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Abstract:We study geodesics and magnetic trajectories in the model space F4. The space F4 is isometric to the
4-dim simply connected Riemannian 3-symmetric space due to Kowalski. We describe the solvable Lie group
model of F4 and investigate its curvature properties. We introduce the symplectic pair of two Kähler forms on
F4. Those symplectic forms induce invariant Kähler structure and invariant strictly almost Kähler structure on
F4. We explore some typical submanifolds of F4. Next, we explore the general properties of magnetic trajec-
tories in an almost Kähler 4-manifold and characterize Kähler magnetic curves with respect to the symplectic
pair of Kähler forms. Finally, we study homogeneous geodesics and homogeneous magnetic curves in F4.
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1 Introduction

From the mathematical point of view, it is natural to reinterpret static magnetic fields on Euclidean 3-space as
closed two-forms. The equation of motion (Lorentz equation) of charged particle under the influence of
magnetic field can be generalized to arbitrary Riemannian manifolds through the following procedure:

To introduce the notion of magnetic trajectories on a manifold M , we need two ingredients:
– Riemannian metric g and
– closed two-form F .

The Lorentz force ϕ of a pair ( )F g, is a g -skew adjoint endomorphism field defined by ( )= ⋅F g ϕ, . The Lorentz
equation is formulated as

∇ ′ = ′′γ qϕγ ,γ

where q is a constant and called the charge. A curve γ satisfying the Lorentz equation is referred to as a
magnetic trajectory or magnetic geodesic with charge q.

One can see that the Lorentz equation defines a Hamiltonian system on the tangent bundle of ( )M g F, , [1].
The study of magnetic trajectories in arbitrary Riemannian manifolds (as Hamiltonian systems) was developed
mostly in the early 1990s, even though related pioneer works were published much earlier (see Arnold’s
articles [1,2]). We can refer to Arnold’s problems concerning charges in magnetic fields on Riemannian
manifolds of arbitrary dimension, commented by Ginzburg in [3] and references therein.



* Corresponding author: Zlatko Erjavec, Faculty of Organization and Informatics, University of Zagreb, HR-42000, Varaždin, Croatia,
e-mail: zlatko.erjavec@foi.unizg.hr
Jun-ichi Inoguchi: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan, e-mail: inoguchi@math.sci.hokudai.ac.jp
ORCID: Zlatko Erjavec 0000-0002-9402-1069; Jun-ichi Inoguchi 0000-0002-6584-5739

Complex Manifolds 2024; 11: 20240001

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/coma-2024-0001
mailto:zlatko.erjavec@foi.unizg.hr
mailto:inoguchi@math.sci.hokudai.ac.jp
http://orcid.org/0000-0002-9402-1069
http://orcid.org/0000-0002-6584-5739


In previous works [4–11], magnetic trajectories in the model spaces of three-dimensional geometries in the
sense of Thurston have been studied extensively.

On even dimensional manifold M , we can consider the following two situations:
(1) M has an almost Hermitian structure ( )J g, . In this case, we need to assume that the fundamental 2-form

( )= ⋅g JΩ , is closed. Then, ( )M J g, , is called an almost Kähler manifold. Note that the fundamental 2-formΩ of
an almost Kähler manifold is a symplectic form, i.e., a non-degenerate closed 2-form. Thus, ( )M , Ω is a
symplectic manifold.

(2) M has a closed 2-formΩ. In this case, we need Riemannian metric g . IfΩ is non-degenerate, then we obtain an
almost complex structure J on M so that J is the Lorentz force associated with the structure ( )− gΩ, . Hence,
( )M J g, , is an almost Kähler manifold.

Kähler manifolds are characterized as integrable almost Kähler manifolds. Almost Kähler manifolds with non-
integrable almost complex structure are called strictly almost Kähler manifolds.

On a symplectic manifold ( )M J, Ω, equipped with a compatible almost complex structure J , or equiva-
lently an almost Kähler manifold ( )M J g, , , one can take the fundamental 2-form Ω as a magnetic field and call
it a Kähler magnetic field.

From the Hamiltonian viewpoint, homogeneous Kähler manifolds would be nice configuration spaces for
magnetic trajectories. A C -space is a compact simply connected complex homogeneous space. A C -space that
admits a Kähler metric with transitive holomorphic isometry group is called a Kähler C -space. Itoh [12]
investigated the curvature properties of Kähler C -spaces with =b 12 , where b2 is the second Betti number.
On the other hand, let G be a compact simple Lie group with an abelian subgroup T . Denote by ( )C T the
centralizer of T . Then, the coset manifold ( )∕G C T is called a generalized flag manifold. It is known that
generalized flag manifolds admit Kähler C -structures. Conversely, every Kähler C -space is represented as
generalized flag manifold. In addition, every coadjoint orbit of a compact semi-simple Lie group is a Kähler
C -space with respect to Kirillov-Kostant-Souriau symplectic form [13, 8.70] and compatible Killing metric.
Conversely, every Kähler C -space is isomorphic to a coadjoint orbit of its connected group of isometries
endowed with its canonical complex structure [13, 8.89]. For more information on generalized flag manifolds,
we refer to [13].

Efimov [14] studied magnetic trajectories in homogeneous symplectic manifolds. More precisely, he
proved the integrability of Kähler magnetic trajectories on simply connected homogenous symplectic manifold
∕G H with compact semi-simple G. Moreover, he proved the (non-commutative) integrability of magnetic

trajectories on coadjoint orbits of compact semi-simple Lie groups (see also [15]).
Adachi initiated the study on Kähler magnetic trajectories in non-flat complex space forms (cf. [16]).

Kalinin studied H -planar flows as an important class of Hamiltonian flows on Kähler manifolds [17]. He
proved that the Lorentz equation on complex space forms can be reduced to one ordinary differential
equation of second order, by virtue of H -projective mappings. Adachi et al. gave an representation formula
for Kähler magnetic trajectories on Hermitian symmetric spaces [18]. In addition, Ikawa studied Kähler
magnetic trajectories in generalized flag manifolds with two isotropy summands satisfying certain assumption
[19]. Arvanitoyeorgos and Chrysikos [20] classified generalized flag manifolds considered in [19].

As far as the authors know, studies on Kähler magnetic fields on strictly almost Kähler manifold are very
few. The lowest dimension of almost Kähler manifolds is 2. In two dimensions, almost Hermitian structures are
automatically integrable. In four dimensions, there exist closed strictly almost Kähler manifolds (Kodaira-
Thurston manifolds [21], Gompf’s example [22], Yamato’s example [23]) For more information on almost Kähler
geometry, we refer to a survey [24].

We start our investigation with homogeneous examples. In two dimensions, Hermitian symmetric spaces
are complex space forms (actually real space forms): complex plane � , complex projective line �P1, and
complex hyperbolic line �H1. Kähler magnetic trajectories in these spaces are folklore.

In four dimensions, as we have mentioned before, Kähler magnetic trajectories in Hermitian symmetric
spaces are well investigated. We look for homogeneous almost Kähler 4-manifolds different from Hermitian
symmetric spaces.
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Filipkiewicz classified the four-dimensional maximal model geometries [25] (see also [26,27]). Wall gave
the list of all four-dimensional geometries that admit compatible complex structure [28, Theorem 2.1]:

Complex space form Hermitian symmetric Kähler LCK

�P2, �H 2, �4 � �×2 2, � �×2 2, � �×2 2 F4 � �×3 1, �×Nil3
1,  � �×SL2

1

� �×2 2, � �×2 2
Sol0

4, Sol1
4

The model space of F4-geometry is the homogeneous Riemannian 4-space ( ) ( )∕SA 2 SO 2 , where ( )SA 2 is the
orientation-preserving equiaffine transformations of the equiaffine plane, i.e., �2 equipped with a parallel area
element. The F4-geometry is the only four-dimensional geometry that admits finite-volume quotients but no
compact quotients. The model space F4 admits both Kähler structure and strictly almost Kähler structure. The
pair of those fundamental 2-forms constitutes the so-called symplectic pair.

On the other hand, from another viewpoint, we may suggest to look for almost Kähler 4-manifolds, which
are naturally reductive or generalized symmetric. The class of naturally reductive homogenous spaces is one
of the generalizations of Riemannian symmetric spaces. The classification of naturally reductive 4-spaces due
to Kowalski and Vanhecke [29] implies that naturally reductive almost Kähler 4-manifolds are Hermitian
symmetric.

According to the classification of all simply connected and irreducible generalized Riemannian symmetric
spaces of low dimension due to Kowalski, there exists only four-dimensional generalized Riemannian sym-
metric space. This space is realized as the homogeneous space ( ) ( )∕SA 2 SO 2 equipped with homogeneous almost
Kähler structure. One can see that Kowalski’s generalized Riemannian symmetric space is isometric to the
space F4 [30]. Fino [31, Corollary 3.1] gave certain curvature characterization of F4.

As is well known, geodesics of a Riemannian symmetric space (more generally, naturally reductive
homogeneous space) are homogeneous, i.e., orbits of 1-parameter subgroups of the isometry group. However,
geodesics of F4 are not homogeneous, in general. On this reason, determination of homogeneous geodesics in F4

is a fundamental and important task.
These observations motivate us to study Kähler magnetic trajectories with respect to the symplectic pair

and homogeneous geodesics in the model space F4. However, comparing F4 with other model spaces, the
Lorentz equation of Kähler magnetic field in F4 is very complicated. We anticipate that this project will extend
over a considerable duration. As an initial phase for this project, this article is dedicated to delineating
foundational information, especially homogeneous geometry of the model space F4 and deducing the systems
of Kähler magnetic trajectories with respect to the symplectic pair ( )+ −Ω Ω, .

This article is organized as follows. We start with recalling the notion of symplectic pair and self-duality in
Section 2. Section 3 is devoted to describing the four-dimensional simply connected Riemannian 3-symmetric

space M̂λ

4 due to Kowalski. In particular, we describe the invariant almost complex structures ±J of M̂λ

4

discovered by Kowalski. From Section 4, the homogeneous geometry of the model space F4 will be started.

More precisely, we discuss the coset space representation ( ) ( )∕SA 2 SO 2 for the 3-symmetric space M̂λ

4.
In Section 5, we recall the definition of the model space F4 from the classification due to Filipkiewicz [25]

and Wall [27]. It should be remarked that the model space F4 is isometric to the 3-symmetric space M̂λ

4 (see
[30]). In particular, we show that the model space F4 is identified with certain solvable Lie group � �⋉+2 2. We
give the Levi-Civita connection, Riemannian curvature, Ricci operator, sectional curvatures, and scalar cur-
vature of the model space F4. Furthermore, the symplectic pair of two Kähler forms is introduced. Some typical
submanifolds of F4 are explored.

From Section 6, we start our investigation on geodesics and magnetic trajectories in F4. In Section 6, the
general properties of magnetic trajectories in an almost Kähler 4-manifold are studied. In Sections 7 and 8,
Kähler magnetic trajectories with respect to the symplectic pair of Kähler forms are investigated. In the final
section, we study homogeneous geodesics and homogeneous magnetic curves in F4. Although the fact that
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Kowalski et al. [32] gave a classification of homogeneous geodesics in F4, here we give a new classification
based on different expressions.

2 Preliminaries on almost Kähler geometry

2.1 Self-duality

Let ( )M g, be an oriented Riemannian 4-manifold. Take a positively oriented orthonormal coframe field
{ }ϑ ϑ ϑ ϑ, , ,1 2 3 4 . Then, the Hodge star operator * acting on the space ( )A M2 of two-forms on M is described as

( ) ( ) ( )∧ = ∧ ∧ = ∧ ∧ = ∧ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ* , * , * .1 2 3 4 1 3 4 2 1 4 2 3

Since * has eigenvalues ±1, we have the decomposition

( ) ( ) ( )= ⊕+ −A M A M A M ,2 2 2

where

( ) { ( ) ∣ } ( ) { ( ) ∣ }= ∈ = = ∈ = −+ −A M ω A M ω ω A M ω A M ω ω* , * .
2 2 2 2

A two-form ω is said to be self-dual (resp. anti self-dual ) if =ω ω* (resp. = −ω ω* ). The space ( )+A M
2 is locally

spanned by

{ }∧ + ∧ ∧ + ∧ ∧ + ∧ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ, , .1 2 3 4 1 3 4 2 1 4 2 3

On the other hand, ( )−A M
2 is locally spanned by

{ }∧ − ∧ ∧ − ∧ ∧ − ∧ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ, , .1 2 3 4 1 3 4 2 1 4 2 3

2.2 Symplectic pair

Let M be a n2 -dimensional symplectic manifold, i.e., a n2 -manifold equipped with a non-degenerate closed
2-form Ω called a symplectic form.

Definition 2.1. Let ( )M , Ω be a symplectic manifold. An almost complex structure J is said to be compatible to
Ω if

– Ω is J -invariant, i.e., ( ) ( )=JX JY X YΩ , Ω , ,
– J is Ω-tamed, i.e., ( ) >JX XΩ , 0, for any ≠X 0.

Such an almost complex structure J defines a Riemannian metric g by

( ) ( )=g X Y JX Y, Ω , .

One can see that g is J -invariant. Thus, ( )M J g, , is an almost Kähler manifold, i.e., an almost Hermitian
manifold with closed fundamental 2-form ( )= ⋅g JΩ , . On an almost Kähler manifold, its fundamental 2-form is
also called the Kähler form.

Instead of a compatible almost complex structure J , we may equip a symplectic manifold ( )M , Ω with a
Riemannian metric g . Then, an almost complex structure J compatible to Ω is introduced by ( )⋅ =g J, Ω. Note
that J is the Lorentz force associated with the magnetic field −Ω.

An almost Kähler manifold is said to be a Kähler manifold if its almost complex structure is integrable. In
other words, Kähler manifolds can be defined as Hermitian manifolds with closed fundamental 2-form.
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Remark 1. (Critical metrics) Let ( )M , Ω be a compact symplectic manifold. Denote by ��( )M , Ω the Fréchet
space of all compatible almost complex structures on ( )M , Ω . A compatible almost complex structure

��( )∈J M , Ω is a critical point of the total scalar curvature, i.e., Einstein-Hilbert functional if and only if
its Ricci tensor field is J -invariant [33].

Remark 2. On a 4-manifold M , a pair ( )+ −Ω Ω, of non-trivial symplectic forms is said to be a symplectic pair if

∧ = ∧ = − ∧+ − + + − −Ω Ω Ω Ω Ω Ω0, .

The kernels of ±+ −Ω Ω define complementary foliations with minimal leaves. Conversely, any symplectic pair
on a 4-manifold is given by a pair of two-dimensional oriented complementary minimal foliations [34].

In [35], the authors considered almost Hermitian 4-manifold ( )M J g, , such that ( )= ⋅g JΩ , is anti self-dual
[resp. self-dual]. Another almost complex structure ′J is said to be opposite if ( )′ = ⋅ ′g JΩ , is self-dual [resp. anti
self-dual]. By definition, ( )′Ω, Ω is a symplectic pair if and only if = ′ =dΩ dΩ 0.

Remark 3. Let � 3 be the hyperbolic 3-space. Then, its Riemannian product � �×3 with the real line is
one of the model spaces of four-dimensional geometry. Note that � �×3 admits a solvable Lie group
structure. However, this model space does not admit complex structure invariant under the isometry group

�( ) ×+SO 3, 1 . On the other hand, � �×3 admits an non-integrable almost complex structure J invariant
under left translations by the solvable Lie group � �×3 . The resulting left-invariant almost Hermitian
structure is almost Kähler. In our previous work, we studied Kähler magnetic trajectories in � �×3 equipped
with this almost Kähler structure [36].

3 Generalized Riemannian symmetric 4-space

3.1 Riemannian structure

It is known that the underlying homogeneous Riemannian space of F4 is a four-dimensional Riemannian
3-symmetric space. Here, we recall the explicit model of four-dimensional Riemannian 3-symmetric space due
to Kowalski [37].

Let ( )=M M gˆ ˆ , ˆ
λ λ

4 4 be a Riemannian 4-manifold defined as the Cartesian 4-space � ( )x x x x, , ,4
1 2 3 4 with

metric

( ) ( )

( ) ( )

= − + + + + + + + −

+
⎧
⎨
⎩

+ + + −
+ +

⎫
⎬
⎭

g x x x x x x x x x x x

λ
x x x x x x x x

x x

ˆ 1 d 1 d 2 d d

1 d 1 d 2 d d

1
,

λ 1 1

2

2

2

3

2
1 1

2

2

2

4

2
2 3 4

2

2

1

2

1

2

2

2
1 2 1 2

1

2

2

2

where λ is a positive constant. Kowalski showed that M̂λ

4 with symmetry

( ) ( )

( ) ( )

( ) ( )

( ) ( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⟼

⎛

⎝

⎜
⎜
⎜

∕ − ∕
∕ ∕

∕ − ∕
∕ ∕

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x

x

x

x

π π

π π

π π

π π

x

x

x

x

cos 2 3 sin 2 3 0 0

sin 4 3 cos 4 3 0 0

0 0 cos 2 3 sin 2 3

0 0 sin 4 3 cos 4 3

1

2

3

4

1

2

3

4

of order 3 at the origin is the only four-dimensional irreducible non-symmetric generalized Riemannian
symmetric space [37].

We can take the following global orthonormal frame [38]:
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( ) ( )
⎜ ⎟ ⎜ ⎟≔

+
⎛
⎝−

∂
∂

+
∂
∂

⎞
⎠ ≔

+ +
+

⎛
⎝

∂
∂

+
∂
∂

⎞
⎠

≔
+ + ∂

∂
+

∂
∂

≔
− + ∂

∂
+

∂
∂− − + +

e

λ x x

x
x

x
x

e
x x

λ x x
x

x
x

x

e
x x x

x μ x μ x
e

x x x

x μ x μ x

ˆ
1

, ˆ
1

,

ˆ
2

1

2
, ˆ

2

1

2
,

1

1

2

2

2
2

1

1

2

2

1

2

2

2

1

2

2

2 1

1

2

2

3

1 1

2

2

2

2 3 4

4

1 1

2

2

2

2 3 4

where

( )( )
≔ −

+

± + − + + ± + +±μ
x x

x x x x x x x1

.
1

2

2

2

2

2
1 1

2

2

2
1 1

2

2

2

The dual coframe field { }ϑ ϑ ϑ ϑˆ , ˆ , ˆ , ˆ
1 2 3 4 of { }e e e eˆ , ˆ , ˆ , ˆ1 1 3 4 is given by

( )
( )

( )

( )
( )

( ( ) )

( ( ) )

=
+
+

− +

=
+

+ + +
+

=
+

+ − + +

=
+

− + + +

−

+

ϑ
λ x x

x x
x x x x

ϑ
λ x x

x x x x

x x x x

ϑ
μ

x x

x x x x x x

ϑ
μ

x x

x x x x x x

ˆ d d ,

ˆ

1

d d ,

ˆ

2

d d ,

ˆ

2

d d .

1 1

2

2

2

1

2

2

2 2 1 1 2

2 1

2

2

2

1

2

2

2

1

2

2

2
1 1 2 2

3

1

2

2

2
2 3 1 1

2

2

2
4

4

1

2

2

2
2 3 1 1

2

2

2
4

We have

∧ = −
+ +

∧ ∧ = ∧ϑ ϑ
λ

x x

x x ϑ ϑ x xˆ ˆ

1

d d , ˆ ˆ d d .
1 2

1

2

2

2
1 2

3 4

3 4

Calvaruso, Leo, and Van der Veken studied the curvature property and submanifold geometry of the four-
dimensional semi-Riemannian 3-symmetric spaces in [39,40]. Here, we quote the following result.

Theorem 3.1. [40] There are no parallel hypersurfaces in M̂λ

4. In particular, there are no totally geodesic

hypersurfaces in M̂λ

4.

This result is in a sharp contrast to Riemannian space forms.

3.2 Almost complex structures

According to [37] and [41, pp. 87–88], every invariant almost Hermitian structure on the 3-symmetric space M̂λ

4

is almost Kähler. We have two symplectic forms (see [38, pp. 53–54]):

= ∧ ± ∧ = −
+ +

∧ ± ∧±Ω ϑ ϑ ϑ ϑ
λ

x x

x x x xˆ ˆ ˆ ˆ ˆ

1

d d d d .
1 2 3 4

1

2

2

2
1 2 3 4

Then −Ω̂ gives a Kähler structure and anti self-dual 2-form. On the other hand, +Ω̂ is non-Kähler. Note that +Ω̂ is
self-dual (see [38, pp. 53–54]).

The almost complex structures ±Ĵ defined by

( ) ( )=± ±g X J Y Ω X Yˆ , ˆ ˆ ,

are expressed as [37, Example III.53]:
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= − = = − =+ + + +J e e J e e J e e J e eˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ ,1 2 2 1 3 4 4 3

= − = = = −− − − −J e e J e e J e e J e eˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ .1 2 2 1 3 4 4 3

Note that in [38], the convention

( ) ( )=± ±Ω X Y g J X Yˆ , ˆ ˆ ,

is used.
According to [38, p. 54], the Ricci operator has components:

−
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟λ

3

2

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

.

This formula implies that the Ricci tensor field ρ̂ of ( )±M J gˆ , ˆ , ˆ
λ

is ±Ĵ - invariant, i.e.,

( ) ( )=± ±ρ J X J Y ρ X Yˆ ˆ , ˆ ˆ , .

Thus, the metric on the four-dimensional Riemannian 3-symmetric space is a critical metric in the sense of [33].
Moreover, ( )+ −Ω Ωˆ , ˆ is a symplectic pair.

Apostolov et al. [30] obtained the following rigidity theorem.

Theorem 3.2. Let ( )′M g J J, , , be a Riemannian 4-manifold equipped with two orthogonal almost complex
structures. If ( )g J, is a strictly almost Kähler structure and ( )′g J, is a Kähler structure opposite to ( )g J, ,

then ( )′M g J J, , , is locally isometric to the Riemannian 3-symmetric 4-space M̂λ

4.

4 Homogeneous space representation

In this section, we give a coset space representation of the four-dimensional Riemannian 3-symmetric

space M̂λ

4.

4.1 Homogeneous manifold (( ))∕∕ (( ))SA 2 SO 2

Let us denote by ( )SA 2 the Lie group of all orientation-preserving equiaffine transformations of the equiaffine
plane � �( ( ) )= ∧x y x y, , d d2 2 . The Lie group ( )SA 2 is explicitly given by

�( )
⎪

⎪ ⎪

⎪
=
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ ∈ − =

⎫
⎬
⎭

a b u

c d v a b c d u v ad bcSA 2

0 0 1

, , , , , , 1 .

The Lie algebra sa( )2 of ( )SA 2 is given by

sa �( )
⎪

⎪ ⎪

⎪
=
⎧
⎨
⎩

⎛

⎝
⎜⎜ −

⎞

⎠
⎟⎟ ∈

⎫
⎬
⎭

α β ξ

γ α η α β γ ξ η2

0 0 0

, , , , .

One can confirm that sa sa sa[ ( ) ( )] ( )=2 , 2 2 . Hence, sa( )2 is not solvable. Take a closed subgroup
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( )
⎪

⎪ ⎪

⎪
=
⎧
⎨
⎩

⎛

⎝
⎜

− ⎞

⎠
⎟ ≤ <

⎫
⎬
⎭

θ θ

θ θ θ πSO 2

cos sin 0

sin cos 0

0 0 1

0 2

of ( )SA 2 . Then, the homogeneous manifold ( ) ( )= ∕M SA 2 SO 2 is four-dimensional and admits a structure of
Riemannian 3-symmetric space.

Theorem 4.1. [37, p. 136, Theorem VI.3] Any proper, simply connected and irreducible generalized Riemannian

symmetric space ( )M g, of dimension 4 is of order 3 and isomorphic to M̂λ

4. The underlying homogeneous
manifold of M is ( ) ( )∕SA 2 SO 2 .

The reductive decomposition of the Lie algebra sa( )2 of ( )SA 2 corresponding to ( ) ( )= ∕M SA 2 SO 2 is
sa so m( ) ( )= +2 2 λ (see [37, p. 139]). Here, the Lie subspace mλ is spanned by the basis

=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜
− ⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟X Y X Y

0 0 1

0 0 0

0 0 0

,

0 0 0

0 0 1

0 0 0

,

1 0 0

0 1 0

0 0 0

,

0 1 0

1 0 0

0 0 0

.1 1 2 2

The isotropy algebra so( )2 is spanned by

=
⎛

⎝
⎜

− ⎞

⎠
⎟B

0 1 0

1 0 0

0 0 0

.

The commutation relations are

[ ] [ ] [ ] [ ]= = = − = −X X X X Y X Y Y X B Y, , , 0, , , , ,1 2 1 1 1 1 2 1 1 1

[ ] [ ] [ ] [ ]= = = = −X Y Y X Y B X B Y Y Y X, , , 2 , , 2 , , ,2 1 1 2 2 2 2 1 2 1 (4.1)

[ ] [ ]= = −Y B X Y B X, , , 2 .1 1 2 2

For any vector sa( )∈X 2 , we denote by ♯X the infinitesimal equiaffine transformation on � ( )x y,2 induced
by X , i.e.,

sa ( )( ) ( )
⎟⎜= ⎛

⎝
⎛
⎝
⎞
⎠
⎞
⎠

♯

=
X

t
tX

x

y

d

d
exp .x y

t

,

0

2

Then, we have

[ ] [ ]= −♯ ♯ ♯X Y X Y, , .

The infinitesimal equiaffine transformations induced from X1, Y1, X2, Y2, and B are given by

=
∂
∂

=
∂
∂

= −
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

= −
∂
∂

+
∂
∂

♯ ♯ ♯ ♯ ♯X
x

Y
y

X x
x

y
y

Y y
x

x
y

B y
x

x
y

, , , , ,1 1 2 2

respectively (see [37, p. 139]). Note that our ♯
X1 ,

♯
Y1 ,

♯
X2 ,

♯
Y2 , and ♯B are denoted by X1, Y1, X2, Y2, and B in [37],

respectively.

4.2 Invariant almost Kähler structures

Kowalski’s metric ĝ
λ
on ( ) ( )∕SA 2 SO 2 determined by the condition that { }≔ ≔ ≔ ∕ ≔ ∕E X E Y E X λ E Y λˆ , ˆ , ˆ , ˆ

1 1 2 1 3 2 4 2 is
orthonormal with respect to it. Note that the Levi-Civita connection ∇̂ is computed in [39,40]. It should be
remarked that this { }E E E Eˆ , ˆ , ˆ , ˆ

1 2 3 4 does not correspond to { }e e e eˆ , ˆ , ˆ , ˆ1 2 3 4 in the previous section. In fact, the
present one is left-invariant, but { }e e e eˆ , ˆ , ˆ , ˆ1 2 3 4 is not.
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The non-integrable almost complex structure +Ĵ is

= − = = − =+ + + +J E E J E E J E E J E Eˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ .1 2 2 1 3 4 4 3

On the other hand, the complex structure −Ĵ is

= − = = = −− − − −J E E J E E J E E J E Eˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ .1 2 2 1 3 4 4 3

Unfortunately, magnetic equation for ±Ω̂ with respect to the coordinates ( )x x x x, , ,1 2 3 4 is complicated. So we
introduce another model of M̂λ

4 in the next section.

5 Model space F4

5.1 Riemannian structure of F4

Among the list of four-dimensional Thurston geometries, there exists a geometry that has no compact models.
The model space of this geometry is denoted by F4. According to [27] (see also [26]), the model space

( )= gF F ,c c

4 4 of F4-geometry is

� � �( ) {( ) ∣ }− × = ∈ >c x y u v y4 , , , 0 ,2 2 2 4

equipped with a homogeneous Riemannian metric

( )
=

+
+

−
+g

x y

c y

u x v

y
y v

d d

4

d d
d .

c

2 2

2 2

2

2 (5.1)

On Fc

4, the equiaffine transformation group ( )SA 2 acts isometrically and transitively via the action:

( )

( )
⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜
+ − ⎞

⎠
⎟ =

⎛

⎝

⎜
⎜
⎜

+ − +
+ − +
+ +
+ +

⎞

⎠

⎟
⎟
⎟

a a ξ

a a η

x y

u

v

a x y a

a x y a

a u a v ξ

a u a v η
0 0 1

1

1

1
.

11 12

21 22

11 12

21 22

11 12

21 22

The isotropy subgroup of ( )SA 2 at the origin ( )0, 1, 0, 0 is ( )SO 2 . Hence, Fc

4 is identified with ( ) ( )∕SA 2 SO 2 .
On the other hand, according to [41, pp. 87–88], every invariant almost Hermitian structure on M is almost

Kähler. Thus, we can study magnetic trajectories with respect to the Kähler structure and strictly almost
Kähler structure.

Remark 4. Wall [27, p. 123] gave the following expression for the metric of F4 (see also [42]):

( )
( )

⎜ ⎟=
+

+ ⎛
⎝

+ − + +
+ ⎞

⎠
g

x y

y y
u v

v

y
x u y v

v x y

y

d d 1
d d

2
d d d d

d d
.

2 2

2

2 2

2 2 2

2

5.2 Solvable Lie group model

Let us recall the polar decomposition of �SL2 . The special linear group �SL2 has the decomposition:

� � ( )= ⋅SL SO 2 ,2

where � is a solvable Lie group defined by

Geodesics and magnetic curves in F4  9



�� ( )⎟⎜=
⎧
⎨
⎩

⎛

⎝

∕
∕

⎞

⎠
∈ >

⎫
⎬
⎭

y x y

y
x y y

0 1
, , 0 .2

The solvable Lie group � is identified with the upper-half plane

� �{( ) ∣ }= ∈ >+ x y y, 0 .
2 2

The Lie algebra s of � is given by

s �=
⎧
⎨
⎩
⎛
⎝ −

⎞
⎠ ∈

⎫
⎬
⎭

s s

s
s s

0
, .

11 12

11
11 12

The Lie algebra sl �2 has the decomposition sl so s� ( )= ⊕22 :

⎟⎜= ⎛⎝ −
⎞
⎠ =

⎛
⎝

− ⎞
⎠ +

⎛
⎝

+
−

⎞
⎠X

x x

x x

x

x

x x x

x

0

0 0
.

11 12

21 11

21

21

11 12 21

11

5.3 Semi-direct product model

Every homogeneous Riemannian 4-space is either locally symmetric or locally isometric to a Lie group with a
left-invariant metric [43,44]. On the other hand, four-dimensional Lie groups that admit left-invariant sym-
plectic form are solvable [45]. In this subsection, we give an explicit solvable Lie group model of Fc

4. Note that
Fino proved that four-dimensional Lie groups equipped with left-invariant strictly almost Kähler structure
with J -invariant Ricci tensor field are solvable [31].

Since the isotropy subgroup of ( )SA 2 at the origin ( ) ∈0, 1, 0, 0 Fc

4 is ( )SO 2 , the semi-direct product group

� �� ( ) ( )⋉ =
⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜
⎜

∕
∕

⎞

⎠
⎟
⎟ ∈ >

⎫
⎬
⎪

⎭⎪
⊂

y x y u

y v x y u v y0 1

0 0 1

, , , , 0 SA 22 4

acts simply transitively on Fc

4. Indeed,

⎛

⎝
⎜
⎜

∕
∕

⎞

⎠
⎟
⎟ ⋅
⎛

⎝
⎜⎜
− ⎞

⎠
⎟⎟ =

⎛

⎝
⎜
+ − ⎞

⎠
⎟

y x y u

y v

x y

u

v

0 1

0 0 1

1

0

0

1

.

Hence, the model space ( ) ( )= ∕F SA 2 SO 2c

4 is identified with the semi-direct product

� � �( )⋉ =
⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜
⎜

∕
∕

⎞

⎠
⎟
⎟ ∈ >

⎫
⎬
⎪

⎭⎪
+

y x y u

y v x y u v y0 1

0 0 1

, , , , 0 .
2 2 4

The group multiplication is given explicitly by

( ) ( ) ⎟⎜′ ′ ′ ′ =
⎛
⎝
+ ′ ′ + ′ + ′ +

′ ⎞
⎠

x y u v x y u v x yx yy u y u
x

y
v v

v

y
, , , * , , , , , , .

The inverse element of ( )x y u v, , , is given by

( ) ( ( ) )= − ∕ ∕ − + ∕ −−x y u v x y y u xv y y v, , , , 1 , , .1

Let us consider the inclusion map � � ( )× →+ι : SA 2
2 2 defined by
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( ) =
⎛

⎝
⎜
⎜

∕
∕

⎞

⎠
⎟
⎟ι x y u v

y x y u

y v, , , 0 1

0 0 1

.

Then, we have

∂
∂

=
⎛

⎝
⎜

⎞

⎠
⎟

∂
∂

=
⎛

⎝
⎜
∕

− ∕
⎞

⎠
⎟

∂
∂

=
⎛

⎝
⎜

⎞

⎠
⎟

∂
∂

=
⎛

⎝
⎜
⎜

− ∕ ⎞

⎠
⎟
⎟

− −

− −

ι ι
x y

ι ι
y y

ι ι
u y

ι ι
v

x y

y

*

1
0 1 0

0 0 0

0 0 0

,
*

1
1 2 0 0

0 1 2 0

0 0 0

,

*

1
0 0 1

0 0 0

0 0 0

,
*

0 0

0 0

0 0 0

.

1 1

1 1

These formulas suggest us to take the following basis of the Lie algebra sa( )2 :

=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜
∕

− ∕
⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

− ⎞

⎠
⎟

e e

e e e

¯

0 1 0

0 0 0

0 0 0

, ¯

1 2 0 0

0 1 2 0

0 0 0

,

¯

0 0 1

0 0 0

0 0 0

, ¯

0 0 0

0 0 1

0 0 0

, ¯

0 1 0

1 0 0

0 0 0

.

1 2

3 4 5

Note that

( )= − = − = = =e Y B e X e X e Y e B¯
1

2
, ¯

1

2
, ¯ , ¯ , ¯ .1 2 2 2 3 1 4 1 5

The commutation relations are ([31, Remark 2.2], [46, Remark 3.4])

[ ] [ ] [ ]

[ ] [ ] [ ]

= − = =

= = − =

e e e e e e e e

e e e e e e e e

¯ , ¯ ¯ , ¯ , ¯ 0, ¯ , ¯ ¯ ,

¯ , ¯
1

2
¯ , ¯ , ¯

1

2
¯ , ¯ , ¯ 0.

1 2 1 1 3 1 4 3

2 3 3 2 4 4 3 4

5.4 Exponential map

Let us describe the tangent space f of the homogeneous space ( ) ( )= ∕F SA 2 SO 2c

4 at the origin. The Lie algebra
sa( )2 is decomposed as

sa so f( ) ( )= ⊕2 2 ,

where so( )2 is the Lie algebra of ( )SO 2 :

so �( )
⎪

⎪ ⎪

⎪
=
⎧
⎨
⎩

⎛

⎝
⎜⎜

− ⎞

⎠
⎟⎟ ∈

⎫
⎬
⎭

t

t t2

0 0

0 0

0 0 0

5

5 5

as we saw before. The tangent space f of Fc

4 at the origin is given by

f �
⎪

⎪ ⎪

⎪
=
⎧
⎨
⎩

⎛

⎝
⎜⎜

∕
− ∕

⎞

⎠
⎟⎟ ∈

⎫
⎬
⎭

t t t

t t t t t t

2

0 2

0 0 0

, , , .

2 1 3

2 4 1 2 3 4

Geodesics and magnetic curves in F4  11



The tangent space f is the Lie algebra of �� ⋉ 2 and spanned by { }e e e e¯ , ¯ , ¯ , ¯1 2 3 4 . The Lie algebra sa( )2 is spanned
by { }e e e e e¯ , ¯ , ¯ , ¯ , ¯1 2 3 4 5 . The exponential map ff ��→ ⋉exp : 2 is given explicitly by

f

( ) ( ( ) ( ( ) ))

( )

⎛

⎝
⎜⎜

∕
− ∕

⎞

⎠
⎟⎟ =

⎛

⎝
⎜
⎜

∕ ∕ ∕ + ∕ − ∕
− ∕ ∕

⎞

⎠
⎟
⎟

∕ ∕

− ∕ − ∕

t t t

t t

e t t t t t e t t t t t

e t e t texp

2

0 2

0 0 0

2 sinh 2 4 sinh 4 cosh 2 1

0 4 sinh 4

0 0 1

.

t t

t t

2 1 3

2 4

2
1 2 2 2 3

4
2 1 4 2 2

2

2
4

4
2 2

2 2

2 2

It should be remarked that the decomposition sa so f( ) ( )= ⊕2 2 is not reductive. Indeed, for any
f= + + + ∈T t e t e t e t e¯ ¯ ¯ ¯

1
1

2
2

3
3

4
4 , we have

[ ] = − − + +e T t e t e t e t e t e¯ , 2 ¯ 2 ¯ ¯ ¯ ¯ .5
2

1
1

2
4

3
3

4
2

5

Thus, so f f[ ( ) ] ⊄2 , .

5.5 Left-invariant metric

We denote by the left-translated vector field of ēi by the same latter. We obtain

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

+
∂
∂

e y
x

e y
y

e y
u

e
x

y u y v
¯ , ¯ , ¯ , ¯

1
.1 2 3 4

The dual 1-forms are

= = = − =ϑ
y

x ϑ
y

y ϑ
y

u
x

y
v ϑ y v¯

1
d , ¯

1
d , ¯

1
d d , ¯ d .

1 2 3 4

Here, we set

≔ = ∂ =
⎛

⎝
⎜

⎞

⎠
⎟ ≔ = ∂ =

⎛

⎝
⎜ −

⎞

⎠
⎟

≔ = ∂ =
⎛

⎝
⎜

⎞

⎠
⎟ ≔ = ∂ + ∂ =

⎛

⎝
⎜

⎞

⎠
⎟ >

e ce cy

c

e ce cy

c

c

e e y e e
x

y y
c

2 ¯ 2

0 2 0

0 0 0

0 0 0

, 2 ¯ 2

0 0

0 0

0 0 0

,

¯

0 0 1

0 0 0

0 0 0

, ¯
1

0 0 0

0 0 1

0 0 0

, 0,

x y

u u v

1 1 2 2

3 3 4 4

and equip a left-invariant metric g
c
by the condition { }e e e e, , ,1 2 3 4 is orthonormal with respect to it. Then, g

c
is

expressed as

{( ) }=
+

+ − +g
x y

c y y
u x v y v

d d

4

1
d d d .

c

2 2

2 2

2 2 2

This Riemannian metric coincides with (5.1). In this way, we obtain a solvable Lie group model of Fc

4.

Remark 5. In the literature, two normalizations = ∕c 1 2 [46] or =c 1 [47] are used.
– Kiyota and Tsukada showed that the Singer invariant of F 1

2

4 is 1 [46, Remark 3.4].
– Maier [47] showed that Fc

4 does not admit half-conformally flat invariant metrics.

The dual coframe field of { }e e e e, , ,1 2 3 4 is given by

= = = − =ϑ
cy

x ϑ
cy

y ϑ
y

u
x

y
v ϑ y v

1

2
d ,

1

2
d ,

1
d d , d .1 2 3 4
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5.6 Levi-Civita connection

The exterior derivatives of the coframe field { }ϑ ϑ ϑ ϑ, , ,1 2 3 4 are given by

( )

( )

= ∧ = ∧ =

= − ∧ − ∧ + ∧ = ∧ − ∧

= ∧ = − ∧

ϑ
cy

x y cϑ ϑ ϑ

ϑ
y y

y u
y

x v
x

y y
y v cϑ ϑ cϑ ϑ

ϑ
y

y v cϑ ϑ

d
1

2
d d 2 , d 0,

d
1

2
d d

1
d d

2
d d 2 ,

d
1

2
d d .

1

2

1 2 2

3 3 2 1 4

4 4 2

From the first structure equations:

∑+ ∧ =
=

ϑ ω ϑd 0,i

j

j

i j

1

4

we obtain the following table of connection forms:

= − = = = = − =ω cϑ ω cϑ ω cϑ ω cϑ ω cϑ ω cϑ2 , , , , , .2

1 1
3

1 4
4

1 3
3

2 3
4

2 4
4

3 1

In covariant derivative fashion, the Levi-Civita connection ∇ is described as

∇ = ∇ = − ∇ = − ∇ =
∇ = ∇ = ∇ = ∇ =
∇ = − ∇ = − ∇ = ∇ =
∇ = − ∇ = ∇ = ∇ = −

e ce e ce e ce e ce

e e e e

e ce e ce e ce e ce

e ce e ce e ce e ce

2 , 2 , , ,

0, 0, 0, 0,

, , , ,

, , , .

e e e e

e e e e

e e e e

e e e e

1 2 2 1 3 4 4 3

1 2 3 4

1 4 2 3 3 2 4 1

1 3 2 4 3 1 4 2

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

Hence, the non-vanishing commutators are given by

[ ] [ ] [ ] [ ]= − = = = −e e ce e e ce e e ce e e ce, 2 , , 2 , , , , .1 2 1 1 4 3 2 3 3 2 4 4

If we determine the curvature 2-forms:

∑ ∑= + ∧ = ∧
= <

Ω ω ω ω R ϑ ϑd ,j

i

j

i

k

k

i

j

k

k l

jkl

i k l

1

4

then the significant components of Riemann curvature tensor are given explicitly by

= − = = − =
= − = − = − = −
= − = = =

R c R c R c R c

R c R c R c R c

R c R c R c R c

4 , 2 , , ,

, , , ,

, , 2 , 2 .

212

1 2
234

1 2
313

1 2
324

1 2

423

1 2
414

1 2
323

2 2
314

2 2

424

2 2
413

2 2
412

3 2
434

3 2

The Ricci operator is given by

⎛

⎝

⎜
⎜

−
−

⎞

⎠

⎟
⎟

c

c

6 0 0 0

0 6 0 0

0 0 0 0

0 0 0 0

.

2

2

The sectional curvatures ( )= ∧K K e eij i j of a tangent plane ∧e ei j spanned by ei and ej are given by

= − = = = = − =K c K K K K c K c4 , , 2 .12
2

13 14 23 24
2

34
2

The scalar curvature is − c12 2.
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5.7 Tensor U

For later use we give here the tensor U f f ff × →: defined by

U ff⟨ ( ) ⟩ ⟨ [ ]⟩ ⟨ [ ]⟩= − + ∈X Y Z X Y Z Y Z X X Y Z2 , , , , , , , , , .

The non-vanishing terms of the tensor U are given by

U U U U

U U U U

f f f f

f f f f

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= = − = − = −

= = = = −

e e ce e e ce e e ce e e ce

e e ce e e ce e e ce e e ce

, 2 , , , , , ,
1

2
,

,
1

2
, , , , , , .

1 1 2 1 2 1 1 3 4 2 3 3

2 4 4 3 3 2 3 4 1 4 4 2

Thus, for any vector f= + + + ∈X X e X e X e X e1
1

2
2

3
3

4
4 ,

Uf( ) ( ) ( ( ) ( ) ( ) ) ( )= − + + − − + −X X c X X X X e c X X X e cX X e c X X X X e, 2 2 2 .3 4 1 2
1

1 2 3 2 4 2
2

2 3
3

2 4 1 3
4

This formula implies the following result.

Proposition 5.1. For a tangent vector f= + + + ∈X X e X e X e X e1
1

2
2

3
3

4
4 , the curve

f � � �( ) ( )= → = ⋉+γ s sXexp : Fc

4 2 2

is a geodesic starting at the origin of the solvable Lie group model of Fc

4 if and only if X has the form

( )= ± =X X e e or X X e2 .1
1 4

2
2

Proof. From Uf( ) =X X, 0, we obtain the following system:

( ) ( ) ( )− = + − = = − =X X X X X X X X X X X X X0, 2 0, 0, 2 0.3 4 1 2 1 2 3 2 4 2 2 3 2 4 1 3

From the third equation, we have =X 02 or =X 03 . In the first case, when =X 02 , we obtain =X 03 and then
finally, ( )= ±X X e e21

1 4 . In the second case, when =X 03 , for =X 02 , we obtain already mentioned solution,
and for =X 04 , we obtain =X X e2

2. □

5.8 Symplectic pair of F
c

4

On Fc

4, we introduce a two-parameter family

= ∧ + ∧ = ∧ + ∧c ϑ ϑ c ϑ ϑ
c

c
x y c u vΩ

4
d d d dc c, 1

1 2
2

3 4 1

2 21 2

of left-invariant symplectic forms (c.f. [48]). Then, we associate an endomorphism fields J
c c,1 2

with Ωc c,1 2
by

( ) ( )=g X J Y X Y, Ω , .
c c c c c, ,

1 2 1 2

Then, we have

= − = = − =J e c e J e c e J e c e J e c e, , , .
c c c c c c c c, 1 1 2 , 2 1 1 , 3 2 4 , 4 2 3

1 2 1 2 1 2 1 2

Then, J
c c,1 2

is a g
c
-orthogonal almost complex structure when and only when

( ) ( ) ( ) ( ) ( )= − − − −c c, 1, 1 , 1, 1 , 1, 1 , or 1, 1 .1 2

The only left-invariant g
c
-orthogonal complex structures are − −J

1, 1
and −J 1,1

[48, Theorem 3.2].
Hereafter, we set

≔ ≔+ − − − −J J J Jand .
1, 1 1,1
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Note that −J coincides with the complex structure introduced by Wall1 [28, p. 273].
The corresponding Kähler forms ±Ω are

( )

( )

= − ∧ − ∧ = − ∧ − ∧ ∈

= − ∧ + ∧ = − ∧ + ∧ ∈

+ +

− −

Ω ϑ ϑ ϑ ϑ
c

x y u v A

Ω ϑ ϑ ϑ ϑ
c

x y u v A

1

4
d d d d F ,

1

4
d d d d F .

c

c

1 2 3 4

2

2 4

1 2 3 4

2

2 4

Set =ε 1 for +Ω and = −ε 1 for −Ω , then the covariant derivatives ∇ +J and ∇ −J are given by the following
relations:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∇ = ∇ = ∇ = ∇ =
∇ = ∇ = ∇ = ∇ =
∇ = − + ∇ = +
∇ = + ∇ = − +
∇ = + ∇ = +
∇ = − + ∇ = − +

± ± ± ±

± ± ± ±

± ±

± ±

± ±

± ±

J e J e J e J e

J e J e J e J e

J e c ε e J e c ε e

J e c ε e J e c ε e

J e c ε e J e c ε e

J e c ε e J e c ε e

0,

0,

1 , 1 ,

1 , 1 ,

1 , 1 ,

1 , 1 .

e e e e

e e e e

e e

e e

e e

e e

1 2 3 4

1 2 3 4

1 3 2 4

3 1 4 2

1 4 2 3

3 2 4 1

1 1 1 1

2 2 2 2

3 3

3 3

4 4

4 4

In particular, −J is parallel.
On the other hand, the covariant derivative ∇ +J is given by

( ) ( )

( ) ( )

( ) ( )

∇ = ∇ =
∇ = − − +
∇ = − + − −

+ +

+

+

J Y J Y

J Y c Y e Y e Y e Y e

J Y c Y e Y e Y e Y e

0,

2 ,

2 ,

e e

e

e

3
1

4
2

1
3

2
4

4
1

3
2

2
3

1
4

1 2

3

4

(5.2)

for any left-invariant vector field = + + +Y Y e Y e Y e Y e1
1

2
2

3
3

4
4.

5.9 Kowalski’s 3-symmetric space

Apostolov et al. showed that ( )= gF F ,1

2

4 4
1

2

is isometric to the Kowalski’s 3-symmetric space M̂1

4 under the

isometry [30]:

=
+ −

= − = = −x
x y

y
x

x

y
x u x v

1

2
, , , .1

2 2

2 3 4

The inverse isometry is

( )
=
− + + +

+
=

+ + +
+

> = = −x
x x x x

x
y

x x x

x
u x v x

1

1
,

1

1
0, , .

2 1 1

2

2

2

2

2

1 1

2

2

2

2

2 3 4

The symplectic form ±Ω̂ of M̂1

4 is pull backed as

( ) ( )= − ∧ ∓ ∧ = − ∧ ± ∧ = ∈± ± ±Ω
y

x y u v ϑ ϑ ϑ ϑ Ω Aˆ
1

d d d d F .
2

1 2 3 4 2

1

2

4

5.10 Some typical submanifolds

For later use, we give some typical submanifolds in Fc

4. First of all, we exhibit leaves of complementary
foliations associated with the symplectic pair ( )+ −Ω Ω, .



1 He used the basis { }e e e e¯ , ¯ , 2¯ , 2¯3 4 2 1 .
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Example 5.1. (Totally geodesic hyperbolic plane) For any constants u0 and v0, we consider a surface

( ) {( ) }= ∈M u v x y u v1, 2; , , , , F .c0 0 0 0
4

The surface ( )M u v1, 2; ,0 0 is a leaf of the kernel foliation of ++ −Ω Ω ; equivalently, it is an integral surface of
the holomorphic distribution spanned by e1 and e2. One can see that ( )M u v1, 2; ,0 0 is isometric to hyperbolic
plane � 2 with a metric

=
+

g
x y

c y

d d

4
.

2 2

2 2

One can see that ( )M u v1, 2; ,0 0 is ±J -invariant and totally geodesic.

Example 5.2. (Minimal invariant Euclidean plane) The surface

( ) {( ) }= ∈M x y x y u v3, 4; , , , , Fc0 0 0 0

4

is a leaf of kernel foliation of −+ −Ω Ω . In other words, it is an integral surface of the holomorphic distribution
spanned by e3 and e4. It is flat, minimal, and ±J -invariant. Note that it is non-totally geodesic. One can see that

( )M x y3, 4; ,0 0
is isometric to the Euclidean plane.

Example 5.3. (Heisenberg group) For any constant y
0
, we consider a hypersurface

( ) {( ) }= ∈M y x y u v1, 3, 4; , , , F .c0 0

4

It should be remarked that ( )M 1, 3, 4; 1 is a nilpotent subgroup of Fc

4 and isomorphic to the Heisenberg group.
The induced metric of ( )M y1, 3, 4;

0
is

{( ) }= + − +g
x

c y y
u x v y v

d

4

1
d d d .

2

2

0

2

0

2

0

2 2

In particular, the induced metric of the Heisenberg group ( )M 1, 3, 4; 1 is

( )= + + −g
x

c
v u x v

d

4
d d d .

2

2

2 2

Thus, the Heisenberg group ( )M 1, 3, 4; 1 with = ∕c 1 2 is isometric to the model space Nil3. Hence, ( )M y1, 3, 4;
0

is isometric to the Heisenberg group. Hereafter, we call ( )M y1, 3, 4;
0

a Heisenberg hypersurface of F .c

4

We can take a unit normal vector field =ν e2 for ( )M y1, 3, 4;
0
. Then, the shape operator derived from ν is

given by

⎛

⎝
⎜

−

⎞

⎠
⎟

c

c

c

2 0 0

0 0

0 0

.

Hence, ( )M y1, 3, 4;
0

has constant mean curvature ∕c2 3. The sectional curvatures KM of ( )M y1, 3, 4;
0

are given
by

( ) ( ) ( )∧ = ∧ = ∧ = −K e e K e e c K e e c, 3 .M M M1 3 3 4
2

1 4
2

We can introduce an almost contact structure ( )±φ ξ η, , by

= − = = =±ξ J ν e η ϑ
cy

x,
1

2
d ,1

1

= = ± = ∓± ± ±φ e φ e e φ e e0, , .1 3 4 4 3

One can see that the fundamental 2-forms ( )= ⋅± ±g φΦ , are given by = ± ∧± u vΦ d d . Hence, ±Φ are magnetic
fields on ( )M y1, 3, 4;

0
. Hence, ( ( ) )±M y φ ξ η1, 3, 4; , , ,

0
are strictly almost cosymplectic 3-manifolds.
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Note that the nilradical of the model space Sol1
4 is the Heisenberg group. The almost contact metric

structure induced from the GCK-structure of Sol1
4 is also strictly almost cosymplectic [49]. On the other

hand, in the complex hyperbolic plane � ( )−H 42 , the Heisenberg group is embedded as the horosphere. The
induced almost contact Riemannian structure is Sasakian.

As we mentioned earlier, Fc

4 does not admit any totally geodesic hypersurfaces. More strongly, the non-
existence of parallel hypersurfaces in Fc

4 was proved in [40].

Problem 5.1. Classify totally umbilical hypersurfaces in Fc

4.

Totally, umbilical hypersurfaces in Sol0

4 were classified in [50].

6 Magnetic trajectories in an almost Kähler manifold

6.1 Frenet curves

Definition 6.1. If γ is a curve in a Riemannian manifold ( )=M M g, , parametrized by arc length s, we say that γ

is a Frenet curve of osculating order r when there exist orthonormal vector fields E1, E E,…, r2 along γ such that

= ∇ = ∇ = − +
∇ = − + ∇ = −− − − − − −

γ E E κ E E κ E κ E

E κ E κ E E κ E

˙ , , , …,

, ,

γ γ

γ r r r r r γ r r r

1 ˙ 1 1 2 ˙ 2 1 1 2 3

˙ 1 2 2 1 ˙ 1 1

(6.1)

where κ1, −κ κ,…, r2 1 are the positive ∞C functions of s. The function κj is called the jth curvature of γ.

A geodesic is regarded as a Frenet curve of osculating order 1. A circle is defined as a Frenet curve of osculating
order 2 with constant κ1. A helix of order r is a Frenet curve of osculating order r , such that all the curvatures κ1,

−κ κ,…, r2 1 are constants.
For Frenet curves in almost Kähler manifolds, we recall the following notion:

Definition 6.2. Let ( )γ s be a Frenet curve of osculating order >r 0 in an almost Kähler manifold ( )M J g, , . The
complex torsions τij ( ≤ < ≤i j r1 ) are smooth functions along γ defined by ( )=τ g E JE,ij i j [51]. A helix of order r

in ( )M J g, , is said to be a holomorphic helix of order r if all complex torsions are constant. In particular,
holomorphic helices of order 2 are called holomorphic circles.

6.2 Kähler magnetic trajectory equation

Hereafter, we assume that ( )=M M J g, , is an almost Kähler 4-manifold. Then, ( )− = ⋅g JΩ , is a magnetic field
with Lorentz force J on M and called the Kähler magnetic field.

Definition 6.3. A curve ( )γ t in an almost Kähler manifold ( )M J g, , is said to be a Kähler magnetic trajectory
with strength q if it satisfies

∇ =γ qJγ˙ ˙ ,γ̇ (6.2)

for some constant q.

One can see that every Kähler magnetic trajectory has constant speed. Thus, hereafter, we parameterize
Kähler magnetic trajectory by arc length parameter s. In addition, if necessarily, by the affine parameter
change ⟼ −s s, we may assume that >q 0.
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Remark 6. The Kähler magnetic equation (6.2) is valid on general almost Hermitian manifolds. On an arbitrary
almost Hermitian manifold ( )M g, , regular curves γ satisfying (6.2) are called J -trajectories. J -trajectories in
non-Kähler locally conformal Kähler manifolds were investigated in [49,52–55].

Now, let ( )γ s be a unit speed Kähler magnetic trajectory of charge >q 0 in an almost Kähler 4-manifold
( )=M M J g, , . First, we observe that the first curvature κ1 is constant ∣ ∣q by comparing the magnetic curve

equation and the Frenet formula (6.1). The Frenet formula implies that the first normal vector field E2 is given
by =E Jγ̇2 and = >κ εq 01 .

Next, the second curvature κ2 is determined by the equation ∇ = − +E κ E κ Eγ̇ 2 1 1 2 3. The covariant derivative
∇ Eγ̇ 2 is computed as

( ) ( ) ( ) ( ) ( )∇ = ∇ = ∇ + ∇ = ∇ − = ∇ −E JE J γ J γ J γ qγ J γ κ E˙ ˙ ˙ ˙ ˙ .γ γ γ γ γ γ˙ 2 ˙ 1 ˙ ˙ ˙ ˙ 1 1

Hence, we obtain

( )= ∇κ E J γ̇.γ2 3 ˙ (6.3)

This formula implies that a Kähler magnetic curve is a Riemannian circle if and only if J is parallel along the
magnetic curve. In particular, when the ambient manifold is Kähler, every Kähler magnetic curve is a
Riemannian circle.

Remark 7. If a Frenet curve γ in an almost Kähler manifold ( )M J g, , is Kähler magnetic, then

( )= = −τ g E JE, 1.12 1 2

If M is a Kähler manifold, every Kähler magnetic curve is a holomorphic circle.

Let us assume that ( )M J g, , be an almost Kähler 4-manifold and γ a unit speed Kähler magnetic curve with
charge q, then its complex torsions are

= − = = = =τ τ τ τ τ1, 0.12 13 14 23 24

The complex torsion τ34 satisfies

( ( ) )= ∇
s

τ g E J E
d

d
, .γ34 3 ˙ 4

7 Kähler magnetic curves with respect to Ω‒

In this section, we study Kähler magnetic curves in ( )−J gF , ,c c

4 . As we mentioned before, Kähler magnetic
curves in ( )−J gF , ,c c

4 are holomorphic circles.

7.1 Magnetic equations

Let ( ) ( ( ) ( ) ( ) ( ))=γ s x s y s u s v s, , , be an arc length parameterized curve in � �= ⋉+Fc

4 2 2. Then, its unit tangent
vector field is expressed as

( ) ( ) ( ) ( ) ( )=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

γ s x s
x

y s
y

u s
u

v s
v

˙ ˙ ˙ ˙ ˙ .

Having in mind,

= ∂ = ∂ = ∂ = ∂ + ∂e cy e cy e y e
x

y y
2 , 2 , ,

1
,x y u u v1 2 3 4
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we obtain

( )
= + +

−
+γ

x

cy
e

y

cy
e

u xv

y
e y ve˙

˙

2

˙

2

˙ ˙
˙ .1 2 3 4

Hence,

( ) (( ) ( ) )

( ) ( )
⎟ ⎟⎜ ⎜

⎜ ⎟ ⎜ ⎟∇ = ⎛
⎝

− + − ⎞
⎠

+ ⎛
⎝

+
−

+ − − ⎞
⎠

+
⎛
⎝
− − −

+
− ⎞

⎠
+
⎛
⎝

+ −
− ⎞

⎠

γ
x

cy

xy

cy
cv u xv e

y

cy

x y

cy

c

y
u xv yv e

yxv y u xv

y y

u xv

y
e

y v

y
y v

x u xv

y y
e

˙
¨

2

˙ ˙
2 ˙ ˙ ˙

¨

2

˙ ˙

2
˙ ˙ ˙

˙ ˙ ˙ ˙ ˙ ¨ ¨ ˙ ˙
¨

˙ ˙ ˙
.

γ̇ 2 1

2 2

2

2 2
2

3 4

(7.1)

Introducing substitutions

( )
( )

( )
( )

( )

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )= = =

−
=X s

x s

cy s
Y s

y s

cy s
U s

u s x s v s

y s
V s y s v s

˙

2
,

˙

2
,

˙ ˙
, ˙ , (7.2)

we have

( ) ( ( )) ( ) ( )∇ = − + + + + − + + − + − +γ X cXY cUV e Y cX c U V e U cYU e V cXU cYV e˙ ˙ 2 2 ˙ 2 ˙ ˙ 2 .γ̇ 1
2 2 2

2 3 4

Then, the arc length condition is given by

+ + + =X Y U V 1.2 2 2 2 (7.3)

On the other hand, using

= = − = − =− − − −J e e J e e J e e J e e, , , ,1 2 2 1 3 4 4 3

we have

= − + + −−J γ Ye Xe Ve Ue˙ .1 2 3 4

Hence, the magnetic curves are given as the solutions of the following system:

( )

− + = −
+ + − = +

− = +
− + = −

X cXY cUV qY

Y cX c U V qX

U cYU qV

V cXU cYV qU

˙ 2 2 ,

˙ 2 ,

˙ ,

˙ 2 .

2 2 2

(7.4)

Since ( )−J gF , ,c c

4 is Kähler, the Kähler magnetic curve ( )γ s has constant curvatures =−κ q1 and =−κ 02 . Take
a Frenet frame field =−E γ̇1 and =− −E εJ γ̇2 . Then, the first curvature =−κ εq1 is computed as

( ) ( )

( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( )

= = ∇ = ∇
= − − + + + + − + − − − +
= − + − + + + + − −

−
−q ε κ ε g γ E g γ J γ

Y X cXY cUV X Y cX c U V V U cYU U V cXU cYV

XY XY UV UV cX X Y U cX U V cYUV

˙ , ˙ , ˙

˙ 2 2 ˙ 2 ˙ ˙ 2

˙ ˙ ˙ ˙ 2 4 .

γ γ1 ˙ 2 ˙

2 2 2

2 2 2 2 2

Hence, using (7.3), we have the conservation law:

( ) ( ) ( )− + − + + − − =XY XY UV UV cX U V cYUV q˙ ˙ ˙ ˙ 2 3 4 .2 2

Every Kähler magnetic curve ( )γ s is of order 2, so along γ, we obtain a −J -invariant plane field
{ ( ) ( )}−γ s J γ sspan ˙ , ˙ along γ. This fact suggests us to study Kähler magnetic curves lying in −J -invariant surfaces.
We pay our attention to leaves of the kernel foliations of ±+ −Ω Ω exhibited in Examples 5.1 and 5.2. We

know that leaves of ( )++ −Ω ΩKer are totally geodesic, but leaves of ( )−+ −Ω ΩKer are not. The different
behavior of these foliations under the Levi-Civita connection ∇ makes the behavior of magnetic curves
significant different.
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7.2 Magnetic curves in hyperbolic plane (( ))M u v1, 2; ,0 0

Next, we study magnetic curves satisfying =u u0 and =v v0. As we mentioned in Example 5.1, in this case, our
submanifold is a hyperbolic plane, which is ±J -invariant. The magnetic curve equations (7.4) are reduced to

− = − + =X cXY qY Y cX qX˙ 2 , ˙ 2 .2

Multiplying the first equation by X and the second by Y , after addition and integration, and taking in account
arc length condition, we obtain

+ =X Y 1.2 2

This equation we considered in detail in [49], so in the following proposition, we give only the results.

Proposition 7.1. Kähler magnetic curves of ( )−J gF , ,c c

4 lying in a hyperbolic plane ( ) ⊂M u v1, 2; , Fc0 0
4 are con-

gruent to the one of the curves from the list:
(1a) a horizontal line

( ) ( )= ± + = > = ∓x s qy s x y s y for q c, 0, 2 .
0 0 0

(1b) an oblique half line ( )= − +±
−

x y y x
q

c q4
0 02 2

with the arc length parametrization

( ) ( )

( ) ∣ ∣

=
∓

−
− +

= <

± −

± −

x s
qy

c q

e x

y s y e for q c

4

1 ,

, 2 .

c q s

c q s

0

2 2

4
0

0

4

2 2

2 2

(2) a Riemannian circle

( ) ( ) ( ) ( ( ))= + = ± +x s a r ϕ s y s qr r ϕ ssin , cos

for ∣ ∣ ≥q c2 and some non-constant function ( )ϕ s satisfying ( ) ( )= − −ϕ s q ϕ s˙ cos .

7.3 Magnetic curves in the Euclidean plane (( ))M x y3, 4; ,0 0

Assume that a unit speed Kähler magnetic curve ( )γ s lies in the Euclidean plane ( )M x y3, 4; ,0 0
. Then, the

magnetic equations are reduced to

= − = = = −cUV U V U qV V qU2 0, 0, ˙ , ˙ .2 2

The only solution to this system is = =U V 0. This contradicts with the arc length condition + =U V 12 2 .

Proposition 7.2. There is no Kähler magnetic curve of ( )−J gF , ,c c

4 lying in the Euclidean plane ( )M x y3, 4; ,0 0
.

7.4 Magnetic curves in the Heisenberg hypersurface (( ))M y1, 3, 4;
0

Let us study Kähler magnetic curves lying in the Heisenberg hypersurface ( )M y1, 3, 4;
0
. The magnetic curve

equations are

( )

⎧

⎨
⎪

⎩
⎪

+ =
+ − =

=
− = −

X cUV

cX c U V qX

U qV

V cXU qU

˙ 2 0,

2 ,

˙ ,

˙ 2 .

2 2 2

(7.5)
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Let us determine the Kähler magnetic curves lying in ( )M y1, 3, 4;
0

under the initial condition
( ) ( )=γ x y u v0 , , ,0 0 0 0 .

Differentiating the second equation of (7.5), we obtain

+ − =cXX cUU cVV qX4 ˙ 2 ˙ 2 ˙ ˙ .

Substituting X U V˙ , ˙ , ˙ from other equations of (7.5) into the previous one, we have

( )− + =cUV cX q6 2 0.

– Case 1: Assume that =U 0, then we have

( )= = − =V X X cX q0, ˙ 0, 2 0.

Hence, =X 0 or =X
q

c2
. From the arc length condition + + =X U V 12 2 2 , the only possibility is

( ) = ±X s 1.

Thus, = ±q c2 and ( ) = ± +x s qy s x
0 0. From (7.2), it follows =v̇ 0, and hence, by the initial condition, =v v0.

Analogously, =u u0.

Thus, we obtain the geodesic

( ) ( )= ± + = ±γ s qy s x y u v q c, , , , for 2 .
0 0 0 0 0

– Case 2: Let us assume that =V 0, then from (7.5), we obtain

( )= + = = − =X cX cU qX U cX q U˙ 0, 2 , ˙ 0, 2 0.2 2

Hence, from the last equation, =U 0 or ( )= ∕X q c2 . In the first case, the arc length condition implies = ±X 1. In
the second case, the second equation implies =U 0. So, both cases lead to the geodesic from Case 1.

– Case 3: ( )= − ∕X q c2 . Then, from the first equation, we have =UV 0. Both cases, =U 0 and =V 0, are
already examined in the previous consideration.

Hence, we proved the following corollary.

Corollary 7.1. The only unit speed Kähler magnetic curves of ( )−J gF , ,c c

4 lying in the Heisenberg hyperspace are
geodesics in hyperbolic plane ( )M u v1, 2; ,0 0 , which are obtained as the intersection ( ) ( )∩M y M u v1, 3, 4; 1, 2; ,

0 0 0

parameterized by

( ) ( )= ± + = ±γ s qy s x y u v for q c, , , , 2 ,
0 0 0 0 0

where ( ) ( )=γ x y u v0 , , , .0 0 0 0

8 Kähler magnetic curves with respect to ++Ω

In this section, we deduce the equations for the Kähler magnetic curves in the strictly almost Kähler mani-
fold ( )+J gF , ,c c

4 .
Here, using

= = − = = −+ + + +J e e J e e J e e J e e, , , ,1 2 2 1 3 4 4 3

we have

= − + − ++J γ Ye Xe Ve Ue˙ .1 2 3 4

Hence, using (7.1), the magnetic curves are given as the solutions of the following system:
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( )

− + = −
+ + − = +

− = −
− + = +

X cXY cUV qY

Y cX c U V qX

U cYU qV

V cXU cYV qU

˙ 2 2 ,

˙ 2 ,

˙ ,

˙ 2 .

2 2 2

(8.1)

Note that the first and second equations are identical to the ones of (7.4).
Take a Frenet frame field = =+ −

E E γ̇1 1 and =+ +E J γ̇2 . Then, the first curvature =+κ ε q1 is computed as

( ) ( )

( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( )

= = ∇ = ∇
= − − + + + + − − − + − +
= − + − + + − +

+ +
+q κ ε g γ E g γ J γ

Y X cXY cUV X Y cX c U V V U cYU U V cXU cYV

XY XY UV UV cX X Y cX U V

˙ , ˙ , ˙

˙ 2 2 ˙ 2 ˙ ˙ 2

˙ ˙ ˙ ˙ 2 .

γ γ1 ˙ 2 ˙

2 2 2

2 2 2 2

Hence, using (7.3), we have the conservation law:

( ) ( ) ( )− + − + + − =XY XY UV UV cX X Y cX q˙ ˙ ˙ ˙ 3 .2 2

Next, the almost complex structure +J is non-parallel; thus, magnetic curves are not of order 2, in general. Let
us compute + +

κ E2 3 .
Using (5.2) and (6.3), we obtain

( ) ( )

{( ) ( ) ( ) }

= − − + − + − −
= − − + − + +

+ +
κ E cU Ue Ve Xe Ye cV Ve Ue Ye Xe

c U V e UVe YV XU e XV YU e

2 2

2 2 .

2 3 1 2 3 4 1 2 3 4

2 2
1 2 3 4

Hence,

( ) ( )= ++
κ c U V4 .2

2 2 2 2

Thus, the solution of the equation =+κ 02 is = =U V 0. Hence, we have the following proposition.

Proposition 8.1. The only Kähler magnetic curves of order 2 in ( )+J gF , ,c c

4 are curves lying in hyperbolic plane
given in Proposition 7.1.

Proof. Inserting = =U V 0 into (8.1), we obtain the system

− = − + =X cXY qY Y cX qX˙ 2 , ˙ 2 .2

The solutions of this system are given in Proposition 7.1. □

8.1 Magnetic curves in the Euclidean plane (( ))M x y3, 4; ,0 0

Assume that a unit speed Kähler magnetic curve ( )γ s lies in the Euclidean plane ( )M x y3, 4; ,0 0
, i.e., = =X Y 0.

Then the magnetic equations (8.1) are reduced to

= − = = − =cUV U V U qV V qU2 0, 0, ˙ , ˙ .2 2

The only solution to this system is = =U V 0. This contradicts with the arc length condition + =U V 12 2 . This
fact together with Proposition 7.2 implies the following result.

Proposition 8.2. There is no Kähler magnetic curves of ( )±J gF , ,c c

4 lying in the Euclidean plane ( )M x y3, 4; ,0 0
.
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8.2 Magnetic curves in the Heisenberg hypersurface (( ))M y1, 3, 4;
0

Let us determine the Kähler magnetic curves lying in ( )M y1, 3, 4;
0

under the initial condition
( ) ( )=γ x y u v0 , , ,0 0 0 0 .

The magnetic curve equations are

( )

⎧

⎨
⎪

⎩
⎪

+ =
+ − =

= −
− =

X cUV

cX c U V qX

U qV

V cXU qU

˙ 2 0,

2 ,

˙ ,

˙ 2 .

2 2 2

(8.2)

Differentiating the second equation of (8.2), we obtain

+ − =cXX cUU cVV qX4 ˙ 2 ˙ 2 ˙ ˙ .

Substituting X U V˙ , ˙ , ˙ from other equations of (8.2) into the previous one, we have

( )− + =cUV cX q2 6 0.

– Case 1: Assume that =U 0, then we have

( )= = − =V X X cX q0, ˙ 0, 2 0.

Hence, =X 0 or =X
q

c2
. From the arc length condition + + =X U V 12 2 2 , the only possibility is

( ) = ±X s 1.

Thus, = ±q c2 and ( ) = ± +x s qy s x
0 0. From (7.2), it follows =v̇ 0, and hence, by the initial condition, =v v0.

Analogously, =u u0. Thus, we obtain geodesic

( ) ( )= ± + = ±γ s qy s x y u v q c, , , , for 2 .
0 0 0 0 0

– Case 2: Let us assume that =V 0, then from (8.2), we obtain

( )= + = = − =X cX cU qX U cX q U˙ 0, 2 , ˙ 0, 2 0.2 2

Hence, from the last equation, =U 0 or ( )= − ∕X q c2 . In the first case, the arc length condition implies = ±X 1.

So, this case leads to the geodesic from Case 1. In the second case, the second equation implies = − ∕U q c ,2 2 2 i.e.,
the contradiction.

– Case 3: ( )= − ∕X q c6 . Then, from the first equation, we have =UV 0. The both cases =U 0 and =V 0 lead to
the contradiction.

Combining these arguments and Corollary 7.1, we obtain

Corollary 8.1. The only unit speed Kähler magnetic curves of ( )±J gF , ,c c

4 lying in the Heisenberg hyperspace are
geodesics in hyperbolic plane ( )M u v1, 2; ,0 0 , which are obtained as the intersection ( ) ( )∩M y M u v1, 3, 4; 1, 2; ,

0 0 0

parameterized by

( ) ( )= ± + = ±γ s qy s x y u v for q c, , , , 2 ,
0 0 0 0 0

where ( ) ( )=γ x y u v0 , , , .0 0 0 0

We will continue to investigate Kähler magnetic curves of ( )+J gF , ,c c

4 in a separate publication.

Problem 8.1. Determine Kähler magnetic curves of ( )+J gF , ,c c

4 .

Problem 8.2. Determine minimal ±J -invariant surfaces as well as minimal surfaces that are totally real with
respect to ±J in F4.
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8.3 Geodesics equations

Assume that ( )γ s is a geodesic in Fc

4, then from (7.4) for =q 0, we obtain the following system:

( )

− + =
+ + − =

− =
− + =

X cXY cUV

Y cX c U V

U cYU

V cXU cYV

˙ 2 2 0,

˙ 2 0,

˙ 0,

˙ 2 0,

2 2 2

for geodesics.
Solving this system in the general case presents a considerable challenge.

9 Homogeneous magnetic curves in F
c

4

Since ( )±J gF , ,c c

4 is a homogeneous almost Kähler manifold, classification of homogeneous Kähler magnetic
curves is a crucial task. In this section, we reinvestigate homogeneous magnetic curves and homogeneous
geodesics.

9.1 Homogeneous geodesics

9.1.1 Riemannian geodesic orbit spaces

Let = ∕M G K be a homogeneous Riemannian space. A curve ( )γ s starting at the origin o is called homogeneous
if it is an orbit of o under the action of some one-parameter subgroup of G. Namely, a homogeneous curve
starting at o is represented as

g( ) ( )= ⋅γ s sX oexp ,

for some vector g∈X .
It is known that every homogeneous Riemannian space admits at least one homogeneous geodesic starting

at the origin.

Definition 9.1. A reductive homogeneous Riemannian space = ∕M G K is called a space with homogeneous
geodesics or a Riemannian g.o. space if every geodesic ( )γ s of M is an orbit of a one-parameter subgroup of the
largest connected group of isometries.

Now, let us assume that = ∕M G K is a reductive homogeneous Riemannian space with Lie subspace m. For
any vector g∈X , we decompose it as

k mk m k m= + ∈ ∈X X X X X, , ,

along the reductive decomposition g k m= + .
Next, we introduce a tensor U m m mm × →: by

U mm m m⟨ ( ) ⟩ ⟨ [ ] ⟩ ⟨ [ ] ⟩= − + ∈X Y Z X Y Z Y Z X X Y Z2 , , , , , , , , , .

A homogeneous Riemannian space is said to be naturally reductive if there exists a reductive decomposition
g k m= + with vanishing Um. It is well known that a naturally reductive homogeneous space = ∕M G K is a
Riemannian g. o. space. The model space ( ) ( )= ∕F SA 2 SO 2c

4 is not a Riemannian g. o. space.
Let = ∕M G K be a reductive homogeneous Riemannian space with Lie subspace m. Take vectors X , g∈Z

and set ( )=ϕ tXexp
t

and ( )=ψ sZexp
s

. The fundamental vector field ♯X derived from X is defined by

24  Zlatko Erjavec and Jun-ichi Inoguchi



g( )= ⋅ ∈♯

=
X

t
tX x x M

d

d
exp , .x

t 0

At any point ∈x M , we have (see [29] or Appendix of this article):

( [ ] ( ))( ) ( )( )= − +♯
∘ ∘

♯
−Z ϕ Z t X Z o t

*
, .ϕ x ϕ ψ ϕ x x

2

t t s t

1 (9.1)

From the Koszul formula, we have

( ) ( ) ( ) ([ ] )∇ = − +♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯♯g X Z X g X Z Z g X X g Z X X2 , 2 , , 2 , , .X

Since

( ) ( [ ]) ( ) ( [ ])= =♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯X g X Z g X X Z Z g X X g X Z Z, , , , , 2 , , ,x x x x

we deduce that

m m m m( ) ( [ ] ) ⟨ [ ] ⟩ ⟨[ ] ⟩∇ = − = − =♯ ♯ ♯ ♯♯g X Z g X X Z X X Z X Z X, , , , , , , .
x X x

This equation implies the following useful criterion (see [29, Proposition 2.1], [56, Theorem 5.2]).

Proposition 9.1. Let = ∕M G K be a reductive homogeneous Riemannian space equipped with a reductive decom-
position g k m= + . Take a vector gk m= + ∈X X X such that m ≠X 0. Then,

g( ) ( )= ⋅γ s sX oexp

is a geodesic if and only if one of the following conditions is fulfilled:
(1) Um k m m m[ ] ( )=X X X X, , .
(2) k m m m m⟨[ ] ⟩ ⟨ [ ] ⟩=X X Z X X Z, , , , , for any m∈Z .
(3) m m⟨[ ] ⟩ =X Z X, , 0, for any m∈Z .

In such a case, X is called a geodesic vector.

9.1.2 Reductive decomposition of F
c

4

Now, we apply the criterion (Proposition 9.1) for geodesics in Fc

4. However, the decomposition sa so f( ) ( )= +2 2

is not reductive. Thus, here, we give a reductive decomposition for the homogeneous space Fc

4. Following
Kiyota and Tsukada [46, p. 728], we take the following basis { }E E E E E, , , ,1 2 3 4 5 of sa( )2 :

=
⎛

⎝
⎜

⎞

⎠
⎟ = + = = =

⎛

⎝
⎜ −

⎞

⎠
⎟ = −

= =
⎛

⎝
⎜

⎞

⎠
⎟ = = =

⎛

⎝
⎜

⎞

⎠
⎟ =

= =
⎛

⎝
⎜

− ⎞

⎠
⎟ =

E

c

c e ce cY E e

c

c cX

E e X E e Y

E e B

0 0

0 0

0 0 0

¯ ,

0 0

0 0

0 0 0

,

0 0 1

0 0 0

0 0 0

,

0 0 0

0 0 1

0 0 0

,

¯

0 1 0

1 0 0

0 0 0

.

1 1 5 2 2 2 2

3 3 1 4 4 1

5 5

Denote by m the linear subspace spanned by { }E E E E, , ,1 2 3 4 . Then, m is a linear subspace of sa( )2 complemen-
tary to so �( ) = E2 5. Indeed, every element of sa( )2 is decomposed as

⎛

⎝
⎜⎜ −

⎞

⎠
⎟⎟ =

+
+ + + +

−α β ξ

γ α η
γ β

c
E

α

c
E ξE ηE

γ β
E

0 0 0
2 2

.1 2 3 4 5

The commutation relations are
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[ ] [ ] [ ]

[ ] [ ] [ ]

= = =
= = − =

E E c E E E cE E E cE

E E cE E E cE E E

, 2 , , , , ,

, , , , , 0,

1 2
2

5 1 3 4 1 4 3

2 3 3 2 4 4 3 4

and

[ ] [ ] [ ] [ ]= − = = = −E E E E E E E E E E E E, 2 , , 2 , , , , .5 1 2 5 2 1 5 3 4 5 4 3 (9.2)

Hence, the decomposition sa so m( ) ( )= +2 2 is reductive. We identify the tangent space of Fc

4 at the origin with
m. Let us equip a Riemannian metric on ( ) ( )∕SA 2 SO 2 so that { }E E E E, , ,1 2 3 4 is orthonormal with respect to it.
Then, the resulting homogeneous Riemannian space is isometric to the solvable Lie group model of Fc

4 (see [46,
Remark 3.3, 3.4]).

Remark 8. The basis { }X Y X Y B, , , ,1 1 2 2 used in [37, p. 139] is related to our { }E E E E E, , , ,1 2 3 4 5 by the correspondence:

↔ ↔ ↔ − ↔ ↔X E Y E X
c

E Y
c

E B E, ,
1

,
1

, ,1 3 1 4 2 2 2 1 5
(9.3)

for =c 1.

The tensor Um is computed as

Um( )⋅ ⋅, E1 E2 E3 E4

E1 0 0 − E
c

2 4 − E
c

2 3

E2 0 0 − E
c

2 3 E
c

2 4

E3 − E
c

2 4 − E
c

2 3
cE2 cE1

E4 − E
c

2 3 E
c

2 4
cE1 −cE2

9.1.3 System of equations for homogeneous geodesics

Take a vector

sa so m( ) ( ) ( ) ( ) ( ) ( )= + + + + ∈ = + + + + ≠X X E X E X E X E X E X X X X2 2 , 0,1
1

2
2

3
3

4
4

5
5

1 2 2 2 3 2 4 2

and denote its so( )2 -part and m-part by kX and mX , respectively.
If we compute the system of equations

m m⟨[ ] ⟩ = =X E X k, , 0, 1, 2, 3, 4,k

we obtain

[ ]

[ ]

[ ] ( )

[ ] ( )

= − − − −
= − + +
= + +
= − −

X E X E cX E cX E c X E

X E X E cX E cX E c X E

X E cX E cX X E

X E cX X E cX E

, 2 2 ,

, 2 2 ,

, ,

, .

1
5

2
4

3
3

4
2 2

5

2
5

1
3

3
4

4
2 1

5

3
2

3
1 5

4

4
1 5

3
2

4

From these, we deduce the system for homogeneous geodesics in Fc

4:

(( ) ( ) )

( )

( )

+ =
+ − =
+ + =
+ − =

X X cX X

X X c X X

X X c X X X X

X X c X X X X

0,

2 0,

0,

0.

2 5 3 4

1 5 4 2 3 2

4 5 1 4 2 3

3 5 2 4 1 3

(9.4)
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Remark 9. Using Proposition 9.1-(2), i.e., k m m m m⟨[ ] ⟩ ⟨ [ ] ⟩=X X Z X X Z, , , , , we can again obtain System (9.4). Also, one
can check that using Proposition 9.1-(1) and computing Um k m m m[ ] ( )=X X X X, , , we again obtain System (9.4).

Remark 10. As we mentioned in Introduction, Kowalski et al. [32] gave a classification of homogeneous
geodesics in F4 based on the system different from (9.4). More precisely, we take a basis { }E E E E E, , , ,1 2 3 4 5 of
sa( )2 satisfying (9.2). The commutation relations (9.2) coincide with (4.1) and therefore (up to signs) with
commutation relations given in [37,48,57] via the correspondence (9.3).

On the other hand, in [32], the authors use the basis { }X X Y Y B, , , ,1 2 1 2 of sa( )2 satisfying (4.1) except [ ]X Y,1 2 .
Instead of [ ] =X Y Y,1 2 1, they used [ ] =X Y X,1 2 1. This mistake propagated computational errors and produced
incorrect results on homogeneous geodesics.

9.1.4 Determining the homogeneous geodesics in F
c

4

Next, we solve System (9.4). First, we consider special cases when one-solution component is zero. If we assume
=X 0

5 , then directly from (9.4), we have

= +X X E X E .1
1

2
2 (9.5)

For =X 0
4 , we obtain =X X E1

1, which is particular solution of (9.5) and two new solutions,

( )= ± +X X E E cE2 .1
1 3 5

Assuming =X 03 , besides some already mentioned solutions, we obtain

( )= ± −X X E E cE2 .1
1 4 5

If we assume =X 02 , we do not obtain a new solution. Finally, for =X 01 , we obtain eight new solutions:

( ) ( )= ± + ± − = ± + ∓ +X X E E E cE X X E E E cEand .5
2 3 4 5

5
2 3 4 5

Furthermore, we assume that all components are different from zero. First, we obtain =X X3 4, and hence,
=X 01 . So, we have a contradiction.
Hence, we proved the following theorem.

Theorem 9.1. For a tangent vector sa( )= + + + + ∈X X E X E X E X E X E 21
1

2
2

3
3

4
4

5
5 satisfying ( ) ( )+ +X X1 2 2 2

( ) ( )+ ≠X X 03 2 4 2 , the curve

sa( ) ( )( )= ⋅γ s sX oexp
2

is a geodesic starting at the origin o of ( ) ( )= ∕F SA 2 SO 2c

4 if and only if the geodesic vector X has one of the
following forms:

( )

( )

( )

( )

= +
= ± +
= ± −
= ± + ± −
= ± + ∓ +

X X E X E

X X E E cE

X X E E cE

X X E E E cE

X X E E E cE

,

2 ,

2 ,

,

,

1
1

2
2

1
1 3 5

1
1 4 5

5
2 3 4 5

5
2 3 4 5

where �∈X X X, , .1 2 5

Remark 11. In Proposition 5.1, we considered geodesics of the form f � � �( ) → = ⋉+sXexp : Fc

4 2 2, where

( )= ± =X X e e X X e2 , or .1
1 4

2
2

Since = +E e cE1 1 5, =E e2 2, and =E e4 4, these vectors are rewritten as
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( )= ± − =X X E E cE X X E2 , .1
1 4 5

2
2

Thus, these geodesics are included in the list of theorem mentioned earlier.

9.2 Homogeneous magnetic curves

Now, we magnetize the homogeneous geodesics by the Kähler magnetic fields − ±Ω .

9.2.1 Systems of equations for homogeneous magnetic trajectories

For a vector so m( )= + + + + ∈ +X X E X E X E X E X E 21
1

2
2

3
3

4
4

5
5 with m = + + + ≠X X E X E X E X E 01

1
2

2
3

3
4

4 ,
the curves sa( ) ( )( )=γ s sXexp

2
are Kähler magnetic curves starting at the identity with respect to the Kähler

magnetic field − ±Ω if and only if

Uk m m m m m[ ] ( )+ = ±X X X X qJ X, , . (9.6)

Since

= = − = = −+ + + +J E E J E E J E E J E E, , , ,1 2 2 1 3 4 4 3

= = − = − =− − − −J E E J E E J E E J E E, , , ,1 2 2 1 3 4 4 3

we obtain the systems

(( ) ( ) )

( )

( )

+ = −
+ − = −
+ + =
+ − =

X X cX X qX

X X c X X qX

X X c X X X X qX

X X c X X X X qX

2 2 ,

2 ,

,

,

2 5 3 4 2

1 5 4 2 3 2 1

4 5 1 4 2 3 4

3 5 2 4 1 3 3

(9.7)

for +Ω , and

(( ) ( ) )

( )

( )

+ = −
+ − = −
+ + = −
+ − = −

X X cX X qX

X X c X X qX

X X c X X X X qX

X X c X X X X qX

2 2 ,

2 ,

,

,

2 5 3 4 2

1 5 4 2 3 2 1

4 5 1 4 2 3 4

3 5 2 4 1 3 3

(9.8)

for −Ω .

9.2.2 Determining the homogeneous magnetic curves with respect to ++Ω‒

We solve System (9.7). First, we consider special cases when one component of solution is zero.
If we assume =X 0

5 , then from the first equation of (9.7), we have

= − ≠X
c

q
X X q

2
, 0.2 3 4

Substituting this relation in the third and the fourth equation of (9.7), and assuming ≠X 0
3 and ≠X 0,

4 we
have

( ) ( )= ⎛
⎝ − ⎞

⎠ = − ⎛
⎝ + ⎞

⎠X
q

c
X

q

c
X

q

c
X

q

c2
and

2
.3 2 1 4 2 1

These two relations imply a contradiction. Also, for =X 0
3 (or =X 0

4 ), we again have a contradiction.
Thus, ≠X 0

5 .
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If we assume ≠X 0
5 and =X 01 , then from the second equation of (9.7) follows = ±X X3 4. Next, the

fourth equation gives ± =X X X X qX4 5 2 4 4. Hence, for =X 04 by further calculations, we have a solution
= −X X E E

q
2

2 2 5 since m ≠X 0.
If ≠X 04 , then we obtain four new solutions

( ) ( ) ( )

( ) ( ) ( )

= ± − ± − + −

= ± + ∓ + + +

X X E X
q

c
X E X

q

c
X E q cX E

X X E X
q

c
X E X

q

c
X E q cX E

3

2

3

2
,

3

2

3

2
.

2
2

2 2 2
3

2 2 2
4

2
5

2
2

2 2 2
3

2 2 2
4

2
5

If we assume ≠X 0
5 and =X 02 , then from the first equation of (9.7) follows =X X 03 4 . For =X 03 , we obtain

two new solutions

( ) ( )= − = ± − + −X X E
q

E X X E X
q

c
X E q cX E

2
and 2

3
.1

1 5
1

1
2 1 1

4
1

5

For =X 04 , we obtain one new solution

( ) ( )= ± + + +X X E X
q

c
X E q cX E2

3
.1

1
1 2 1

3
1

5

If we assume ≠X 0
5 and =X 03 or =X 04 , (9.7) gives only already mentioned solutions. Also, if we assume that

all components of X are different from zero, we obtain a contradiction.
Hence, we proved the following theorem.

Theorem 9.2. For a tangent vector so m( )= + + + + ∈ +X X E X E X E X E X E 21
1

2
2

3
3

4
4

5
5 , satisfying

( ) ( ) ( ) ( )+ + + ≠X X X X 01 2 2 2 3 2 4 2 , the curve

sa( ) ( )( )=γ s sXexp
2

is a Kähler magnetic curves starting at the identity with respect to the Kähler magnetic field- +Ω if and only if the
magnetic vector X has one of the following forms:

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= −

= −

= ± + + +

= ± − + −

= ± + ∓ + + +

= ± − ± − + −

X X E
q

E

X X E
q

E

X X E X
q

c
X E q cX E

X X E X
q

c
X E q cX E

X X E X
q

c
X E X

q

c
X E q cX E

X X E X
q

c
X E X

q

c
X E q cX E

2
,

2
,

2
3

,

2
3

,

3

2

3

2
,

3

2

3

2
,

1
1 5

2
2 5

1
1

1 2 1
3

1
5

1
1

1 2 1
4

1
5

2
2

2 2 2
3

2 2 2
4

2
5

2
2

2 2 2
3

2 2 2
4

2
5

where �∈X X X, , .1 2 5

9.2.3 Determining the homogeneous magnetic curves with respect to Ω

Analogous to the previous consideration, we solve System (9.8). We obtain the following theorem.
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Theorem 9.3. For a tangent vector so m( )= + + + + ∈ +X X E X E X E X E X E 21
1

2
2

3
3

4
4

5
5 , satisfying

( ) ( ) ( ) ( )+ + + ≠X X X X 01 2 2 2 3 2 4 2 , the curve

sa( ) ( )( )=γ s sXexp
2

is a Kähler magnetic curve starting at the identity with respect to the Kähler magnetic field- −Ω if and only if the
magnetic vector X has one of the following forms:

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= −

= −

= ± + − +

= ± − − −

= ± + ± + − +

= ± − ∓ − − −

X X E
q

E

X X E
q

E

X X E X
q

c
X E q cX E

X X E X
q

c
X E q cX E

X X E X
q

c
X E X

q

c
X E q cX E

X X E X
q

c
X E X

q

c
X E q cX E

2
,

2
,

2 ,

2 ,

2 2
,

2 2
,

1
1 5

2
2 5

1
1

1 2 1
3

1
5

1
1

1 2 1
4

1
5

2
2

2 2 2
3

2 2 2
4

2
5

2
2

2 2 2
3

2 2 2
4

2
5

where �∈X X X, , .1 2 5

10 Conclusion

In this article, we describe the four-dimensional simply connected Riemannian 3-symmetric space M̂λ

4 due to
Kowalski. We explain the homogeneous geometry of the model space F4 and give the Levi-Civita connection,
Riemannian curvature, Ricci operator, sectional curvatures, and scalar curvature of the model space F4. Next,
we introduce the symplectic pair of two Kähler forms and explore some typical submanifolds of F .4

Furthermore, we study geodesics and magnetic curves in F4. We explore the general properties of magnetic
curves in an almost Kähler 4-manifold and characterize Kähler magnetic curves with respect to the symplectic
pair of Kähler forms. In Section 9, we study homogeneous geodesics and homogeneous magnetic curves in F4.
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Appendix
Formula (9.1)

In this appendix, we give a proof of Formula (9.1) for reader’s convenience.
Take vectors X , g∈Y and set ( )=ϕ tXexp

t
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Hence, we obtain (9.1).
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