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Abstract: We study geodesics and magnetic trajectories in the model space F4. The space F* is isometric to the
4-dim simply connected Riemannian 3-symmetric space due to Kowalski. We describe the solvable Lie group
model of F# and investigate its curvature properties. We introduce the symplectic pair of two Kihler forms on
F%. Those symplectic forms induce invariant Kihler structure and invariant strictly almost Kéhler structure on
F%. We explore some typical submanifolds of F4. Next, we explore the general properties of magnetic trajec-
tories in an almost Kahler 4-manifold and characterize Kéhler magnetic curves with respect to the symplectic
pair of Kéhler forms. Finally, we study homogeneous geodesics and homogeneous magnetic curves in F4.

Keywords: 4-dim Thurston space, almost Kahler 3-symmetric space F*, geodesics, magnetic trajectories

MSC 2020: 53C15, 53C30, 53C55, 53C80

Dedicated to the memory of professor Mitsuhiro Itoh.

1 Introduction

From the mathematical point of view, it is natural to reinterpret static magnetic fields on Euclidean 3-space as
closed two-forms. The equation of motion (Lorentz equation) of charged particle under the influence of
magnetic field can be generalized to arbitrary Riemannian manifolds through the following procedure:
To introduce the notion of magnetic trajectories on a manifold M, we need two ingredients:
— Riemannian metric g and
— closed two-form F.

The Lorentz force ¢ of a pair (F, g) is a g-skew adjoint endomorphism field defined by F = g(@, -). The Lorentz
equation is formulated as

Vyy' = qey’,

where ¢ is a constant and called the charge. A curve y satisfying the Lorentz equation is referred to as a
magnetic trajectory or magnetic geodesic with charge q.

One can see that the Lorentz equation defines a Hamiltonian system on the tangent bundle of (M, g, F) [1].
The study of magnetic trajectories in arbitrary Riemannian manifolds (as Hamiltonian systems) was developed
mostly in the early 1990s, even though related pioneer works were published much earlier (see Arnold’s
articles [1,2]). We can refer to Arnold’s problems concerning charges in magnetic fields on Riemannian
manifolds of arbitrary dimension, commented by Ginzburg in [3] and references therein.
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In previous works [4-11], magnetic trajectories in the model spaces of three-dimensional geometries in the
sense of Thurston have been studied extensively.
On even dimensional manifold M, we can consider the following two situations:
(1) M has an almost Hermitian structure (J, ). In this case, we need to assume that the fundamental 2-form
Q = g(-,J)is closed. Then, (M, ], g) is called an almost Kihler manifold. Note that the fundamental 2-form Q of
an almost Kéhler manifold is a symplectic form, i.e., a non-degenerate closed 2-form. Thus, (M, Q) is a
symplectic manifold.
(2) M has a closed 2-form Q. In this case, we need Riemannian metric g. If Q is non-degenerate, then we obtain an
almost complex structure J on M so that | is the Lorentz force associated with the structure (-, g). Hence,
(M, ], g) is an almost Kéhler manifold.

Kéahler manifolds are characterized as integrable almost Kdhler manifolds. Almost Kdhler manifolds with non-
integrable almost complex structure are called strictly almost Kdhler manifolds.

On a symplectic manifold (M, Q, ) equipped with a compatible almost complex structure J, or equiva-
lently an almost Kéhler manifold (M, J, g), one can take the fundamental 2-form Q as a magnetic field and call
it a Kdhler magnetic field.

From the Hamiltonian viewpoint, homogeneous Kahler manifolds would be nice configuration spaces for
magnetic trajectories. A C-space is a compact simply connected complex homogeneous space. A C-space that
admits a Kahler metric with transitive holomorphic isometry group is called a Kdhler C-space. Itoh [12]
investigated the curvature properties of Kahler C-spaces with b; = 1, where b, is the second Betti number.
On the other hand, let G be a compact simple Lie group with an abelian subgroup T. Denote by C(T) the
centralizer of T. Then, the coset manifold G/C(T) is called a generalized flag manifold. 1t is known that
generalized flag manifolds admit Kéhler C-structures. Conversely, every Kahler C-space is represented as
generalized flag manifold. In addition, every coadjoint orbit of a compact semi-simple Lie group is a Kdhler
C-space with respect to Kirillov-Kostant-Souriau symplectic form [13, 8.70] and compatible Killing metric.
Conversely, every Kahler C-space is isomorphic to a coadjoint orbit of its connected group of isometries
endowed with its canonical complex structure [13, 8.89]. For more information on generalized flag manifolds,
we refer to [13].

Efimov [14] studied magnetic trajectories in homogeneous symplectic manifolds. More precisely, he
proved the integrability of Kdhler magnetic trajectories on simply connected homogenous symplectic manifold
G/H with compact semi-simple G. Moreover, he proved the (non-commutative) integrability of magnetic
trajectories on coadjoint orbits of compact semi-simple Lie groups (see also [15]).

Adachi initiated the study on Kéhler magnetic trajectories in non-flat complex space forms (cf. [16]).
Kalinin studied H-planar flows as an important class of Hamiltonian flows on Kéhler manifolds [17]. He
proved that the Lorentz equation on complex space forms can be reduced to one ordinary differential
equation of second order, by virtue of H-projective mappings. Adachi et al. gave an representation formula
for Kahler magnetic trajectories on Hermitian symmetric spaces [18]. In addition, Tkawa studied Kahler
magnetic trajectories in generalized flag manifolds with two isotropy summands satisfying certain assumption
[19]. Arvanitoyeorgos and Chrysikos [20] classified generalized flag manifolds considered in [19].

As far as the authors know, studies on Kéhler magnetic fields on strictly almost Kihler manifold are very
few. The lowest dimension of almost Kahler manifolds is 2. In two dimensions, almost Hermitian structures are
automatically integrable. In four dimensions, there exist closed strictly almost Kéhler manifolds (Kodaira-
Thurston manifolds [21], Gompfs example [22], Yamato’s example [23]) For more information on almost Kéhler
geometry, we refer to a survey [24].

We start our investigation with homogeneous examples. In two dimensions, Hermitian symmetric spaces
are complex space forms (actually real space forms): complex plane C, complex projective line CP;, and
complex hyperbolic line CH;. Kahler magnetic trajectories in these spaces are folklore.

In four dimensions, as we have mentioned before, Kdhler magnetic trajectories in Hermitian symmetric
spaces are well investigated. We look for homogeneous almost Kéhler 4-manifolds different from Hermitian
symmetric spaces.
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Filipkiewicz classified the four-dimensional maximal model geometries [25] (see also [26,27]). Wall gave
the list of all four-dimensional geometries that admit compatible complex structure [28, Theorem 2.1]:

Complex space form Hermitian symmetric Kahler LCK
CP% CH?, E* $2 x §2, 8% x F2,$? x H? F4 $3 x EL, Nil; x E1, SL,R x [E?
E2 x H2, H2 x H?2 Solg, Solf

The model space of F4-geometry is the homogeneous Riemannian 4-space SA(2)/SO(2), where SA(2) is the
orientation-preserving equiaffine transformations of the equiaffine plane, i.e., R? equipped with a parallel area
element. The F-geometry is the only four-dimensional geometry that admits finite-volume quotients but no
compact quotients. The model space F4 admits both Kéhler structure and strictly almost Kéihler structure. The
pair of those fundamental 2-forms constitutes the so-called symplectic pair.

On the other hand, from another viewpoint, we may suggest to look for almost Kéhler 4-manifolds, which
are naturally reductive or generalized symmetric. The class of naturally reductive homogenous spaces is one
of the generalizations of Riemannian symmetric spaces. The classification of naturally reductive 4-spaces due
to Kowalski and Vanhecke [29] implies that naturally reductive almost Kahler 4-manifolds are Hermitian
symmetric.

According to the classification of all simply connected and irreducible generalized Riemannian symmetric
spaces of low dimension due to Kowalski, there exists only four-dimensional generalized Riemannian sym-
metric space. This space is realized as the homogeneous space SA(2)/S0(2) equipped with homogeneous almost
Kéahler structure. One can see that Kowalski’s generalized Riemannian symmetric space is isometric to the
space F* [30]. Fino [31, Corollary 3.1] gave certain curvature characterization of F4,

As is well known, geodesics of a Riemannian symmetric space (more generally, naturally reductive
homogeneous space) are homogeneous, i.e., orbits of 1-parameter subgroups of the isometry group. However,
geodesics of F* are not homogeneous, in general. On this reason, determination of homogeneous geodesics in F4
is a fundamental and important task.

These observations motivate us to study Kahler magnetic trajectories with respect to the symplectic pair
and homogeneous geodesics in the model space F4. However, comparing F* with other model spaces, the
Lorentz equation of Kihler magnetic field in F# is very complicated. We anticipate that this project will extend
over a considerable duration. As an initial phase for this project, this article is dedicated to delineating
foundational information, especially homogeneous geometry of the model space F* and deducing the systems
of Kéhler magnetic trajectories with respect to the symplectic pair (2., Q-).

This article is organized as follows. We start with recalling the notion of symplectic pair and self-duality in
Section 2. Section 3 is devoted to describing the four-dimensional simply connected Riemannian 3-symmetric

space Mf due to Kowalski. In particular, we describe the invariant almost complex structures J, of ]\7[,{l
discovered by Kowalski. From Section 4, the homogeneous geometry of the model space F* will be started.

More precisely, we discuss the coset space representation SA(2)/SO(2) for the 3-symmetric space Mf.

In Section 5, we recall the definition of the model space F from the classification due to Filipkiewicz [25]
and Wall [27]. It should be remarked that the model space F* is isometric to the 3-symmetric space 1\7114 (see
[30]). In particular, we show that the model space F* is identified with certain solvable Lie group R2 X R2, We
give the Levi-Civita connection, Riemannian curvature, Ricci operator, sectional curvatures, and scalar cur-
vature of the model space F4. Furthermore, the symplectic pair of two Kihler forms is introduced. Some typical
submanifolds of F* are explored.

From Section 6, we start our investigation on geodesics and magnetic trajectories in F#. In Section 6, the
general properties of magnetic trajectories in an almost Kahler 4-manifold are studied. In Sections 7 and 8,
Kahler magnetic trajectories with respect to the symplectic pair of Kdhler forms are investigated. In the final
section, we study homogeneous geodesics and homogeneous magnetic curves in F. Although the fact that
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Kowalski et al. [32] gave a classification of homogeneous geodesics in F4, here we give a new classification
based on different expressions.

2 Preliminaries on almost Kdhler geometry

2.1 Self-duality

Let (M, g) be an oriented Riemannian 4-manifold. Take a positively oriented orthonormal coframe field
{91, 92, 8%, 94}. Then, the Hodge star operator * acting on the space A2(M) of two-forms on M is described as

(A =B AIY, AP =94 A% (I A Y =392 A9
Since * has eigenvalues +1, we have the decomposition
A(M) = AXM) & AX(M),
where
AXM) ={w € AM) | *w = w}, A2M) ={w € A2WM) | *0w = -w}.

A two-form w is said to be self-dual (resp. anti self-dual) if *w = w (resp. *w = -w). The space AZ(M) is locally
spanned by

PN+ AGLITAI+ T4 AL A9+ 32 A 93
On the other hand, A%(M) is locally spanned by
AP - AGLITAI - 94 AL 9 A 84 - 92 A 93

2.2 Symplectic pair

Let M be a 2n-dimensional symplectic manifold, i.e., a 2n-manifold equipped with a non-degenerate closed
2-form Q called a symplectic form.

Definition 2.1. Let (M, Q) be a symplectic manifold. An almost complex structure ] is said to be compatible to
Qif

- Qis J-invariant, i.e., QJX,JY) = QX, Y),

- J is Q-tamed, i.e., Q(JX, X) > 0, for any X # 0.

Such an almost complex structure J defines a Riemannian metric g by
8X,Y) = Q(X,Y).

One can see that g is J-invariant. Thus, (M, ], g) is an almost Kahler manifold, i.e.,, an almost Hermitian
manifold with closed fundamental 2-form Q = g(-,J). On an almost Kéhler manifold, its fundamental 2-form is
also called the Kdhler form.

Instead of a compatible almost complex structure J, we may equip a symplectic manifold (M, Q) with a
Riemannian metric g. Then, an almost complex structure J compatible to Q is introduced by g(-J) = Q. Note
that J is the Lorentz force associated with the magnetic field -<.

An almost Kéhler manifold is said to be a Kéhler manifold if its almost complex structure is integrable. In
other words, Kihler manifolds can be defined as Hermitian manifolds with closed fundamental 2-form.
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Remark 1. (Critical metrics) Let (M, Q) be a compact symplectic manifold. Denote by AK(M, Q) the Fréchet
space of all compatible almost complex structures on (M, Q). A compatible almost complex structure
J € AKM, Q) is a critical point of the total scalar curvature, i.e., Einstein-Hilbert functional if and only if
its Ricci tensor field is J-invariant [33].

Remark 2. On a 4-manifold M, a pair (2., -) of non-trivial symplectic forms is said to be a symplectic pair if
.Q+/\.Q_=O, Q+/\Q+=_Q_/\Q_.

The kernels of 2, + Q_ define complementary foliations with minimal leaves. Conversely, any symplectic pair
on a 4-manifold is given by a pair of two-dimensional oriented complementary minimal foliations [34].

In [35], the authors considered almost Hermitian 4-manifold (M, J, g) such that @ = g(-,J) is anti self-dual
[resp. self-dual]. Another almost complex structure J’ is said to be opposite if Q" = g(-,J") is self-dual [resp. anti
self-dual]. By definition, (2, Q") is a symplectic pair if and only if dQ = dQ" = 0.

Remark 3. Let H? be the hyperbolic 3-space. Then, its Riemannian product H® x R with the real line is
one of the model spaces of four-dimensional geometry. Note that H® x R admits a solvable Lie group
structure. However, this model space does not admit complex structure invariant under the isometry group
S0*(3,1) x R. On the other hand, H® x R admits an non-integrable almost complex structure J invariant
under left translations by the solvable Lie group H® x R. The resulting left-invariant almost Hermitian
structure is almost Kahler. In our previous work, we studied Kéhler magnetic trajectories in H3 x R equipped
with this almost Kéhler structure [36].

3 Generalized Riemannian symmetric 4-space

3.1 Riemannian structure

It is known that the underlying homogeneous Riemannian space of F* is a four-dimensional Riemannian
3-symmetric space. Here, we recall the explicit model of four-dimensional Riemannian 3-symmetric space due
to Kowalski [37].

Let Mf = (1\7[4, g/\) be a Riemannian 4-manifold defined as the Cartesian 4-space R*(x, Xp, X3, X4) with
metric

G =(=xu+ X+ x}F+ DG + (0 + |+ xF + 1)dxi — 26dxsdx,
‘2 (1 + x)dxi + (1 + xH)dxg - 2xpedadx,
1+ Xt +x¢

bl

where 1 is a positive constant. Kowalski showed that M, ,{l with symmetry

X cos(27/3) —sin(2m/3) 0 0 X
X sin(4m/3) cos(4m/3) 0 0 Xy
x| o 0 cos(2/3) -sin(27/3)|[ %
X4 0 0 sin(4r/3) cos(4n/3) [(X4

of order 3 at the origin is the only four-dimensional irreducible non-symmetric generalized Riemannian
symmetric space [37].
We can take the following global orthonormal frame [38]:
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5 = 1 X6+X - x12+x22+lxa+xa
' JAOE + x3) Yo lox) 202+ (Mox  Cox)

@q = — —, &= —_,
3 ﬁXzﬂ _ aX3 \/El,l _ aX4 4 \/§X2u+ aX?, \/E‘I,Lr aX4

MENNHXN 0 1 8 . XTNMtYX 9 1 0

where

L=

) X+ X
£33 + 06 = X+ 03+ D)0+ +xF)

The dual coframe field {5‘1, 192, 33, 54} of {éy, éy, &3, é4} is given by

1 NAGE + X
g1 = MO e+ ),
X+ X
. JAOE + x2
8= O 1) e + o),

O+ DG+ + 1

9= —Ee(odg + (-x + X+ x2)dxy),

V2 + g

§* = L(-dexs + (O + X+ X )dxa).

We have

~ n A R n
FAd— LA A dg A =de A dx

xE+x2+1

Calvaruso, Leo, and Van der Veken studied the curvature property and submanifold geometry of the four-
dimensional semi-Riemannian 3-symmetric spaces in [39,40]. Here, we quote the following result.

Theorem 3.1. [40] There are no parallel hypersurfaces in M ,{l . In particular, there are no totally geodesic

hypersurfaces in M, .

This result is in a sharp contrast to Riemannian space forms.

3.2 Almost complex structures

According to [37] and [41, pp. 87-88], every invariant almost Hermitian structure on the 3-symmetric space Mf
is almost Kahler. We have two symplectic forms (see [38, pp. 53-54]):

A
E+xE+1
Then Q- gives a Kahler structure and anti self-dual 2-form. On the other hand, £. is non-Kahler. Note that &, is

self-dual (see [38, pp. 53-54]).
The almost complex structures j, defined by

O, =" A+ P Ad =- dg A dx, + dg A dxy.

g(X:ti) = Qi(X) Y)

are expressed as [37, Example II1.53]:
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Note that in [38], the convention
(X, Y) = §(JX,Y)

is used.
According to [38, p. 54], the Ricci operator has components:

1000
30100
21[0 0 0 0

0000

This formula implies that the Ricci tensor field p of (M, J,, §,) is J,- invariant, ie.,
PUX, LY) = pX, V).

Thus, the metric on the four-dimensional Riemannian 3-symmetric space is a critical metric in the sense of [33].
Moreover, (2., -) is a symplectic pair.
Apostolov et al. [30] obtained the following rigidity theorem.

Theorem 3.2. Let (M, g,],]’) be a Riemannian 4-manifold equipped with two orthogonal almost complex
structures. If (g,]) is a strictly almost Kahler structure and (g,]’) is a Kdhler structure opposite to (g, ]),

then (M, g,],]") is locally isometric to the Riemannian 3-symmetric 4-space 1\7[,{1 .

4 Homogeneous space representation

In this section, we give a coset space representation of the four-dimensional Riemannian 3-symmetric
~ 4
space M.

4.1 Homogeneous manifold SA(2)/SO(2)

Let us denote by SA(2) the Lie group of all orientation-preserving equiaffine transformations of the equiaffine
plane R? = (R%(x, y), dx A dy). The Lie group SA(2) is explicitly given by

SA(2) = a,b,c,d,u,veR, ad- bc=1;j

a b u
cdv
001
The Lie algebra sa(2) of SA(2) is given by

sa(2) = apB,y. & nERy

o< K

|
o /™
O S I

One can confirm that [sa(2), sa(2)] = sa(2). Hence, sa(2) is not solvable. Take a closed subgroup
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cosf -sinf 0
sin@ cosf 0
0 0 1

S0(2) = 0<6<2rm

of SA(2). Then, the homogeneous manifold M = SA(2)/SO(2) is four-dimensional and admits a structure of
Riemannian 3-symmetric space.

Theorem 4.1. [37, p. 136, Theorem V1.3] Any proper, simply connected and irreducible generalized Riemannian

symmetric space (M, g) of dimension 4 is of order 3 and isomorphic to Mf . The underlying homogeneous
manifold of M is SA(2)/SO(2).

The reductive decomposition of the Lie algebra sa(2) of SA(2) corresponding to M = SA(2)/SO(2) is
sa(2) = so(2) + my (see [37, p. 139]). Here, the Lie subspace m, is spanned by the basis

001 000 -1 00 010
X=10 00, ¥,={001, X=|0 10, ¥%=(10 0]
000 000 0 00 000
The isotropy algebra so(2) is spanned by
0-10
B=|1 0 o0
0 0O

The commutation relations are
X, %] =%, [% W] =0 [X,]=-h I[X,B]=-N%
(X, 1] =Y, [X, Y] =2B, [X,B]=2Y, [} N]=-X, 4.0
(Y1, B] =X, [Yp, B] = -2X,.

For any vector X € sa(2), we denote by X* the infinitesimal equiaffine transformation on R%(x, y) induced
by X, ie,

d X
Xty = ELO expsa(z)(tX)[y]].

Then, we have
[X#, Y¥] = -[X, Y]
The infinitesimal equiaffine transformations induced from X, V3, X;, ¥, and B are given by
K=l Y= M =oxe oty Y=y dxe, Bi=oysxo,
ox oy ox oy

respectively (see [37, p. 139]). Note that our X{, Yf, X7, Y4, and B* are denoted by X, ¥;, X;, Y5, and B in [37],
respectively.

4.2 Invariant almost Kahler structures

Kowalski’s metric g, on SA(2)/SO(2) determined by the condition that {£; = X, E; = ¥, E3 = X/A, Ey = Yo/A} is
orthonormal with respect to it. Note that the Levi-Civita connection V is computed in [39,40]. It should be

remarked that this {£3, £y, Es, E4} does not correspond to {é;, &, és, é;} in the previous section. In fact, the
present one is left-invariant, but {é;, é,, és, &} is not.
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The non-integrable almost complex structure J, is
JEi=-E, JE=E, JE=-E JE=E
On the other hand, the complex structure j is
JEi=-E, JE,=E, JE3=E, JE =-E.

Unfortunately, magnetic equation for @, with respect to the coordinates (X, X3, X3, X4) is complicated. So we
. ~4 .
introduce another model of M, in the next section.

5 Model space F*

5.1 Riemannian structure of F*

Among the list of four-dimensional Thurston geometries, there exists a geometry that has no compact models.
The model space of this geometry is denoted by F* According to [27] (see also [26]), the model space
F{ = (F4, g) of F4-geometry is
H2(-4c?) x R? = {(x,y,u,v) € R* | y > 0},
equipped with a homogeneous Riemannian metric
_dx® + dy? . (du - xdv)? .
4cy? y

ydv?, (5.1

C

On FZ, the equiaffine transformation group SA(2) acts isometrically and transitively via the action:

an(x + J-1y) + app

e e
u - .
0 0 1 v anl + apyv +§

anu + apv +n

The isotropy subgroup of SA(2) at the origin (0, 1, 0, 0) is SO(2). Hence, F; is identified with SA(2)/SO(2).

On the other hand, according to [41, pp. 87-88], every invariant almost Hermitian structure on M is almost
Kéhler. Thus, we can study magnetic trajectories with respect to the Kéhler structure and strictly almost
Kéahler structure.

Remark 4. Wall [27, p. 123] gave the following expression for the metric of F# (see also [42]):

dx? + dy?

vi(dx® + dy?)
y? '

1 2v
+ —|du? + dv? - —(dxdu + dydv) +
y y Y y*

5.2 Solvable Lie group model

Let us recall the polar decomposition of SL;R. The special linear group SL,R has the decomposition:
SL;R =S - SO(2),

where S is a solvable Lie group defined by
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5 x5
0 1y

The solvable Lie group S is identified with the upper-half plane

S = (X, y) €ER% y>0

R2 = {(x,y) € R%y > 0}.

_|[Sun S
*Z10 -su

The Lie algebra sR has the decomposition siLR = s0(2) @ s:

The Lie algebra s of S is given by

S11, S12 €ER

X1 X2
X1 —Xu

0 - X211
X21 0

X1 X2 t X1
0 —X11

|

5.3 Semi-direct product model

Every homogeneous Riemannian 4-space is either locally symmetric or locally isometric to a Lie group with a
left-invariant metric [43,44]. On the other hand, four-dimensional Lie groups that admit left-invariant sym-
plectic form are solvable [45]. In this subsection, we give an explicit solvable Lie group model of F2. Note that
Fino proved that four-dimensional Lie groups equipped with left-invariant strictly almost Kéhler structure
with J-invariant Ricci tensor field are solvable [31].

Since the isotropy subgroup of SA(2) at the origin (0, 1, 0, 0) € F2 is SO(2), the semi-direct product group

5 Ay
SXR2=1{|0 10y v x,y,u,v) ERY y>0f CSA(2)
0 0 1
acts simply transitively on F2. Indeed,
\/)—} X/\/y u V-1 X + \/—_1))
0 1/\/y V|- 0 = u .
o o 100 v

Hence, the model space F} = SA(2)/SO(2) is identified with the semi-direct product

WXy u
RiXRZ=1l0 1/Jy v||(xyuv)ERY, y>o0p
0 0 1

The group multiplication is given explicitly by

7

X
Gy, w, vy, u, V) = I x+yxyy,ut Jyu' + —vi v+ .
W FOVE R

The inverse element of (x, y, u, v) is given by
(X’y’ u, v)_l = (_X/y’ 1/)’, (_u + XV)/\/Y, _\/)—/V).

Let us consider the inclusion map ¢ : R? x R? - SA(2) defined by
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NENX
L(X)yx u, V) =10 1/\/y Vi.
0 0

Then, we have

L2 1010 L0 11/200
lt*a—=—000, LL*6—=—O -1/2 0],
X Yoo o Y o 0 o
L [0o 1' 5 |00 W
My——=—0 0 0|, (Tu—=[00 Jfy
u Wlo o o " 1o o
These formulas suggest us to take the following basis of the Lie algebra sa(2):
12 0 0
e = , e=10 -1/2 0|
0 0 0

Note that
o1 6= -1x @ z Z
e = E(Yz -B), e-= _EXZ, =% &=% @&=B

The commutation relations are ([31, Remark 2.2], [46, Remark 3.4])

[ély EZ] = _El) [élx é3] = 0) [els e4] = €3

1 1
==&, [&,8]=-7&, [6,8]=0.
23 [2 4] 24 [3 4]

5.4 Exponential map

Let us describe the tangent space f of the homogeneous space F! = SA(2)/SO(2) at the origin. The Lie algebra
sa(2) is decomposed as

sa(2) = s0(2) @ f,
where s0(2) is the Lie algebra of SO(2):

0 -t; 0
s0(2)=1{|ts 0 O0||tE€ER
0 0 0

as we saw before. The tangent space f of F? at the origin is given by

LI2 & &
F=11 0 -6/2 t4 | bt 6 ts ERY.
0 0 0
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The tangent space f is the Lie algebra of S X R? and spanned by {&, &,, &, &;}. The Lie algebra sa(2) is spanned

6/2 & ] |e?? 2sinh(t/2)/t, 4(tte/* sinh(t,/4) + tits(cosh(t/2) - 1))/t?
exp| 0 /2 tyf=]| 0 e /2

—4t,e %/ sinh(t,/4)/t
0 0 0 0 0

1

It should be remarked that the decomposition sa(2) = so(2) ® f is not reductive. Indeed, for any
T = t'e, + t%e, + t3%; + t*¢, € f, we have

[és, T] = thél - 2t1€2 - t4ég + t354 + tzés.
Thus, [s0(2), f] € f.

5.5 Left-invariant metric

We denote by the left-translated vector field of & by the same latter. We obtain

b a0 .o L xa 130
1an: 2 yaya 3 \/yau) 4 \/yau \/yav

The dual 1-forms are

a1 2 1 a1 X -
J'==dx, §==dy, =-—du--—=dv, §*= jydv.
y [N AN v
Here, we set
0 2c 0 c 00
eg=2ce; =2cyd, = |0 0 0], ep=2ce,=2cydy, =10 —c 0],
000 000
001 1 000
e3=8= Jy0,=(0 0 0|, ey=&=—=0,+—=0,=0 0 1|, c>0,
000 W W 000

and equip a left-invariant metric g, by the condition {ey, e,, es, 4} is orthonormal with respect to it. Then, g, is
expressed as

— dX2+dy2 1 2 2 2
& = 1y + y{(du xdv)* + y~dv4}.

This Riemannian metric coincides with (5.1). In this way, we obtain a solvable Lie group model of F.

Remark 5. In the literature, two normalizations ¢ = 1/2 [46] or ¢ = 1 [47] are used.
- Kiyota and Tsukada showed that the Singer invariant of F‘i is 1 [46, Remark 3.4].

— Maier [47] showed that F‘Cl does not admit half—conformally% flat invariant metrics.

The dual coframe field of {e;, e, e, e4} is given by

1 1 1
e e L 33:5‘“‘“%“”’ 9= ydv.
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5.6 Levi-Civita connection

The exterior derivatives of the coframe field {9, 92, 83, 9%} are given by

1
dgt= Fyzdx Ady = (29 A 9%, d9?=0,

1 1 X
d¥=-——dy Adu- —dx Adv + dy A dv = ¢ A 92 - 2¢9! A 94,
N N N
1
dd*t=——=dy A dv = (-c8%) A 92
25>

From the first structure equations:
4
Ao+ Y i A =0,
j=1
we obtain the following table of connection forms:
w}=-2c8, wi=cd, wi=c¥, wi=cP, w}=-c¥, w}=co
In covariant derivative fashion, the Levi-Civita connection V is described as
Vee1 = 2cey, Vepep = —2ceq, Vpe3 = —cey, V4 = Ces,
vf.’zel = 0: Vezez = 0: veze3 = 0) Veze4 = 0)
Vese1 = —Cey, Ve, = —Ce3,  Vese3 = Cep,  Veyey = Cey,
Ve,81 = —Ce3, V85 = Cey, Ve,83 = ceq,  Veq = —cey.
Hence, the non-vanishing commutators are given by
[e1, e2] = —2ce1, [en, ea] = 2ces, [z, €3] = ces,  [ey, ea] = —ceq.
If we determine the curvature 2-forms:
4
o . . .
.Q/l = d(l.)]l + Z(,U]i A (U/ = ZR}kll?k A 19!,
k=1 k<l
then the significant components of Riemann curvature tensor are given explicitly by
1 _ 1 _ 1 _ 1 _
Ryp = —4¢% Ry = 2¢% Ryz = —c% Ry =4
1 - _p2 1 —_p2 R2. = _p2 P2 = _p2
Rppz =-c% Ryy = —C% Rip=-c% Ry =-c"
2 _ 2 _ 3 _ 3 _
Rips = —c%  Riz=c% Ry = 2% Rjy = 2%

The Ricci operator is given by

-6c2 0 00
0 -6c200
0 0 0 of
0 0 00

The sectional curvatures K = K(e; A ¢) of a tangent plane e; A ¢; spanned by ¢; and e; are given by
Kip = -4c?, K3 =Ky = K3 = Koy = —¢%, Ky = 2¢2

The scalar curvature is —12c2.
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5.7 Tensor U

For later use we give here the tensor U; : f x f — | defined by

AUX,Y),Z) =X, [V, Z]) + (Y, [Z,X]), X,Y,Z€H.

The non-vanishing terms of the tensor U are given by
Us(ey, e1) = 2ce;,  Us(ey, €2) = —ces, Us(ey, e3) = —ces, Us(ey, e3) = —%ces,
Us(ey, e4) = %ce;;, Us(es, e3) = ce,  Us(es, e4) = ce;,  Uj(ey, €4) = —cey.
Thus, for any vector X = X'e; + X%, + X3e3 + X%e, € §,
Ui(X, X) = 2c(X3X* - X1X%)e; + c2(XD? + (X3)? - (X*)P)ey — cX?X3e3 + c(X2X* - 2X'X3)e,.

This formula implies the following result.

Proposition 5.1. For a tangent vector X = X'e; + X%e; + X3e3 + X*e, € §, the curve
y(s) = exp(sX) : R - F¢ = RZ X R
is a geodesic starting at the origin of the solvable Lie group model of F} if and only if X has the form

X =XY e, V2ey) or X-=XZ%e.

Proof. From U;(X, X) = 0, we obtain the following system:
X3X*-Xx%2=0, 2X)2+ (X3 -(XH* =0, X%x3=0, X%*X*-2XXx3=0.

From the third equation, we have X? = 0 or X3 = 0. In the first case, when X? = 0, we obtain X3 = 0 and then
finally, X = X(e; + +/2¢,). In the second case, when X3 = 0, for X? = 0, we obtain already mentioned solution,
and for X* = 0, we obtain X = X2e,. O

5.8 Symplectic pair of F}

On F#, we introduce a two-parameter family
G
Qec, = GO A 9%+ 93 A 9% = 4—22dx A dy + gdu A dv

of left-invariant symplectic forms (c.f. [48]). Then, we associate an endomorphism fields J, ., with Q¢ , by
8X, ], Y) = QX V).
Then, we have
Jope,€1= ~G€2  Jo 2= GlL  Jy 0,63 = ~Gls, [, € = Ges.
Then, J, ., is a g-orthogonal almost complex structure when and only when
(a,0)=11, @-1), (11, or (-1,-D.

The only left-invariant g -orthogonal complex structures are [, ; and L, [48, Theorem 3.2].
Hereafter, we set

Jo =L and | = Ja1-
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Note that ] coincides with the complex structure introduced by Wall' [28, p. 273].
The corresponding Kéhler forms @, are

1
Q+=—31A192—193/\04=—@dxAdy—du/\dveAf(F§),

1
Q_=—z91/\82+83A194=—@dxAdy+du/\dveA_2(F§).

Set e =1 for Q. and € = -1 for 2., then the covariant derivatives V/, and V/_ are given by the following
relations:

(Ve J)er = (% ez = (Ve J)es = (Y, Jo)es = 0,
(Ve Jer = (Ve J)e2 = (Ve, J)es = (Ve, /L )es = 0,
(Vs J)er =—c(L + €)ez, (%, /p)ez = ¢(1 + €)ey,
(VesJes =c(L + e)er, (Ve J)es = —c(1 + €)ey,
(Ve Jer=c(1 + e)es, (V] )ex = c(1 + €)es,
Ve, J)es=-c(1 + &)ey, (Ve J)ea = —c(1 + €)ey.

In particular, J is parallel.
On the other hand, the covariant derivative VJ, is given by

(v€1]+)Y = (vez_L-)Y = 07
(Ve, )Y =2c(Y3e; — Yie, - Yies + Ye,), (5.2)
(Ve4]+)Y = _ZC(Y4€1 + Y3e2 - Y2e3 - Y1€4),

for any left-invariant vector field Y = Yle; + Y%, + Y33 + Yie,.

5.9 Kowalski’s 3-symmetric space

Apostolov et al. showed that F{ = (F4, g;) is isometric to the Kowalski’s 3-symmetric space Mf under the
2
isometry [30]:

xt+y? -1 X

X = Zy , Xo=-T, XBTU Xg= -V

The inverse isometry is

-x%0q + ,/x12+x22+1) X + ,/x12+x22+1 0
_ =— Y- 5 U=Xs, V=-Xu
2 5 )’ 2 3 35 4
1+x; 1+x

The symplectic form Q. of 1\7[14 is pull backed as

L1
0, = —de dy ¥ duAdv=-@ A% A0 =0, € ALFD).
2

5.10 Some typical submanifolds

For later use, we give some typical submanifolds in F{. First of all, we exhibit leaves of complementary
foliations associated with the symplectic pair (2., 2-).

1 He used the basis {3, &, 2&,, 2&;}.
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Example 5.1. (Totally geodesic hyperbolic plane) For any constants uy and vy, we consider a surface
M(1, 2; uo, vo) = {(X,y, g, Vo) € Fz}.

The surface M (1, 2; ug, vp) is a leaf of the kernel foliation of Q. + Q_; equivalently, it is an integral surface of
the holomorphic distribution spanned by e; and e,. One can see that M(1, 2; uy, vo) is isometric to hyperbolic
plane H? with a metric

o+ dy?
T 4cy?

One can see that M(1, 2; ug, v) is J,-invariant and totally geodesic.

Example 5.2. (Minimal invariant Euclidean plane) The surface
M@, 4; X0,Y) = {(x0, Y, U, V) € Fe}

is a leaf of kernel foliation of 2. — @_. In other words, it is an integral surface of the holomorphic distribution
spanned by e; and e,. It is flat, minimal, and J,-invariant. Note that it is non-totally geodesic. One can see that
M3, 4; Xo,Y,) is isometric to the Euclidean plane.

Example 5.3. (Heisenberg group) For any constant y,, we consider a hypersurface

M(11 31 4; y()) = {(X)y()x u; V) E Fi‘l}-
It should be remarked that M(1, 3, 4; 1) is a nilpotent subgroup of F? and isomorphic to the Heisenberg group.
The induced metric of M(1, 3, 4; y,) is

2

g + yl{(du - xdv)? + yZdv?3}.

4cy? A

In particular, the induced metric of the Heisenberg group M(1, 3, 4; 1) is

dXZ
=42 dv? + (du - xdv)2.

Thus, the Heisenberg group M(1, 3, 4; 1) with ¢ = 1/2 is isometric to the model space Nil;. Hence, M(1, 3, 4; y,)
is isometric to the Heisenberg group. Hereafter, we call M(1, 3, 4; y,) a Heisenberg hypersurface of F{.
We can take a unit normal vector field v = e, for M(1, 3, 4; y,). Then, the shape operator derived from v is

given by

2c 0 0

0 c 0]

0 0 -c
Hence, M(1, 3, 4; y,) has constant mean curvature 2c/3. The sectional curvatures Ky, of M (1, 3, 4; y,) are given
by

KM(81 AN 93) = KM(eg AN 94) = CZ, KM(€1 AN 94) = -3¢2,

We can introduce an almost contact structure (¢*, ¢, ) by

1
= — = = 1 = —_—
E=-Jv=e, n=29 5 dx,

o*e; =0, @*e;=te, (e, = Fes.

One can see that the fundamental 2-forms ®* = g(-,p*) are given by ®* = +du A dv. Hence, ®* are magnetic
fields on M(1, 3, 4; y,). Hence, (M(1, 3, 4; y,), ¢*, &, n) are strictly almost cosymplectic 3-manifolds.
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Note that the nilradical of the model space Sol; is the Heisenberg group. The almost contact metric
structure induced from the GCK-structure of Solj is also strictly almost cosymplectic [49]. On the other
hand, in the complex hyperbolic plane CH?(-4), the Heisenberg group is embedded as the horosphere. The
induced almost contact Riemannian structure is Sasakian.

As we mentioned earlier, FZ does not admit any totally geodesic hypersurfaces. More strongly, the non-
existence of parallel hypersurfaces in F2 was proved in [40].

Problem 5.1. Classify totally umbilical hypersurfaces in F2.

Totally, umbilical hypersurfaces in Solé were classified in [50].

6 Magnetic trajectories in an almost Kahler manifold

6.1 Frenet curves

Definition 6.1. If y is a curve in a Riemannian manifold M = (M, g), parametrized by arc length s, we say that y
is a Frenet curve of osculating order r when there exist orthonormal vector fields E;, Ey, ..., E, along y such that

)} = Ey, VVEl = KEy, VVEZ = -k + KE;s, ...,

B 3 6.1)
v}'/Er—l = ~Kr-sEr-3 + Kr—1Ep, v}'/Er = ~Kp-1Er-1,

where K, Ky, ..., Ky—1 are the positive C* functions of s. The function k; is called the jth curvature of y.

A geodesic is regarded as a Frenet curve of osculating order 1. A circle is defined as a Frenet curve of osculating
order 2 with constant k. A helix of order r is a Frenet curve of osculating order r, such that all the curvatures k;,
Ky,..., Kp—1 are constants.

For Frenet curves in almost Kéhler manifolds, we recall the following notion:

Definition 6.2. Let y(s) be a Frenet curve of osculating order r > 0 in an almost Kéhler manifold (M, ], g). The
complex torsions 7; (1 < i < j < r) are smooth functions along y defined by 7; = g(E;, JE;) [51]. A helix of order r
in (M, ], g) is said to be a holomorphic helix of order r if all complex torsions are constant. In particular,
holomorphic helices of order 2 are called holomorphic circles.

6.2 Kahler magnetic trajectory equation

Hereafter, we assume that M = (M, J, g) is an almost Kahler 4-manifold. Then, -Q = g(-,J) is a magnetic field
with Lorentz force J on M and called the Kdhler magnetic field.

Definition 6.3. A curve y(t) in an almost Kdhler manifold (M, J, g) is said to be a Kdhler magnetic trajectory
with strength q if it satisfies

Vyy = @y, (6.2)
for some constant q.
One can see that every Kéhler magnetic trajectory has constant speed. Thus, hereafter, we parameterize

Kahler magnetic trajectory by arc length parameter s. In addition, if necessarily, by the affine parameter
change s — -s, we may assume that q > 0.
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Remark 6. The Kéhler magnetic equation (6.2) is valid on general almost Hermitian manifolds. On an arbitrary
almost Hermitian manifold (M, g), regular curves y satisfying (6.2) are called J-trajectories. J-trajectories in
non-Kdhler locally conformal Kéhler manifolds were investigated in [49,52-55].

Now, let y(s) be a unit speed Kdhler magnetic trajectory of charge ¢ > 0 in an almost Kahler 4-manifold
M= (M,], g). First, we observe that the first curvature x; is constant |q| by comparing the magnetic curve
equation and the Frenet formula (6.1). The Frenet formula implies that the first normal vector field E; is given
by E; =]y and K, = gq > 0.

Next, the second curvature k, is determined by the equation V,E; = -k.E; + KE3. The covariant derivative
V}E, is computed as

VyEz = Vy(JE1) = (V))y + J(Vyp) = (V)Y = qy = (V))y — KEx.

Hence, we obtain

KE3 = (Vy))y. (6.3)
This formula implies that a Kéhler magnetic curve is a Riemannian circle if and only if J is parallel along the
magnetic curve. In particular, when the ambient manifold is Kéhler, every Kadhler magnetic curve is a
Riemannian circle.
Remark 7. If a Frenet curve y in an almost Kahler manifold (M, J, g) is Kdhler magnetic, then

T = §(E1, JE) = -1,

If M is a Kahler manifold, every Kéhler magnetic curve is a holomorphic circle.

Let us assume that (M, J, g) be an almost Kéhler 4-manifold and y a unit speed Kéhler magnetic curve with
charge ¢, then its complex torsions are

Tp=-1, T3=T4="T3="74=0.

The complex torsion 7, satisfies

d
P &(Es3, (Vy)Ey).

7 Kahler magnetic curves with respect to 2_

In this section, we study Kdhler magnetic curves in (F¢, /., g). As we mentioned before, Kihler magnetic
curves in (F;, ], g.) are holomorphic circles.

7.1 Magnetic equations

Let y(s) = (x(5), y(s), u(s), v(s)) be an arc length parameterized curve in F# = R2 X R2. Then, its unit tangent
vector field is expressed as

o) = 112 912+ el ue)
V(S)—X(S)ax +y(8)6 y+u(s)6u+v(s)av'
Having in mind,

X 1
€ = ch ax’ € = ch a)” €3 = \/y au: €y = E au + E av:
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we obtain
o X Y, - ;
y= Z(Zyel + chez + \/y es3 + \/yve4.
Hence,
N .S AT N 6 . S A R R 8
Vg o VUl 2wy ’
YRV = Y (i - XV) i - XV yv X - )
+ es+ ==+ yi- ——|es.
NG N ] [ﬁ AN ]

Introducing substitutions

X(s) iC) _ H(s) = X(8)¥(s) o
206 0T gy VO e V(s) = y¥(s)(s),

X(s) =

we have

Uy = (X = 2cXY + 2cUV)ey + (Y + 2cX% + ¢(U? - V2)ep + +(U - cYU)es + (V = 2cXU + cYV)e,.

Then, the arc length condition is given by
X2+ Y2+ U2+ Vi=1
On the other hand, using
Jei=¢e, Jey=-e, Je3=-e, Je =es
we have
Ly = -Ye, + Xe, + Ves — Ue,.
Hence, the magnetic curves are given as the solutions of the following system:

X - 2¢XY + 2cUV = -qY,
Y +2cX% + c(U? - V?) = +¢X,

U-cYU=+qV,
V - 2cXU + cYV = -qU.

19

(7.1)

(7.2)

(7.3)

(7.4)

Since (FZ, I, g.) is Kéhler, the Kéhler magnetic curve y(s) has constant curvatures k; = ¢ and k; = 0. Take

a Frenet frame field E; = y and E; = ¢[_y. Then, the first curvature x; = €q is computed as

q=¢x =& gy, Ey) = gy, Ly)

=-Y(X - 2cXY + 2cUV) + X(Y + 2cX% + c(U% - V2) + V(U - cYU) - U(V - 2cXU + cYV)

=(XY - XY) + (UV - UV) + 2cX(X% + Y2+ U?) + cX(U? - V2) - 4cYUV.
Hence, using (7.3), we have the conservation law:

(XY - XY) + (UV - UV) + cX(2 + U? - 3V?%) - 4cYUV = q.

Every Kéhler magnetic curve y(s) is of order 2, so along y, we obtain a [-invariant plane field
span{y(s), .y(s)} along y. This fact suggests us to study Kahler magnetic curves lying in J -invariant surfaces.
We pay our attention to leaves of the kernel foliations of . + Q_ exhibited in Examples 5.1 and 5.2. We
know that leaves of Ker(Q. + _) are totally geodesic, but leaves of Ker(Q. — 2_) are not. The different
behavior of these foliations under the Levi-Civita connection V makes the behavior of magnetic curves

significant different.
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7.2 Magnetic curves in hyperbolic plane M (1, 2; uy, vq)

Next, we study magnetic curves satisfying u = up and v = v;. As we mentioned in Example 5.1, in this case, our
submanifold is a hyperbolic plane, which is J,-invariant. The magnetic curve equations (7.4) are reduced to

X - 2cXY = -qY, Y +2cX?=¢qX.

Multiplying the first equation by X and the second by Y, after addition and integration, and taking in account
arc length condition, we obtain

X2+yv2=1.
This equation we considered in detail in [49], so in the following proposition, we give only the results.
Proposition 7.1. Kihler magnetic curves of (Fe, ], g.) lying in a hyperbolic plane M(1, 2; uo, vo) C F2 are con-

gruent to the one of the curves from the list:
(1a) a horizontal line

X(S) = £qy,s + X0, Y(S) =y, >0, forq=7F2c.

(1b) an oblique half line x = ﬁ(y = Y,) * Xo with the arc length parametrization
¥

x(s) = T

4C2 — qZ

Y(s) = ypeV=0's, for |q| < 2c.

o
(eV1"=4's — 1) + xq,

(2) a Riemannian circle
x(s) = a+ rsing(s), y(s) = x(qr + rcosd(s))

for|q| = 2c and some non-constant function ¢(s) satisfying é(s) = —-q — cos@(s).

7.3 Magnetic curves in the Euclidean plane M(3, 4; xo, y,)

Assume that a unit speed Kahler magnetic curve p(s) lies in the Euclidean plane M(3, 4; X, y,). Then, the
magnetic equations are reduced to

20UV =0, U?-V2%=0, U=qV, V=-qU.

The only solution to this system is U = V = 0. This contradicts with the arc length condition U? + V2 = 1.

Proposition 7.2. There is no Kihler magnetic curve of (F¢, ], g&.) lying in the Euclidean plane M (3, 4; Xo, ;)

7.4 Magnetic curves in the Heisenberg hypersurface M(1, 3, 4; y,)

Let us study Kahler magnetic curves lying in the Heisenberg hypersurface M(1, 3, 4; y,). The magnetic curve
equations are

X +2cUV =0,

2cX% + c(U? - V?) = gX,
U=qV,

V - 2cXU = -qU.

(7.5)
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Let us determine the K&hler magnetic curves lying in M(1,3,4; y,) under the initial condition

V(O) = (X01y()) Uy, VO)-
Differentiating the second equation of (7.5), we obtain

4cXX + 2cUU - 2¢VV = gX.
Substituting X, U, V from other equations of (7.5) into the previous one, we have

-6cUV(2cX + q) = 0.

— Case 1: Assume that U = 0, then we have
V=0, X=0, X@2cX-q) =0.
Hence, X =0or X = Zq_c From the arc length condition X? + U? + V? = 1, the only possibility is
X(s) = £1.

Thus, g = +2¢ and x(s) = £qy,s + Xo. From (7.2), it follows v = 0, and hence, by the initial condition, v = v,.
Analogously, u = u,.
Thus, we obtain the geodesic
Y(S) = (Y, S + Xo, Yy, Uo, Vo), for q = +2c.
— Case 2: Let us assume that V = 0, then from (7.5), we obtain
X=0, 2X2+cU’=¢qX, U=0, (2X-qQU=0.

Hence, from the last equation, U = 0 or X = q/(2c). In the first case, the arc length condition implies X = +1. In
the second case, the second equation implies U = 0. So, both cases lead to the geodesic from Case 1.
— Case 3: X = —q/(2c). Then, from the first equation, we have UV = 0. Both cases, U= 0 and V = 0, are
already examined in the previous consideration.

Hence, we proved the following corollary.

Corollary 7.1. The only unit speed Kiihler magnetic curves of (FZ, ], g.) lying in the Heisenberg hyperspace are
geodesics in hyperbolic plane M (1, 2; uy, vy), which are obtained as the intersection M(1, 3, 4; y,) N M(1, 2; uo, Vo)
parameterized by

y(s) = (@), S + Xo, Y, Uo, Vo), for q = +2c,

where y(0) = (Xo, Y, Uo, Vo).

8 Kahler magnetic curves with respect to £.

In this section, we deduce the equations for the Kahler magnetic curves in the strictly almost Kahler mani-

fold (F?, J., ).
Here, using

Jiet=ey, Je =-e, Jey=e, Je =-es
we have
L)/ = -Ye, + Xe, — Ves + Uey.

Hence, using (7.1), the magnetic curves are given as the solutions of the following system:
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X - 2cXY + 2cUV = -qY,
Y +2cX? + c(U? - V?) = +¢qX,

U-cYU=-qV,
V = 2cXU + cYV = +qU.

8.1

Note that the first and second equations are identical to the ones of (7.4).
Take a Frenet frame field E{ = E; = y and E; = ], y. Then, the first curvature ki = € ¢ is computed as

q=x =€ gy, E5) = gy, L.Y)
=-Y(X - 2cXY + 2¢cUV) + X(Y + 2cX? + c(U? - V%) - V(U - cYU) + U(V - 2cXU + cYV)
= (XY - XY) + (UV - UV) + 2cX(X? + Y?) - cX(U? + V2.

Hence, using (7.3), we have the conservation law:
(XY -XY)+ UV -UV) +3cX(X2+ Y% -cX=q.

Next, the almost complex structure J, is non-parallel; thus, magnetic curves are not of order 2, in general. Let
us compute K, Es.
Using (5.2) and (6.3), we obtain

K E5 = 2cU(Ue, — Ve, — Xey + Yey) — 2cV(Vey + Ue, — Yes — Xey)
=2¢c{(U? - V2)e; - 2UVey + (YV — XU)es + (XV + YU )e,}.

Hence,
()% = 4c*(U? + V?).

Thus, the solution of the equation k;, = 0 is U = V = 0. Hence, we have the following proposition.

Proposition 8.1. The only Kihler magnetic curves of order 2 in (F}, ],, g.) are curves lying in hyperbolic plane
given in Proposition 7.1.

Proof. Inserting U = V = 0 into (8.1), we obtain the system
X - 2cXY = -qY, Y +2cX?=¢qX.

The solutions of this system are given in Proposition 7.1. O

8.1 Magnetic curves in the Euclidean plane M(3, 4; x, y,)

Assume that a unit speed Kéhler magnetic curve y(s) lies in the Euclidean plane M(3, 4; xo,,),ie, X =Y = 0.
Then the magnetic equations (8.1) are reduced to

2cUV=0, U?-V%=0, U=-qV, V=qU.

The only solution to this system is U = V = 0. This contradicts with the arc length condition U? + V2 = 1. This
fact together with Proposition 7.2 implies the following result.

Proposition 8.2. There is no Kihler magnetic curves of (F¢, ],, &) lying in the Euclidean plane M(3, 4; Xo, y,).
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8.2 Magnetic curves in the Heisenberg hypersurface M(1, 3, 4; y,)

Let us determine the K&hler magnetic curves lying in M(1,3,4; y,) under the initial condition

V(O) = (XO’yOy uO) VO)'
The magnetic curve equations are

X +2cUV = 0,

2cX? + ¢(U? - V?) = gX,

) ( )=4q 8.2)
U=-qV,

V - 2c¢XU = qU.

Differentiating the second equation of (8.2), we obtain
4cXX + 2cUU - 2¢VV = gX.
Substituting X, U, V from other equations of (8.2) into the previous one, we have

-2cUV(6cX + q) = 0.

— Case 1: Assume that U = 0, then we have
V=0, X=0, X@cX-q) =0.
Hence, X=0or X = % From the arc length condition X? + U? + V? = 1, the only possibility is
X(s) = 1.

Thus, g = +2¢ and x(s) = £qy,s + Xo. From (7.2), it follows v = 0, and hence, by the initial condition, v = v,.
Analogously, u = u,. Thus, we obtain geodesic

y(s) = (zqyy S+ X0, Yy, Us, Vo), forq=+2c.
— Case 2: Let us assume that V = 0, then from (8.2), we obtain
X=0, 2X2+cU%=qX, U=0, (2X-qU=0.

Hence, from the last equation, U = 0 or X = —¢q/(2c). In the first case, the arc length condition implies X = +1.
So, this case leads to the geodesic from Case 1. In the second case, the second equation implies U? = -¢?/c?, i.e.,
the contradiction.
—Case 3: X = —q/(6¢). Then, from the first equation, we have UV = 0. The both casesU = 0 and V = 0 lead to
the contradiction.

Combining these arguments and Corollary 7.1, we obtain
Corollary 8.1. The only unit speed Kdhler magnetic curves of (E¢, ],, &) lying in the Heisenberg hyperspace are

geodesics in hyperbolic plane M (1, 2; uo, vo), which are obtained as the intersection M(1, 3, 4; y,) N M(1, 2; uy, Vo)
parameterized by

y(s) = (i‘l)’os + Xo, y()) U, VO)s for q= iZC,
where y(0) = (Xo, Y, Uo, Vo).
We will continue to investigate Kéhler magnetic curves of (FZ, J,, g.) in a separate publication.

Problem 8.1. Determine Kéhler magnetic curves of (FZ, J,, g.).

Problem 8.2. Determine minimal J,-invariant surfaces as well as minimal surfaces that are totally real with
respect to J, in F4.
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8.3 Geodesics equations

Assume that y(s) is a geodesic in F2, then from (7.4) for q = 0, we obtain the following system:

X - 2cXY + 2cUV =0,
Y +2cX% + c(U? - V) =0,

U-cYU=0,
V - 2¢XU + cYV =0,

for geodesics.
Solving this system in the general case presents a considerable challenge.

9 Homogeneous magnetic curves in F;

Since (F¢, J,, £&.) is a homogeneous almost Kahler manifold, classification of homogeneous Kéhler magnetic
curves is a crucial task. In this section, we reinvestigate homogeneous magnetic curves and homogeneous
geodesics.

9.1 Homogeneous geodesics
9.1.1 Riemannian geodesic orbit spaces

Let M = G/K be a homogeneous Riemannian space. A curve y(s) starting at the origin o is called homogeneous
if it is an orbit of 0 under the action of some one-parameter subgroup of G. Namely, a homogeneous curve
starting at o is represented as

y(s) = exp,(sX)- o,

for some vector X € g.
It is known that every homogeneous Riemannian space admits at least one homogeneous geodesic starting
at the origin.

Definition 9.1. A reductive homogeneous Riemannian space M = G/K is called a space with homogeneous
geodesics or a Riemannian g.o. space if every geodesic y(s) of M is an orbit of a one-parameter subgroup of the
largest connected group of isometries.

Now, let us assume that M = G/K is a reductive homogeneous Riemannian space with Lie subspace m. For
any vector X € g, we decompose it as

X=X, +X,, Xe€t X,Em,

along the reductive decomposition g = ¢ + m.
Next, we introduce a tensor U, : m x m - m by

2Un(X,Y),Z) = ~(X,[Y, Z]n) + (Y, [Z,X]), X,Y,ZEm.

A homogeneous Riemannian space is said to be naturally reductive if there exists a reductive decomposition
g = ¢ + m with vanishing U,,. It is well known that a naturally reductive homogeneous space M = G/K is a
Riemannian g. o. space. The model space F2 = SA(2)/SO(2) is not a Riemannian g. o. space.

Let M = G/K be a reductive homogeneous Riemannian space with Lie subspace m. Take vectors X,Z € g
and set ¢, = exp(tX) and i, = exp(sZ). The fundamental vector field X# derived from X is defined by
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At any point x € M, we have (see [29] or Appendix of this article):
Zgo0 = Duggt e, o0 @~ UK, Z1 + 0(E9); 9.
From the Koszul formula, we have
28 (Vx:X#, Z%) = 2X*g(X¥, Z¥) - Z*g(X¥, X¥) + 2g([Z%, X*#], X*%).

Since

Xig(X#,Z%) = g (X*, [X*, Z%)),  Zf g(X*, X¥#) = 28,(X*, [Z#%, Z#)),
we deduce that

& (Vx:X?, Z%) = ~g (X%, [X, Z)¥) = ~(Xin, [X, Z]w) = ([X, Z]m, Xw)-
This equation implies the following useful criterion (see [29, Proposition 2.1], [56, Theorem 5.2]).
Proposition 9.1. Let M = G/K be a reductive homogeneous Riemannian space equipped with a reductive decom-
position g = ¢ + m. Take a vector X = X, + X, € g such that X, # 0. Then,

y(s) = expg(sX)- 0

is a geodesic if and only if one of the following conditions is fulfilled:
® [Xm’ XE] = Um(Xm) Xm)-
@ ([Xe, Xn], Z) = Kims [Xims Z]w), for any Z € m.
Q) (X, Z]wn, Xm) =0, for any Z € m.

In such a case, X is called a geodesic vector.

9.1.2 Reductive decomposition of F}

Now, we apply the criterion (Proposition 9.1) for geodesics in F}. However, the decomposition sa(2) = so(2) + f
is not reductive. Thus, here, we give a reductive decomposition for the homogeneous space F:. Following
Kiyota and Tsukada [46, p. 728], we take the following basis {E1, E, Es, E4, Es} of sa(2):

0cO c 00
Ei=|c 0 0|= e tces=cYy, Ey=e,=(0 —c 0= - cX;,
000 0 00
001 000
Es=e3=(0 0 0|= X, Ej=e=(0 0 1|= Y,
000 000
0-10
E5=€’_5=1 0 0|= B.
0 0O

Denote by m the linear subspace spanned by {Ej, E;, E3, E4}. Then, m is a linear subspace of sa(2) complemen-
tary to so(2) = REs. Indeed, every element of sa(2) is decomposed as

2

a_ﬁf_y+ﬁ
y —aon|=
000

a
B+ By + gy + nEy+ L P,

The commutation relations are
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[Ey, Eo] = 2¢%Es, [Ey, Es] = cEy,  [Ey, E4] = CEs,
[Ey, E3] = cE3,  [Ey, E4] = —CE4, [E3, E4] =0,

and
[Es, E1] = —2E;, [Es, Eo] = 2Ey, [Es,E3] = E4, [Es, E4] = —Es. 9.2)

Hence, the decomposition sa(2) = so(2) + m is reductive. We identify the tangent space of F; at the origin with
m. Let us equip a Riemannian metric on SA(2)/SO(2) so that {Ej, E,, Es, E4} is orthonormal with respect to it.
Then, the resulting homogeneous Riemannian space is isometric to the solvable Lie group model of F? (see [46,
Remark 3.3, 3.4]).

Remark 8. The basis {X;, ¥;, X;, Y5, B} used in [37, p. 139] is related to our {Ey, E,, E3, E4, Es} by the correspondence:
1 1
XioE Yok X< _EEZ) Y, e EEb B < E;, 9.3)
forc=1.

The tensor U,, is computed as

Un(,0) E Ey E3 Ey
E; 0 0 —§E4 _gES
E, 0 0 _gEB §E4
E; _§E4 _§E3 CE, CE;
E, _%E?) 2E4 CE; -CE;

9.1.3 System of equations for homogeneous geodesics

Take a vector
X =XE + X’E; + X3E3 + X*Ey + X°E5 € 5a(2) = 50(2) + m, (XD + (X»)* + (X3)? + (X*)* # 0,
and denote its so(2)-part and m-part by X, and X,,, respectively.
If we compute the system of equations
<[X1 Ek]m)Xm> = O) k= 1’ 2: 3: 4;
we obtain
[X, El] = —ZXSEZ - X4E3 - X3E4 - 2C2X2E5,
[X, Ey] = 2X5E; - cX3E; + cX*Ey + 2¢*X'Es,
[X, E3] = cX2E5 + (cX! + X5)E,,
[X, E4] = (cX! - X5)E; - cX2E,.
From these, we deduce the system for homogeneous geodesics in F2:
X2X5 + cX3%* = 0,
2X1X5 + (X2 - (X*)?) = 0,
X4X5 + c(X1X* + X2X3) = 0,
X3X5 + c(X2X4 - X'x3) = 0.

949
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Remark 9. Using Proposition 9.1-(2), i.e., {[Xe, Xin], Z) = (Xin, [Xum, Z]w), We can again obtain System (9.4). Also, one
can check that using Proposition 9.1-(1) and computing [X,,,, X¢] = Uy, (X1, Xin), We again obtain System (9.4).

Remark 10. As we mentioned in Introduction, Kowalski et al. [32] gave a classification of homogeneous
geodesics in F* based on the system different from (9.4). More precisely, we take a basis {Ey, Ey, Es, E4, Es} of
sa(2) satisfying (9.2). The commutation relations (9.2) coincide with (4.1) and therefore (up to signs) with
commutation relations given in [37,48,57] via the correspondence (9.3).

On the other hand, in [32], the authors use the basis {X, X;, Y1, Y5, B} of sa(2) satisfying (4.1) except [X;, V2].
Instead of [X;, ¥2] = V3, they used [X;, Y;] = X;. This mistake propagated computational errors and produced
incorrect results on homogeneous geodesics.

9.1.4 Determining the homogeneous geodesics in F}
Next, we solve System (9.4). First, we consider special cases when one-solution component is zero. If we assume
X° = 0, then directly from (9.4), we have
X = X'E; + X2E,. 9.5)

For X* = 0, we obtain X = X 1E;, which is particular solution of (9.5) and two new solutions,

X = XY(Ey + N2E; + cEs).
Assuming X3 = 0, besides some already mentioned solutions, we obtain

X = XY(E;, + V2E, - cE;s).
If we assume X? = 0, we do not obtain a new solution. Finally, for X' = 0, we obtain eight new solutions:

X=X+E,+ E3+ E; - ¢E;5) and X = X3(+E, + E5 ¥ E4 + cE5).

Furthermore, we assume that all components are different from zero. First, we obtain X® = X%, and hence,
X1 =0. So, we have a contradiction.
Hence, we proved the following theorem.

Theorem 9.1. For a tangent vector X = X'Ey + XE, + X°Es + X*E, + X°E5 € sa(2) satisfying (X1)? + (X»)? +
(X2 + (X%?% # 0, the curve
V() = exP,y)(sX)- 0

is a geodesic starting at the origin o of Ff = SA(2)/SO(2) if and only if the geodesic vector X has one of the
following forms:

X = X'E; + X?E,,

X = XY (E; + V2E; + cEs),

X = XYE; £ V2E, - cEp),

X = X5(+E, + E5 + E; — CE3),
X = X°(+E; + E3 F E4 + CE3),

where X1, X2, X5 € R.

Remark 11. In Proposition 5.1, we considered geodesics of the form exp,(sX) : R — F? = R% X R? where
X=XYe £ V2ey), or X=X,

Since E; = ey + CcEs, E; = ey, and E4 = ¢4, these vectors are rewritten as
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X =XYE, + V2E; - ¢Es), X =XZ2E,.

Thus, these geodesics are included in the list of theorem mentioned earlier.
9.2 Homogeneous magnetic curves

Now, we magnetize the homogeneous geodesics by the Kihler magnetic fields -Q,.

9.2.1 Systems of equations for homogeneous magnetic trajectories

For a vector X = X'Ey + X%E, + X3E3 + X*E4 + X°Es € 50(2) + m with X, = X'Ey + X?E; + X3E3 + X*E, # 0,
the curves y(s) = exp,,,(sX) are Kahler magnetic curves starting at the identity with respect to the Kéhler
magnetic field -, if and only if

[Xe, Xin] + Un(Xin, X)) = g X 9.6)
Since
JE1=E, [JE=-E, [E3=E, JE4 =-E,
LEi=E, JE=-E, [E3=-E, JE =E,
we obtain the systems
2X2X5 + 2cX3X* = —qX?,
2X1X° + c((XH? - (X3)?) = -qX',

9.7

X4X5 + c(X'X* + X°X°) = qXx*, 67
X3X5 + c(X2X* - X'X°) = ¢Xx°,

for Q., and
2X2X5 + 2cX3X* = -qX?,
2XX° + o((Xh? - (X)) = —qX', ©5)
XX + c(XX* + X2X3) = —qX*, '
X3X5 + c(X2X* - X'X3) = -qX°3,

for Q..

9.2.2 Determining the homogeneous magnetic curves with respect to -,

We solve System (9.7). First, we consider special cases when one component of solution is zero.
If we assume X° = 0, then from the first equation of (9.7), we have

2
X2 = —;CX?’X“, q+0.

Substituting this relation in the third and the fourth equation of (9.7), and assuming X° # 0 and X* # 0, we
have

q

xt- = 1
c

and (X% = ——[X1 + ﬂ].

q
32 = L
&) 2C c

2¢

These two relations imply a contradiction. Also, for X* = 0 (or X* = 0), we again have a contradiction.
Thus, X° # 0.
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If we assume X° # 0 and X! = 0, then from the second equation of (9.7) follows X3 = +X*. Next, the
fourth equation gives X*X° + X2X* = qX*. Hence, for X* = 0 by further calculations, we have a solution

X = X2E, - %Es since X,, # 0.
If X* # 0, then we obtain four new solutions

3 3
X=XE + \/ (X% - JIX°E + \/ (X2 = SIXEs + (q - OB,

3q
X=X, + \/(XZ)Z XZE \/(XZ)Z X2E4+(q+cX2)E5

If we assume X° # 0 and X2 = 0, then from the first equation of (9.7) follows X3X* = 0. For X3 = 0, we obtain

two new solutions
X-xlE EE - vyl 2\1 3q 1 1
=X'Ey- 5B and X =X'E 27" - —X'Es + (q - cXDEs,

For X* = 0, we obtain one new solution

3
X=XE + ,[2(X1)? + ?leEg + (q + cXVE;.

If we assume X° # 0 and X3 = 0 or X* = 0, (9.7) gives only already mentioned solutions. Also, if we assume that
all components of X are different from zero, we obtain a contradiction.
Hence, we proved the following theorem.

Theorem 9.2. For a tangent vector X = X'Ey + XE, + X°E3 + X*E, + X°F5 € s0(2) + m, satisfying
X2 + (X2? + (X3)? + (X*)? # 0, the curve
y(s) = expﬁa(z)(sX )

is a Kihler magnetic curves starting at the identity with respect to the Kdhler magnetic field-Q. if and only if the
magnetic vector X has one of the following forms:

X=X1E1— %Eg;,
- x2g, - 1
X = XEy - s,

3

X=XE + ,[2(XV)? + qulEg +(q + cXVE;,
3q

X =XE; + . [2(X1)? - —X1 Es + (q - cXDE;,

3q
X=X, + \/(XZ)Z XZE \/(XZ)Z X2E4+(q+cX2)E5,

3 3
X=XE + \/ (X% - JIX°E 5 \/ (X2 = JIXEy+ (q - cXO)Es

where X1, X2 X5 € R.

9.2.3 Determining the homogeneous magnetic curves with respect to 2

Analogous to the previous consideration, we solve System (9.8). We obtain the following theorem.
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Theorem 9.3. For a tangent vector X = X'Ey + X°E, + X3E3 + X*E, + X5 € s0(2) + m, satisfying
(XH2 + (X2)?% + (X3)2 + (X*)? = 0, the curve

y(s) = eXpsa(z)(SX )

is a Kdhler magnetic curve starting at the identity with respect to the Kihler magnetic field-Q- if and only if the
magnetic vector X has one of the following forms:

X= XlEl - §E5,
X=X, - %Es,

X=X + [20X1)? + %XIEB ~ (q + cXVE;,
X=XE + |21 - %Xl Es - (q - cXVEs,

q
2c
4
2c

X = X2E, + \/(XZ)Z v Lxepy . \/(XZ)Z + Lyop, - (q+ cXVEs,

X=XE + \/(XZ)Z - XE T \/(XZ)Z - LxrE, - (q - XVEs,

where X1, X2 X5 € R.

10 Conclusion

In this article, we describe the four-dimensional simply connected Riemannian 3-symmetric space Mf due to
Kowalski. We explain the homogeneous geometry of the model space F* and give the Levi-Civita connection,
Riemannian curvature, Ricci operator, sectional curvatures, and scalar curvature of the model space F%. Next,
we introduce the symplectic pair of two Kihler forms and explore some typical submanifolds of F2.
Furthermore, we study geodesics and magnetic curves in F4. We explore the general properties of magnetic
curves in an almost Kahler 4-manifold and characterize Kahler magnetic curves with respect to the symplectic
pair of Kéahler forms. In Section 9, we study homogeneous geodesics and homogeneous magnetic curves in F4,
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DE GRUYTER

Appendix
Formula (9.1)

Geodesics and magnetic curves in F*

In this appendix, we give a proof of Formula (9.1) for reader’s convenience.
Take vectors X, Y € g and set ¢, = exp(tX) and i, = exp(sZ). Then,

Hence, we obtain (9.1).
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