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1 Introduction

Fourier-Mukai transformations arise in numerous contexts in algebraic geometry [2,4]. Over time, it has
emerged to be an immensely useful concept. Here, we investigate Fourier-Mukai transformations in a parti-
cular context, namely, in the set-up of quot schemes. We show that the conservativity of the Fourier-Mukai
transformation holds in the following cases:

(1) Let M be an irreducible smooth projective variety over an algebraically closed field k such that dimM > 2.

Denote by Hilb (M) the Hilbert scheme parametrizing the zero-dimensional subschemes of M of length d.
Let Py, (respectively, Py) be the projection to M (respectively, Hilb4(M)) of the tautological subscheme
S C M x Hilb4M). Let E and F be two vector bundles on M such that the vector bundles Py.PyE and
Py.PyF on Hilb%(M) are isomorphic. Then, we show that E and F are isomorphic (see Proposition 2.1).

(2) Let Q,, (respectively, Q) be the projection to M (respectively, Sym?(M)) of the tautological subscheme
S € M x Sym4(M). Let E and F be two vector bundles on M such that the vector bundles Qs.Q;,E and
Qs.Q;;F on Symd(M) are isomorphic. Then, we show that E and F are isomorphic (see Lemma 2.2).

(3) LetC be an irreducible smooth projective curve defined over k. Fix a vector bundle E over C of rank at least two. Let
QY(E) denote the quot scheme parametrizing the torsion quotients of E of degree d. There is a tautological quotient
®E — QoverC x Q¥E),where®¢ : C x Q4E) — C is the natural projection. Let V and W be vector bundles on
C such that the vector bundles @o.(?zV) ® Q) and Po.(P;W) ® Q) on QUE) are isomorphic, where
@) : C x QUE) — QYE) is the natural projection. Then, we show that E and F are isomorphic (see Proposition 2.3).

We also prove a similar result in the context of vector bundles on curves equipped with a group action (see
Section 3).
A key method in our proofs is the Atiyah’s Krull-Schmidt theorem for vector bundles.
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2 A Fourier-Mukai transformation

2.1 Vector bundles on Hilbert schemes

Let k be an algebraically closed field. Let M be an irreducible smooth projective variety over k such that
dimM 2 2. For any integer d 2 2, let Hilb “(M) denote the Hilbert scheme parametrizing the zero-dimensional
subschemes of M of length d. We have the natural projections:

MY M x HilbAM) % Hib M)

There is a tautological subscheme
S C M x Hilb4M),

such that for any z € Hilb4(M), the preimage p}}l(z) is the subscheme z C M. The restriction of p,, (respec-
tively, py) to S will be denoted by Py (respectively, Py).

For any vector bundle E on M, we have the direct image Py.PyE on S. We note that Py.PyE is locally free
because Py is a finite morphism and PyE is locally free. Let

E = Py.PyE 1)

be this vector bundle; its rank is d - rank(E). It is known that two vector bundles E and F on M are isomorphic
if E and F are isomorphic [3,5]. We will give a very simple proof of it.

Proposition 2.1. Let E and F be two vector bundles on M such that the corresponding vector bundles E and F on
Hilb4(M) are isomorphic (see (2.1)). Then, E and F are isomorphic.

Proof. Since rank(E) and rank(F) are d - rank(E) and d - rank(F), respectively, it follows that rank(E) =
rank(F). Let rank(E) = r = rank(F).

Fix a zero-dimensional subscheme Z° C M of length d - 1. Let Zfed ={x, ...,Xp} C M be the reduced
subscheme for Z°. The complement M\Z2, = M\{x, ...,x;} will be denoted by M°. Let

LM — M 2.2)
be the inclusion map. We have a morphism
¢ : M° — Hilb4M)

that sends any x € M° to Z, U {x}. The pullback ¢'E (respectively, ¢'F) is isomorphic to 'E & V (respectively,
'F ® V), where Vj is a trivial vector bundle on M° of rank (d - 1)r and t is the map in (2.2). The vector bundles
@'E and ¢'F are isomorphic because E and F are isomorphic. So

E® Vy=UFo . (2.3)

There are no nonconstant functions on M° (recall that dimM = 2). Hence, using [1, p. 315, Theorem 2(i)],
from (2.3), it follows that ("E = ('F (see [6] for vast generalizations of [1]). Hence, we have

LUE = LU'F.
But t.l'E (respectively, t.."F) is E (respectively, F). This completes the proof. O

The line of arguments in Proposition 2.1 works in some other contexts. We will describe two such
instances.
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2.2 Vector bundles on symmetric product

As mentioned previously, M is an irreducible smooth projective variety of dimension at least two. For any
integer d = 2, let Sym?(M) denote the quotient of M? under the action of the symmetric group S; that permutes
the factors of the Cartesian product. We recall that Sym?(M) is a normal projective variety. There is a
tautological subscheme

$ € M x Sym4(M) (2.4)
parametrizing all (z, y) € M x Sym?(M) such that z € y. Let
Qu:S—M and Q:S — SymiM)
be the natural projections. For any vector bundle E on M, the direct image
E = Q.Q,E
on Sym%(M) is locally free because Qs is a finite morphism and Q;E is locally free.
Lemma 2.2. Let E and F be two vector bundles on M such that the corresponding vector bundles E and F on
Sym4(M) are isomorphic. Then, E and F are isomorphic.
Proof. Fix any zy = {X, ...,Xs-1} € Sym?"}(M) (repetitions are allowed). Let
t:MO=M\zy > M
be the inclusion map. We have a morphism
¢ : M\zyg — Symd(M), x — {x, z}.

First, note that ¢*E = ¢*F because E = F. Evidently, we have ¢'E = ('E) & O%j “DrankE) and ¢°F = ('F) @
O;’;(g ~Drank®) Now, the argument in the proof of Proposition 2.1 goes through without any changes. O

2.3 Vector bundles on quot scheme

Let C be an irreducible smooth projective curve defined over k. Fix a vector bundle E over C of rank at least
two. Fix an integer d > 1. Let Q4(E) denote the quot scheme parametrizing the torsion quotients of E of degree
d. Let

Oc:CxQUE) — C and @y :Cx QUE) — QUE) (2.5)
be the natural projections. There is a tautological quotient
DLE — Q (2.6)

over C x Q4(E) whose restriction to any C x {Q}, where Q € Q¥E), is the quotient of E represented by Q.
Given a vector bundle V on C, we have the direct image

F(V) = ®0.(2V) ® Q) — QUE), @27
where @&, and ®. are the projections in (2.5), and Q is the quotient in (2.6); this F(V') is a vector bundle because

the support of Q is finite over Q4(E).

Proposition 2.3. Let V and W be vector bundles on C such that the corresponding vector bundles F(V) and F(W)
are isomorphic (see (2.7)). Then, V and W are isomorphic.
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Proof. Since rank (F(V)) and rank(F(W)) ared - rank(V) andd - rank (W) respectively, from the given condition
that F(V) and F(W) are isomorphic, we conclude that rank(V) = rank(W). Let r denote rank(V) = rank(W).
Let

B:PE) — X 2.8)

be the projective bundle parametrizing the hyperplanes in the fibers of E. So P(E) = QYE). For any
z € BY(x) C P(E), if H(z) C E, is the corresponding hyperplane, then the element of Q'(E) for z represents
the quotient sheaf E — E,/H(z) of E. For any z € P(E), the quotient sheaf map from E to the torsion quotient
E,/H(z) of E of degree 1 corresponding to z will be denoted by z.

Fix d - 1 distinct points xi, ..., X4-1 of X. Fix points y; € f71(x;), 1< i < d - 1, where B is the projection in
(2.8). The complement P(E)\{y,, ...,);_; } Will be denoted by #. Let

L:P = P(E) 2.9

be the inclusion map.
Note that the subset {y, , ...,y;_, } defines a point of Q4"(E) representing the quotient &

of Q"Y(E) will be denoted by y. We have a morphism

d

4-ly; of E; this point

V:P—>QYE), z—zdYy,

recall that P(E) = QYE) and both y and z are the quotients of E.

Now, the vector bundle ¥*F(V) (respectively, ¥"F(W)) is isomorphic to (¢"((8"V) ® Op (1)) ® A (respec-
tively, (t"((B"W) ® Opk)(1))) ® A), where t and § are the maps in (2.9) and (2.8), respectively, and A is a trivial
vector bundle on # of rank r(d - 1); the tautological line bundle on P(E) is denoted by Opg)(1).

Since V and W are isomorphic, we conclude that (¢*((8*V) ® Opy(1))) ® Aand ("((B"V) ® Opry (1)) & A
are isomorphic. As there are no nonconstant functions on %, it follows that (¢"f*V) ® Opy(1) and
(U'B"W) ® Opg)(1) are isomorphic. This implies that (*f*V and ("W are isomorphic.

The direct image t.."B*V (respectively, w."f*W) is B*V (respectively, f*W). Hence, we conclude that 5*V
and "W are isomorphic. So 5,8*V = V is isomorphic to B,8"W = W. O

3 Action of group on a curve

Let C be an irreducible smooth projective curve, and let I' be a finite group acting faithfully on C. Consider the
quotient curve

f:C—Y=ClL. 3.1

For any vector bundle V on Y, the pullback f*V is a I'-equivariant vector bundle on C.
The order of the group I is denoted by d. We have a morphism

p:Y — Symi(C) (3.2)

that sends any y € Y to the element of Sym?(C) given by the scheme-theoretic inverse image f~1(y), where f is
the map in (3.1). To describe p explicitly, let {z, z, ...,z,} be the reduced inverse image f™(y)eq. Then,

p() = 2 bz,
i=1

where b; is the order of the isotropy subgroup I;, C T of z; for the action of T on C. Note that p is an embedding.
The action of T on C produces an action of T on Sym%(C). The action of any y €T sends any
(4, ..., Xq) € Sym4(C) to (y(x), ...,y(xz)). We have

p(Y) C Symi(C)T. (3.3
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We note that Sym?(C) is an irreducible smooth projective variety of dimension d. As in (2.4),
$ C € x Sym¥(C) (34)
is the tautological subscheme parametrizing all (¢, x) € C x Sym¢(C) such that ¢ € x. Let
Q:S—C and Q;:S — Sym%C) (3.5
be the natural projections. For any vector bundle E on C of rank r, the direct image
E = Q.QE 3.6)

is a vector bundle on Sym?(C) of rank dr.
We will describe an alternative construction of the vector bundle £ in (3.6). For 1< i < d, let

p:Cl—¢C
be the projection to the i-th factor. Let
P: C% — Sym{(C) 3.7

be the quotient map for the action of the symmetric group S; that permutes the factors of C4. The action of Sy
on C¢ lifts to the vector bundle

d
dl = r _, cd
Eldl = iezalpiE ce.

The action of S; on El9) produces an action of S; on RE), where P is the projection in (3.7). The vector bundle E
in (3.6) coincides with the Sg-invariant part

(BE'YS: ¢ pEl],

The actions of T on C and Sym?(C) (see (3.3)) together produce a diagonal action of T on C x Sym?(C). This
action of T on C x Sym?(C) preserves the subscheme S in (3.4). For this action of T on 'S, the projections Q. and
Qs in (3.5) are evidently I'-equivariant.

Now, let E be a I'-equivariant vector bundle on C. Since the projections Q. and Qs in (3.5) are I'-equivariant,

the vector bundle E in (3.6) is also I-equivariant. From (3.3), it now follows that the vector bundle

is equipped with an action of T over the trivial action of T on Y.

Proposition 3.1. Let E and F be vector bundles on Y such that the corresponding I'-equivariant vector bundles
p*f‘?:" and p*ﬁ on Y are isomorphic. Then, E and F are isomorphic.

Proof. The vector bundle f*E has a natural action of T because it is pulled back from C/T. The action of T on
f*E produces an action of I' on f, f*E over the trivial action of ' on Y. Similarly, I' acts on f, f°F.

Consider Qg 1(p(Y)) C S, where Q; and p are the maps in (3.5) and (3.2), respectively. Let
Q= Qe lggipury 1 Q5 (p(Y)) — €

be the restriction of the map Q. in (3.5). It is straightforward to check that this map Q/ is an isomorphism. So we
have the commutative diagram

Qo -1
C = Qg (p(Y))
f l Qsl (3.9)
Y 5 oY)
where the horizontal maps are isomorphisms. Moreover, all the maps in (3.9) are I'-equivariant with I' acting
trivially on Y and p(Y). Therefore, from (3.9), we conclude that there are isomorphisms
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ffE=pfE and ffF - pfF (3.10)
as I'-equivariant vector bundles.
Since the I'-equivariant vector bundles p*f‘?;" and p*f*? are isomorphic, from (3.10), it follows that

LfE=LfF (3.11)

as I'-equivariant vector bundles
Next, we will show that

(ffEX=E and (ffF)I=F. (312)

To prove (3.12), first note that the action of I' on C produces an action of I' on f,Oc. The projection formula
gives that

LfE = E® (£.0c).

The action of T' on f,O¢ and the trivial action of I' on E together produce an action of T on E ® (f,Oc). The
aforementioned isomorphism between f, f*E and E ® (f,O¢) is evidently T-equivariant. Since (f,0¢)" = Oy,
we conclude that (3.12) holds.

Finally, the proposition follows from (3.11) and (3.12). O

4 Alternative constructions

Let C be a smooth projective curve over k and E a vector bundle on C. Unlike in Section 2.3, E can be a line
bundle; we no longer assume rank(E) to be at least two. As mentioned earlier, Q4(E) denotes the quot scheme
that parametrizes the torsion quotients of E of degree d. Let

Yy QUE) — Sym4(C) @)

be the natural Chow morphism.

For any vector bundle V on C, consider the vector bundle F(V) on Q4E) constructed in (2.7). We will
describe its direct image y,F(V) on Sym¢(C), where y is the map in (4.1).

For every1<j<d,let o C? — C be the projection to the j-th factor. Take a vector bundle V on C. We
have the vector bundle

d
V=op(VeE) — cd, (4.2)
j=1

The symmetric group S; acts on C? by permuting the factors of the tensor product (see Section 2.2). The
corresponding quotient is Sym4(C). As in (3.7), let

P:C? — C%S; = Symé(C) (4.3)
be the quotient map. The action of S; on C¢ has a natural lift to an action of Sy on the vector bundle V in (4.2).
This action of S; on V produces an action of Sz on the direct image RV, where P is the projection in (4.3).
Lemma 4.1. The direct image y.F(V) on Sym%(C), where F(V) and y are as in (2.7) and (4.1), respectively, is
naturally identified with the Sg-invariant part

(PV)Si C RV

for the aforementioned action of S; on BV .

Proof. There is a natural homomorphism
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w: F(V) — RYV.
It is straightforward to check that w(F(V)) C (RV)% C BV and that the resulting homomorphism
F(V) — (PV)% is an isomorphism. O
Let
Ye: Cx Symi(C) — C and Ws: C x Sym¥(C) — Sym4(C) (4.9

be the natural projections.
Consider (Id¢ * y).Q on C x Sym?(C), where Q is the sheaf in (2.6) and y is the map in (4.1). Given a vector
bundle V on C, we have the direct image

G(V) = ¥s.(¥eV ® (Ide % y).Q) — SymU(C),
where ¥, and ¥, are projections in (4.4).
Proposition 4.2. For any vector bundle V on C, there is a natural isomorphism

YE(WV) = G(V),

where F(V) is constructed in (2.7).

Proof. Consider the following commutative diagram
®q
C x QU(E) Q(E)
s (Idcxwl vl

C x Sym®(C) e Sym(C).
S

C

C

Now, using the aforementioned commutative diagram, we can obtain the required isomorphism as
follows:

YE(V) = p.@0(PcV) ® Q)
= W, (Idxp).((PV) ® Q)
= Y (Idxp)((Idxp)(¥eV) @ Q)
=Y (PeV) ® (Idxy).Q) (projection formula)
=G(V). O
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