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Abstract: We extend some definitions and give new results about the theory of slice analysis in several
quaternionic variables. The sets of slice functions that are slice, slice regular, and circular with respect to
given variables are characterized. We introduce new notions of partial spherical value and derivative for
functions of several variables that extend those of one variable. We recover some of their properties as
circularity, harmonicity, some relations with differential operators, and a Leibniz rule with respect to the
slice product as well as studying their behavior in the context of several variables. Then, we prove our main
result, which is a generalization of Fueter’s theorem for slice regular functions in several variables. This
extends the link between slice regular and axially monogenic functions well known in the one variable
context.
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1 Introduction

Slice regular functions were first introduced in the study by Gentili and Struppa [6] for quaternion-valued
functions, defined over Euclidean balls with real center. Exploiting the complex-slice structure of the quater-
nion algebra H and following an idea of Cullen [3], they defined slice regular (or Cullen regular) functions as
real differentiable functions, which are slice by slice holomorphic. The main purpose of this new hypercom-
plex theory was to overcome the problem encountered by the theory of quaternionic functions already well
established by Fueter [4], in which the class of regular functions does not contain polynomials. On the
contrary, the class of slice regular functions contains all the power series with right quaternionic coefficients.
The two theories are indeed very skew, since, in general, only constant functions are both Fueter and Cullen
regular, even though they present some connections, as Fueter’s theorem suggests. We refer the reader to the
monograph [5] for a comprehensive treatment of the theory of slice regular functions of one quaternionic
variable and to [11,14] for Fueter regular functions.

Interest in this new subject grew rapidly, and a large number of papers were published. The theory was
soon generalized to more general domains of definition, the so-called slice domains [1] and extended to
octonions [7] and Clifford algebras [2]. A new viewpoint took place after the work of Ghiloni and Perotti [8]
with the introduction of stem functions, already used by Fueter to generate axially monogenic functions
through Fueter’s map [4]. This approach allows to define slice functions, in which no regularity is needed,
over any axially symmetric domain and to extend the theory uniformly in any real alternative *-algebra with
unity.
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The stem functions’ approach suggested the way to construct a several variable analog of the theory in the
foundational paper [10], to which the present article contributes to develop some ideas introduced therein. In
that article, the importance of partial slice regularity has been pointed out. Indeed, it is possible to interpret
the slice regularity of an n variables slice function in terms of the one-variable slice regularity of 2" — 1 slice
functions [10, Theorem 3.23], obtained as all possible iterations of partial spherical values and derivatives of
that function. This result establishes a bridge between the one and several variables theories, which has been
frequently exploited, for example, in the study by Perotti [13], where local slice analysis was naturally
extended from one to several quaternionic variables. But, the study of partial slice regularity, as well as
partial spherical values and derivatives was not developed further, and a more detailed study deserved
attention, leading to this work.

We describe the structure of the paper. After briefly recalling the theory of slice regular functions of one
and several quaternionic variables, we focus on the study of partial slice properties, i.e., sliceness, slice
regularity, or circularity with respect to a specific subset of variables (Section 3). More precisely, given a
set of variables {x,}yeg, we characterize (Propositions 3.1, 3.2, and 3.4) the sets Sg, SRy, and Sy of slice
functions, which are, respectively, slice, slice regular, and circular with respect to all the variables x;. The use
of stem functions is fundamental as all those characterizations are given through conditions over stem
functions. Furthermore, we show that for every choice of H € £(n), the set S. gy forms a subalgebra of the
set of slice functions endowed with the slice product (S, ®) (Corollary 3.5); Sy and SRy do not share this
property.

In Chapter 4, we define partial spherical values and derivatives for functions of several variables, which
extend the one-variable analogs. We recover some of their main properties such as harmonicity (Proposition
4.9), representation, and Leibniz formulas (18) and (19), and we find new ones, peculiar of the several variables
setting (Proposition 4.4) through characterizations of Chapter 3. Finally, thanks to the harmonicity of the
partial spherical derivatives, we prove a generalization of Fueter’s theorem for slice regular functions of
several quaternionic variables (Theorem 4.10), which extends the link between slice regular and axially
monogenic functions in higher dimensions.

2 Preliminaries

We briefly recall the main definitions of the theory of slice regular functions of one and several quaternionic
variables. We state here the definitions of [8] and [10], reduced to the quaternionic setting.

2.1 Slice regular functions of one quaternionic variable

LetH denote the algebra of quaternions with basis elements {1, i, j, k}. We can embed R C H as the subalgebra
generated by 1, while Im(H) = (i, j, k), whence H = R @ Im(H). Let Sy; = {q € H|q? = -1} C Im(H) be the
sphere of square roots of -1, then if g € [H\[R, there exist a, § € R, J € Sy such that g = a + JB. They are
unique if we require § > 0. Every such q generates a sphere we denote with S; = Sy = {a + IB : I € Sy}
Given J €Sy, let ¢, : C 3 a+ i~ a+JB €H. It is clear [8, (1] that ¢, is a real "-algebras isomorphism
onto C; = (1,/)r CH.

Denote with {1, e;} a basis of R% Let D C C be a conjugate invariant domain (D = D), a function
F:D - H ®R? is a stem function if it is complex intrinsic, i.e., F(Z) = F(z), which means that if F has
components F = Fy + e.F, they satisfy Fz(Z) = Fz(z) and Fy(Z) = -F;(z). Given such a set D, we define its
circularization in H as Qp = {a + jBla + if € D, ] € Sy} = Ug+ipepSq,p- We can associate to every stem func-
tion F = Fz + eyF; : D -~ H ® R? a unique slice function f = I(F) : Qp — H as follows: if x = a + JB = ¢;(2) for
some z = a + if € D and J € Sy, we define
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OO = Fx(2) + JF(2).
Every slice function can be completely recovered by its value over one slice C;, with a representation formula

[8, Proposition 6]: let I, ] € Sy, then for every x = a + IB, it holds

F00 = 2@+ JB) + (@ = JB) = H(f(a+ JB) - (@ + JB). ®

Given a slice function f, we define its spherical value and its spherical derivative as follows:

. 1 = , 1 _ _
£ 00 = 500+ @D, f00 = 5 IMEOT(F0) = FCO).
Note that the spherical value and the spherical derivative are both slice functions, as f; = I(Fp) and
f{ = I(Fi(2)/Im(2)), if f= I(Fy + e.Fy). Moreover, by applying (1) with I = J, we obtain
F) = £ 00 + ImOOf] ().

We can define a product over slice functions. Let F and G be two stem functions with F = F + ¢;F; and
G = Gy + e1Gy, respectively. Define F ® G = FzGg — F1G1 + e1(FzG1 + FiGg), which happens to be a stem func-
tion. Now, if f= I(F) and g = I(G), define f® g = I(F ® G). With respect to this product, the spherical
derivative satisfies a Lebniz rule:
(fogk=f,og +f og.

Let F be a C! stem function. Define

OF _1

oz 2

oF _,oF| oF 1
aa ‘0B oz 2

oF  9F
aa ‘o]

Since both 0F/9z and 0F/9Z are stem functions, we can define

o) Lo

ax “laz) oaxc “loz/S
Finally, a slice function f = Z(F) is said to be slice regular if 9f /0x¢ = 0 or, equivalently, if 0F /dZ = 0. Note that
[8, Proposition 8], if @p N R # &, the definition of slice regular function coincide with the one given by Gentili

and Struppa [6], namely that, for every | € Sy, the restriction of f, f] : Qp N €; — H is holomorphic with
respect to the complex structure defined by multiplication by J.

2.2 Slice regular functions of several quaternionic variables

Let n be a positive integer, and let £(n) denote all possible subsets of {1, ...,n}. Given an ordered set
K ={k, ...kp} € P(n), with kg << k, and an associated p-tuple (qkl, ...,qkp) € HP, we define g = Qg -+ A,
(with g, = 1) and for any § € H, [qg, 4] = qx - q.

Given z = (z, ...,z,) € CY, set Z" = (z, ...,Zn-1, Zh, Zn+1, --rZn), VA = 1,..., n. A set D C C" is called invariant
with respect to complex conjugation whenever z € D if and only if z" € D for every h € {1, ...,n}. We define its
circularization Qp C H™ as follows:

Qp = {(ar + J; By, s + J, Bl + iy, ...,an + iB,) € D, ], ....J, € Su},

and we call circular those sets Q such that Q = Qp for some D C C", invariant with respect to complex
conjugation. From now on, we will always assume D an invariant subset of C" with respect to complex
conjugation and Qp a circular set of H".
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Let{ey, ...,ey} be an orthonormal frame of R" and denote with {ex}xep(n) a basis of R?". Consider a function
F:D-H®R? F= 2 kep(n)@kFx, in which its components {Fx}xep(n) are H-valued functions. We call F a stem
function if VK € P(n), Vh =1,...,n

Fg(z") = (-D*"WIE(2). )

Write Stem(D) for the set of all stem functions from D to H ® R2".
A map f:Qp CH"—>H is called slice function if there exists a stem function F: D - H ® R%,
F = ) kepmyexFx, such that

feO =2 U E@) VxeQp,
KeP(n)
where x = (X, ...,X,), with x; = a; + J;B;, for some a;, B; €R, J; € Sy and z = (, ...,z,) € D, z; = a; + if;, for
i = 1,..., n. Note that (2) is necessary to make slice functions well defined. We say that f is induced by F. S(Qp)
will denote the set of all slice functions from Qp toH and 7 : Stem(D) — S(Qp) will be the map sending a stem
function to its induced slice function. From [10, Proposition 2.12], every slice function is induced by a unique
stem function, so 7 is an injective map.
We can define slice functions through a commutative diagram too: for any J,..., J, € Su, we define

¢)]1><---X ¢]n : Cn e (Zl) -‘-:Zn) = (¢]1(Zl)’ ---)¢]"(Zn)) € IHn
and

‘p]l,.__’]":[H ®[R2n5 Z exag — z []K,aK]E[H.
KeP(n) KeP(n)

Given F € Stem(D), we can define its induced slice function f= 7(F) as the unique slice function that makes
the following diagram commutative for any J,..., J, € Su:

D—F S HeR
Dy X XD, @) Dy, dn
2o ! H

As described in [10, Definition 2.31, Lemma 2.32], equip R%" with a A-product ®:R?" x R?" > R is defined
on each basis element as follows:

eg ® ex = (-1 Klegx,

where HAK = (HU K )\(H N K) and extended by linearity to all R?". This product induces a product on
H ® R?": givena,h €EH ® R?, a = 2 nepm€ran, and b = Y yepmiexbk, with ag, by € H, define
a®b= ) (m®edagh)= Y (~D"eyyanby,

H,KEP(n) H,KEP(n)
where ayby is just the usual product of quaternions. Furthermore, we can define a product between stem
functions as the pointwise product induced by ®: let F, G € Stem(D), define (F ® G)(z) = F(z) ® G(z). More
precisely, if F = 3 yepmenFu and G = 3 xepm)ex G,

FG)@ = Y (D" MeyyFy(2)Gk(2).

H,KEP(n)

The advantage of this definition is that the product of two stem functions is again a stem function [10, Lemma

2.34], and this allows to define a product on slice functions, too. Let f, g € S(Qp), with f= I(F) and g = I(G),
and then define the slice tensor product f © g between f and g as follows:
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fog=IF®G).

Equip R?" with the family of commutative complex structures J = {J; : R¥' » R2'}}_,, where each g}, is
defined over any basis element ex of R%" as

€xuin} if h¢ K

= (=1)KN{hl =

Tnlex) = (-1) exatny = | e 1fhEK,

and extended by linearity to all R?". J induces a family of commutative complex structure on H ® R%" (by

abuse of notation, we use the same symbol) 7 = {J,: H ® R?' > H ® R¥}}_; according to the following
formula:

Jg®a)=qe Ja) VYqgEH, Va€cR?.

We can associate two Cauchy-Riemann operators to each complex structure 7. Given F € Stem(D) N
CY(D), we define

oF

a—ah—jh

OF
aah

oF
aﬁh By )|

Note that, if F is a stem function, so are d,F and 0xF [10, Lemma 3.9]. Thus, if f= I(F) € SY(Qp) =
I(Stem(D) N CYQp)), we can define the partial derivatives for every h = 1,...,n
of of

= = I(F), ==
Xy (©F) oxg;

OpF = — OpF =

5 + Il 55

2

= J(ORF).

A C! stem function F = } xep(nexFx is called h-holomorphic with respect to J if 9,F = 0 or equivalently [10,
Lemma 3.12], if its components satisfies a system of Cauchy-Riemann equations:

OF¢ _ OFkumy  0F¢ _ OFkumy

day 9B, ~ OB,  oay ’

VK € P(n),h &K, (3)

and it is called holomorphic if it is h-holomorphic for every h = 1,..., n. Finally, given a holomorphic stem
function F, the induced slice function 7(F) will be called the slice regular function. The set of all slice regular
functions from QD to H will be denoted by SR(Rp). By [10, Proposition 3.13], f € SR(RQp) if and only 1f <=0
for every h =

We recall two other operators on H, known as Cauchy-Riemann-Fueter operators:

g .0 .0 2 = 0 .0 0 0

dorr = — - i = o k) B = — k=,
o= 50 Tlag oy T Kasr O E 5q Y iap Yoy T Kas

where a, B, y, and 6 denote the four real components of a quaternion x = a + iff + jy + k§. Functions in the
kernel of dcpr are usually called Fueter regular (or monogenic in the context of Clifford algebras). The
importance of these operators is evident as they factorize the Laplacian, indeed

OcrrOcrr = OcrrOcrr = A.

Thus, monogenic functions are in particular harmonic. We can extend these operators to H™: for a slice
function f: Qp » H, we define, for any h =1,...,n, dy, and 9, as the Cauchy-Riemann-Fueter operators
with respect to x, = ap + i, + jy, + kép:

For every h = 1,..., n, it holds
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where 4y, = a% % ;722 + :—;. Finally, denote by Mp(Q) = {f: Q = H : 3,,f = 0} the set of monogenic

functions with respehct to )}?h and let AMp(Qp) = Mp(Qp) N SY(Qp) be the set of axially monogenic functions
with respect to xy, i.e., the set of slice functions which are monogenic with respect to xp.

3 Characterization of Sy, SRy, and S. g

Let f: QyCH"~>H and h=1,..,n For any y = (y,, ...,y,) € Qp, let
Qpn(y) = X EHIYy, oo Viogs Xo Ypars =Yy) € @} CH.
It is easy to see [10, Section 2] that Qp x(y) is a circular set of H, more precisely Qp 5(y) = Qp,), Where
Dn(z) = {w € C|(2, ...,Zp-1, W, Zn+1, --,Zn) € D},

and z = (7, ...,2,) is such that y € Q.

Definition 3.1. We say that a slice function f € S(Qp) is slice (resp. slice regular) with respect to xy if, Vy € Qp,
its restriction

fhy . QD,h(y) - H, fhy(x) = f(ylr ""yh—l’x’yhﬂ’ "')yn)

is a one variable slice (resp. slice regular) function, as defined in §2.1. We denote by Sy(2p) (resp. SRn(2p)) the
set of slice functions from Qp to H that are slice (resp. slice regular) with respect to x;. For H € £(n), define
Su(2p) = NrerSn(Lp), SRu(Rp) = NrerSRu(Rp). Note that, by definition, SRy(Rp) C Sy(Rp) C S(Qp).

We say that f is circular with respect to x; if Vy = (y,, ...,y,) € Qp, f; is constant on S, C H. The set of
slice functions that are circular with respect to x; will be denoted by S¢ ,(2p) C S(Rp). Note that f is circular
with respect to x, if and only if for every orthogonal transformation T:H — H that fixes 1, it holds
fOa, s Xn-1, T(XR), X1, s Xn) = f(X, ..., Xn), fOr any (%, ...,x,) € Qp. In this case, if x, = a + J, B, f does not
depend on J,. Finally, if H € P(n), set S¢ x(Rp) = NrerSc,n(2p).

Every slice function is, in particular, slice with respect to the first variable [10, Proposition 2.23], i.e.,
S1(Qp) = S(Rp), but in general, Sp(Rp) & S(Rp). The next proposition characterizes the set Sy(Qp) for any

H € £(n) in terms of stem functions.

Proposition 3.1. For every H € P(n), it holds

Su(Qp) =

I(F): FeStem(D), F= ) exFx+ ) ewy 2 eoFnuol @
KEH® ReH  Qc{h+l,..,m\H

In particular, for any h € {1, ...,n},

Sw(Qp) = {I(F) : FE Stem(D), F= ) egFc+ew 2  eoFmuol- ()

KeP(n),heK QC{h+1,...,n}

Equivalently, f= I(F) € Su(Qp) if and only if Fpygyuo =0, Vh € H,VQ C th+ 1, ..,n}, VP € P(h - 1) with
Pz

Proof. Since Sy(Qp) = NnerSr(p), it is sufficient to assume H = {h} for some h = 1,..., n.
(=) f€ Sp(Qp) means that Vy € Qp, the one-variable function f is slice; thus, it must satisfy representation

formula (1): namely, if x = a + Ib € Qps(y) and | € Sy, it holds
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I
J00 = U@ o) + @ = o) = TR+ Jb) = f @ - o). ©

Set z=(2, w,Zn), Z' = (2, wsZh-1), Z” = (Znsty esZn), YV = (q)]1 x ...><¢]n)(z), for some J,...,J, € Su,
w=a+ib, x=¢Ww),Ls =M =] fors#h, L, =1 and My = . Then we have

fhy (X) = Z UK! FK(Z,) w, Z”)] + z [LKU{h}’ FKU{h}(Z/s w, Z”)]’ (7)
KeP(n),h¢K KeP(n),h&K
ffa+mpy= Y oKz wz)+ Y  [Maug Eom@, w,z")],
KeP(n),h¢K KeP(n),h¢K
and
fhy(a - ]b) = z [IK: FK(Zlﬁ W: Z”)] + Z [MKU{h}a FKU{h}(ZI: W: Z”)]
KeP(n),h¢K KeP(n),h¢K
= Z []K ’ FK(ZI; w, Z”)] - Z [MKU{h}! FKU{h}(Z,s w, Z”)]y
KeP(n),h¢K KeP(n),h¢K

where we have used (2). Thus, the right-hand side of (6) becomes

SUR@ Jb) + @ - ) - SUCR @+ o) - [ (@ = )]

®
= Y U E@wz) -7 Y [Mio Feom(@,w, z7)].
KEP(n),heK KeP(n)heK
Comparing (7) and (8), (6) is satisfied if and only if
Y ko Feom@ w20 = -0 ) [Mgug, Feop(@', w, 27)]. ©)

KeP(n),h&K KeP(n),h&K
Since (6) is assumed to be true for every I,],],,..., ], € Sy and every z’, w, z”, (9) holds if and only if
VK C {1, ..,n}\{h}
[Lrugny, Frogy(Z', w, 27)] = —I[Mgugry, Fromy(Z', w, 27)]. (10)
Indeed, if (10) were not true, there would be a K C P({1, ...,n}\{h}) such that
[Lrugny, Frogy(z', w, 27)] # —I[Mguiny, Fromy(z', w, 27)],
but for J; == ], =] =1, we would have
(~DRVMIE (2, w, 27) # (-DKVIIE g(2, w, 27),

which is false. Let us represent {K € P(n)|h &€ K} = {PUQ|P € P(h-1), Q C{h+1,..,n}}. Suppose
P# J,thenVQ C {h + 1, ...,n}, (10) becomes

[Lpugugys Frumuo(z', w, 27)] = =IJ[Mpuue), Frugyue(z’, w, 27)],

and this implies that Fpugue = 0. Indeed, if Fpymue # 0, the previous equation would reduce to
JpI = —IJJp], which does not hold for every choice of I, ], J,.
(&) Vice versa, suppose F takes the form

F= Z exFx + e z EQF{}I}UQ.
KeP(n),h¢K QC{h+L, ..., 1}

Following the notation mentioned earlier, it holds

o= ) oK@ wz)+I ) [, Fyu, w,z")].
KEP(n),héK Qci{h+1,...,n}

Thus, consider the function G; = G, + iG3}, with
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Gl),)h(w) = z UK) FK(Zla w, Z”)]’ GZ),/h(W) = Z UQ) F‘{h}UQ(Zlﬁ w, Z”)]'
KeP(n),h&K Qc{h+1,...,n}

Ghy is a one-variable stem function, indeed,

G}{(W) = Z UK: FK(Z/’ w, Z”)] +1 Z UQ’ F{h}UQ(Z,’ w, Z”)]

KEP(n),he¢K QCih+1,...,n}
= ) UeEk@wz)l-i Y Uy Fnue@,w,z")] = G (w),
KEP(n),h¢K QC{h+1,...,n}

and fY = I(Gy), by construction, so f € Sy(Qp).

O

Remark 1. By the previous proof, we can better understand the set Sy(Qp): let f = I(F) € Sy(Qp), then for any

X € Qp with x = (qu1 X X ¢]")(z), f(x) takes the form

fO= 2 UoEB@l+ 2k 2 Up Fnuo®@]:

KEH® heH Qc{h+1,..,n}\H

Moreover, for any h € H and any y = (y,, ...,),), f is a one-variable slice function, induced by the stem

function Ghy , with components

Ghw) = Y U E@ w29, Ghw) = Y, Fnuezs w, 2",
KeP(n),héK Qci{h+1,...,n}

where z = (z/,zp,2z”) and y = (¢>]1 x ~-x¢)]n)(z).
Now, we deal with partial slice regularity.

Proposition 3.2. For every H € P(n) it holds
SRu(Qp) = SH(QD)hﬂ ker(8/0xy).
€H

Proof. Since SRy(Rp) = NrerSRi(Rp), it is sufficient to assume H = {h} for some h = 1,..., n.
(©) By definition, SRy(Rp) C Sp(Lp), so let f= I(F), with

F= Z exFg + ey Z eoFinuo,
KeP(n),heK QC{h+,...,n}

thanks to (5). For any y € Qp, f? is induced by the stem function G; = G, + Gz}, with

Glj,}h(w) = Z UK) FK(Z/) w, Z”)]’ GZ),Ih(W) = z UQ) I:Z{h}UQ(Z/’ w, Z”)]'
KeP(n),h&¢K Qc{h+1,...,n}

(11

(12)

By definition, f € SRx(Qp) means that Vy € Qp, the stem function G;’ is holomorphic, i.e., recalling (11), it

must hold that for every z = (2, z, z”) € D, w € Dy(z) and VJ]; € Sy that
Z UPUQ ) aahFPUQ(ZI: w, Z”)] = ZUQ? aﬁhF'{h}UQ(zlx w, Z”)]
P,Q Q

Z UPUQ; aﬁhFPUQ(zl’ w, Z”)] = _ZUQ) aahF{h}UQ(Z/; w, Z”)])
P,Q Q

where in the aforementioned sums P € P(h - 1) and Q C {h + 1, ...,n}. Now, since that system is true for
every choice of imaginary unit J;, proceeding as in the proof of Proposition 3.1, we can deduce that an

equivalence between each term of the sum holds. Let any Q C {h + 1, ...,n}: if P # &, equality can hold
only if 84, Fpuo = 0pFpup = 0, and this trivially proves that the components Fpyo satisfy (3), since

Frumug = 0, by (5). Otherwise, let P = ¢, then the previous system becomes
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Ou,fo = 9p,Fmuo
0p,F0 = ~OaFimue
and (3) are satisfied too. This proves that F is h-holomorphic, which means that f € ker(d/dx;).
(D) Suppose f € Sp(Qp) N ker(d/dxs), then F satisfies (12) and (3). As in the proof of Proposition 3.1, K = PLQ,
with P € P(h - 1) and Q C {h + 1, ...,n}. Since, by (12), Fougnuo = 0, VP € P(h - 1)\{@}, vQc{h+1,..,n}
the h-holomorphicity of F reduces to the following conditions:

aathUO = aﬂthUO =0
Oa,Fo = 9p,Fimuo 13)
9,k = 0uFinyuo-

On the other hand, f € SRy(Qp) if and only if Gy is a slice regular function Vy € Qp, which means that
8,Giy, = G2y and 9Gyy, = —9,Gyy, which, by definition of G7, is equivalent to

0 2 UoE@l=05 2 o> Fimuo(2)]
}

KeP(n),he¢K Qc{h+1,...,n
o, 2 UoE@I=-04, Y Uy Fnue@]l,

KeP(n),h¢K Qc{h+1,...,n}

where y = (¢ B XX (0] ]")(z), z = (z, ...,Zn), zj = &; + iB;. Let us prove the first row of the system. By using
the first two equation of (13) and splitting K = PUQ, we can write the left-hand side as follows:

Oa ) Upug> Frug(z', w, 2°)]
PEP(h-1),Q0Cth+1, ..., 1}
= Z UPUQ’ aahFPUQ(Z,) w, Z”)] = Z UO; aahFQ(ZI; w, Z”)]
PEP(h-1),QC{h+1, ..., n} Qcih+l,...,n}
= 2 lpopFmuo@ wz01=085 Y U Fmue(z’,w,2")].
QC{h+1,...,n} Qct{h+1,...,n}
The second equation is proved in the same way. O

Corollary 3.3. Let f € SR(Qp) and H € P(n). Then f € Sg(Qp) if and only if f € SRy(RLp).

Proof. The “if” part is trivial. Vice versa, note that from [10, Proposition 3.13], f € SR(Qp) implies df /dx; = 0,
Vh =1,..,n, and hence, Sg(Qp) N SR(Lp) CSx(Rp)Nrer ker(8/9x5) =SRu(Rp), by Proposition 3.2. O

Finally, we characterize circularity.
Proposition 3.4. For every H € P(n), it holds

Scu(Qp) = {I(F) : F€ Stem(D), F= ) exFy/. a4
KCH¢

In particular, Sc x(2p) C Su(Qp).

Proof. Since S;n(2p) = NnenScn(Qp), it is sufficient to assume H = {h} for some h =1,..,n. Let any
Y=, Y,) € Qp, with Y = +]jﬁj, zj=a; + iﬁj, set z’ = (&, ...,zp-1) and z” = (Zp+1, --Zn)- f € Scn(Rp)
if for every x = a + Ib, fY(x) does not depend on I. Let w = a + ib, M, =J,if p # h and M, = I, then

;o= > Uk, E(@ w,z7)] + Y [Mgumy, Feomy(@, w, 27)].
KEP(n)hek KeP(n)hek



10 — Giulio Binosi DE GRUYTER

It is clear that fY(a + Ib) does not depend on I if and only if Fgygpy = 0 for every K € £(n). Finally, by
comparing (4) and (14), we see that S; g(Rp) C Su(Rp). O

Note that functions of form (14) were introduced in [10] as H¢-reduced slice functions, and hence, we can
say that f € S, y(Qp) if and only if it is H® reduced. It is easy now to prove the following property.

Corollary 3.5. For every H € P(n), the set S, y(Rp) is a real subalgebra of (S(Qp), ®).
Proof. We need to show that if f, g € S, g(Qp), then f© g € S, y(Qp). Let f= I(F) and g € I(G), with
F = YycycexFx and G = YpcpecerGr, by (14). Then

F®G-= z (-D)NTleyprFiGr,
K,TCHE

with KAT = (K U T)\(K N T) C KU T C He. Then, again (14) implies f © g € S; x(Rp). (I
Note that the previous result does not apply to Sy(RQp), nor SRy(Qp), unless for S1(Qp) = S(Qp) and

SR1(Rp). Indeed, for example, x;, X; € SRy (RLp), while x; ® x; & Sx(Rp).
Slice regularity and circularity are hardly compatible.

Proposition 3.6. Let f € S, n(Rp) N SRu(Rp). Then fis locally constant with respect to Xp.

Proof. Let x; = ay + J,by and f= I(F). Since f € S, n(Qp), f does not depend on J, and Fxygpy = 0 for any
K € P(n). Moreover, f € SRy(Qp) C ker(d/dx;), by Proposition 3.2, so by (3),

OF _ OFkuin; _ 0= OFkum _ _OF

oap 6,Bh 6ah 6/5'h '

Thus, f does not depend neither on a; nor B, and so it is locally constant with respect to x. O

Example 1. Consider the following polynomial function f: H3 —» H, f(X, X3, X3) = XXz + Xx2k, which happens
to be a slice regular function, [10, Proposition 3.14]. We claim that f € SRy(Qp). Let us explicit the components
of the stem function inducing f: let z = (z, 2, z3) € C3, with z; = a; + if;, then f = I(F), with F = 2 kepekFx.
where

Fo(2) = mas + ax(af - ﬁgz)k’ Fyy(2) = Bias,  Fiy(2) = By(ad - 32)k’
F3y(2) = mP; + 2000365k,  Fup(z) =0, Fa3y(z) = BBy, Foz(2) = 2B,a3B:k,  Fua(z) = 0.
Thus, F has the structure required by (5) for h = 2, so f € Sy(Qp). Moreover, for K = &, {1}, {3}, {1, 3}, it holds
OFc _ OFup  0F _ OFkuy

6(12 6[32 ’ 6[32 aag

so f € ker(9/0x5) and so f € SRy(Lp) = S2(Rp) N ker(d/ox5).

We could have proven the claim by definition, through Remark 1, which explicitly gives us the stem
function that induces the corresponding one variable slice function, for every choice of y. Fix any
Y =(1,Yy,Y3) EH3, then f is a slice regular function, induced by the holomorphic stem function

Gzy = Gﬁ}z + ing, with

Gio(a +iB) = yiys + ayZk, Giy(a + iB) = ByZk.
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4 Partial spherical derivatives
For h € {1, ...,n}, define Ry, = {()q, ...,Xn)|Xn € R} and for H € P(n), Ry = UpegRp.

Definition 4.1. Let F:DCC'"—H ®R? be a stem function. Define for h=1,.,n and for
H={h, ..,hy} € P(n)

Fr(@= )  exF(2),

KeP(n),h¢K
Fi@2)= ) exF(@) = (.(Fy)p,-- o, (2)
KCH¢
and
F@) =81 Y exFum@), ifz€D\Ry (15)
KeP(n),h&K
Fiy(z) = By 3 exFxuon(z) = (o(Fii, i (2), if 2 € D\Ry, (16)

KeH®

where z = (z, ...,z,) with z; = a; + iB; and By = [MhewBh-
Lemma 4.1. For every H € P(n), Fy, and Fy; are well-defined stem functions on D and D\[R H, respectively.
Proof. First, let us prove that F; and Fy; are well defined, i.e., their definition does not depend on the order of
H. Indeed, for any i,j = 1,..., n, it holds

E)j@= Y eBB Fuip@) = EDi@)

KeP(n),ijeK

and analogously for (F;"); . Without loss of generality, assume H = {h}, for some h = 1,..., n. F, is trivially a
stem function because its non zero components are the same of F. Let us explicit F; = 2 xepn)exGx, With

By 'Frugy if h & K

Gyg(z) =
@)= if heKk,

we will show that every component of F;, satisfies (2). Let us consider only the components Gk, with h € K,
otherwise (2) is trivial. For any m # h, we have

Gk(Z™) = By Frum(EZ™) = B, (DKM yy(2) = (-DKNMIGK(2),
while, for m = h,
Gx(Z") = (=B DFxum(@™) = (=B )(~Frugy(2)) = By Frugny(2) = Gk(2). O

The previous lemma allows to make the following:

Definition 4.2. Let f= I(F) € S(Qp). For h € {1, ...,n}, we define its spherical xp-value and xy-derivative
respectively as follows:

fon = IED, £, = I(E).
Analogously, for H € P(n), define
fou = IERD,  fy = I(Ep).

Note that f,", € S(Qp), while £/, € S(Qp,), where Qp, = Qp\Ry.
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We stress that the terms spherical value and spherical derivatives have been already used in [10, Section
2.3] in the context of slice functions of several quaternionic variables, but they refer to different objects. With
respect to our definition, spherical values and derivatives are more related to the truncated spherical deri-
vatives D(f) [10, Definition 2.24], where for h € {1, ...,n} and € : {1, ...,h} = {0, 1}, D(f) = Z)f(flh) Z)fél)(f),
with D}.(f) = f;, and DY) = f;,- Indeed, it holds De(f) = (f; ;) )sx, With H = £™(1) and K = £7(0).

The following proposition justifies the names given to f, and fs p» comparing them to their one-variable
analogs (§2.1). Note that we have to assume f € Sy(Rp), in order for the spherical derivative to agree with it.

Proposition 4.2. Let f € S(Qp) and h = 1,..., n. Then it holds
D Vx =04, ...xn) € Qp

1
Fon00) = S(F00) + FEM) = ()5 Om;
@) if f € Su(Q), VX € Q\Rp

fipGO = 2ImOe) I (F 00 = fF&EM) = (f;)0w)- 17

In particular, if we assume f € SYQp), then we can extend the definition of f; to all Qp, thanks to [8,
Proposition 7, (2)].

Proof. Let f = I(F), with F = Y yepmexFx. Then for any z € D and x = (¢]1 X e X ¢]n)(z), we obtain

fOO+fEM =3 WUk, F@] + Uy, FE@M)

KeP(n)

= Y (U E@] + DRI, Fe(2)])
KeP(n)

= Y QU K@D = 2,00,
KeP(n),h¢K

Now, assume f € Sy(Qp), then by (5),
fO)= 2 U B@I+h 2 Uy Fnue@l,

heK QCi{h+1,...,n}

and so

fL00=" 2 Uy B 'Fnuo@].

Qcth+l,...n}

On the other hand, let x = (¢ el (0] ]n)(z), then by (2), we have
fO-f&= Y U E@I+) 2 Up Fmue@I*

KeP(n),he¢K QC{h+l,...,n}

- Y U EEI - Y U Fnue@M]
}

KeP(n),heK Qc{h+,..,n

=2, 2 Uy Fmuo®@),

Qc{h+1,...,n}
from which

[2ImOW) T (FO) = FEM) =282k 2 Up» Fimuo(@)]

QCth+1,..,n}

= Y Up B Fmuo@] = £,00. 0
}

Qc{h+1,...,n
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We extend from [12] properties of the spherical derivative of one-variable slice regular functions to
several variables.

Lemma 4.3. If f € SRy(Qp), the following hold:
@) 0yf= ~2f

_ 2% _ ,
@) Mf= 45" =~204f; )

Proof.
(1) Note that Yy = (y,, ...,y,) € Qp, [ € SR(Qp,x(y)), then we can apply (17) and [12, Corollary 6.2, (a)] to
obtain

O f ) = Ocre (S D) = =20/ )sOn) = =2, ).
(2) By (17), [12, Corollary 6.2, (c), Theorem 6.3, (c)], and [9, Theorem 2.2 (ii)], we have

a(f)s
ox

MfQy) = Af)) = 4 ) = ~40(f))s) = =20cre(f )sO) = =20x.f; ()

where (6f)(x) = % %(x) + |Ilmm((:))|2 (B%(x) + y%(x) + 6%(x)) satisfies 6f = % and 26f; = ocgef; for any
slice function f.'

The next proposition presents some properties of partial spherical values and derivatives peculiar of the
several variables setting.

Proposition 4.4. Let f € S(Qp), h € {1, ...,n}, and H € P(n), with p = minH° if H # {1, ...,n}. Then
@ foy € Sen(@p) N Sp(Rp) and £ € Scu(Rp,) N Sp(Rp,);

@ if f€ Su(Qp), fi € Snea(Qp,) N Seq,... i Rpy);

3) i f€ Scn(@), [ = f» and f2, = 0;

@ fheH,HN{L, ...h -1} # @, and f € Sy(Qp), then [/, = 0;

G (fopdsh = fop and (f] 1 )sn = 0.

Proof.

() If f= I(F), by definition f’, = ¥xcy<lx, Fi], hence by Proposition 34, f*; € Scn(2p). Moreover, we can
write it as follows:

fsjh = Z UK’FK] +]p Z UK’FKUp]y

KC(HUp) KC(HUp)®

s0 fi, € Sp(Qp). In the same way, one can prove that f,; € Seu(Qp,) N Sp(Rp,).
(2) By Proposition 3.1, F takes the form

F= ) eFx+em )  eoFimuo
KeP(n),he¢K QC{h+l,...,n}

hence,

F=B" Y  eFnuo

QC{h+L,...,n}

This shows that f], € Scq,...n(Rp,), by Proposition 3.4. Finally, by Proposition 3.1, f/, € Sp+1(2p,).
(3) By Proposition 3.4, F = } xepn) nexexFx, s0 F; = 0 and F, = F.

1 In [12] the factor 1/2 is omitted in the definition of 6.
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4 Leti€e HN {1, ..,h -1} # &, since f€ Sp(Qp), by (2) fs/,h € S.,i(Rp) and by (3) (fs,,h);,i = 0. In parti-
cular, fs g =0.
(5) It follows from (1) and (3). O

Partial spherical derivatives do not affect regularity in other variables.

Proposition 4.5. Let f€ SY(Qp). Suppose that f € ker(d/dxf) for some t = 1,...,n, then fon € ker(8/0xf),
Vh #t.

Proof. Let f= I(F), with F=}yepmexFk, SO Tn = L(F), with Ff = 2kepm)@kGk, Gk =0, if h € K and
Gx = B, 1FKU{h}, if h € K. Let K € P(n), with h, t € K, then by the regularity of F, it holds

aGx _ OBy 'Feumy . 0Fum  _,0Fkumu _ 9Gxrug
aat aat h 6at h Oﬁt aﬁt

aGx 9B, Frum _ B_laFKU{h} _ ﬁ_laFKU{h}U{t} __9Gkugy
3B, 3B, h 9B, o da da;

This proves that Fy is t-holomorphic, and hence, f;, € ker(d/0xy). O
As recalled in Section 2.1, every one variable slice function f can be decomposed as f(x) = f" (x) +
Im(x)f; (x). We now give a similar decomposition for every variable, through the slice product.
Proposition 4.6. Let f € S(Qp), then for any h = 1,..., n, we can decompose
f=fo + ImOw) © ;. 18)

Proof. Let f'= I(F), with F = J yepnexFx. Suppose first x € Ry, i.e., Im(xp)(x) = 0, then by (2), with the usual
notation, we have

0= Y UeE@l= Y U E@]=f,00.

KeP(n) KeP(n),h¢K

Now, suppose x € QD\[Rh and define Im(Zp)(#, ...,z,) = enPy, where z; = a; + lﬁ] Im(Z,) € Stem(D) and
I(Im(Zy)) = Im(xp). Then

Fy +Im(Zy) ® Fi= ) exFg + (enf) ® Y exB ' Feum
KeP(n),he¢k KeP(n),héK
= ) e+ Y exumFrum = F.
KEP(n),he¢k KeP(n),héK
Finally, f = I(F) = I(F; +Im(Zy) ® Fy) = £, + Im(x) © f7,. O

Next proposition shows that the partial spherical derivatives satisfies a Leibniz-type formula, analog to the
one-dimensional case.

Proposition 4.7. (Leibniz rule) Let f, g € S(RQp). It holds
(fO &hn = fs/,h © gs,ﬂh + fs:’h O & (19)

Proof. Let f= Z(F) and g = Z(G). We have to show that (F ® G);, = F; ® G, + F, ® Gj. By [10, Lemma 2.34],
we have F; ® G, = Zxepmnexex(Fr ® Gy )k, where
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FEG k=2  CDEE) GG Kk
Ki,K2, KzED(K)

and D(K) = {(K, K, K3) € P(n)’|K = K; U K, K3 N K = @}. By definition of F; and G, the previous equation

reduces to

(Fr® Gy )k = Y (-D"Fg kUG rurs,
K, Ko, K3E Dy(K)

with D4(K) = {(K;, K, K3) € P(n)*|K = K; U Ky, K3 N (K U {h}) = @}. In the very same way, we obtain

(Fy ® Gp)g = > -D"Fu kG rursuthys
K, Ko, K3EDR(K)
and hence,
F®Gy +F ®Gy= > e Y DS FruruimnGruk + FrukG kukui)-

KEP(n)heK K KpKEDH(K)

On the other hand, F ® G = Jxepmex(F ® G)k, Where

(F® G = Z (DI kG k-
Ky, Ko, K3€ D(K)
Thus,
F® Gh= 2 B F® Grum
KeP(n),héK
= Z ex Z (~D"IF G kyuks-

KeP(,heK Ky Ko K€ DKUY

Note that
DK U {h}) = {(K, Kz, K3) € P(n)}|K U {h} = K; U Ky, K3 N (K U {h}) = @}
={(K U {h}, K, K3), (K, K3 U {h}, K3)|(Ky, K3, K3) € Dp(K)},

)

(F® G)= Z ex Z (DI kG ruk,
KEPLhEK K Kp KoEDEKUIRY

= Y e« > DM FumurGrour, + FrurG kuihuk,)
KeP(n),héK  Ki,Kp,Kz€DH(K)

=F® G, +F, ® Gj.
Corollary 4.8. Let f€ S(Qp) and g € Sc,u(Qp) for some H € P(n), then (f© g)sy = sz ©g.

Proof. We proceed by induction over |H|. Suppose first |[H| = 1, then it follows from Propositions 4.7 and 4.4 (3).
Now, suppose by induction that (f© &) = f;; © & and let h € H, and then in the same way, we have

(fo g);‘,HU{h} = (fs,h o gsjh +fsjh O] gsl,h);,H = (fs,h o g);H = fs,,HU{h} © 4. 0

The next result highlights a fundamental property of partial spherical derivatives, i.e., harmonicity. The

only requirement is regularity in such variable. This extends the result for one-variable slice regular functions
[12, Theorem 6.3, (c)].

Proposition 4.9. Let f € SYQp). Suppose that f € ker(d/0x5), for some h = 1,..., n. Then

Ahfsl,hzo'

Proof. Let us introduce a slightly different notation: let x = (x4, ...,Xp) € Qp, with x; = a; + if; + jy, + ké; =
a; + J;b;, where
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B+ jy + ki
h= e BBy 8) = B Y+ S
Bl + Vl + 61

Let f = I(F), with F = J gepmexFk, then, by definition, fs 2O = 2kepmnexlis br 1FKU{h}(z)] and so

Mfl= Y Uk MOy Feomp)l.
Ke®P(n),h&K

Thus, it is enough to prove that
Dby Frumy) = (95, + 03 + 05, + 95)(by Feumy(Z', an + n(Bys Vi 1), 27)) = 0

Immediately, we obtain a5, (b; ' Fxumy) = by, '05, Fxugy- Moreover, by

B
0p,bn = Bu/bn, 9 Frumy = b_zabhFKU{h}’

we find
_ By By

05,(bp Frugmy) = = bgFKU{h} + bzabhFKU{h}

and
afsh(bﬁ "Frugy) = 0, e 3FKU{h} bzabhFKU{h}
3B, - by B - 2B} By
= —hbs Frugy = b45bhFKU{h} + —b O Frugmy + b3 —5 03 Frugn
h h
3B7 - by - 37 .32
T 5 Frug + b—h Optrumy + bgabhFKU{h}
Analogously for y, and &p:
_ 3y, ~ bi bii = 3y, Vi
a%;h(bthKU{h}) = hbs Frumy + . h OpFrugmy + bgabhFKU{h};
i h
) 367 - b} b? - 367 52
95,(by Fxugny) = b—FKU{h} M— Op Frugny + I abthu{h}
i 3

So

(9%, + 0}, + 95 )(by Fxumy) = by '03, Fxuim
and finally,

(b Frugy) = by'(03, + 03, )Fkugn = 0,
since f € ker(9/0x5), which implies the h-holomorphicity of every Fx. O

Our last application is a generalization to several variables of Fueter’s theorem, which is a fundamental result
in hypercomplex analysis. In modern language, it states that, given a slice regular function f: Qp CH - H, its
Laplacian generates an axially monogenic function, i.e.,

ECRFAf =0.

Theorem 4.10. Let Qp C H" be a circular set and let f € SRy(Rp) be a slice function, which is slice regular with
respect to Xy, for some h = 1,..., n. Then Ay f is an axially monogenic function with respect to xy, Le.,
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Ay f € ker(0y,).

In other words, the Fueter map extends to

Ay : SRi(Qp) > AMn(Qp).

Proof. Since f € SRy(Qp), we can apply Lemma 4.3 1. and Proposition 4.9

athhfz Ahéth= _ZAhfsl,h =0. O
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