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Abstract:We consider several related examples of Fourier-Mukai transformations involving the quot scheme.
A method of showing conservativity of these Fourier-Mukai transformations is described.
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1 Introduction

Fourier-Mukai transformations arise in numerous contexts in algebraic geometry [2,4]. Over time, it has
emerged to be an immensely useful concept. Here, we investigate Fourier-Mukai transformations in a parti-
cular context, namely, in the set-up of quot schemes. We show that the conservativity of the Fourier-Mukai
transformation holds in the following cases:
(1) Let M be an irreducible smooth projective variety over an algebraically closed field k such that ≥Mdim 2.

Denote by MHilb d( ) the Hilbert scheme parametrizing the zero-dimensional subschemes of M of length d.
Let PM (respectively, PH ) be the projection to M (respectively, MHilb d( )) of the tautological subscheme

⊂ ×M MHilb d� ( ). Let E and F be two vector bundles on M such that the vector bundles ∗
∗

P P EH M and

∗
∗

P P FH M on MHilbd( ) are isomorphic. Then, we show that E and F are isomorphic (see Proposition 2.1).
(2) Let Q

M
(respectively, Q

S
) be the projection to M (respectively, MSymd( )) of the tautological subscheme

⊂ ×M MSymd� ( ). Let E and F be two vector bundles on M such that the vector bundles ∗
∗

Q Q E
S M

and

∗
∗

Q Q F
S M

on MSymd( ) are isomorphic. Then, we show that E and F are isomorphic (see Lemma 2.2).
(3) LetC be an irreducible smooth projective curve defined over k . Fix a vector bundle E overC of rank at least two. Let

Ed� ( ) denote the quot scheme parametrizing the torsion quotients of E of degree d. There is a tautological quotient
⟶∗

E QΦC over ×C Ed� ( ), where × ⟶C E CΦ :C
d� ( ) is the natural projection. LetV andW be vector bundles on

C such that the vector bundles ⊗∗
∗
V QΦ ΦQ C(( ) ) and ⊗∗

∗
W QΦ ΦQ C(( ) ) on Ed� ( ) are isomorphic, where

× ⟶C E EΦ :Q
d d� �( ) ( ) is the natural projection. Then,we show that E and F are isomorphic (see Proposition 2.3).

We also prove a similar result in the context of vector bundles on curves equipped with a group action (see
Section 3).

A key method in our proofs is the Atiyah’s Krull-Schmidt theorem for vector bundles.
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2 A Fourier-Mukai transformation

2.1 Vector bundles on Hilbert schemes

Let k be an algebraically closed field. Let M be an irreducible smooth projective variety over k such that
≥Mdim 2. For any integer ≥d 2, let MHilb d( ) denote the Hilbert scheme parametrizing the zero-dimensional

subschemes of M of length d. We have the natural projections:

← × →M M M MHilb Hilb .
p

d
p

dM H

( ) ( )

There is a tautological subscheme

⊂ ×M MHilb ,d� ( )

such that for any ∈z MHilb d( ), the preimage −
p z

H

1( ) is the subscheme ⊂z M . The restriction of p
M
(respec-

tively, p
H
) to � will be denoted by PM (respectively, PH ).

For any vector bundle E on M , we have the direct image ∗
∗

P P EH M on � . We note that ∗
∗

P P EH M is locally free
because PH is a finite morphism and ∗

P EM is locally free. Let

≔ ∗
∗

E P P EH M
͠ (2.1)

be this vector bundle; its rank is ⋅d Erank( ). It is known that two vector bundles E and F on M are isomorphic
if E͠ and F͠ are isomorphic [3,5]. We will give a very simple proof of it.

Proposition 2.1. Let E and F be two vector bundles on M such that the corresponding vector bundles E͠ and F͠ on
MHilbd( ) are isomorphic (see (2.1)). Then, E and F are isomorphic.

Proof. Since Erank( )͠ and Frank( )͠ are ⋅d Erank( ) and ⋅d Frank( ), respectively, it follows that =Erank( )

Frank( ). Let = =E r Frank rank( ) ( ).
Fix a zero-dimensional subscheme ⊂Z M0 of length −d 1. Let = ⊂Z x x M, …, bred

0
1{ } be the reduced

subscheme for Z0. The complement =M Z M x x\ \ , …, bred
0

1{ } will be denoted by M 0. Let

⟶ι M M: 0 (2.2)

be the inclusion map. We have a morphism

⟶φ M M: Hilb d0 ( )

that sends any ∈x M 0 to ∪Z x0 { }. The pullback ∗φ E͠ (respectively, ∗φ F͠ ) is isomorphic to ⊕∗ι E V0 (respectively,
⊕∗ι F V0), whereV0 is a trivial vector bundle on M 0 of rank −d r1( ) and ι is the map in (2.2). The vector bundles

∗φ E͠ and ∗φ F͠ are isomorphic because E͠ and F͠ are isomorphic. So

⊕ = ⊕∗ ∗ι E V ι F V .0 0 (2.3)

There are no nonconstant functions on M 0 (recall that ≥Mdim 2). Hence, using [1, p. 315, Theorem 2(i)],
from (2.3), it follows that =∗ ∗ι E ι F (see [6] for vast generalizations of [1]). Hence, we have

=∗
∗

∗
∗ι ι E ι ι F .

But ∗
∗ι ι E (respectively, ∗

∗ι ι F ) is E (respectively, F ). This completes the proof. □

The line of arguments in Proposition 2.1 works in some other contexts. We will describe two such
instances.
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2.2 Vector bundles on symmetric product

As mentioned previously, M is an irreducible smooth projective variety of dimension at least two. For any
integer ≥d 2, let MSymd( ) denote the quotient of Md under the action of the symmetric group Sd that permutes
the factors of the Cartesian product. We recall that MSymd( ) is a normal projective variety. There is a
tautological subscheme

⊂ ×M MSymd� ( ) (2.4)

parametrizing all ∈ ×z y M M, Symd( ) ( ) such that ∈z y. Let

⟶ ⟶Q M Q M: and : Sym
M S

d� � ( )

be the natural projections. For any vector bundle E on M , the direct image

≔ ∗
∗

E Q Q E
S M



on MSymd( ) is locally free because Q
S
is a finite morphism and ∗

Q E
M

is locally free.

Lemma 2.2. Let E and F be two vector bundles on M such that the corresponding vector bundles E and F on
MSymd( ) are isomorphic. Then, E and F are isomorphic.

Proof. Fix any = ∈−
−z x x M, …, Symd

d
0 1 1

1{ } ( ) (repetitions are allowed). Let

≔ ↪ι M M z M: \0
0

be the inclusion map. We have a morphism

⟶ ⟼ϕ M z M x x z: \ Sym , , .d
0 ( ) { }

First, note that =∗ ∗ϕ E ϕ F because =E F . Evidently, we have = ⊕∗ ∗ ⊕ − ⋅
ϕ E ι E

M

d E1 rank
0

 �( )
( ) ( ) and = ⊕∗ ∗ϕ F ι F ( )

⊕ − ⋅
M

d F1 rank
0�

( ) ( ). Now, the argument in the proof of Proposition 2.1 goes through without any changes. □

2.3 Vector bundles on quot scheme

Let C be an irreducible smooth projective curve defined over k . Fix a vector bundle E over C of rank at least
two. Fix an integer ≥d 1. Let Ed� ( ) denote the quot scheme parametrizing the torsion quotients of E of degree
d. Let

× ⟶ × ⟶C E C C E EΦ : and Φ :C
d

Q
d d� � �( ) ( ) ( ) (2.5)

be the natural projections. There is a tautological quotient

⟶∗
E QΦC (2.6)

over ×C Ed� ( ) whose restriction to any ×C Q{ }, where ∈Q Ed� ( ), is the quotient of E represented by Q.
Given a vector bundle V on C , we have the direct image

≔ ⊗ ⟶∗
∗

F V V EQΦ Φ ,Q C
d�( ) (( ) ) ( ) (2.7)

where ΦQ and ΦC are the projections in (2.5), andQ is the quotient in (2.6); this F V( ) is a vector bundle because
the support of Q is finite over Ed� ( ).

Proposition 2.3. Let V and W be vector bundles on C such that the corresponding vector bundles F V( ) and F W( )

are isomorphic (see (2.7)). Then, V and W are isomorphic.
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Proof. Since F Vrank( ( )) and F Wrank( ( )) are ⋅d Vrank( ) and ⋅d Wrank( ) respectively, from the given condition
that F V( ) and F W( ) are isomorphic, we conclude that =V Wrank rank( ) ( ). Let r denote =V Wrank rank( ) ( ).

Let

⟶β E X: �( ) (2.8)

be the projective bundle parametrizing the hyperplanes in the fibers of E . So =E E1� �( ) ( ). For any
∈ ⊂−z β x E1 �( ) ( ), if ⊂H z Ex( ) is the corresponding hyperplane, then the element of E1� ( ) for z represents

the quotient sheaf ⟶ ∕E E H zx ( ) of E . For any ∈z E�( ), the quotient sheaf map from E to the torsion quotient
∕E H zx ( ) of E of degree 1 corresponding to z will be denoted by z.
Fix −d 1 distinct points −x x,…, d1 1 of X . Fix points ∈ −y β x

i i
1( ), ≤ ≤ −i d1 1, where β is the projection in

(2.8). The complement −E y y\ , …,
d1 1

�( ) { } will be denoted by � . Let

↪ι E: �� ( ) (2.9)

be the inclusion map.
Note that the subset −y y, …,

d1 1
{ } defines a point of − Ed 1� ( ) representing the quotient ⊕ =

− yj
d

j1
1 of E; this point

of − Ed 1� ( ) will be denoted by y. We have a morphism

⟶ ⟼ ⊕E z z yΨ : , ;d� � ( )

recall that =E E1� �( ) ( ) and both y and z are the quotients of E .
Now, the vector bundle ∗F VΨ ( ) (respectively, ∗F WΨ ( )) is isomorphic to ⊗ ⊕∗ ∗ι β V A1E��( (( ) ( )))( ) (respec-

tively, ⊗ ⊕∗ ∗ι β W A1E��( (( ) ( )))( ) ), where ι and β are the maps in (2.9) and (2.8), respectively, and A is a trivial
vector bundle on � of rank −r d 1( ); the tautological line bundle on E�( ) is denoted by 1E�� ( )( ) .

SinceV andW are isomorphic, we conclude that ⊗ ⊕∗ ∗ι β V A1E��( (( ) ( )))( ) and ⊗ ⊕∗ ∗ι β V A1E��( (( ) ( )))( )

are isomorphic. As there are no nonconstant functions on � , it follows that ⊗∗ ∗ι β V 1E��( ) ( )( ) and
⊗∗ ∗ι β W 1E��( ) ( )( ) are isomorphic. This implies that ∗ ∗ι β V and ∗ ∗ι β W are isomorphic.

The direct image ∗
∗ ∗ι ι β V (respectively, ∗

∗ ∗ι ι β W ) is ∗β V (respectively, ∗β W ). Hence, we conclude that ∗β V

and ∗β W are isomorphic. So =∗
∗β β V V is isomorphic to =∗

∗β β W W . □

3 Action of group on a curve

Let C be an irreducible smooth projective curve, and let Γ be a finite group acting faithfully on C . Consider the
quotient curve

⟶ ≔ ∕f C Y C: Γ. (3.1)

For any vector bundle V on Y , the pullback ∗f V is a Γ-equivariant vector bundle on C .
The order of the group Γ is denoted by d. We have a morphism

⟶ρ Y C: Symd( ) (3.2)

that sends any ∈y Y to the element of CSymd( ) given by the scheme-theoretic inverse image −f y1 ( ), where f is
the map in (3.1). To describe ρ explicitly, let z z z, , …, n1 2{ } be the reduced inverse image −f y1

red( ) . Then,

∑=
=

ρ y b z ,

i

n

i i

1

( )

where bi is the order of the isotropy subgroup ⊂Γ Γzi
of zi for the action of Γ on C . Note that ρ is an embedding.

The action of Γ on C produces an action of Γ on CSymd( ). The action of any ∈γ Γ sends any
∈x x C, …, Symd

d
1( ) ( ) to γ x γ x, …, d1( ( ) ( )). We have

⊂ρ Y CSym .d Γ( ) ( ) (3.3)
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We note that CSymd( ) is an irreducible smooth projective variety of dimension d. As in (2.4),

⊂ ×C CSymd� ( ) (3.4)

is the tautological subscheme parametrizing all ∈ ×c x C C, Symd( ) ( ) such that ∈c x . Let

⟶ ⟶Q C Q C: and : Sym
C S

d� � ( ) (3.5)

be the natural projections. For any vector bundle E on C of rank r , the direct image

≔ ∗
∗

E Q Q E
S C

 (3.6)

is a vector bundle on CSymd( ) of rank dr.
We will describe an alternative construction of the vector bundle E in (3.6). For ≤ ≤i d1 , let

⟶p C C:
i

d

be the projection to the i-th factor. Let

⟶P C C: Symd d( ) (3.7)

be the quotient map for the action of the symmetric group Sd that permutes the factors of Cd. The action of Sd

on Cd lifts to the vector bundle

≔ ⊕ ⟶
=

∗
E p E C .d

i

d

i

d

1

[ ]

The action of Sd on E d[ ] produces an action of Sd on ∗PE d[ ], where P is the projection in (3.7). The vector bundle E
in (3.6) coincides with the Sd-invariant part

⊂∗ ∗PE PE .d S dd( )[ ] [ ]

The actions of Γ on C and CSymd( ) (see (3.3)) together produce a diagonal action of Γ on ×C CSymd( ). This
action of Γ on ×C CSymd( ) preserves the subscheme � in (3.4). For this action of Γ on �, the projections Q

C
and

Q
S
in (3.5) are evidently Γ-equivariant.
Now, let E be a Γ-equivariant vector bundle on C . Since the projectionsQ

C
andQ

S
in (3.5) are Γ-equivariant,

the vector bundle E in (3.6) is also Γ-equivariant. From (3.3), it now follows that the vector bundle

⟶∗ρ E Y (3.8)

is equipped with an action of Γ over the trivial action of Γ on Y .

Proposition 3.1. Let E and F be vector bundles on Y such that the corresponding Γ-equivariant vector bundles
∗ ∗ρ f E ̂ and ∗ ∗ρ f F ̂ on Y are isomorphic. Then, E and F are isomorphic.

Proof. The vector bundle ∗f E has a natural action of Γ because it is pulled back from ∕C Γ. The action of Γ on
∗f E produces an action of Γ on ∗

∗f f E over the trivial action of Γ on Y . Similarly, Γ acts on ∗
∗f f F .

Consider ⊂−
Q ρ Y

S

1 �( ( )) , where Q
S
and ρ are the maps in (3.5) and (3.2), respectively. Let

′ ≔ ⟶−−Q Q Q ρ Y C:
C C Q ρ Y S

1

S

1∣ ( ( ))( ( ))

be the restriction of the mapQ
C
in (3.5). It is straightforward to check that this map ′Q

C
is an isomorphism. So we

have the commutative diagram

(3.9)

where the horizontal maps are isomorphisms. Moreover, all the maps in (3.9) are Γ-equivariant with Γ acting
trivially on Y and ρ Y( ). Therefore, from (3.9), we conclude that there are isomorphisms

Quot schemes and Fourier-Mukai transformation  5



⟶ ⟶∗
∗ ∗ ∗

∗
∗ ∗ ∗f f E ρ f E f f F ρ f F~ and ~̂ ̂ (3.10)

as Γ-equivariant vector bundles.

Since the Γ-equivariant vector bundles ∗ ∗ρ f E ̂ and ∗ ∗ρ f F ̂ are isomorphic, from (3.10), it follows that

⟶∗
∗

∗
∗f f E f f F~ (3.11)

as Γ-equivariant vector bundles
Next, we will show that

= =∗
∗

∗
∗f f E E f f F Fand .Γ Γ( ) ( ) (3.12)

To prove (3.12), first note that the action of Γ on C produces an action of Γ on ∗f C� . The projection formula
gives that

⟶ ⊗∗
∗

∗f f E E f~ .C�( )

The action of Γ on ∗f C� and the trivial action of Γ on E together produce an action of Γ on ⊗ ∗E f C�( ). The
aforementioned isomorphism between ∗

∗f f E and ⊗ ∗E f C�( ) is evidently Γ-equivariant. Since =∗f C Y
Γ� �( ) ,

we conclude that (3.12) holds.
Finally, the proposition follows from (3.11) and (3.12). □

4 Alternative constructions

Let C be a smooth projective curve over k and E a vector bundle on C . Unlike in Section 2.3, E can be a line
bundle; we no longer assume Erank( ) to be at least two. As mentioned earlier, Ed� ( ) denotes the quot scheme
that parametrizes the torsion quotients of E of degree d. Let

⟶γ E C: Symd d� ( ) ( ) (4.1)

be the natural Chow morphism.
For any vector bundle V on C , consider the vector bundle F V( ) on Ed� ( ) constructed in (2.7). We will

describe its direct image ∗γ F V( ) on CSymd( ), where γ is the map in (4.1).
For every ≤ ≤j d1 , let ⟶φ C C:

j

d be the projection to the j-th factor. Take a vector bundle V on C . We
have the vector bundle

≔ ⊕ ⊗ ⟶
=

∗
φ V E C .

j

d

j

d

1

� ( ) (4.2)

The symmetric group Sd acts on Cd by permuting the factors of the tensor product (see Section 2.2). The
corresponding quotient is CSymd( ). As in (3.7), let

⟶ ∕ =P C C S C: Symd d
d

d( ) (4.3)

be the quotient map. The action of Sd on Cd has a natural lift to an action of Sd on the vector bundle � in (4.2).
This action of Sd on � produces an action of Sd on the direct image ∗P � , where P is the projection in (4.3).

Lemma 4.1. The direct image ∗γ F V( ) on CSymd( ), where F V( ) and γ are as in (2.7) and (4.1), respectively, is
naturally identified with the Sd-invariant part

⊂∗ ∗P PSd� �( )

for the aforementioned action of Sd on ∗P � .

Proof. There is a natural homomorphism
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⟶ ∗ϖ F V P: .�( )

It is straightforward to check that ⊂ ⊂∗ ∗ϖ F V P PSd� �( ( )) ( ) and that the resulting homomorphism
⟶ ∗F V P Sd�( ) ( ) is an isomorphism. □

Let

× ⟶ × ⟶C C C C C CΨ : Sym and Ψ : Sym SymC
d

S
d d( ) ( ) ( ) (4.4)

be the natural projections.
Consider × ∗γ QIdC( ) on ×C CSymd( ), where Q is the sheaf in (2.6) and γ is the map in (4.1). Given a vector

bundle V on C , we have the direct image

≔ ⊗ × ⟶∗
∗

∗G V V γ CQΨ Ψ Id Sym ,S C C
d( ) ( ( ) ) ( )

where ΨC and ΨS are projections in (4.4).

Proposition 4.2. For any vector bundle V on C, there is a natural isomorphism

≃∗γ F V G V ,( ) ( )

where F V( ) is constructed in (2.7).

Proof. Consider the following commutative diagram

Now, using the aforementioned commutative diagram, we can obtain the required isomorphism as
follows:

= ⊗
≃ × ⊗
= × × ⊗
≃ ⊗ × ( )
=

∗ ∗ ∗
∗

∗ ∗
∗

∗ ∗
∗ ∗

∗
∗

∗

γ F V γ V

γ V

γ γ V

V γ

G V

Q

Q

Q

Q

Φ Φ

Ψ Id Φ

Ψ Id Id Ψ

Ψ Ψ Id projection formula

.

Q C

S C

S C

S C

( ) (( ) )

( ) (( ) )

( ) (( ) ( ) )

(( ) ( ) )

( ) □
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