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1 Introduction

In the theory of several complex variables, questions of extending analytic objects keeping their analyticity arise
in many situations. The maximal domain of definition for such extensions has geometric properties similar to the
convexity. At this point, basic questions arise characterizing the realm of several complex variables.

The study of domains of holomorphy was the starting point of general theory of several complex variables.
Recall that a domain Q over C" is said to be a domain of holomorphy if @ € m(O¢r)', i.e., if Q is biholomor-
phically equivalent to a connected component of the structure sheaf O ¢ of C", which is, by definition, the sheaf
7 : O(=0¢n) - C", of the germs of holomorphic functions. That CZ\{(O, 0)} is not a domain of holomorphy was
first explicitly stated in the international congress of mathematics talk of Hurwitz in 1897. There exist various
geometric characterizations of domains of holomorphy. A successful example is the following equivalences that
originated in the works of Hartogs, Levi, Cartan, and Thullen and finalized by Oka in 1953 as follows:

O D Q €m(0) & Q isholomorphically convex
I v ™
ct - logSg € PSH(Q)

1 my(X) denotes the set of connected components of X.
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holomorphic

Here 6g(x) = sup{r;at : B(n(x),r) — Q st me(=1Id},

Bw,r)={z€C" |lz-w| <r} and PSH = plurisubharmonic.

The equivalence between —-log8, € PSH(®Q) and Q € my(0) is the solution of the Levi problem? on C™.
Recall that a complex manifold M is said to be holomorphically convex if

vye MY st. yN) € M, 3If€OoM) st. f(y(N)) € C,
or equivalently,

VKEM, {x;|f(x)| < sup|f], forall f€ O(M)}EM.
K

A striking result in the early stage of several complex variables (SCV) was that a finitely sheeted domain
over C" is holomorphically convex if and only if it is a domain of holomorphy (cf. [12]). We shall call a domain

ol M locally pseudoconvex if every point x € M has a neighborhood U such that 77%(U) is holomorphically
convex>. It is known from the works of Fujita [25] and Takeuchi [72] that one can replace C" by CP" in Oka’s
theorem by interpreting § as “the distance to the boundary of Q” with respect to the Fubini-Study metric or
replacing B (;r(x), r) by the corresponding geodesic ball. The result was further generalized by Ueda [73] for
the domains over Grassmannian manifolds.

Note that C" is the unique simply connected complete Kahler manifold whose sectional curvature is zero
(cf. [68]) and CIP" is characterized as a compact Kahler manifold whose biholomorphic sectional curvature is
positive (cf. [45] and [69]). For any noncompact locally pseudoconvex domain 7 : Q —» CP", the curvature
property can be used to show that, for any fixed C* real-valued function ¥ on CP", -logé8g + en*y € PSH(RQ)
for sufficiently small € > 0. Recall that a holomorphically convex manifold M is called a Stein manifold if
O(M) - C*¥1 e, the natural restriction map O(M) - C*! is surjective, for all x,y € M.

According to what J.-P. Serre told S. Hitotumatu, it had not yet been proven in 1954 that locally pseudo-
convex domains over Stein manifolds are Stein (cf. [38])°. As is well known, this question became an exercise
because of the following characterization of Steinness due to Grauert [27] (see also [35, pp. 280-284]).

Theorem 1. For a connected complex manifold M, the following are equivalent:
(D) M is a Stein manifold.
(2) M admits a strictly plurisubharmonic (PSH) exhaustion function.

Since every locally pseudoconvex domain Q over CP" can be shown to have strictly PSH exhaustion
functions using the aforementioned property of —logdq, one obtains Oka’s theorem and its generalizations by
Fyjita and Takeuchi from Theorem 1. Roughly speaking, the curvature positivity implies strict pseudocon-
vexity and the latter yields holomorphic functions.

Grauert’s method of showing “(2) = (1)” in Theorem 1 is basically a generalization of Oka’s method in the
sense that it is by solving Cousin’s problem. However, it is not so constructive as Oka’s since it is based on the
finite dimensionality of sheaf cohomology groups rather than their vanishing. Nevertheless, a great advantage
of Grauert’s method is that it is available to produce holomorphic functions under weaker assumptions as in
the following.

Theorem 2. For a complex manifold M, the following are equivalent:
(I") M is holomorphically convex, and {(x,y) € M x M : O(M) ~ C*}¢ is a compact set.

(2) M admits a PSH exhaustion function, which is strictly PSH outside a compact set.

M is called strongly pseudoconvex if it satisfies (1) or (2).

2 Oka called it the Hartogs inverse problem.

3 Cartan [11] called such a domain “partout pseudo-convexe.”
4 A8 denotes the set of maps from B to A.

5 Actually, it was not known even for the universal covering.



DE GRUYTER Geometry of analytic continuation on complex manifolds = 3

Strongly pseudoconvex manifolds arise naturally as neighborhoods of compact analytic subsets that are
holomorphically contractible to points. A decisive result in this context is that strongly pseudoconvex mani-
folds are nothing but the nonsingular models of Stein spaces with finitely many singular points (cf. Grauert
[28], Hironaka [36], and Artin [2]).

On the other hand, the picture of Oy, changes quite a lot for other complex manifolds M. For instance,
there exist a complex torus T and a domain Q C T with 9Q # ¢ and Q & my(Or) such that —logSg € PSH with
respect to a flat metric (cf. [48]).

This change enlarges the range of questions on the geometry of analytic continuation on complex mani-
folds. Grauert [29] suggested one direction by introducing the notion of bundle convexity. The idea is to find a
geometric condition for a holomorphic vector bundle 77 : E — M so that the sheaf of germs of its holomorphic
sections has properties similar to O¢» and Ocpn.

Definition 1. M is said to be E-convex in the sense of Grauert if
VKeM AR €E st. Vx € M\n(R) and Vv € E,,

s € HOO(M, E) st. s(K) C K and s(x) = v.

Definition 2. M is called E-convex if

VX CE st mly isproperand Vy € M"N st. y(N) € M,
3s € HYO(M, E) s.t. #(s(y(N))\X) = o
Note that

M is E-convex = M is E & F-convex forall F

so that Grauert’s E-convexity is more restrictive than the mere E-convexity. To find a reasonable class of
(M, E) for which M is E-convex or so in Grauert’s sense, basic things to be studied are consequences of the
curvature properties of M and E. In order to describe a reasonable statement in terms of curvature properties,
we shall fix a Hermitian metric along the fibers of E (a fiber metric of E in short) and restrict ourselves to the
following weaker convexity notion.

Definition 3. Given a fiber metric h of E, M is called (E, h)-convex if
vy e M st. y(N) € M,3s € H°M, E) s.t. |s(yN)|n € R.

Let L — M be a holomorphic line bundle and let Kj; - M be the canonical line bundle of M. L is said to be
positive (denoted L > 0) if it admits a fiber metric whose curvature form is everywhere positive. If the dual
bundle L* is positive, L is said to be negative (denoted L < 0). Kodaira’s embedding theorem and Theorem 2
can be unified into the following.

Theorem 3. (See [46] for instance.) A strongly pseudoconvex manifold of dimension n with a positive line bundle
can be embedded into CP2"*1,

M is called a weakly pseudoconvex manifold (= weakly 1-complete manifold) if it admits a C* plur-
isubharmonic exhaustion function. It is known that every complex Lie group is weakly pseudoconvex (cf. [42]).
Fixing any C* plurisubharmonic exhaustion function ¢ : M - R, we put M, = {x; ¢(x) < ¢} for any c € R. By
the use of sufficiently rapidly increasing convex functions on [-, ¢), the following can be deduced without
difficulty, based on a standard L? method in [50]. (For the main result of [50], see Proposition 2 in §2.)

Proposition 1. If a weakly pseudoconvex manifold M admits a positive line bundle L — M, then the restriction
map
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I'(M, 0Ky ® L)) » T(M, O(Ky ® L))

has a dense image and VYc €R Ju,ENs.t. Yuzyu, and Vy €M) st. y(N) & M, 3L CN with
y(E) € M, s.t,

(M., O(Ky ® L*)) - T'(Z, O(Ky ® LH)).

Therefore, if M is connected and noncompact in the situation of Proposition 1, one has

dimT(M, O(Ky; ® L*)) = oo, for u > 1.

This observation enables us to construct singular fiber metrics (see §2) on L to conclude the following.

Theorem 4. If a connected weakly pseudoconvex manifold M admits a positive line bundle L, then
Ju, EN st Yuzp,and Vy € MY s.t. y(N) € M, 3 E C N withy(Z) € M s.t,

I'M, O(Ky ® L*)) - I'(E, O(Ky ® L*)).

Corollary 1. For any positive line bundle L over a weakly pseudoconvex manifold M, M is K); ® L*-convex for
sufficiently large u.

If Ky < 0, by applying Theorem 4 to produce singular fiber metrics of Kj3; with positive curvature current
and with enough singularities along £, one has the following.

Theorem 5. (cf. [70]) A weakly pseudoconvex manifold is holomorphically convex if Ky; < 0.
Theorem 5 is essentially a small addendum of Theorem 4. A somewhat bigger one is the following.

Theorem 6. (cf. [71]) Weakly pseudoconvex manifolds of dimension n with positive line bundles are holomor-
phically embeddable into CP2"*1,

So, in view of Theorems 1-3, we are left with the following questions since 1998.
Q1. Does Theorem 4 remain true under the weaker assumption that L[y, > 0 for some UeM?

Q2. What about Theorem 6?

As for Theorem 5, one may ask the following.
Q3. Does Theorem 5 remain true if Kj; < 0 is replaced by Ky| m\u <0 for some UEM?

Recently, it turned out that the answer to Q3 is affirmative. Namely, the following holds true.

Theorem 7. A weakly pseudoconvex manifold is holomorphically convex if Ky is negative outside a compact set.

It turned out that the answers to Q1 and Q2 are affirmative (cf. [60]). The next section will be devoted to
showing an outline of the proof of Theorem 7.

2 Levi problem on weakly pseudoconvex manifolds
The proof of Theorem 7 is a combination of Takayama’s proof of Theorem 5 and the following.

Proposition 2. [50] Let M be a weakly pseudoconvex manifold of dimension n with a C* plurisubharmonic
exhaustion function ¢ and let M, = {x € M; ¢(x) < c} for c € R. Then, for any holomorphic line bundle L -~ M
and ¢ € R satisfying Lly\y, > 0,

dimH™4(M, L) < o M
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and
H™(M, L) = HY(M,, L) )
hold for q = 1 with respect to the natural restriction homomorphisms, and
H™(M,, L) = H™(M, L)|y,. (€))

Here, H?4(M, L) denotes the L-valued d cohomology group of type (p, q) and
H™O(M, L)|y, denotes the closure with respect to the topology of locally uniform convergence.

Recall that H™(M, E) is canonically isomorphic to H*(M, Ky ® E) for any holomorphic vector bundle
E — M. We note that (3) is an extension of Runge’s approximation theorem of Oka-Weil type (see [23]). (2) can
be regarded as its extension to higher cohomology groups (cf. [1]). Because of (1), (2) is a consequence of the
extension of (3) to the cohomology of higher degrees, but it can also be understood as a unique continuation of
the cohomology classes (cf. [31, Part V, Commentary]).

In order to apply an argument in the proof of Theorem 5, one needs to produce a singular fiber metric of
K}y in such a way that the L? method is available to find enough holomorphic functions to conclude that M is
holomorphically convex.

Here, by a singular fiber metric of a holomorphic line bundle L, we shall mean a system of measurable
functions of the form {h,e %}, associated with a trivializing open covering {{;,} of M for L in such a way that
hy € C™(Uy), hg > 0, Y, € PSH(U,) N L(Uy), and hge Y« = hge™¥s Ing,[* are satisfied on U, N U for a system of
transition functions {r]aﬁ} of L.

Definition 4. For a singular fiber metric h of a holomorphic line bundle L - M and for x € M, we put
¢ (h) = sup{p; I € L], st. he¥ is C* around x and e € L]} € (0, ],

where £}, denotes the sheaf of germs of locally integrable functions.
Proposition 2 is applied to show the following.

Proposition 3. In the situation of Proposition 2, for any d > ¢ and for any y € (Md\MC)N such that o(y(k)) is
strictly increasingly convergent to d, one can find an analytic set A in My containing y(N) with compact

components and a singular fiber metric h of L with strictly positive curvature current on Md\MC, such that h
is C* on My\A and c(h) < 1 for all x € p(N).

For any singular fiber metric h of L, we denote by L5j1,.(M, L, h) the set of measurable L-valued (p, q)
forms u on M such that |uf} , € L., for all x € M and set

Ker(3 : LM, L, h) ~ LB (M, L, b))

HRL (M, L, h) = )
@,locM, L, = - ,
o (3 : LToeM, L, h) > LEo(M, L, h))

By applying Proposition 3, the proof of Proposition 2 can be generalized without difficulty to show the
following.

Proposition 4. Let M and ¢ be as in Proposition 2 and let L be a holomorphic line bundle with a singular fiber
metric h, which is C* on M, and with strictly positive curvature current on M \Mc. Then,

dimH o (M, L, h) < o
and

HRooM, L, h) = H)oo(Mc, L, h)
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hold for q =z 1 with respect to the natural restriction homomorphisms, and
HEloc(Me, L, h) = Hg)ooM, L, h)la,.

One can deduce the following from Proposition 4.

Corollary of Proposition 4. (An interpolation theorem) In the situation of Proposition 2, one can find a funda-
mental neighborhood system {U,} of A such that

HOO(My, Ky @ L) ~ Im(HO(U,, Ky ® L) & HOQy(N), Ky ® L)),

where p denotes the restriction map.
Hence, by letting L = Kj; in particular, one has

O(My) ~ CF,

for any d > ¢ and for any discrete set £ C M(,I\MC such that ¢|; is injective and sup ¢ = d. Moreover, the
preimages of the elements of C* contain those functions that can be chosen arbitrarily small on M, for any
fixed ¢’ < c. Hence, by a limiting argument, one has also

oM) - CF,

for any discrete set £ C M \MC such that ¢l5 is injective and supy¢p = .
Hence, M is holomorphically convex.

In short, on weakly 1-complete domains, line bundles that are positive near the boundary have sufficiently
many holomorphic sections over compact sets if sufficiently high tensor power is taken, so that it is possible to
construct singular fiber metrics by using them in order to solve an interpolation problem. On locally pseu-
doconvex bounded domains in complex manifolds, the I? method works to solve similar interpolation pro-
blems. Some of the specific outcomes will be reviewed in the following.

3 Pseudoconvexity and the Bergman kernel
Every holomorphic map
(z,w) e D?; |z| > % or |w| < % - QEmO) (D ={z€C;lz| <1})

is extendable to a holomorphic map D? — Q (Hartogs). If @ C C" and 99 is a C2-smooth real hypersurface with
a defining function p, 39p|kerap is called the Levi form of Q. Every domain of holomorphy Q@ C C" with
C?-smooth boundary has a defining function p whose Levi form is everywhere semipositive on 0Q (Levi).
In 1933, Bergman observed the following in some special cases:
Q € C?and 0Q € C2= 8q(2)2 < Bo(z,2) < 80(2)73,
hol.cvx
where, Bo(z, w) denotes the Bergman kernel function of Q (cf. [5]).
In 1965, Hormander [40] proved that, given a domain Q C C",
lim Bo(z, 2)8o(z)™*! existsand > 0
YARd /)]
if the range of the -operator L(%)O(Q) - L(Oz’)l(Q) is closed and 9 is strongly pseudoconvex at z,. Here, L(’é’)q(Q)
denotes the space of L¥p, q)-forms on Q.
In 1974, Fefferman proved for strongly pseudoconvex domains Q with C*-smooth boundary that
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Bo(z, 2) = p(2)80(2)™ " + Y(2)l0g 6a(2)

holds for some C* functions ¢ and ¢ on Q. The following is an application.

Fefferman’s theorem. Every biholomorphic map between two strongly pseudoconvex bounded domains
Q; and Q, with C*-smooth boundary extends as a diffeomorphism from Q; to Q,.

By an I? extension theorem in [62],

Q!P@ C" and 9Q € Lip = 8q(2)% < By(z, 2).°

CVX
Recently, Chen [13] proved that §o(2)% < Bg(z, ) also holds if 89 is locally the graph of a continuous function.
A connection between the weighted Bergman kernels and pluripotential theory is shown in the following
diagram:

CONS 2 , 9
f C A} € RKHSs 3 Al:=

feo@fee | < ool
Q
1 s )

By(z,w) = Y1, (2)f,(w) € Bergmankernels 3 {Buolney = PSH 3 o,
where RKHS = reproducing kernel Hilbert space, CONS = complete orthonormal system, and
.1
D({Bmy}) = lim —logByy(z, z).
m-o M

Demailly’s approximation theorem in [17] asserts that
9({qu)}) =0 4

holds for any ¢ € PSH(Q) if Q is pseudoconvex.
Looking for even better approximations, Demailly [18] asked whether or not |f|?e™? € L'(Q) for ¢ € PSH(Q)

and f€ O(Q) implies |f|2e?? € L} .(Q") for Q’€Q and for p > 1 sufficiently close to 1. Recently, a sharp and
effective affirmative answer was given by Guan [32].

If Q admits a divisor A C Q such that Q\A is Stein, generalization of (4) holds for the families of weighted

Bergman kernels, say Bym, for the spaces H(Z’)O(Q, L,h™)(m = 1,2, ... ) for the line bundles L — M with singular
fiber metrics h with positive curvature current. An important property of By, is that

IBh = dimH™(Q, L ® T)
Q
holds if QE€Q (=Q is compact), where 7, denotes the multiplier ideal sheaf of h defined by
Ihn={f€0; |f|2€_¢a € ~£%oc (h = hee %, hq € C*, ¢aePSH)-

Therefore, it is tempting to ask for the behavior of logB;m(z, z) as m — » and as z — 0Q. In particular, the
asymptotics of functions

logBym(z, z) — logBymn (2, 2)

might be interesting for any fixed fiber metric hq of a fixed line bundle Ly, - M.

4 Some geometry beyond holomorphic convexity

In Oka’s theory, important existence theorems are tied together by an approximation theorem of Runge type,
so that the existence of a PSH exhaustion function is crucial to let the limiting arguments run. Hence,

6 Ycvx=pseudoconvex.
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Bergman, Oka — Grauert, Hormander — Fefferman, et al.

restricted class of PSH exhaustions = sharper analytic results.
On the other hand, the principal idea of [29] can be understood as follows:
(Gr-4)
Q € M = “Q € M”» “;E—- M and E|pg > 0.”
str.evx loc.yevx

In short, as far as the existence theorems are concerned, one should be able to replace the assumption of
strict pseudoconvexity of Q, in many cases, by the combination of the weak pseudoconvexity of Q and the
positivity of bundles along the boundary of Q. Hence, if one wants to study the bundle-valued Bergman kernels
on complex manifolds, one has to extend the application of the L? method to the situation where the domain
does not admit PSH exhaustion functions in canonical ways. Such an extension of the objects seems to be
indispensable because the following questions remain open for Kihler manifolds M.

Conjecture 1.Q € M 2 Q is weakly pseudoconvex. (cf. [30]),

loc.evx

Conjecture 2. MEM and M — M e M is weakly pseudoconvex. (cf. [67]).

covering

Continuation of analytic objects on such Q and M will be accompanied with interesting questions. For

instance, one may ask O(X) 5 oXx \K )if X = Q or M as above when X is connected, dimX > 2 and K € X. The
answer is no in general, but something not totally stupid can be said in some cases. For instance, if Q is a
smooth and locally pseudoconvex bounded domain in a Kdhler manifold of dimension =2 whose complement
is not locally pseudoconvezx, then 0Q must be connected (cf. [52]).

We also note that @ € M is an intrinsic property of Q (cf. [47]), whereasQ € M is not, as one can see
str.pevx loc.ycvx

from the following examples.
M CP22Q=CPA\{p} =0t C CP2blown-up at p.
loc.pevx

(2 CcP"x CP1D (C"\{O}) x {{ € C;1<|{| <exp(2n®/log2)} (not locally pseudoconvex if n=2)
=Q c @©\(0p) x CPY((z,{) = (22, 20)).

loc.ycvx and 9QECY
(See [51] for n = 1 and [20] for n = 2. See also [49].)
Therefore, one has to impose conditions more than the mere local convexity on 0Q to extend Grauert’s
theorem for E|;o > 0 along the idea (Gr-4).

Remark. As a supporting evidence of conjecture 1, one can mention the following.

Theorem 8. (Diederich-Ohsawa [21]) For any compact Kdhler manifold M and p € Hom(m(M), AutD),
M %, D (€ioc.pencM %, CPY) is weakly pseudoconvex.

As for conjecture 2, partial answers are given in [24] and [10].

5 From Riemann to Demailly

In [19], Demailly remarked as follows.

It is remarkable that Bernhard Riemann already anticipated in [66] the use of L? estimates and the idea of minimizing energy,
even though his terminology was very different from the one currently in use.
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As is well known, Riemann’s idea was realized, or rather justified, by Hilbert and Weyl and then further
extended by Hodge and Kodaira. In particular, Kodaira characterized projective algebraic varieties as compact
complex manifolds that admit positive line bundles, by establishing a cohomology vanishing theorem.

Demailly’s thesis [16] is one of the generalizations of Kodaira’s vanishing theorem. Demailly proved a
vanishing theorem with I? estimates on complete Kéihler manifolds under the semipositivity conditions on the
curvature of the bundles. It was first observed by Grauert [26] that complete Kdhler metrics live naturally on
Stein manifolds as well as on quasi-projective manifolds. The reason why Demailly’s L? vanishing theorem is
effective in algebraic geometry is that L* holomorphic functions extend analytically across proper analytic
subsets of the domains in C" as in the case of Riemann’s removable singularity theorem in one variable.

The method of Demailly is a natural extension of Skoda’s variant of Andreotti-Vesentini-Hérmander’s
refinement of Oka-Kodaira’s solution of the generalized Cousin problem. According to what I heard, Skoda,
who was the adviser of Demailly, explored his method of solving a division problem with I? estimates after
reading Oka’s paper recommended by Lelong. Demailly’s works have clearly shown that the method of L?
estimates was a big breakthrough in SCV and complex geometry.

6 Bundle-convexity theorems

Here is a pseudo-chronologically ordered collection of works of the author related to Demailly’s:

I? estimates for 8 = Bergman metric

1551, [57] .
2 [62] s34 (—) — bundle-convexity
L? extension o= Nishino’s rigidity ~ -[56]: vanishing

of C in Stein families ~ for HJ/(Q, L)

Note that “L? extension” is closely related to “logBg,(z, z) € PSH w.r.t. (¢, z),” which was first discovered
in [41,44] in special cases and established in [6] for Stein families {Q,}. L? extension problems have been solved
in this context from various viewpoints [4,7,8,19,32-34,63]. Another connection between the L? extension and
the Bergman kernel is given by Demailly’s aforementioned approximation theorem.

Let E » M be a holomorphic vector bundle equipped with a fiber metric i, and let @ C M be a relatively
compact open set. In this situation, the (E, h)-convexity of Q can be expressed more concisely, i.e.,

Q isE-convex & Vye Vst y(N) € Q3se HO(Q,E) st. s(y(N)) € E.

By an abuse of language, we shall confuse E-convexity with (E, h)-convexity for the bounded domains.
Nontrivial bundle-convexity theorems were first obtained by Pinney [64] and Asserda [3].

Theorem 9. (cf. [64]) Assumption: MEM, dQ € C?, rankE =1, and E > 0.
Conclusion: Q is E*-convex for p > 1.

Theorem 9 realizes the idea (Gr-4) under dQ € C?, but only partially because E > 0 seems obviously
superfluous.

Theorem 10. (cf. [3]) Assumption: MEM, rankE =1, E> 0,andQ € M.
. . loc.ycvx
Conclusion: Q is E*-convex for p > 1.

Since Theorem 10 becomes false if one replaces E > 0 by E|sq > 0 (see Example 1 in §5), it is still necessary
to impose some condition on 9 to extend it in the direction of (Gr-4).
Theorems 9 and 10 have been extended in [58] as follows.
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Theorem 11. (Bundle-convexity I) Assumption: Q@ € M, dQ € C% E — M, rankE = 1, and E|5q > 0.
. . loc.pevx
Conclusion: Q is E*-convex for u > 1.

Theorem 12. (Bundle-convexity II) Assumption: @ € M, 9Q = |D| for some effective divisor D on M s.t.
[Dllp = 0, E » M, rankE = 1, and E5q > 0. oc-yex
Conclusion: Q is E#-convex for p > 1.

Consequently, one can extend Theorem 7:

Theorem 13. (cf. [56,12]) In the situation of Theorems 11 or 12, assume that E = Kj;. Then, Q is holomorphically
convex.

See also [65], which concludes holomorphic convexity in a similar situation but under a stronger assump-
tion. On the other hand, negative but interesting examples exist also in this direction (cf. [14]).

Remark. In view of Theorem 10, the E*-convexity of M \|D| does not imply that [D]]p, is semipositive. It seems to
be open whether or not [D]|p, is nef if M \|D| is E#-convex in a “transcendental sense.” It is in a good contrast
with a recent result by Horing and Peternell [39] saying that [D]|p is pseudoeffective’ if D is a smooth

hypersurface of a compact Kahler manifold M and M \D is Stein. It is known from Ueda’s theory [74] that
the complement of a smooth curve C in a compact complex surface S is strongly pseudoconvex if C = S is of
finite type, i.e., if deg[C]|c = 0 and the germ of the embedding C = S is not formally equivalent to that of the
embedding C = [C]|¢ as the zero section. In [55], it was shown in this situation that for any line bundle L — S
with L|c > 0

H>(S\C, L) = Uy H(S, L ® [C]),

where H>9(S, L ® [C]#) is naturally identified with the space of meromorphic sections of Ks ® L with poles of
order at most ¢ (only) along C. There is a famous example of C=S by Serre, where C is an elliptic curve, [C]|¢ is
trivial, and S\C = C* x C*. The point is that S\C is Stein, does not admit any plurisubharmonic exhaustion
function ¢ such that ¢ < log ! , and does admit one of growth —, where 8¢ denotes the distance to C. Recently
Koike and Ueda [43] showed that certain affine bundles over compact Kéahler manifolds have a property
similar to S\C as in Serre’s example and [74]. Many other interesting things seem to be left undiscussed in
this direction.

A result on the kernel asymptotics for the case Q € C? is the following.
Theorem 14. (cf. [59]) Let Q be a bounded locally pseudoconvex domain with C>-smooth boundary in a complex

manifold M and let E — M be a holomorphic line bundle with a C* fiber metric h whose curvature form is
positive at every point of Q. Then, for any € > 0 one can find vy € N such that

liminf Bo r7(z)- p(2)*¢ > 0
z—-0Q

holds for any v = v,. Here, Bg v denotes the Bergman kernel for the [?E¥-valued holomorphic n-forms with
respect to h".

Sketchy accounts of the proofs of Theorems 11 and 12 are given below.

Proof of bundle-convexity I. Finite dimensionality of the Z29-cohomology with respect to a complete metric on
Q\y(N) for a class of y : N — Q is applied. More precisely, for any z, € 92, one can find a sequence y € QY with

7 For the definition, see [9] (Definition 7.1).
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limy_..y(k) = zg, a complete metric g on Q\y(N), P Q - [-,-1) with (-») = p(N) and -0dlog(-y) = g
near y(N) such that

dimHE(Q\(N), EX, g, hi'e ¥ (-1)8h) < . Q)

One can apply (5) to find desired sections by choosing ¥ so that e™¥ is non-integrable around any point of
y(N). O

Proof of bundle-convexity II. ameN s.t. H(M,Ky ® E™ ® [DI*) » H*Y(D, Ky ® E™ ® [DJ*|p) for
u>1. ]

Acknowledgements: The author is greatly indebted to the referee for valuable suggestions and for pointing
out silly mistakes. For possibly remaining errors, the author owes the whole responsibility.

Author contributions: The author confirms the sole responsibility of the study, presented results and manu-
script preparation

Conflict of interest: The author has no competing interests to declare that are relevant to the content of this
article.

References

[11 A Andreotti and H. Grauert, Théoréme de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962),
193-259.

[21 M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Etudes Sci. Publ. Math. 36 (1969), 23-58.

[3]1 S. Asserda, The Levi problem on projective manifolds, Math. Z. 219 (1995), no. 4, 631-636.

[4] S.J. Bao, Q.-A. Guan, Z.-T. Mi, and Z. Yuan, Concavity property of minimal L? integrals with Lebesque measurable gain VII-Negligible
weights, arXiv:2205.07512v1 [math.CV].

[5] H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer Verdnderlichen, Zweite, erweiterte Auflage. Herausgegeben
von R. Remmert. Unter Mitarbeit von W. Barth, O. Forster, H. Holmann, W. Kaup, H. Kerner, H.-J. Reiffen, G. Scheja und K. Spallek.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 51, Springer-Verlag, Berlin-New York, 1970, xvi+225 pp.

[6] B. Berndtsson, Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann.
Inst. Fourier (Grenoble) 56 (2006), no. 6, 1633-1662.

[71  B. Berndtsson and L. Lempert, A proof of the Ohsawa-Takegoshi theorem with sharp estimates, J. Math. Soc. Japan 68 (2016), no. 4,
1461-1472.

[8] Z. Btocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), no. 1, 149-158.

[9] S.Boucksom,].-P. Demailly, M. Paun, and T. Peternell, The pseudo-effective cone of a compact Kéhler manifold and varieties of negative
Kodaira dimension, ). Algebraic Geometry 22 (2013), 201-248.

[10] B Cadorel, Y. Deng, and K. Yamanoi, Hyperbolicity and fundamental groups of complex quasi-projective varieties, arXiv:2212.12225
[math.AG].

[11] H. Cartan, Sur les domaines daexistence des fonctions de plusieurs variables complexes, Bull. Soc. Math. France 59 (1931), 46-69.

[12] H. Cartan and P. Thullen, Zur Theorie der Singularititen der Funktionen mehrerer komplexen Verdnderlichen, Math. Ann. 106 (1932),
617-647.

[13] B.-Y. Chen, Capacities, Green function and Bergman functions, arXiv:2102.12650.

[14] M. Coltoiu and K. Diederich, The Levi problem for Riemann domains over Stein spaces with isolated singularities, Math. Ann. 338 (2007),
no. 2, 283-289.

[15] G. Coeure and . ). Loeb, A counterexample to the Serre problem with a bounded domain of C? as fiber, Ann. Math. 122 (1985), 329-334.

[16] ).-P. Demailly, Estimations L* pour laopérateur 0 daun fibré vectoriel holomorphe semi-positif au-dessus daune variété kihlérienne
compléte, Ann. Sci. Ecole Norm. Sup. (4) 15 (1982), no. 3, 457-511.

[171 J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361-409.

[18] J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective
Results in Algebraic Geometry (Trieste, 2000), 1-148, ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.

[19] J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties. The legacy of Bernhard Riemann after one
hundred and fifty years, Vol. 1, 191-222, Adv. Lect. Math. (ALM), 35.1, Int. Press, Somerville, MA, 2016.



12 —— Takeo Ohsawa DE GRUYTER

[20]

[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
31

B2]
[33]
[34]

[35]

[36]

371
[38]
[39]
[40]
[41]

[42]
[43]
[44]
[45]
[46]

[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[53]
[56]
[57]

[58]
[59]

[60]
(61

[62]

K. Diederich and J. E. Fornaess, A smooth pseudoconvex domain without pseudoconvex exhaustion, Manuscripta Math. 39 (1982), no. 1,
119-123.

K. Diederich and T. Ohsawa, Harmonic mappings and disc bundles over compact Kéihler manifolds, Publ. Res. Inst. Math. Sci. 21 (1985),
no. 4, 819-833.

K. Diederich and T. Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. Math. (2) 141 (1995), no. 1, 181-190.
F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz fiir Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140
(1960), 94-123.

. Eyssidieux, L. Katzarkov, T. Pantev, and M. Ramachandran, Linear Shafarevich conjecture, Ann. Math. 176 (2012), 1545-1581.

. Fujita, Domaines sans point critique intérieur sur laespace projectif complexe, J. Math. Soc. Japan 15 (1963), 443-473.

. Grauert, Charakterisierung der Holomorphiegebiete durch die vollsténdige Kéhlersche Metrik, Math. Ann. 131 (1956), 38-75.

. Grauert, On Levias problem and the imbedding of real-analytic manifolds, Ann. Math. 68 (1958), no. 2, 460-472.

. Grauert, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368.

. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963), 377-391.

. Grauert, personal communication.

. Grauert, Selected papers. Vol. I, II. With commentary by Y. T. Siu et al., Springer-Verlag, Berlin, 1994. Vol. I: xii+439 pp.; Vol. II: pp. i-xii
and 441-923.

Q.-A. Guan, A sharp effectiveness result of Demaillyas strong openness conjecture, Adv. Math. 348 (2019), 51-80.

Q.-A. Guan, A proof of Saitohas conjecture for conjugate Hardy H? kernels, |. Math. Soc. Japan 71 (2019), no. 4, 1173-1179.

Q.-A. Guan and X.-Y. Zhou, A solution of an L? extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015),
no. 3, 1139-1208.

R. C. Guan and H. Rossi, Analytic functions of several complex variables, Reprint of the 1965 original. AMS Chelsea Publishing,
Providence, RI, 2009. xiv+318 pp.

H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. Math. 79 (1964), no. 2,
109-203.

H. Hironaka and H. Rossi, On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156 (1964), 313-333.

S. Hitotumatu, A note on Cousinas problem (in Japanese), SGgaku no Ayumi 3 (1956), no. 3, 10-11.

A. Horing and T. Peternell, Stein complements in compact Kdhler manifolds, arXiv:2111.03303v1 [math.AG].

L. Hérmander, L? estimates and existence theorems for the 8 operator, Acta Math. 113 (1965), 89-152.

G. Hossjer, Uber die konforme Abbildung eines Verinderlichen Bereiches vol. 10, Transactions of Chalmers University of Technology
Gothenburg, Sweden, 1942, pp. 2-15.

H. Kazama, D. K. Kim, and C. Y. Oh, Some remarks on complex Lie groups, Nagoya Math. J. 157 (2000), 47-57.

T. Koike and T. Ueda, Plurisubharmonic functions on affine line bundles over compact Kéihler manifolds, preprint.

F. Maitani and H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann. 330 (2004), no. 3, 477-489.

S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593-606.

S. Nakano, Vanishing theorems for weakly 1-complete manifolds, Number Theory, Algebraic Geometry and Commutative Algebra, in
honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 169-179.

S. Nakano and T. Ohsawa, Strongly pseudoconvex manifolds and strongly pseudoconvex domains, Publ. Res. Inst. Math. Sci. 20 (1984),
no. 4, 705-715.

R. Narasimhan, The Levi problem in the theory of functions of several complex variables, 1963 Proceedings of the International
Congress of Mathematicians. Stockholm, 1962, pp. 385-388 Inst. Mittag-Leffler, Djursholm.

S. Nemirovski, Stein domains with Levi-fiat boundaries on compact complex surfaces, Mat. Zametki 66 (1999), 632-635; Translation in
Math. Notes 66, (1999), 522-525.

T. Ohsawa, Finiteness theorems on weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 853-870.

T. Ohsawa, A Stein domain with smooth boundary which has a product structure, Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, 1185-1186.
T. Ohsawa, 8-cohomology and geometry of the boundary of pseudoconvex domains, Ann. Polon. Math. 91 (2007), no. 2-3, 249-262.
T. Ohsawa, L? proof of Nishinoas rigidity theorem, Kyoto ). Math. 60 (2020), no. 3, 1047-1050.

T. Ohsawa, Generalizations of theorems of Nishino and Hartogs by the L? method, Math. Res. Lett. 27 (2020), no. 6, 1867-1884.

T. Ohsawa, Variants of Hérmanderas theorem on g-convex manifolds by a technique of infinitely many weights, Abh. Math. Semin. Univ.
Hambg. 91 (2021), no. 1, 81-99.

T. Ohsawa, On the Levi problem on Kéhler manifolds under the negativity of canonical bundles on the boundary, Pure Appl. Math. Q. 18
(2022), no. 2, 763-771.

T. Ohsawa, On the cohomology vanishing with polynomial growth on complex manifolds with pseudoconvex boundary, to appear in
PRIMS.

T. Ohsawa, L?d -cohomology with weights and bundle convexity of certain locally pseudoconvex domains, Kyoto J. Math., to appear.
T. Ohsawa, Bundle convexity and kernel asymptotics on a class of locally pseudoconvex domains, The Bergman Kernel and Related
Topics, Hayama Symposium on SCV XXIII, Kanagawa, Japan, July 2022, pp. 293-304..

T. Ohsawa, Levi problem under the negativity of the canonical bundle near the boundary, submitted for publication.

T. Ohsawa, On the Levi problem for locally pseudoconvex bounded domains of reqular type with curvature negativity on the boundary,
preprint.

T. Ohsawa and K. Takegoshi, On the extension of L* holomorphic functions, Math. Z. 195 (1987), no. 2, 197-204.

I T T T T T ™ ©



DE GRUYTER Geometry of analytic continuation on complex manifolds =— 13

[63]
[64]
[65]
[66]

[67]
[68]

[69]
[70]

[/
[72]
[731
[74]

[75]

M. Paun and S. Takayama, Positivity of twisted relative pluricanonical bundles and their direct images, ). Algebraic Geom. 27 (2018),
no. 2, 211-272.

K. R. Pinney, Line bundle convexity of pseudoconvex domains in complex manifolds, Math. Z. 206 (1991), no. 4, 605-615.

K. R. Pinney, Ricci curvature and holomorphic convexity in Kihler manifolds, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1211-1216.

B. Riemann, Grundlagen fiir eine allgemeine Theorie der Funktionen einer verdnderlichen complexen Gosse, Inaugural dissertation,
Gottingen, 1851.

LR. Shafarevitch, Basic algebraic geometry, Springer Study Edition, Springer Berlin, Heidelberg 1977.

Y.- T. Siu and S.-T. Yau, Complete Kihler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. 105 (1977),
no. 2, 225-264.

Y.- T. Siu and S.-T. Yau, Compact Kihler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189-204.

S. Takayama, The Levi problem and the structure theorem for non-negatively curved complete Kdhler manifolds, J. Reine Angew. Math.
504 (1998), 139-157.

S. Takayama, Adjoint linear series on weakly 1-complete Kihler manifolds. I. Global projective embedding, Math. Ann. 311 (1998), no. 3,
501-531.

A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, ]. M. Soc. Japan 16 (1964), 159-181.
T. Ueda, Pseudoconvex domains over Grassmann manifolds, |. Math. Kyoto Univ. 20 (1980), no. 2, 391-394.

T. Ueda, On the neighborhood of a compact complex curve with topologically trivial normal bundle, ). Math. Kyoto Univ. 22 (1983),
583-607.

V. Vaijaitu, Locally Stein domains over holomorphically convex manifolds, ).Math. Kyoto Univ. 48 (2008), no. 1, 133-148.



	1 Introduction
	2 Levi problem on weakly pseudoconvex manifolds
	3 Pseudoconvexity and the Bergman kernel
	4 Some geometry beyond holomorphic convexity
	5 From Riemann to Demailly
	6 Bundle-convexity theorems
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


