Research Article

Indranil Biswas*, Umesh V. Dubey, Manish Kumar, and A. J. Parameswaran

Quot schemes and Fourier-Mukai transformation

https://doi.org/10.1515/coma-2023-0152 received April 3, 2023; accepted August 9, 2023

Abstract: We consider several related examples of Fourier-Mukai transformations involving the quot scheme. A method of showing conservativity of these Fourier-Mukai transformations is described.

Keywords: quot scheme, Hilbert scheme, Fourier-Mukai transformation, symmetric product

MSC 2020: 14C05, 14L30

1 Introduction

Fourier-Mukai transformations arise in numerous contexts in algebraic geometry [2,4]. Over time, it has emerged to be an immensely useful concept. Here, we investigate Fourier-Mukai transformations in a particular context, namely, in the set-up of quot schemes. We show that the conservativity of the Fourier-Mukai transformation holds in the following cases:

- (1) Let M be an irreducible smooth projective variety over an algebraically closed field k such that $\dim M \ge 2$. Denote by $\operatorname{Hilb}^d(M)$ the Hilbert scheme parametrizing the zero-dimensional subschemes of M of length d. Let P_M (respectively, P_H) be the projection to M (respectively, $\operatorname{Hilb}^d(M)$) of the tautological subscheme $S \subset M \times \operatorname{Hilb}^d(M)$. Let E and F be two vector bundles on M such that the vector bundles $P_{H*}P_M^*E$ and $P_{H*}P_M^*F$ on $\operatorname{Hilb}^d(M)$ are isomorphic. Then, we show that E and F are isomorphic (see Proposition 2.1).
- (2) Let Q_M (respectively, Q_S) be the projection to M (respectively, $\operatorname{Sym}^d(M)$) of the tautological subscheme $\mathbb{S} \subset M \times \operatorname{Sym}^d(M)$. Let E and F be two vector bundles on M such that the vector bundles $Q_{S*}Q_M^*E$ and $Q_{S*}Q_M^*F$ on $\operatorname{Sym}^d(M)$ are isomorphic. Then, we show that E and F are isomorphic (see Lemma 2.2).
- (3) Let C be an irreducible smooth projective curve defined over k. Fix a vector bundle E over C of rank at least two. Let $Q^d(E)$ denote the quot scheme parametrizing the torsion quotients of E of degree d. There is a tautological quotient $\Phi_C^*E \to \mathbf{Q}$ over $C \times Q^d(E)$, where $\Phi_C: C \times Q^d(E) \to C$ is the natural projection. Let V and W be vector bundles on C such that the vector bundles $\Phi_{Q^*}((\Phi_C^*V) \otimes \mathbf{Q})$ and $\Phi_{Q^*}((\Phi_C^*W) \otimes \mathbf{Q})$ on $Q^d(E)$ are isomorphic, where $\Phi_C: C \times Q^d(E) \to Q^d(E)$ is the natural projection. Then, we show that E and F are isomorphic (see Proposition 2.3).

We also prove a similar result in the context of vector bundles on curves equipped with a group action (see Section 3).

A key method in our proofs is the Atiyah's Krull-Schmidt theorem for vector bundles.

Umesh V. Dubey: Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Prayagraj 211019, India, e-mail: umeshdubey@hri.res.in **Manish Kumar:** Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore 560059, India, e-mail: manish@isibang.ac.in **A. J. Parameswaran:** School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India, e-mail: param@math.tifr.res.in

^{*} Corresponding author: Indranil Biswas, Mathematics Department, Shiv Nadar University, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India, e-mail: indranil.biswas@snu.edu.in, indranil29@gmail.com

2 — Indranil Biswas et al. DE GRUYTER

2 A Fourier-Mukai transformation

2.1 Vector bundles on Hilbert schemes

Let k be an algebraically closed field. Let M be an irreducible smooth projective variety over k such that $\dim M \ge 2$. For any integer $d \ge 2$, let $\operatorname{Hilb}^d(M)$ denote the Hilbert scheme parametrizing the zero-dimensional subschemes of M of length d. We have the natural projections:

$$M \stackrel{p_M}{\leftarrow} M \times \operatorname{Hilb}^d(M) \stackrel{p_H}{\rightarrow} \operatorname{Hilb}^d(M).$$

There is a tautological subscheme

$$S \subset M \times \operatorname{Hilb}^{d}(M)$$
,

such that for any $z \in \operatorname{Hilb}^d(M)$, the preimage $p_H^{-1}(z)$ is the subscheme $z \subset M$. The restriction of p_M (respectively, p_H) to S will be denoted by P_M (respectively, P_H).

For any vector bundle E on M, we have the direct image $P_{H*}P_{M}^{*}E$ on S. We note that $P_{H*}P_{M}^{*}E$ is locally free because P_{H} is a finite morphism and $P_{M}^{*}E$ is locally free. Let

$$\widetilde{E} = P_{H*} P_M^* E \tag{2.1}$$

be this vector bundle; its rank is $d \cdot \operatorname{rank}(E)$. It is known that two vector bundles E and F on M are isomorphic if \widetilde{E} and \widetilde{F} are isomorphic [3,5]. We will give a very simple proof of it.

Proposition 2.1. Let E and F be two vector bundles on M such that the corresponding vector bundles \widetilde{E} and \widetilde{F} on $\operatorname{Hilb}^d(M)$ are isomorphic (see (2.1)). Then, E and F are isomorphic.

Proof. Since $\operatorname{rank}(\widetilde{E})$ and $\operatorname{rank}(\widetilde{F})$ are $d \cdot \operatorname{rank}(E)$ and $d \cdot \operatorname{rank}(F)$, respectively, it follows that $\operatorname{rank}(E) = \operatorname{rank}(F)$. Let $\operatorname{rank}(E) = r = \operatorname{rank}(F)$.

Fix a zero-dimensional subscheme $Z^0 \subset M$ of length d-1. Let $Z^0_{\text{red}} = \{x_1, ..., x_b\} \subset M$ be the reduced subscheme for Z^0 . The complement $M \setminus Z^0_{\text{red}} = M \setminus \{x_1, ..., x_b\}$ will be denoted by M^0 . Let

$$\iota: M^0 \to M \tag{2.2}$$

be the inclusion map. We have a morphism

$$\varphi: M^0 \to \operatorname{Hilb}^d(M)$$

that sends any $x \in M^0$ to $Z_0 \cup \{x\}$. The pullback $\varphi^*\widetilde{E}$ (respectively, $\varphi^*\widetilde{F}$) is isomorphic to $\iota^*E \oplus V_0$ (respectively, $\iota^*F \oplus V_0$), where V_0 is a trivial vector bundle on M^0 of rank (d-1)r and ι is the map in (2.2). The vector bundles $\varphi^*\widetilde{E}$ and $\varphi^*\widetilde{F}$ are isomorphic because \widetilde{E} and \widetilde{F} are isomorphic. So

$$\iota^* E \oplus V_0 = \iota^* F \oplus V_0. \tag{2.3}$$

There are no nonconstant functions on M^0 (recall that $\dim M \ge 2$). Hence, using [1, p. 315, Theorem 2(i)], from (2.3), it follows that $\iota^*E = \iota^*F$ (see [6] for vast generalizations of [1]). Hence, we have

$$\iota_*\iota^*E = \iota_*\iota^*F.$$

But $\iota_*\iota^*E$ (respectively, $\iota_*\iota^*F$) is E (respectively, F). This completes the proof.

The line of arguments in Proposition 2.1 works in some other contexts. We will describe two such instances.

2.2 Vector bundles on symmetric product

As mentioned previously, M is an irreducible smooth projective variety of dimension at least two. For any integer $d \ge 2$, let Sym^d(M) denote the quotient of M^d under the action of the symmetric group S_d that permutes the factors of the Cartesian product. We recall that $\operatorname{Sym}^d(M)$ is a normal projective variety. There is a tautological subscheme

$$\mathbb{S} \subset M \times \operatorname{Sym}^d(M) \tag{2.4}$$

parametrizing all $(z, y) \in M \times \text{Sym}^d(M)$ such that $z \in y$. Let

$$Q_M: \mathbb{S} \to M$$
 and $Q_S: \mathbb{S} \to \operatorname{Sym}^d(M)$

be the natural projections. For any vector bundle E on M, the direct image

$$\widehat{E} = Q_{S*}Q_M^*E$$

on $Sym^d(M)$ is locally free because Q_S is a finite morphism and Q_M^*E is locally free.

Lemma 2.2. Let E and F be two vector bundles on M such that the corresponding vector bundles \hat{E} and \hat{F} on $Sym^d(M)$ are isomorphic. Then, E and F are isomorphic.

Proof. Fix any $z_0 = \{x_1, ..., x_{d-1}\} \in \text{Sym}^{d-1}(M)$ (repetitions are allowed). Let

$$\iota: M^0 = M \backslash z_0 \hookrightarrow M$$

be the inclusion map. We have a morphism

$$\phi: M \setminus z_0 \longrightarrow \operatorname{Sym}^d(M), \quad x \longmapsto \{x, z\}.$$

First, note that $\phi^*\widehat{E} = \phi^*\widehat{F}$ because $\widehat{E} = \widehat{F}$. Evidently, we have $\phi^*\widehat{E} = (\iota^*E) \oplus O_{M^0}^{\oplus (d-1)\cdot \operatorname{rank}(E)}$ and $\phi^*\widehat{F} = (\iota^*F) \oplus O_{M^0}^{\oplus (d-1)\cdot \operatorname{rank}(E)}$ $O_{M^0}^{\oplus (d-1)\cdot \operatorname{rank}(F)}$. Now, the argument in the proof of Proposition 2.1 goes through without any changes.

2.3 Vector bundles on quot scheme

Let C be an irreducible smooth projective curve defined over k. Fix a vector bundle E over C of rank at least two. Fix an integer $d \ge 1$. Let $Q^d(E)$ denote the quot scheme parametrizing the torsion quotients of E of degree d. Let

$$\Phi_C: C \times Q^d(E) \to C$$
 and $\Phi_O: C \times Q^d(E) \to Q^d(E)$ (2.5)

be the natural projections. There is a tautological quotient

$$\Phi_C^* E \to \mathbf{Q} \tag{2.6}$$

over $C \times Q^d(E)$ whose restriction to any $C \times \{Q\}$, where $Q \in Q^d(E)$, is the quotient of E represented by Q. Given a vector bundle V on C, we have the direct image

$$F(V) = \Phi_{O*}((\Phi_C^*V) \otimes \mathbf{Q}) \to Q^d(E), \tag{2.7}$$

where Φ_O and Φ_C are the projections in (2.5), and **Q** is the quotient in (2.6); this F(V) is a vector bundle because the support of **Q** is finite over $Q^d(E)$.

Proposition 2.3. Let V and W be vector bundles on C such that the corresponding vector bundles F(V) and F(W)are isomorphic (see (2.7)). Then, V and W are isomorphic.

Proof. Since $\operatorname{rank}(F(V))$ and $\operatorname{rank}(F(W))$ are $d \cdot \operatorname{rank}(V)$ and $d \cdot \operatorname{rank}(W)$ respectively, from the given condition that F(V) and F(W) are isomorphic, we conclude that $\operatorname{rank}(V) = \operatorname{rank}(W)$. Let $F(V) = \operatorname{rank}(V) = \operatorname{rank}(V) = \operatorname{rank}(V)$. Let

$$\beta: \mathbb{P}(E) \to X \tag{2.8}$$

be the projective bundle parametrizing the hyperplanes in the fibers of E. So $\mathbb{P}(E) = Q^1(E)$. For any $z \in \beta^{-1}(x) \subset \mathbb{P}(E)$, if $H(z) \subset E_x$ is the corresponding hyperplane, then the element of $Q^1(E)$ for z represents the quotient sheaf $E \to E_x/H(z)$ of E. For any $z \in \mathbb{P}(E)$, the quotient sheaf map from E to the torsion quotient $E_x/H(z)$ of E of degree 1 corresponding to E will be denoted by E.

Fix d-1 distinct points $x_1, ..., x_{d-1}$ of X. Fix points $y_i \in \beta^{-1}(x_i)$, $1 \le i \le d-1$, where β is the projection in (2.8). The complement $\mathbb{P}(E)\setminus\{y_1, ..., y_{d-1}\}$ will be denoted by \mathcal{P} . Let

$$\iota: \mathcal{P} \hookrightarrow \mathbb{P}(E) \tag{2.9}$$

be the inclusion map.

Note that the subset $\{y_1, ..., y_{d-1}\}$ defines a point of $Q^{d-1}(E)$ representing the quotient $\bigoplus_{j=1}^{d-1} \mathbf{y}_j$ of E; this point of $Q^{d-1}(E)$ will be denoted by \mathbf{y} . We have a morphism

$$\Psi: \mathcal{P} \to Q^d(E), \quad z \mapsto \mathbf{z} \oplus \mathbf{y};$$

recall that $\mathbb{P}(E) = Q^{1}(E)$ and both **y** and **z** are the quotients of *E*.

Now, the vector bundle $\Psi^*F(V)$ (respectively, $\Psi^*F(W)$) is isomorphic to $(\iota^*((\beta^*V)\otimes O_{\mathbb{P}(E)}(1)))\oplus A$ (respectively, $(\iota^*((\beta^*W)\otimes O_{\mathbb{P}(E)}(1)))\oplus A$), where ι and β are the maps in (2.9) and (2.8), respectively, and A is a trivial vector bundle on \mathcal{P} of rank r(d-1); the tautological line bundle on $\mathbb{P}(E)$ is denoted by $O_{\mathbb{P}(E)}(1)$.

Since V and W are isomorphic, we conclude that $(\iota^*((\beta^*V)\otimes O_{\mathbb{P}(E)}(1)))\oplus A$ and $(\iota^*((\beta^*V)\otimes O_{\mathbb{P}(E)}(1)))\oplus A$ are isomorphic. As there are no nonconstant functions on \mathcal{P} , it follows that $(\iota^*\beta^*V)\otimes O_{\mathbb{P}(E)}(1)$ and $(\iota^*\beta^*W)\otimes O_{\mathbb{P}(E)}(1)$ are isomorphic. This implies that $\iota^*\beta^*V$ and $\iota^*\beta^*W$ are isomorphic.

The direct image $\iota_*\iota^*\beta^*V$ (respectively, $\iota_*\iota^*\beta^*W$) is β^*V (respectively, β^*W). Hence, we conclude that β^*V and β^*W are isomorphic. So $\beta_*\beta^*V = V$ is isomorphic to $\beta_*\beta^*W = W$.

3 Action of group on a curve

Let C be an irreducible smooth projective curve, and let Γ be a finite group acting faithfully on C. Consider the quotient curve

$$f: C \to Y = C/\Gamma.$$
 (3.1)

For any vector bundle V on Y, the pullback f^*V is a Γ -equivariant vector bundle on C.

The order of the group Γ is denoted by d. We have a morphism

$$\rho: Y \to \operatorname{Sym}^d(C) \tag{3.2}$$

that sends any $y \in Y$ to the element of $\operatorname{Sym}^d(C)$ given by the scheme-theoretic inverse image $f^{-1}(y)$, where f is the map in (3.1). To describe ρ explicitly, let $\{z_1, z_2, ..., z_n\}$ be the reduced inverse image $f^{-1}(y)_{\text{red}}$. Then,

$$\rho(y) = \sum_{i=1}^n b_i z_i,$$

where b_i is the order of the isotropy subgroup $\Gamma_{z_i} \subset \Gamma$ of z_i for the action of Γ on C. Note that ρ is an embedding. The action of Γ on C produces an action of Γ on $\mathrm{Sym}^d(C)$. The action of any $\gamma \in \Gamma$ sends any $(x_1, ..., x_d) \in \mathrm{Sym}^d(C)$ to $(\gamma(x_1), ..., \gamma(x_d))$. We have

$$\rho(Y) \subset \operatorname{Sym}^{d}(C)^{\Gamma}. \tag{3.3}$$

We note that $\operatorname{Sym}^d(C)$ is an irreducible smooth projective variety of dimension d. As in (2.4),

$$\mathbb{S} \subset C \times \text{Sym}^d(C) \tag{3.4}$$

is the tautological subscheme parametrizing all $(c, x) \in C \times \text{Sym}^d(C)$ such that $c \in x$. Let

$$Q_C: \mathbb{S} \to C \quad \text{and} \quad Q_S: \mathbb{S} \to \text{Sym}^d(C)$$
 (3.5)

be the natural projections. For any vector bundle E on C of rank r, the direct image

$$\widehat{E} = Q_{s*}Q_s^*E \tag{3.6}$$

is a vector bundle on $Sym^d(C)$ of rank dr.

We will describe an alternative construction of the vector bundle \hat{E} in (3.6). For $1 \le i \le d$, let

$$p_i: C^d \to C$$

be the projection to the *i*-th factor. Let

$$P: C^d \to \operatorname{Sym}^d(C) \tag{3.7}$$

be the quotient map for the action of the symmetric group S_d that permutes the factors of C^d . The action of S_d on C^d lifts to the vector bundle

$$E^{[d]} = \bigoplus_{i=1}^{d} p_i^* E \longrightarrow C^d.$$

The action of S_d on $E^{[d]}$ produces an action of S_d on $P_*E^{[d]}$, where P is the projection in (3.7). The vector bundle \hat{E} in (3.6) coincides with the S_d -invariant part

$$(P_*E^{[d]})^{S_d} \subset P_*E^{[d]}.$$

The actions of Γ on C and $\operatorname{Sym}^d(C)$ (see (3.3)) together produce a diagonal action of Γ on $C \times \operatorname{Sym}^d(C)$. This action of Γ on $C \times \operatorname{Sym}^d(C)$ preserves the subscheme S in (3.4). For this action of Γ on S, the projections Q_C and $Q_{\rm s}$ in (3.5) are evidently Γ -equivariant.

Now, let *E* be a Γ-equivariant vector bundle on *C*. Since the projections Q_C and Q_S in (3.5) are Γ-equivariant, the vector bundle \hat{E} in (3.6) is also Γ -equivariant. From (3.3), it now follows that the vector bundle

$$\rho^* \widehat{E} \to Y \tag{3.8}$$

is equipped with an action of Γ over the trivial action of Γ on Y.

Proposition 3.1. Let E and F be vector bundles on Y such that the corresponding Γ -equivariant vector bundles $\rho * \widehat{f} * \widehat{E}$ and $\rho * \widehat{f} * \widehat{F}$ on Y are isomorphic. Then, E and F are isomorphic.

Proof. The vector bundle f^*E has a natural action of Γ because it is pulled back from C/Γ . The action of Γ on f^*E produces an action of Γ on f_*f^*E over the trivial action of Γ on Y. Similarly, Γ acts on f_*f^*F .

Consider $Q_S^{-1}(\rho(Y)) \subset \mathbb{S}$, where Q_S and ρ are the maps in (3.5) and (3.2), respectively. Let

$$Q'_C = Q_C \mid_{Q_c^{-1}(\rho(Y))} : Q_S^{-1}(\rho(Y)) \to C$$

be the restriction of the map Q_C in (3.5). It is straightforward to check that this map Q_C' is an isomorphism. So we have the commutative diagram

$$C \leftarrow \begin{array}{ccc} & C & \leftarrow & Q_S^{-1}(\rho(Y)) \\ f \downarrow & & Q_S \downarrow & \\ Y & \stackrel{\rho}{\longrightarrow} & \rho(Y) \end{array} \tag{3.9}$$

where the horizontal maps are isomorphisms. Moreover, all the maps in (3.9) are Γ -equivariant with Γ acting trivially on Y and $\rho(Y)$. Therefore, from (3.9), we conclude that there are isomorphisms

$$f_*f^*E \xrightarrow{\sim} \rho^*\widehat{f^*E}$$
 and $f_*f^*F \xrightarrow{\sim} \rho^*\widehat{f^*F}$ (3.10)

as Γ -equivariant vector bundles.

Since the Γ -equivariant vector bundles $\rho \widehat{f^*F}$ and $\rho \widehat{f^*F}$ are isomorphic, from (3.10), it follows that

$$f_* f^* E \xrightarrow{\sim} f_* f^* F \tag{3.11}$$

as Γ-equivariant vector bundles

Next, we will show that

$$(f_*f^*E)^{\Gamma} = E$$
 and $(f_*f^*F)^{\Gamma} = F$. (3.12)

To prove (3.12), first note that the action of Γ on C produces an action of Γ on f_*O_C . The projection formula gives that

$$f_*f^*E \xrightarrow{\sim} E \otimes (f_*O_C).$$

The action of Γ on f_*O_C and the trivial action of Γ on E together produce an action of Γ on $E \otimes (f_*O_C)$. The aforementioned isomorphism between f_*f^*E and $E \otimes (f_*O_C)$ is evidently Γ -equivariant. Since $(f_*O_C)^{\Gamma} = O_Y$, we conclude that (3.12) holds.

4 Alternative constructions

Let C be a smooth projective curve over k and E a vector bundle on C. Unlike in Section 2.3, E can be a line bundle; we no longer assume $\operatorname{rank}(E)$ to be at least two. As mentioned earlier, $Q^d(E)$ denotes the quot scheme that parametrizes the torsion quotients of E of degree d. Let

$$\gamma: Q^d(E) \to \operatorname{Sym}^d(C)$$
 (4.1)

be the natural Chow morphism.

For any vector bundle V on C, consider the vector bundle F(V) on $Q^d(E)$ constructed in (2.7). We will describe its direct image $\chi F(V)$ on $\text{Sym}^d(C)$, where γ is the map in (4.1).

For every $1 \le j \le d$, let $\varphi_j : C^d \to C$ be the projection to the j-th factor. Take a vector bundle V on C. We have the vector bundle

$$\mathcal{V} = \bigoplus_{j=1}^{d} \varphi_{j}^{*}(V \otimes E) \longrightarrow C^{d}. \tag{4.2}$$

The symmetric group S_d acts on C^d by permuting the factors of the tensor product (see Section 2.2). The corresponding quotient is $Sym^d(C)$. As in (3.7), let

$$P: C^d \to C^d/S_d = \operatorname{Sym}^d(C) \tag{4.3}$$

be the quotient map. The action of S_d on C^d has a natural lift to an action of S_d on the vector bundle V in (4.2). This action of S_d on V produces an action of S_d on the direct image P_*V , where P is the projection in (4.3).

Lemma 4.1. The direct image $\gamma_* F(V)$ on $\operatorname{Sym}^d(C)$, where F(V) and γ are as in (2.7) and (4.1), respectively, is naturally identified with the S_d -invariant part

$$(P_*\mathcal{V})^{S_d} \subset P_*\mathcal{V}$$

for the aforementioned action of S_d on P_*V .

Proof. There is a natural homomorphism

$$\varpi: F(V) \to P_*V$$
.

It is straightforward to check that $\varpi(F(V)) \subset (P_t V)^{S_d} \subset P_t V$ and that the resulting homomorphism $F(V) \rightarrow (P_*V)^{S_d}$ is an isomorphism.

Let

$$\Psi_C: C \times \operatorname{Sym}^d(C) \to C \quad \text{and} \quad \Psi_S: C \times \operatorname{Sym}^d(C) \to \operatorname{Sym}^d(C)$$
 (4.4)

be the natural projections.

Consider ($\mathrm{Id}_{\mathcal{C}} \times \gamma$). **Q** on $\mathcal{C} \times \mathrm{Sym}^d(\mathcal{C})$, where **Q** is the sheaf in (2.6) and γ is the map in (4.1). Given a vector bundle V on C, we have the direct image

$$G(V) = \Psi_{S*}(\Psi_C^*V \otimes (\mathrm{Id}_C \times \gamma)_* \mathbf{Q}) \longrightarrow \mathrm{Sym}^d(C),$$

where Ψ_C and Ψ_S are projections in (4.4).

Proposition 4.2. For any vector bundle V on C, there is a natural isomorphism

$$y_*F(V) \simeq G(V),$$

where F(V) is constructed in (2.7).

Proof. Consider the following commutative diagram

Now, using the aforementioned commutative diagram, we can obtain the required isomorphism as follows:

$$\begin{split} \gamma_* F(V) &= \gamma_* \Phi_{Q*}((\Phi_C^* V) \otimes \mathbf{Q}) \\ &\simeq \Psi_{S*}(\operatorname{Id} \times \gamma)_*((\Phi_C^* V) \otimes \mathbf{Q}) \\ &= \Psi_{S*}(\operatorname{Id} \times \gamma)_*((\operatorname{Id} \times \gamma)^*(\Psi_C^* V) \otimes \mathbf{Q}) \\ &\simeq \Psi_{S*}((\Psi_C^* V) \otimes (\operatorname{Id} \times \gamma)_* \mathbf{Q}) \quad \text{(projection formula)} \\ &= G(V). \end{split}$$

Funding information: No funding was received for this manuscript.

Conflict of interest: There is no conflict of interests regarding this manuscript.

References

- [1] M. F. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. Fr. 84 (1956), 307-317.
- [2] C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, Fourier-Mukaiand Nahm transforms in geometry and mathematical physics, Progress in Mathematics, vol. 276, Birkhäuser Boston, Inc., Boston, MA, 2009.
- [3] I. Biswas and D. S. Nagaraj, Fourier-Mukai transform of vector bundles on surfaces to Hilbert scheme, J. Ramanujan Math. Soc. 32 (2017), 43-50.

Indranil Biswas *et al*.

DE GRUYTER

[4] D. Huybrechts, *Fourier-Mukai transforms in algebraic geometry*, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2006.

- [5] A. Krug and J. V. Rennemo, *Some ways to reconstruct a sheaf from its tautological image on a Hilbert scheme of points*, Math. Nachr. **295** (2022), 158–174.
- [6] P. O'Sullivan, *Principal bundles under reductive groups*, 2019, arXiv:1506.07828v2.