(&, §2)& + RY(&y, £3)& + RY(&3, )&

We conclude that if a connection is torsion free then then its curvature operator satisfies the algebraic Bianchi
identity.

We denote by Alt, the alternating operator (without normalizing coefficients!) acting on the first p > 2
entries of a tensor, counted from the left to the right. We notice the following very elementary fact.

Lemma 7. Let V be a vector space over a field K of characteristic zero. Then for any integer p > 2, the sequence

Alt Alt
0 — SPHV* — V* @ SPV* = A2V @ SPIV = BVt @ SPY,

is exact.

Proof. The equality
$PHV* = Ker(V* ® SPV* o v e sy,
is obvious. We show now the equality
(V" ® SPV* 5 A2V* @ SPIV*) = Ker(AR2V* @ SPIV* - mV° @ SP2v™). @1
We show first the inclusion C in (4.1). We notice the equality
(M2V* @ SP-lp* e SP2Y*) = (AV* @ SPIy* U v e Py,

Let now § = Alt,a, with a € V* @ SPV*. Then summing up the two equalities
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B(v1, Va5 V3, Wy, o, Vpa1) = AV Vo, V3, Wy oy Vpsr) = A(Vo; Ve, V3, Wy, oo, V),
=B(V1, V35 Vo, Vi, ey Vps1) = =@(V1; V3, Vo, Vi, oo, Vpst) + A(V33V1, Vo, Uy, ooy Vpit),
we obtain
B(v1, va; V3, vy, ooy Vpe1) = B(V1, V35 Vo, Wy, ey V)
= —a(vy; V3, V1, Vg ooy Vpst) + A(V3; Vo, V1, W, oy Vpat)
= =BV, V3; V1, Vg, s V1),
which rewrites as follows:
B(le VZ; v3: v4y --'va+1) + ﬁ(VZ) V3; vl: v45 ...,VP+1) + B(v?n Vl; VZ) V41 ...,Vp+1) = 01

i.e,, Circf = 0, which shows the inclusion € in (4.1). To show the reverse inclusion in (4.1), we consider
B € NV* @ SP71V* with Circf = 0 and we will prove that 8 = G, Alt,a, with

a« = Sym, ,.pEV @SV,

and with G, = p/(p + D! Indeed

1 p+l
———a(vy; Vy, ..., Vps1) = (W, Vi Vy ooty By eoey V1)
(p-D! b P JZZIB LY, V2 j p+1
and
1
(= DAL V2 i)
1 1 )
= WOI(W; V2, ...,Vp+1) - ma(vz; V1, Vg, ...,vp+1)
p+l P+l

2 BOL; Vo, o, Tjy ey Vpat) = D BV2, j5 Vi, Doy )V, e, V)
J=2 J=1

j#2
p+l
= BV, V5 V3, ey Vpad) + 0 BVL, Vj5 Vo, V3, ety By ey Vpiet)
Jj=3
p+1
+ B(V1, Vo5 V3, oy Vpat) + ZB(V]‘, V25 V1, V2, V3, ooy Vjy v, Vpad).
j=3
By using the circular identity Circf = 0, we obtain
1 Pt
@-1 (AL, @)(V1, V35 ooy Vpet) = 2B(V1, V25 V3, coeyVpa1) = 2 B(V3, Vi3 Vjy V3, e, Uy oo, Vpat)-
! =

This combined with the fact that 8 € A2V* ® SP"1V* implies

1
w-1 (ALt @) (V1, V33 or,Vpa1) = 2B(V1, V35 V3, e, Vpat) + (P = DBV, V25 V3, e, Vpa1)

=(p + DBy, Va5 ey Vpi1),

which shows the required identity. O
A direct consequence of the proof of Lemma 7 is the following fact.

Corollary 3. Let R € C*(M, NTy ®r Ty ®r CTy) satisfying the algebraic Bianchi identity. Then a
tensor S € C*(M, Ty; ®r S*Ty ®r CTy) satisfies 3R = Alt,S if and only if S=Sym,,R+a, with
0 € C°(M, S*Ty; ®r CTyy).
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We infer by Corollary 3 that equation (3.4) is satisfied by S, = S7 + a3, with

SY(&, &, &) = é[RV“(a, E)E + RV'(&, &)&), (4.2)

and with g, € C*(M, S°T;; ®r CTy). We consider now equation (3.5) for k = 2, which writes as follows:
[d7"S, + 3iAltaS51(&, & 0°) = 0. “3)
The fact that the tensor
d7’'s, + 3iAlt,S;

is symmetric in the last two variables implies that equation (4.3) is equivalent to the equation

d7’'S, + 3iAlt,S; = 0,
which we can rewrite under the form

d7's? + 3iAlt,$; = 0, (4.4)
with

i
S3 = S3- gvslo'z.

Then by using expression (4.2), we can rewrite equation (4.4) in the explicit form

VIRV (&, &)& + VIRV (&, E0& — VIRV (&, &)E - VIRV (&, E0&
= —18[83(&, &, &, &) — S3(&n, &, &, &)

We notice that the fact that the complex connection Vi is torsion free implies that the tensor p given by
p(&, &, &3, &) = vsllesl(Ez, &3)&, satisfies the circular identity with respect to the first and last three entries.
Moreover, p is obviously skew-symmetric with respect to the variables &, &.

4.5

Lemma 8. Let p be a four-linear form, which satisfies the circular identity with respect to the first and last three
entries and which is skew-symmetric with respect to the second and third variables. Then a four-linear form S,
which is symmetric with respect to the last three entries satisfies the equation

Alt,[8Sym 34P = S =0, (4.6)
if and only if
S =-28ym, 4,0, + 0= 23ym, 3,03 + 0,

with p,(&, &, &3, &) = p(&y, &, &3, &), With ps(&, &, &3, &) = p(&2, &3, &, &), for all &, &, &3, &4 € Ty n(gy and with
o a four-linear form which is symmetric with respect to all its entries.

Proof. We observe first that the assumptions on p imply CircAlt,Sym , ,0 = 0. Indeed
(AltySym 5 ) (61, &2, &3, §4) = P(&1, §2, §3, ) + P&, §2, Sa, §3) = P&, G2, €3, 64) — P(&2, &1, §a, 63),
and

(CircAltSym 5 ,0)(&, &2, &3, €a)
= (&1, §2, 63, §a)1 + P&, §2, §ay §3)a = P(S2, &1, 63, €4)2 = P(E2, &1, §a, §3)5
+ p(&2, €3, &1, Sada + P(§2, €3, 4, §1)5 = P(E3, G2, 61, §a)3 = P(E3, G2, 645 S1)6
+ p(&3, &, &2, §ad3 + P(E3, &1y Sy §2)6 = P&, &3, §2, $a)1 = P(&1s €3, §as 2)as

where we denote by p(-,-,-,-); the terms we group together. By using the assumption that p is skew-symmetric
with respect to the second and third variables, we infer
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(CircAltSym 5 ,0)(&, &, 63, €4)
= 20(&, &, &3, &)1 + P&, &2, Eay E3)a + P(&2, &y &, E3)5 + 2D(&n, &3, &, €)1 + P(&2, &3, Ea &1)s
+ (&3, &4, &, &6 + 20(&3, &, &3, Ea)1 + P(&3, &1, €4, &) + P&, €4, &3, E)a

By using the circular assumptions on p, we infer

(CircAltSym 5 ,0)(&1, &2, 63, §4) = =&, §3, &2, §4) = P(E2, &1, 63, S4) = P(&3, &2, &1, §a) = 0.
Then by the proof of Lemma 7 in the case p = 3, we infer that a four-linear form S, which is symmetric with
respect to the last three entries satisfies equation (4.6) if and only if

§ = Sym,, ,AlSym; ,p + 0,
with o any four-linear form, which is symmetric with respect to all its entries, satisfies (4.6). We write now

(Symy 3 ,AltSym 5 ,p)(&, &2, €3, 1)
= P&, &2, €3, S + P(&1, &2, §a, §3)2 = P(&25 1y €3, §4)3 = P(&2s 1y €45 §3)a
+ p(&1, §25 845 §3)1 + P(&1, E25 35 8a)2 = P(&as &5 S5 6304 = (&2, 61, &3, §a)3
+ p(&1, &3, §2, Sad1 + P(&1, €3,y §2)2 = P(&3, G, §2, Sa)s = P(E3, G, €ay $2)6
+ p(&1, 835 §as §2)1 + P(&1, €3, §25 Sa)2 = P(&3, 61, as €206 = P(E3, 61, §25 Sa)s
+ p(&1, §as 2, E301 + P&, €1, 63, §2)2 = P&y €1, §2, 83)7 = P(Eas 61, 835 2)s
+ p(&1, €, 63, E2)1 + P(&1, €45 §2, §3)2 = P(&as &1, 63, §2)8 = P(Sas &1y G2, §3)7-

The fact that p is skew-symmetric with respect to the second and third variables implies that Sym, ; ,0 = 0. We
infer

(Sym, 5 ,AltSym 3 ,0)(&1, &2, &3, §) = =2p(E2, &1, €3, §4) = 2p(E2, &1, Sa, €3) = 20(83, 61, &2, 4) = 2p(83, &1, s &2)

- Zp(&l: flx EZ! 53) - 2p(€41 Elr 531 EZ)
=2p(&2, 63, 61, §a) + 2p(&2, $a, &1, §3) + 2P(83, §2, G1, €a) + 2P(E3, Ea, G2, 2)
+ Zp(fll) 52: El) 53) + 2P(E4» 63) fl’ EZ):

which shows the required expressions for S. (]

By equation (4.5), we can apply Lemma 8 to the tensor p := VSIRY™. We infer the equation

1 i
S3 Sym 2’3’4(VS1Rv31)2 + Evslo'z + O3. 4.7

TH]

We deduce that equation (4.4) is equivalent to equation (4.7). This concludes the proof of the Proposition 2
thanks to Lemma 6.

5 Third reduction of the integrability equations and proof of the
main theorem

In this section, we will prove the following result.

Lemma 9. Under the assumptions of the Theorem 2, the M-totally real almost complex structure ], is integrable
over U if and only if
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S1€EC™(M, S*Ty;®r CTy), ie., VSiis torsion free,

Sz = SZO + 0Oy,

S8 & &) = IRV &) + R 0]
0, € C*(M, §T;; ®r  CTy),

and for allk > 3,

S=ivslo +;Sm Bi-1 * O
K AT e ) YWy, .. k+1Pk-1 T Ok

ox € C*(M, STy, ®r  CTyy),
i S l S

ﬁk = Edlv 1vslo'k_1 + 7(]{ N 1)' dlv 1Syl'rl 2,...,k+1ﬁk—1

k-1

Zzpsp M Sk-p1
o

1
+ F Sym 3., k+2)

>

b=~ L,
Circp, = 0.

Proof. We show that the statement of proposition 2 is equivalent to the statement of Lemma 9. We show indeed
by induction on k > 3 the following statement.

Statement 1. The tensors Sy, h = 3,..., k + 1, satisfy the equations

h-1
dY"Sy+ Y PSy A Shopet + 1(R + DAL S1u|(E, & 1) = 0, 5.0)
p=2

forall h = 3,.., k, for all &, &, N € Ty,xqp and

i 1
S3 = gVSle + 4—|38ym 2}3’4(V51RV81)2 + g3,

with g3 € C*(M, S$Ty; ®r CTy), if and only if the tensors S, satisfy for all h = 3,..., k + 1, the identities
i

i
Sh = Evslo'h—l + mSym 2,..‘,h+1ﬁh—l + O, (52)

with gy, € C*(M, S"*1T;; ®r CTy) and where for all r = 3,..., k,

i S1 l S1 1 1
B, = —di Vo1 + 4y Symy Byt <rSYMy ol 2 DSy A1 Srpual,
r r (r+1! s THIET r! s T 2
with B, = —é(visvsl)z satisfies equation Circp, = 0.

Statement 1 follows directly from the following fact.

Fact 1. Let S, for some h = 3,..., k, be the tensor given by (5.2). Then the tensor Sy.; satisfies equation (5.1) if
and only if S+ satisfies identity (5.2), with h replaced by h + 1 and f, satisfies equation Circf, = 0.

To show the fact 1 we observe first that (5.1) rewrites as follows:

h-1

2 PSp A Shepet
p=2

1
dy"S, + - Sym 3,..,h+7 * i(h + DAl = 0.

h!
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By using expression (5.2) for S, and the definition of f8,, we can rewrite the previous identity as follows:
ﬁh = - Alt z[vslo'h +i(h + 1)Sp41]. (5.3)

By the proof of Lemma 7, we deduce Circpf, = 0 and
=VSigp = i(h + DSp1 = Grea SyM, ooy = iR + 1)0ps.

Therefore, identity (5.3) is equivalent to Circf, = 0, and Sp+; satisfies (5.2), with h replaced by h + 1. This
concludes the proof fact 1. We infer the required conclusion of Lemma 9. O

Proof of the main theorem

Proof. We show that the recursive definition of §, in the statement of Lemma 9 yields the formula

i gs 1
B = Edlv WSy + msyms,..‘,mzek’
Ok = Z (r dvsl)" V4, + 31(idy )Hﬂz G4

k —_
+ )+ Z (idY" YT (pSy M Sr-p+1),
r=3 p=2

for all k > 3. We show (5.4) by induction on k. We notice first that the recursive definition of p, rewrites as
follows:

. . k-1

l S1 l vsl 1

By = —dy VSigpq + Sym, o di Bra+ 7 Zpsp A Sg-p+1
k e K (e + 1)1 k! p=2

bl

and we write

1 k
s —_—
ﬂk+1 k + 1d V 10y + SYm3 Jk+3 (k + 2)|d ], +SYm3,...,k+3 (k + 1)!52173,, N Sk—p+2 .
By using the inductive assumption (5.4), we infer the expressions
i Wi _ 1 V90 .\ ; o
k+ o P (k 2),k(ldl Y2 VSigyq K+ Dk + DIk Sym,  iesidy Ok,

VS10 _ z (r +2) (dvsl)k+1 rvsldr + 3'(ld )k—lﬁ2 Z(r +1)! z(ld )k+1—r(psp A Sr—p+1)-
p=2

This combined with the identity Sym; ,,,Sym, .3 = kISymj .., yields
1 ,
N d Voo msym 3. kea(id) evSio
1
t ke ™

3| e
' msym 3, ...,k+3(ldlv 1)k 'B,

r+2
L k+3 Z ( ) dV51)k+1_rvslo'r
r=2

1 k r-1 .
e G 1y Yo 20 D 2 GRS, M Srop)

K
1
e D M ke p;psp At S-pr2-
Putting the terms together, we obtain (5.4) for B,,,. Then the obvious identity d'V = Alt,V2, combined with the
formula (5.5), allows to conclude the required expression of §, = B, (0x-1) in the statement of the main theorem.
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(We perform the change of indices r" = r + 1 in the above expression of 6¢.) This concludes the proof of the
main theorem. O

We remind first the following elementary and well-known fact.

Lemma 10. For any covariant derivative operator V acting on the smooth sections of CTy; and for any tensor
6 € C=(X, Th>* ® CTy) holds the identity

Alt,v%0 = R" - 6. (5.5)

6 The symplectic approach

6.1 General facts

Let M be a smooth manifold and let 8 € C*(Ty,, T;;l) be the canonical 1-form on the total space of the cotangent
bundle defined as 6, = A - dyzr;, for any A € Tj,. The canonical symplectic form over the total space Ty is
defined asQ = -df.Let now g be a Riemann metric over M viewed as a vector bundle map g : Ty — Ty;. We
define also the forms 85 = g*0 and Q8 = g*Q = —-d6¥ over the total space of the tangent bundle. In explicit
terms B,f = g(n) dyny,, for all n € Ty, ie,

05(8) = &y, (1, dytry - ©),
for all ¢ € Ty, ;. Let V8 be the Levi-Civita connection, defined as
2Vin = g~ d(gn) + n - d(gd) + (&, n)] + €, n),

forany ¢, n € C*(M, Ty). Let also y& € C*(Ty, TT*M ® Tr,) be the Levi-Civita 1-form, which is determined along
any section n € C*(M, Ty), by the identity y,f -dn = T,Vén.
For any curve n : t — n, € Ty, we define the covariant derivative
Vén P
W = Tntly’fl’]t (S TM‘]T(”[).
We consider now two curves not—n €Ty, j = 1,2, such that 75, (ny ) = 71,,(1,) = X,. Then

vén,
e gt

d vén,
Eglxt(rll,t’ rlZ,t) = glxI dt ) Uz,t + g\x,

With the previous notation hold the following well-known lemma (see also Klingenberg’s book [12] for a proof
using local coordinates).

Lemma 11. The formula
QE(&, &) = g(dytr &, Ty 1V,]gfz) = &(dyr, &0, Ty 1V,,g51),

hold for any n € Ty, p = i, (n) and for any &, & € Ty, .

Proof. With respect to a local coordinate trivialization of the tangent bundle, we can extend in a linear way the
vectors & and &, in to vector fields 4, £, in a neighborhood of Ty , inside Ty In this way, [E4, E2] = 0, and thus,
Q8(8y, By) = By. 68(Ey) — Ey. 08(E;). We denote by e j =1,2 the corresponding flow lines starting from
n. Then

d - d
Qﬁ(fl’ &) = Ehzo[g”TM('?zm)mz'“ anJtT[TM : 51('72,1))] - d_

t|,:0[gHTM(nl-f)(ql’t’ drhyt”TM : 52('71,t))]-
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We distinguish two cases.
* In the case when dyr,&; = 0 for some j, say j = 1, then d,, 7ir, E1(1),,) = 0 and

d

Ednl,tnTMEZ(nLt) = 0)

by the linear nature of the local extension. Then
Qf (&, &) = ~g,(T; Y, dytry 2)-

The case j = 2 is quite similar.
* In the case when d,7,,&;, do not vanish for j = 1, 2, then the vector fields {; = drmy,E; are well defined
and [{3, (3] = 0. Then

Qf(&, &) = &(Ty Y E&, Ayt &) + &0, VG = Ve®) — 8Ty V5, dyn, &)
= g,(T; 1V,7g52, dyr, &) + 8,0, [G, Gl(p)) = 8T, 1V,,g<71; dyrtr, 82),

which implies the required conclusion. O
We need to remind in detail also the following very well-known lemma [12].

Lemma12. Let2{% = Q& "1d|~|i, and let ®f be the corresponding one-parameter subgroup of transformations of
Tu. Then for any n € Ty, the curve ¢; = 1y, ° ®f(n) is the geodesic with initial speed ¢, = n and ¢; = ().

Proof. For any n € Ty, and for any ¢ € Ty, , lett — n, € Ty be the curve such that rj, = . Then
2 _ d 4
$ g = Ehz(,[g”w(’w(”" )1 = 28,(n, T, 'yF9),
and thus,
QF(GF, ©) = ,(n, T,yED,
by the definition of the vector field {§. By using Lemma 11, we infer
8y G, Ty 'vE6) = gy (dyny &, Ty WECH) = g,(n, T YED. 6.1)
In the case dyr,¢ = 0, the identity (6.1) yields
&, (dyr, GE, T,'E) = g,(n, T,'9),
and thus, dyrr,,¢f = . In the case y,ff = 0, the identity (6.1) yields
8y &, Ty YECH) = 0,
and thus, y,f(,f = 0. We deduce the formula
(8 = HE - n. 6.2)
Thus, the flow line , = ®f(;) satisfies the identity
i = HE - 1. (6.3)
We deduce
¢ = dptny - 1y = dyJin, - HE -1 = 1),

and ¢ = HC{" - ¢, which is the geodesic equation. O
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We provide now a proof of the following well-known result due to Lempert and Szoke [14]. See also,
Guillemin and Stenzel [10], Burns [2,3], and Burns et al. [4].

Corollary 4. Let (M, g) be a smooth Riemannian manifold. A complex structure J over the total space of the
tangent bundle Ty, satisfies the conditions

Jor =T (6.4)

208 = d|[5 ], (6.5)
if and only if for any n € Ty, the smooth map ¥, : t +is — s®¢(n), defined in a neighborhood of 0 € C, is
J-holomorphic.

Proof. We define the Reeb vector field 2 = Q&710. This vector field is independent of the metric g. Indeed by
Lemma 11, the identity

8,(n, dytry &) = g (A, By, TyYED) - gy(din &, T, VS Ey), (6.6)
holds for any § € Ty, ;. Thus, if dyrr,,& = 0, we deduce the equality
&,(dyr, By, T,%8) = 0,
and thus, d,r, E,; = 0. Then the identity (6.6) reduces as follows:
&N, dytr, &) = =g, (dy &, T,'2p),
for any ¢ € Ty, ,. We infer the formula
=T n 6.7)
for all n € Ty,. We notice now that the identity (6.5) is equivalent to the identity
Q8(28, §) = dIfgJE
and is also equivalent to the identity 65 = —df|~|§. Thus,
Q8 = ddj|-[; = i0;|[3,
thanks to the fact that J# is integrable. We infer that the symplectic form Q8 is J-invariant. Thus,
QE(YE, J§) = dI[5J,
ie,
JE = (8. (6.8)
This combined with (6.7) and with (6.2) implies that (6.5) is equivalent to the identity
LHS -n=T-n. (6.9)

We show now that the later combined with (6.4) is equivalent to the J-holomorphy of the maps ¥),. For this
purpose, we observe that the differential of such maps is given by

0 0
dmnsolﬁn[aa + bh—

55| = ad(aln JREM) + bTyas @),

But
G = ¢& © ®F(n) = Hyp ) - DD,

thanks to (6.2). Then by using the property (A5) of the linear connection V&, we infer
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0 0
dto”So‘/’n[aE ¥ bg] = (aHggs ) + DToafin) PE()- (6.10)
The smooth map ¥, is J-holomorphic if and only if
5} 0 0 0
dtUHsOlp’?[_bE + ag] =]dt0+isolpn[a5 + bg],
thus, if and only if
(‘bHngq,g)(n) + aTy80) P =T (aHf;ng](q) + DTy 08y PHN)-

For sy # 0, this is equivalent to (6.9). For sy = 0, this is equivalent to (6.4). We deduce the required conclu-
sion. O

The condition (6.4) implies that J is an M-totally real complex structure. We can provide now the proof of
Corollary 1.

6.2 Proof of Corollary 1

Proof. If we write A = a + iTB and a = H8 — TT, then
S = TYH"-A)=T+iB.

We set S = I + iB,. From the proof of Corollary 4, we know that in the case J is integrable over U, the curve l/),7
is J-holomorphic if and only if hold (6.9). The later rewrites as follows:

Hf"F‘],,Tn"I-
By using (1.7), we infer that the previous identity is equivalent to
Hf-n=aB;" 1. (6.11)
Taking d;7 on both sides of (6.11), we deduce n = B, 1. j. Therefore, (6.11) is equivalent to the system
B,-n=n,
! T (6.12)
Hy-n=ay-n.

Then the system (6.12) rewrites as

Y Be(p®) =0,
k>1
zrk(’lk+1) = 0.

k=1

and thus as Sx(7**1) = 0 for all k > 1. We remind now that, according to Theorem 2, the integrability of the
structure J implies the condition S$; € C*(M, S?Ty; ®r CTy). We infer S; = 0. We notice that, with the notation
of the statement of Theorem 2, the equation Circf, = 0 holds for all k > 1. This combined with the identity

[Circ,Sym, 4.l = 0,
implies
CireSym, .08 = 0, (6.13)

for all k > 1. So if we apply the Circ operator to both sides of the definition of S, in the statement of Theorem 2,
we infer CircS, = Circa, = 30,. If we evaluate this equality to °, we infer S,(n%) = g2(n%), which implies g; = 0.
We show now by induction that g; = 0 for all k > 2. Indeed by the inductive assumption,
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1
Sk+1 = (k + 2)| SymZ,...,kHﬁk + Oj+1.

By applying the Circ operator to both sides of this identity and using the equation (6.13), we infer
CircSy+1 = Circays1 = 30i+1, which evaluated at n*2 gives Si.1(n**%) = Gr+1(n¥*2). We deduce oy+q = 0. By using
the identity

Sym, jqSyMy g = (K= DISym, oy, (6.14)

we infer from the statement of Theorem 2 and with the notation there

i
Sk = *k+ DIk Symy  ks1fk-1,
for k > 2, with 6; = 2Ré and
k+1 r-2
O = —20(idy )H(VERS), + Y 11 Y (id{ VTS, At Srop),
r=4 p=2

for all k > 2. Moreover, we observe that the equation Circf, = 0, k > 3 rewrites as

CircSym, 4,0k = 0.

If we set ©x(g) = 6Ok, for all k > 2, we obtain the required expansion.

On the other hand, if the expansion in the statement of the lemma under consideration hold, then J is
integrable thanks to Theorem 2 and CircSx = 0 for all k > 2, (S; = 0). Indeed for k = 2, 3, this equality follows
from the identities CircOx(g) = 0 and

[Circ,Sym, ;,q] = 0. (6.15)

For k > 4, we use the identities (6.15) and (6.14) and the integrability equations satisfied by the metric g. We
deduce Si(n**') = 0, for all k > 1, which is equivalent to (6.11) and so to the fact that the curves Y, are
J-holomorphic. O

7 Proof of the proposition 1

Proof. We expand first the term

Ay (VRY)y(81, &, &, &4, &) = Ve (VR )2(&s, &3, &, &) = Ve (VR )o(&y, &3, &4, &5)
= VIRY(&, &, &, &4, &) — VPRY(&y, &3, &, &4, &)
= V2RV (&, &3, &, &4, &) + VARY(E, &3, 84, &1, &)
=V2RY(&3, &, &, &4, &) + VPRY(E3, &5, &4, &, &)
+ (RY. R")(&, 83, &3, 84, &5) + (RY. RV)(&, &3, &0, &, &),

thanks to formula (5.5). By using the differential Bianchi identity, we infer

dY (VR")y(&, &3, &5, &4, &5) = ~V2R(E3, &, &, 60, &) + RV - RV)(&, &, &2, 0, &) + (RY - RV)(&2, &3, &, &1, &).
To simplify the notation in the computations that will follow we will use from now on the identification

0(&, &2, €3, &, §5) = 0(12345),
for any tensor 6. We expand now the term
CircSym , , 5dy'(VRV),.
We let
6(12345) = V2RY(34125),
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and we observe the identities

(Sym, :0)(12345) = VR(34125) + V?RY(35124) + V2R"(43125)
+ V2RY(45123) + V2R"(53124) + V2R"(54123),
(Sym ; , ;0)(23145) = V2R"(14235) + V2R"(15234) + V2RY(41235)
+ V2RV(45231) + V2RV(51234) + V2RV(54231),
(Sym, :0)(31245) = VR(24315) + V?RV(25314) + VR"(42315)
+ V2RY(45312) + V2R"(52314) + V2R"(54312).
Summing up, we obtain
(CircSym 3, 56)(12345) = V2RY(34125) + V?RY(14235) + V2RY(24315)
+ V2RY(35124) + V2RY(15234) + V2RV(25314)
+ V2RV(43125); + V2RV(41235); + V2RV(42315),
+ V2RV(45123), + V2RV(45231), + V2RY(45312),
+ V2RV(53124)3 + V2RV(51234); + V?RV(52314)3
+ V2RV(54123), + V2RV(54231), + V2RV(54312),,
where we denote by V2RV(---+-); the terms that summed up together equal zero thanks to the differential

Bianchi identity for j = 1, 3 and thanks to the algebraic Bianchi identity for j = 2, 4. By using formula (5.5),
we infer

(CireSym ; , 0)(12345) = V2RY(43125); + V?RV(41235); + V2R¥(42315),
+ V2RY(53124), + V2R"(51234), + V2R"(52314),
+ (RY. RY)(34125) + (R". RV)(14235) + (R". R")(24315)
+ (RY. RV)(35124) + (R". RV)(15234) + (R. R")(25314),

where as mentioned earlier we denote by V2RV(----); the terms that summed up together equal zero thanks to
the differential Bianchi identity. We deduce the expression

(CircSym 4, ;0)(12345) = (R". R")(34125) + (R". R")(14235) + (R". R")(24315) 71
+ (RY. R")(35124) + (R". R")(15234) + (R. R")(25314).
We set now for notation simplicity p = R". RY, and let
0(12345) = p(13245) + p(23415).
We observe that, by definition, the tensor
p € C*(M, N'T;; ®r ATy ®r Ty ®r CThy),
satisfies the circular identity with respect to its last three entries. We expand now the term

CircSym, , 0.

We observe the identities

(Sym , , ©)(12345) = p(13245) + p(23415) + p(13254) + p(23514) + p(14235) + p(24315)
+ p(14253) + p(24513) + p(15234) + p(25314) + p(15243) + p(25413),

(Sym , , $8)(23145) = p(21345) + p(31425) + p(21354) + p(31524) + p(24315) + p(34125)
+ p(24351) + p(34521) + p(25314) + p(35124) + p(25341) + p(35421),

(Sym, ©)(31245) = p(32145) + p(12435) + p(32154) + p(12534) + p(34125) + p(14235)
+ p(34152) + p(14532) + p(35124) + p(15234) + p(35142) + p(15432).
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Summing up we obtain

(CircSym 3’4!5@)(12345) = p(13245); + p(23415), + p(21345)5 + p(31425); + p(32145), + p(12435)3
+ p(13254), + p(23514); + p(21354) + (31524, + p(32154); + p(12534)s
+ p(14235), + p(24315)s + p(24315) + p(34125), + p(34125), + p(14235),
+ p(14253), + p(24513)g + p(24351)g + p(34521)s + p(34152)y + p(14532);
+ p(15234)10 + p(25314)11 + p(25314)11 + p(35124)12 + p(35124)1, + p(15234)19
+ p(15243)19 + p(25413)1 + p(25341)11 + p(35421)12 + p(35142)1, + p(15432)qg,

where we denote by p(:---); the terms that we sum up together using the symmetries of p. We obtain
(CircSym ; , :0)(12345) = 2p(13245) + 2p(23415) + 2p(12435) + 2p(13254) + 2p(23514) + 2p(12534)
+ 3p(14235) + 3p(24315) + 3p(34125) + 3p(15234) + 3p(25314) + 3p(35124).
We conclude the expression

[ CircSym ; , d(VR"),1(12345) = 2p(13245) + 2p(23415) + 2p(12435) + 2p(13254) + 2p(23514) + 2p(12534)
+ 2p(14235) + 2p(24315) + 2p(34125) + 2p(15234) + 2p(25314) + 2p(35124).

(7.2)

We expand now the term
CircSym ;4 (B" A1 RY).
From now on, we will denote for notation simplicity (123) = RY(123) and
[123] = (123) + (132).
We observe the identities
[Sym,,s(R" A R)1(12345) = [1[234]5] - [2[134]5] + [1[235]4] - [2[135]4] + [1[243]5] - [2[143]5]
+ [1[245]3] - [2[145]3] + [1[253]4] - [2[153]4] + [1[254]3] - [2[154]3],
[Sym,, s(B" A1 RY)1(23145) = [2[314]5] - [3[214]5] + [2[315]4] - [3[215]4] + [2[341]5] - [3[241]5]
+ [2[345]1] - [3[245]1] + [2[351]4] - [3[251]4] + [2[354]1] - [3[254]1],
[Sym 3,4,5(R’V AL RD)(31245) = [3[124]5] - [1[324]5] + [3[125]4] - [1[325]4] + [3[142]5] - [1[342]5]
+ [3[145]2] - [1[345]2] + [3[152]4] — [1[352]4] + [3[154]2] - [1[354]2].
Summing up, using the symmetries of [--- ] and (--- ), we obtain

[CireSym ;. , (R” A1 RY)](12345) = 6[1(234)5] + 6[2(314)5] + 6[3(124)5] + 6[1(235)4] + 6[2(315)4] + 6[3(125)4]
+ 2[1[245]3]; - 2[2[145]3], + 2[2[345]1]; - 2[3[245]1]; + 2[3[145]2], - 2[1[345]2];.
We combine now the terms [-[--- ]-]; for each j=1,2,3, and we explicit and simplify them by using the
algebraic Bianchi identity. We obtain
[ CircSym ;4 (B" A RY)](12345) = 6[1(234)5] + 6[2(314)5] + 6[3(124)5] + 6[1(235)4] + 6[2(315)4]
+ 6[3(125)4] + 6(13[245]) + 6(32[145]) + 6(21[345]).
By expanding further, we obtain the complete expansion:
[CircSym, ((B” A1 RY)](12345) = 6(1(234)5) + 6(15(234)) + 6(2(314)5) + 6(25(314))
+ 6(3(124)5) + 6(35(124)) + 6(1(235)4) + 6(14(235))

+ 6(2(315)4) + 6(24(315)) + 6(3(125)4) + 6(34(125)) + 6(13(245)) + 6(13(254))
+ 6(32(145)) + 6(32(154)) + 6(21(345)) + 6(21(354)).

By expanding the terms p present in the expression (7.2), we obtain the complete expansion of the term
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{CircSym ; , [3d(VR"), - 2R Ay R'1}(12345),
given by

{CircSym ; , [3d](VR"), - 2R A R'1}(12345)
= 6(13(245)); — 6((132)45), — 6(2(134)5)5 — 6(24(135)),
+ 6(23(415))5 — 6((234)15)s — 6(4(231)5); — 6(41(235));
+ 6(12(435))s — 6((124)35)9 — 6(4(123)5), — 6(43(125))10
+ 6(13(254))11 — 6((132)54)12 - 6(2(135)4)13 — 6(25(134))14
+ 6(23(514))15 — 6((235)14)16 — 6(5(231)4)12 — 6(51(234))17
+ 6(12(534))15 — 6((125)34)19 — 6(5(123)4)1; — 6(53(124))40
+ 6(14(235))7 — 6((142)35)9 — 6(2(143)5)3 — 6(23(145))s
+ 6(24(315))4 — 6((243)15)¢ — 6(3(241)5)9 — 6(31(245))
+ 6(34(125))10 — 6((341)25); — 6(1(342)5)s — 6(12(345))s
+ 6(15(234))17 — 6((152)34)19 — 6(2(153)4)13 — 6(23(154))15
+ 6(25(314))14 — 6((253)14)15 — 6(3(251)4)19 — 6(31(254))11
+ 6(35(124))20 — 6((351)24)13 — 6(1(352)4)16 — 6(12(354))1s
- 12(1(234)5) — 12(15(234))17 — 12(2(314)5)3 — 12(25(314))14
- 12(3(124)5)9 — 12(35(124))30 — 12(1(235)4)16 — 12(14(235));
- 12(2(315)4)13 — 12(24(315))4 — 12(3(125)4)19 — 12(34(125))10 — 12(13(245))1 — 12(13(254))uu
- 12(32(145))5 — 12(32(154))15 — 12(21(345))s — 12(21(354))1s,

where as mentioned earlier we denote by (-----); the terms that we sum up together using the symmetries of the
curvature tensor RY. All the terms summed up together cancel up. This is obvious for all the sub indexes j with
the exception of j = 3, 6, 9, 13, 16, 19 for which me must provide the detail of the computation. Indeed for j = 3,
we have

~6((341)25) - 6(2(134)3) - 6(2(143)5) - 12(2(314)5)
6(2(341)5) + 6(2(413)3) - 6(2(314)5)

- 6(2(134)5) - 6(2(314)5)

0.

For j = 6, we have

~12(1(234)5) - 6((234)15) - 6((243)15) — 6(1(342)5)
6(1(243)5) + 6(1(432)3) - 6(1(234)5)

- 6(1(324)5) - 6(1(234)5)

0.

For j =9, we have

-6((124)35) - 6((142)35) - 6(3(241)5) — 12(3(124)5)
6(3(142)5) + 6(3(421)5) - 6(3(124)5)

- 6(3(214)5) - 6(3(124)5)

0.

For j = 13, we have

—6((351)24) — 6(2(135)4) - 6(2(153)4) - 12(2(315)4)
6(2(351)4) + 6(2(513)4) - 6(2(315)4)

- B(2(135)4) — 6(2(315)4)

0.

For j = 16, we have
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~12(1(235)4) - 6((235)14) - 6((253)14) - 6(1(352)4)
6(1(253)4) + 6(1(532)4) - 6(1(235)4)

- 6(1(325)4) - 6(1(235)4)

0.

For j =19, we have

~6((125)34) - 6((152)34) - 6(3(251)4) - 12(3(125)4)
6(3(152)4) + 6(3(521)4) — 6(3(125)4)

- 6(3(215)4) - 6(3(125)4)

= 0.

We infer the required identity (1.16) in the statement of Proposition 1. O

8 The almost complex structure associated with a connection over
the tangent bundle

This section is not needed for the proof of the results in the article. We include it to clarify the integrability of
an M-totally real almost complex structure over Ty, associated with the horizontal distribution of a linear
connection. We include it also to remind and to prove in modern terms a well-known result due to
Dombrowsky [7].

It is well-known [7] that we can construct an M-totally real almost complex structure over Ty, by using the
horizontal distribution H C T, associated with a linear connection V acting on the sections of Ty;. Indeed, in
this case, we seta, = H,and B, = Iy, zp, where n — H, is the horizontal map associated with . We will
denote J,; = J,. If we define for any n € Ty, the vertical projection Vert, : Ty, , — T, ,, as follows:

Vert, = g, = Hyd,m,
where 7 : Tyy — M is the canonical projection, then
Jpy = —HyT;'Vert, + Tdym.

If we decompose any vector ¢ € CTr,, , inits horizontal and vertical parts ¢ = Eh + EVwith &Y = Vert 2(&), then
we have the expressions

Jin& = ~Hy T, + Tdymgh,
(]’H)qf)h = _Hl']Tq_lEv)
Uy &) = Tdygh.

We infer
0,1 _ 1 h . “1zy v . h
§hp () = 518" — HT 8V + &Y + iTdynd]
1 .
=518 + Hy + i (g + ),
with g = —iT,"¢". We notice also the identity

1 .
Thigsn = 5y *+ T)CThp, (8.

for any any n € Tx,,. The distribution T: }’A’}J,H is horizontal, but the associated map does not satisfies condition
(A5) of linear connections thanks to the identity (A4). Therefore, this distribution does not identify a linear
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connection. However, its integrability implies that the vector bundle T}, is flat. Indeed, we have the following
well-known lemma due to Dombrowsky [7].

Lemma 13. The torsion form t/x of the almost complex structure J,, satisfies at the point n € Ty in the
directions V4, V, € T})Z;}JH,,] the identity

8TJn(W, Vo)) = = Hy[T"(vy, vo) + iRV (vy, vo)n] + Tlit¥(vy, v2) = RV(vy, vo)n],

where R¥ = V? is the complex linear extension of the curvature tensor of V, where 7 is the torsion of the
complex connection V and where v; = dynV;, j =1, 2. In particular, J;, is a complex structure if and only if the
linear connection V is flat and torsion free.

Proof. Let ¢; be vector field local extensions of v; such that [&, &m(7) = 0. Then
1 .
g = E(H +1iT)g,

are local vector field extensions of V;. We expand the bracket

4[Eq, E2](n) = ([H&, HE,] + i[H&, TE,] + i[T&, HE, - [T&, TED()
= Hyl&, &] — T)[RV(vy, von] + T, V&, — V&l

The last equality follows from to the computation at the end of the proof of Lemma A6 and thanks to the
identity (A8) in the Appendix. (We notice that [T§, T¢;] = 0, since the vector fields T¢ are tangent constant
along the fibers.) Thanks to the assumption [§;, &](n) = 0, we infer the equality

4[4, B5)(n) = Tlit"(vy, v2) = RV(vy, ).
The required formula follows from the identity
£ = e+ T+ 8 - Tde)
The fact that that the distribution T%MO J,, 1s horizontal implies that 5 (W, V)(n) vanishes for all V; if and only if
the quantity
7V(vy, v3) + IRV(vy, Vo)1),
vanishes for all v;. In particular, for real vectors v;, this implies that RV and 7V vanish at the point (). [

We observe that a connection over T is flat and torsion free if and only if there exist local parallel frames
with vanishing Lie brackets.
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A Appendix

In this Appendix, we provide some well-known basic facts about the geometric theory of linear connections
needed for the reading of the article [8]. We strongly recommend its reading even to experts.

A.1 The horizontal distribution associated with a linear connection
We start with the following fact.

Lemma A1. Let V be a linear connection acting on sections of a vector bundle E over a manifold M. Then the
linear map

Typ 3¢ — Hy(&) = dyo(§) - TVeo € T,

is independent of the sections g such that a(p) = n.

Proof. Let e = (ex);-; be a local frame of E over an open set U C M. We consider the local expression o = e - f
with f€ CY(U,R"). Let A € C*(U, Ty; ® Matrix «-(R)) be the connection form of V with respect to the local
framee,ie,Ve=e-A. ThenVo=e ® (df + A - f). If we denote by 6, : U x R" — Ey, then the differential of
this map at the point (p, f(p)) provides an isomorphism

dpjp)be s Tup ® R — Tpo(p)

With respect to it, the equality hold
dp,f(p)ee[f 2] dpf(f)] = dpo'(f)-

We observe now the linear identity d7,(p) - dp,00ei0er™ = dpf(p)Peioer’- We infer

Ty * Oetipyxr™ = dp,p(p)Peioer”s (A1)
and
Top)le(p)(dp f(§) + AC) F(PD] = dppp)Bel0 & (dpf(§) + AC) f(P))],
To(p)Ve0 = dp,f(p)0el0 & (dpf(E) + AG) f(p))].
Thus,

H(p)(&) = dps(p)0el§ & (ZAS) f(P))],
ie,ifn =e- h, then
Hy(&) = dpnbelé & (-A(S) )],
which shows the required conclusion. O
Let 7z : E — M be the projection map and notice the equality Kerd,me = Tg, ;, for any n € E,. The identity
7 ° 0 = id p; implies
do(pyTe © dpa(§) = &.

We deduce the identity dy7z © Hy(¢) = £. We define the horizontal distribution H C T associated with V as
follows:

Hy = Hy(Tymn) € Tep-
We notice now that the tangent bundle of the vector bundle E @ E is given by the fibers

Teor,(nuny = 1V1, V2) € Ty, @ Ti p|dy e (V1) = dyie(V2)},
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and that the differential of the sum bundle map sm; : E @ E — E satisfies
d(ﬂp"lz)(smE)(vl’ V2) = T;h“lz(T’?;lvl + T'7_21V2):

for any (v1, v;) € Tg, @ Tg,y, such thatd, m(vy) = dyp(v;) = 0. We infer that for any sections gj of E such that
ai(p) =, j = 1,2, the equalities

H‘71+’72(E) = dP(Gl +G)(§) - ]771+,72v§(0'1 + 0y)
= d(’h:”z)(smE)(dpGl(E); de.Z(E)) - ]711+172v50'1 - thHIZVfO'z
= d (g, (SME)(dp01(8) — Ty Vea1, dyor(§) — Ty, V:0,)

hold. We conclude that
H’h*’lz(f) = d(r)l,nz)(smE)(Hnl(f)) an(f)) (A2)

Lemma A2. For any section g € C\(M, E) and for any function u € C'(M, R), the identity holds
dp(ua) = dput ® Tug(pya(P) + do(p)lu(p)le]- dyo,

for any point p € M.

Proof. With the notation in the proof of Lemma Al

dp(ua)(§) = dpupp)Bel & & dp(uf )($)]
= dpurp)Pel ® [du(Of (p) + u(p)dy f(O)1}
= lpup(p)0l0 & dpu(Ef (P)] + dpupp)Bel§ © u(p)dp f(S)]
= Tuo(p)0e(D> dpu()f (p)) + dp(u(p)a)($),

thanks to (A1). Using the identity
dp(A0) = dgp)(Alg) dyo, (A3)
for any A € R, we conclude
dp(uo)(§) = dpU(§)Tuo(p)a(P) + do(p)lU(pg] dpo().0

We observe also the elementary identity

d,(Alg) T, = ATy, (Ad)
for all n € E. We show now the identity

Hy, = d,(Alp) Hy, (A5)
for all n € E. Indeed, let 0 be a section such that g(p) = n. By using (A3) and (A4), we obtain the equalities

Hy, = dy(A0) - T,V(A0)
= do(pyAlg) d,o ~ ATy Vo
= dy(p Al ) [dyo - TyVo]
= d,(Alg) H,,

The property (A5) implies in particular Hy, = dy0y, where 0y is the zero section of Ty.
Definition A1. A distribution H C T is called horizontal if the map
Ayt - Hy = T meoy

is an isomorphism for all n € E.
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Lemma A3. Any horizontal distribution H C Tg, which satisfies conditions (A2) and (A5) with H, = (d,,nfmq)‘l,
determines a connection V over E with associated horizontal distribution F .

Proof. The connection V is defined by the formula
Vi0 = To(p) [dy0 — Hopl(),
for any ¢ € Ty, The definition is well posed because
[dpo = Hop)l(§) € Tg,00p)
which follows from the identity
Ao(pyTe [dyo = Hy)](€) = 0.

It is obvious that the additive property of V is equivalent to the condition (A2). We observe now that with the
previous definition, the covariant Leibniz property

Ve(uo) = dpu(§)a(p) + u(p)Vzo
is equivalent to the identity
dp(uo')(f) - Huo(p)(f) = :Ew(p){dpu(f)o'(p) + u(p)T;(lp) '[de'(f) - Ha(p)(f)]}-

We develop the right-hand side using (A4). We infer that the previous identity is equivalent to the fol-
lowing one:

dp(ua)(f) - Hua(p)(f) = dpu(E)Tua(p)o'(p) + da(p)[u(p)ﬂE]'[dpG(f) - Ha(p)(f)]‘

The later hold true thanks to Lemma A2 and Assumption (A5). O

The data of a smooth horizontal distribution over E coincides with the one of section
H € C(E, miTy ® Ty)

such that drg - H = I 7, (We notice that dig € C*(E, Tr ® mpTy).) Such type of section determines a connec-
tion if and only if it satisfies the identity (A5).
For any vector £ € Tg ,, we denote by

y(E = E-H e dyi(),
its vertical component with respect to the horizontal distribution 4. In particular,

Y2 - dyo(©) = Typ)[Veo (p)].

A.2 The induced connection

Lety : N — M be a smooth map. We define the vector bundle "E = N x, E over N. In explicit terms
Y'E ={(y,n) € N x E[Y(y) = me(n},

and the projection over N is given by the restriction of the projection to the first factor. We will denote by
Y : 'E — E the restriction of the projection to the second factor. The sections of *E are identified with the
maps ¢ : N — E such that 7z < ¢ = . In this way, if s is a section of E, then the section y*s = se° ¢ isa
section of *E. More in general if a is a section of APTy; ® E, we define the section *a € APTy ® P°E as follows:

@'a)y) = (a - )y) A(dyp).

We provide a generalization of Lemma (A2).
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Lemma A4. For any section ¢ € CX(N, Y*E) and for any function u € C'(N, R), the identity holds
dp(ua) = dput ® Tug(p)a(p) + do(p)lu(p)le]- dyo,
for any point p € N.
Proof. A local frame e of E induces a local frame *e of *E over the open set " (U). Then ¢ = y*e - f with

fe CY(y™(U),R"). We denote by 6, : U x R" — Ejy the trivialization map induced by the local frame e of E.
Then the differential of this map at the point (¥(p), f(p)) provides an isomorphism

dyp) e * Topp) ® R" = Teo(p)
and
a0 (&) = dyp),ur(p)Peldptp(€) & dyp f(E)].
For any ¢ € Ty, we have

dp(uo')(f) = dw(p),uf(p)ee[dpw(f) ® dp(uf)(f)]
= dyp)ur(p)Beldpp(§) © [dpu(O)f (p) + u(p)dp f (O}
= dyp)uf(p)Bel0 & dpu(E)f (P)] + dy(p),urp)Pel dpp(§) & u(p)dy f(§)]
= Tuo(p) * 0e(Y(§), dpu($)f (p)) + dp(u(p)o)($),

thanks to (Al). Using the equality
dp(Ag) = do(p)(Alg)- dyo,
for any A € R, we conclude the required identity
dp(uo)(§) = dpu(§)Tuo(p)0(P) + do(p)[U(pNe] dpo(8). O

The induced connection V¥ over ¢°E is defined by the formula

V?G T(T(p)yo'(p) po'(f) o(p)[ po(f) - Ho(p)dplp(f)],

for any & € Ty . It is obvious that the additive property of V¥ follows from the condition (A2). We show now
that V¥ satisfies the Leibniz property

Vi(uo) = du©)a(p) + w(p)vio.
Indeed using Lemma A4 and the identity (A5), we have
VEUO) = Tog il Ao (U0 )(E)
= TJ;(p)V;’;(p)[dpu(f Vuo(pyo (P) + dopylu(p)igldyo(§)]
= dpu(§)o(p) + Tugp)ldop[u(PNE]dp0(€) = Huomdpth(§)]
= dpu(§)o(p) + Tugp)ldop[u(PNEldyo(€) = dogp)[u(p NelHondpp(§)]
= du(§)o(p) + Tkl doip[u(pNelyL, dpo (E)]
=dpu(§)a(p) + ua(p)[u(p)ya(p)dpo(f)]
= du(€)a(p) + u(p)Vio
We observe also that for any s € C*(M, E) and ¢ € Ty ,, we have the equalities
VEW'S) = Tl yol g oS - () = Is(p)) d(©),

and in other terms, the functorial formula
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V(y*s) = Y*(Vs), (A6)
holds.

A.2.1 The induced connection (second approach)
We observe that the tangent space of *E at the point (y, ) is given by the equality

Tyep = 16, 0) € Ty & T yldY(8) = dyie(0)}.

Given any horizontal distribution H € C*(E, n:T,; ® T) over E, we define the horizontal distribution

HY = W'H € C°(P'E, mjp Ty @ Tye).
In explicit terms

HY,) =g, ® Hy- dy.

If H satisfies the identities (A2) and (A5), then so does HY. This follows indeed from the identities

Ay, p,n)(SMyE) = Iy, ® dgy,.np(SME),

diy,mAlyg) =g, & dy(Alg).

By definition of H¥, we infer that the induced connection V¥ over ¥*E satisfies the formula

Vi = Tyl 1d,0() — Hop) - d(O)],

for any ¢ € Ty,,.

The local frame e induces a local frame g = e ¥ of *E over y"(U). We compute the local connection A%
form of V¥ with respect to such frame. We notice that V¥ = y*(e - A) = i - ¥*A by the previous remark. We
infer the equality A% = *A.

A.2.2 Parallel transport
We consider a smooth curve y : (¢, €) — M and a section o € C'((-¢, €), y*E), which satisfies the equation

Vo =0,
dt

over (-¢, €) with a(0) = n € E,). If we write a(t) = e(y(t))- f(t), then

Viia = e(p(OYLf(©) + AG®) (D).

dt

We infer that the parallel transport map 7, : Ey) — Ey), t € (=€, €) given by 1,,(n) = a(t), is linear. We
show the following fact.

Lemma A5. For any smooth curve y : (=&, €) — M and for any section a € CY((-¢, €), y'E), the identity

d
VZQG(O) aen (51 0] (A7)
t t=0

holds.
Proof. We notice first that the term 7, 1. g(t) is given by the intrinsic identities

B A us) =0,

ds
u(t) = f(0,
e(y(0)) u(0) = 7,1 - a ().
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Integrating the first equation we infer
t
() - w(0) = - [AG(S)) uls)ds.
0
Using the second equation, we obtain
t
£©) = u(0) = - [AG(s)) uls)ds.
0
Deriving with respect to the variable ¢, we obtain

d . .
70 = F(O) + APD) ul®) = () + AGO) fO.

Evaluating at t = 0 and multiplying both sides with e(y(0)), we infer the required conclusion. O

We consider now a Cl-vector field & over M and let ¢ be the associated one-parameter subgroup of
transformations of M. Let @, : E — E be the parallel transport map along the flow lines of ¢; ,. It is obvious
by definition, that the map ®;, satisfies iz @ = Qg © T

The vector field & = ¢>5,0 over E satisfies the equality Z(n) = Hy(¢), for any n € E. This is a direct
consequence of the definition of the induced connection along the flow lines of .

To any section ¢ € C(M, E) we can associate a C'-vector field £ over E defined as () = Tlo ° me(p)].
Let @y be the associated one-parameter subgroup of transformations of E. In explicit terms, it satisfies

@5 (n) = n + ta ° mE(n).
Then

d d
52 =— — (P o Oy o P:y).
[E,Z] ., d3|s:0( s © Dypg o Dgp)

The fact that the map ®; _; is linear on the fibers implies
D¢ o Dy 0 Dp =Dy [Py + 50 © 7 © Dp ]
=lg + s®s ;-0 g ° Dp;
=lg+s®-0° Qs ¢ ° T
Thus, for any n € E, holds
gt © Dys ° Dpe() =N+ 5P -0 ° ¢ (p) EE)p

We conclude

d
[E, Z](m) = @) Tt - 0 ° ¢ (p)] = Tj[Vea(p)],
t=0
ie, for any n € E, the equality holds
[E, Z](n) = T;[(Vea) o me(m)]. (A8)
Iterating twice, we deduce the identity
[Els [E‘Zr Z]](’]) = Yh[(v&vfzo-) ° HE("])] (Ag)

Moreover, the fact that by (A8) the vector fields [5;, ], j = 1, 2 are tangent to the fibers of E and constant along
them implies

[[E‘l’ Z]: [EZ’ Z]] =0. (A].O)
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A.3 The geometric meaning of the curvature tensor
Lemma A6. Let R = V? be the curvature tensor of the connection V. Then for any vector fields &, & over M and
for any n € E, the identity holds

Yy (1B, E2](n) = TR, &N

Proof. Let g be a local section of E such that a(p) = n. By definition of horizontal lift Z of a vector field &, we
have

E(n) = [do()] > me(n) — T[(Veo) o mz(n)].
We infer by (A8), the identity
[do(§)]e mp = E + [E, X].
We infer 6. = £ + [E, Z] over Ima. Thus,
a.d&1, &l = [0:61, 0.8 = [Eq, Ea] + [E1, [E, Z]] + [[E4, 2], Ea,
thanks to (A10). We rewrite the previous equality as
[E1, 2] = [E2, [E1, Z]] = [Eq, [Ba, E]] - 0y, &1l
By using (A9), we deduce

[E1, B2l(n) = TH[(VeVg0 — VeVE0)(P)] - dpo([&, &)
= T[(Ve,V50 = VeVe,0 = Vig,510)(p)] = Hy([S2, &)
=T[R(&, &)a(p)] + Hy([&, &)

We infer the required conclusion. O
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