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Abstract:We define a dual of the Chow transformation of currents on any complex projective manifold. This
integral transformation is a factor of a left inverse of the Chow transformation and its composition with the
Chow transformation is a right inverse of a linear differential operator, which does not commute with ∂ or ∂.
We obtain a complete intrinsic resolution of the problem of the algebraicity of the cohomology classes. On
another hand, in the case of the complex projective space, we give the translation in terms of real-analytic
�-modules of the properties of the Chow transformation. Then, the proofs can be simplified by using the
conormal currents, which exist for all currents of bidimension ( )p p, on the complex projective space, even
not closed. This is a consequence of the existence of dual currents, defined on the dual complex projective
space. In particular, we obtain a linear differential system of order lower than that of the Gelfand-Gindikin-
Graev differential system, characterizing the images by the Chow transformation of smooth differential
forms on the complex projective space.
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1 Introduction

Let �⊂X N be a complex projective manifold of dimension dX and let T be a current on X of bidimension

( )p p, with = −p d qX . The Chow transform �( )Tˆ ofT is a current of bidegree ( )1, 1 on the space ( )− −C Xd p 1X of

effective algebraic cycles in X of dimension − −d p 1X . The fact that �( )Tˆ is of bidegree ( )1, 1 means that it is
of bidegree ( )1, 1 on each irreducible component M of ( )− −C Xd p 1X of dimension dM (see [1,7]). For [ ] ∈x X
generic, we set

{ [ ]}= ∈ ∋d c M c xdim , ,

and assuming that the family of cycles ∈c M covers X , we have + = −d p d 1M .

We prove thatwe can choose M such that there is a dual integral transform�
∗ˆ M, defined for ( )1, 1 -currents

on M , with values in {( ) }-p p X, currents on satisfying the following property (see Theorem 1, subsection 2.3).

Theorem. There is a linear differential operator

� {( ) } {( ) }- → − − -p p currents on X d p d p currents on Xˆ : , ,M X X

with smooth coefficients locally on X such that the inversion formula

� � �( )( )=
∗

∣T Tˆ ˆ ˆM M M

holds for all ( )− −d p d p,X X -currents T on X.
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This implies that the Chow transformation �̂ of currents defined on a complex projective manifold is
injective. In this way, we complete the general scheme of integral geometry for the Chow transformation
(see [22,23]).

Note that �̂M does not commute with ∂ or ∂ in general, so there is no cohomological consequence.

In fact, when S is a ( )−q q1, -current on X , we have � � � �( )( ) ( )( )∂ = ∂
∗

∣

∗

∣S Sˆ ˆ ˆ ˆM M M M , which gives �∂ =S ˆ M

� �( )( )∂
∗

∣ Sˆ ˆM M .

But � �( )( )→
∗

∣S Sˆ ˆM M is not bijective, since the bidegree has changed.
We use the Chow transformation to solve the problem of the algebraicity of the cohomology classes, by

describing explicitly the obstructions.

Theorem. If T is closed on X and the cohomology class { }T is rational, then { }T is algebraic.

This is obtained by solving the equivalent problem of the approximation by the algebraic cycles (see
Theorem 4, subsection 4.1 and Theorem 5, subsection 4.2).

Let us mention that our result is consistent with ideas previously suggested by Jean-Pierre Demailly
(see [29,30]).

The fact that the Chow transformation �̂ of currents defined on a complex projective manifold is
injective can also be seen in the following way.

We denote by ( )↪j X P V: the embedding of X into �( ) =P V N and by ( ) ( )+ →∗
− −ρ G p V C X: 1, d p 1X

the induced meromorphic map, which associates ( ) ( )∩ ∩ …∩X P λ P λker ker p0 to a subspace ( )…λ λvect , , p0

( )∈ + ∗G p V1, . With �, the Chow transformation of currents of bidimension ( )p p, on the projective space
�N , we have the equality

� �( ) ( )=∗
∗

ρ T j Tˆ

between ( )1, 1 -currents on the Grassmannian �( ) ( )+ = =∗
−G p V G q V1, , q N1, . In other words, for the injec-

tivity of �̂ at the level of currents it is sufficient to take the irreducible component M of the cycles =c
( ) ( )∩ ∩ …∩X P λ P λker ker p0 .

In effect, we know (see [33]) the existence of a dual integral transform �∗, defined for ( )1, 1 -currents on
( )+ ∗G p V1, , with values in ( )p p, -currents on ( )P V , satisfying the existence of a linear differential operator

with smooth coefficients

� �� {( ) } {( ) }- → -p p q q: , currents on , currents onN N

such that �� �( )( )= ∗T T for all currents T of bidimension ( )p p, on �N .
The other purpose of this article is also to prove the existence of � for �N using the theory of left

�-modules (see [5,8,13,19]). We denote by �� N the sheaf of rings of real-analytic functions with complex
values and, �� N the sheaf of rings of real-analytic linear differential operators on �N . Then, �⋀ Tq q

N
, is a

sheaf of �� N-modules and �� �� �⊗ ⋀ Tq q
N

,
N N becomes a sheaf of left �� N-modules. The space of smooth

differential ( )q q, -forms on �N can be written as follows:

� � �� �� �� � �� �( ) ( )( )= ⊗ ⋀
∞ ∞H T, Hom , ,q q N N

q q
N,

0
,

N N N N

where the left �� N-module ��
∞

N
is the sheaf of smooth functions on �N .

The transform �( )T is obtained by integrating T on the projective subspaces of �N of dimension −q 1,
i.e., �( )T is obtained from T by means of the double fibration

� �

↙ ↘

−

Γ
φ ψ

N q N1,

with � �⊂ × −Γ N q N1, the incidence manifold. We denote by Q the universal quotient vector bundle on
� ( )=− G q V,q N1, and we replace Qdet by � �� �⊗

− −
Qdetq N q N1, 1, to obtain a left ��

−q N1, -module. Then, the
existence of � is a consequence of the following result (see Proposition 10, subsection 3.2).
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Proposition. There is a left �� N-module � isomorphic to �⋀ Tq q
N

, satisfying the following conditions:
(i) � �� �� � �( ) ( )⊗ ⊗− −

H H, ,N q N
0 0

1,N q N1, is contained in ���( (⊗ ⊗ ⊗ ⋀ ⊗
∗

∗

∗

∗φψ Q Q ψ φ Tdet det q q
N

,
N

� �� �( ) ( )))− ⊗ −1 1N N ,
(ii) for every smooth differential ( )q q, -form u on �N , the differential ( )p p, -form � �( )∗ u is a global solution on

�N of � with values in ��
∞

N
.

Here, � �� �� �( ) ( )⊗ − −
H H, ,N q N

0 0
1,N q N1, is a topological tensor product over � .

The proof of existence of � can also be simplified by using the theory of conormal currents in �N (see
subsection 3.3). Note that tangent currents at a point of closed positive currents were studied by
Dinh–Sibony (see [11]).

The theory of left �-modules also provides the partial differential equations (PDE) of Gelfand et al. (see
[14,15]), that characterize the ( )1, 1 -currents Θ on � −q N1, that are in the image of �.

Denote by ( )→τ V G q V: ,q the map that associates with ( )= … −z z z, , q0 1 in the product the vector
subspace ( ) ( )= … −τ z z zvect , , q0 1 . We use the Plücker coordinates PI of ( )= … ∈−z z z V, , q q0 1 , which are
defined by

∣ ∣

∑∧ … ∧ = ∈ ⋀−

=

z z P e V ,q

I q
I I

q
0 1

where = ∧ … ∧e e eI i iq1 for ( )= …I i i, , q1 with ≤ <…< ≤i i N0 q1 , when …e e, , N0 is an orthonormal basis
of V .

A smooth differential ( )1, 1 -form Θ on ( )G q V, is a Chow transform when Θ can be written as follows:

∣ ∣ ∣ ∣

∑= ∧∗

= =

τ C P PΘ d d ,
I J q

I J I J,

where the coefficients CI J, are smooth functions of ∈z Vq satisfying:
(i) the homogeneity property ( ) ∣ ∣ ( )= −C A z A C z. detI J I J,

2
, for all �( )∈A GLq ,

(ii) the linear differential equations of order 1

∑ ∑∂ + = = ∂ +

≤ ≤ −

≤ ≤

′ ′ ′ ′

≤ ≤ −

≤ ≤

′ ′ ′ ′z C C z C C0 ,
k q

j N

j
k

j
k

jI J j I J
k q

j N

j
k

j
k

I jJ I j J
0 1

0

, ,
0 1

0

, ,

(iii) the linear differential equations of order 2

( ) ( )∂ ∂ − ∂ ∂ = = ∂ ∂ − ∂ ∂′

′

′

′

′

′

′

′C C0 ,j
k

j
k

j
k

j
k

I J j
k

j
k

j
k

j
k

I J, ,

where ∂ j
k is the partial derivative with respect to the homogeneous coordinate zj

k. Actually, the coefficients

CI J, can be expressed as differential operators evaluated in the coefficients Θnl
km of Θ in homogeneous

coordinates (see Proposition 7, subsection 3.1).

This can also be translated in the following way (see Theorem 2, subsection 3.1).

Theorem. There is a left submodule �� ⊂ ⋀ −T q N
1,1

1, of finite type satisfying
(i) the inclusion of � ��� �( )( ) ⊗ ⋀ /−H T,N q N

0 1,1
1,N into �� �� �(⊗ ⊗ ⊗ ⋀ ⊗

∗

∗Q Q ψ φ Tdet det q q
N

,
N N

��( ) ( ))− ⊗ −1 1N ,

(ii) the equality � � ��
� � ��( ( ))= ⋀ /− −

∞

− −
H TIm , Hom ,q N q N

0
1,

1,1
1,q N q N1, 1,

.

Thus, if u is a smooth differential ( )q q, -form on �N , then �( )u is a global solution on � −q N1, of the left

��
−q N1, -module � �⋀ /−T q N

1,1
1, with values in ��

∞

−q N1, .
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2 Chow transformation of holomorphic vector bundles on N�

We denote by �( ) =P V N the projective space of lines in a complex vector spaceV of dimension +N 1 and [ ]x
the point of ( )P V associated to a nonzero vector x in V . For ≤ ≤q N1 , let �( ) = −G q V, q N1, be the
Grassmannian of vector subspaces of V of dimension q, and let ( )P s be the projective subspace of ( )P V
associated to ( )∈s G q V, .

Let Γ be the incidence manifold, i.e., the submanifold in ( ) ( )×P V G q V, of ([ ] )x s, satisfying ∈x s.
Then, ( )→φ P V: Γ and ( )→ψ G q V: Γ , are the restrictions to Γ of the canonical projections.

Let �→E N be a holomorphic vector bundle over �N . The Penrose transform of E (see [4,17,27]) is the
coherent sheaf

	 =
∗

∗ψ φ E

over � −q N1, . In the general case, 	 is not necessarily locally free. But there is �∈k0 such that

�� ( )( )⊗
∗

∗ψ φ E kN is a vector bundle for every ≥k k0. So we will implicitly replace E by �� ( ) ( )⊗ =E k E kN .

2.1 Inversion in the derived category

For [ ] ( )∈x P V , the fiber ([ ])−φ x1 is identified with �( )− /G q V x1, , thus its dimension is ( )= −d q 1
( )+ −N q1 .

We denote by = ⋀ω Ωφ
d

φ
1 the determinant bundle of Ωφ

1 , where Ωφ
1 is obtained in the following manner.

Thanks to the morphism �→Γ
φ

N , we have the exact sequence �→ →∗T φ TΓ 0
φ

N
d

, then by duality we obtain
the exact sequence

�→ → → →∗φ0 Ω Ω Ω 0φ
1

Γ
1 1

N

with �= /∗ ∗ ∗T φ TΩ Γφ N
1 . If we take 
 =

−ωφ
1, we have

�

�

�


 (( ) ( ))

( ( ) ) ( ( ))

( ( ) ) ( )

[ ] = ⋀ / ⊗ /

= / ⊗ /

= / ⊗

∗

∗ + − −

∗ + −

s x V s
s x V s
V x Q

det det
det det ,

x s
d

N q q

N q
s

N

,
1 1

1

where Q is the universal quotient vector bundle on ( )G q V, .
We can also take the holomorphic vector bundle 
 of rank 1 over Γ defined by �
 ( )[ ] = ⋀ /− ∗s xx s

q
,

1 .
Then, the exact sequence

� �→ / → / → →s x V x Q0 0s

allows us to write

�
 ( )[ ] = / ⊗∗V x Qdet det .x s s,

However, since we will be integrating on the fibers of φ, we will only use the holomorphic line bundle


 = ∗ψ Qdet (1)

on the incidence manifold Γ, with >Qdet 0 on the Grassmannian ( )G q V, .

Proposition 1. The correspondence 	→E is injective, and we can retrieve E from the coherent sheaf


 	( )′ = ⊗
∗

∗E φ ψ

calculated in the derived category on �N .

Proof. We begin by calculating 	∗ψ using the base change (see [21])
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( )

′ →

↓ ↓

→ G q V

Γ Γ

Γ , ,

p

p ψ

ψ

2

1

where {( ) ( ) ( )}′ = ∈ =a b ψ a ψ bΓ , Γ ,2 and ′ →p : Γ Γ1 and ′ →p : Γ Γ2 are the restrictions of the canonical
projections. In the derived category, we have 	 =∗

∗
∗ ∗ψ p p φ E1 2 and then the projection formula


 
 
( ) ( ) ( ) ( ( ) )⊗ = ⊗ = ∘ ⊗ ∘
∗

∗

∗

∗

∗ ∗
∗ ∗

∗
∗ ∗φ ψ ψ φ E φ p p φ E φ p p φ p E .1 2 1 1 2

With

( ) ( )′ → ×q P V P V: Γ

defined by ([ ] [ ] ) ([ ] [ ])′ = ′q x x s x x, , , , using the commutation formula ∘ = ∘φ p qpri i , we arrive at


 
( ) ( ( ) ) ( )∘ ⊗ ∘ = ⊗∗
∗ ∗

∗ ∗
∗ ∗q p q E q p Epr pr pr pr .1 1 2 1 1 2

Now we have to determine the coherent sheaf 
∗
∗q p1 on � �×N N , which is a generic holomorphic vector

bundle on � �×N N .
In effect, for[ ] [ ]≠ ′x x , thefiber ([ ] [ ]) { ( )} ([ ])′ = ⊃ ′ ⊂− −q x x s x x φ x, vect ,1 1 is identified to theGrassmannian

� �( ( ))− / ⊕ ′G q V x x2, and


 
( ) ( ([ ] [ ]) ) ( ([ ] [ ]) )[ ] [ ] = ′ = ′∗
∗

′
− − ∗q p H q x x H q x x ψ Q, , , , det .x x1 ,

0 1 0 1

Thanks to the exact sequence

� � � �( ) ( )→ / ⊕ ′ → / ⊕ ′ → →s x x V x x Q0 0s (2)

on ([ ] [ ])′−q x x,1 , we obtain � �
( ) ( ( ))[ ] [ ] = ⋀ / ⊕ ′∗
∗

′
+ −q p V x xx x

N q
1 ,

1 because ( ( ) ) = ⋀ + −H G q V Q V, , det N q0 1 by
the Bott theorem (see [6]).

This generic holomorphic vector bundle can be extended by a coherent sheaf in � �×N N in the
following way. When �[ ] ∈x N is fixed, we consider �[ ]x the image sheaf of the morphism � �′ → /x V x
for all �[ ]′ ∈x N . Then, �[ ]x extends � � �( )⊕ ′ /x x x and �� �( ) [ ]= / /V x x extends � �( )/ ⊕ ′V x x when [ ]′x
varies in �N . In such a way,

�� �(( ) )[ ]⋀ = ⋀ / /

+ − + −

V x
N q N q

x
1 1

extends � �( ( ))⋀ / ⊕ ′+ − V x xN q1 . Note that �⋀ + −N q1 is also a quotient of �( )⋀ /+ − V xN q1 since the canonical
map � � �( ) [ ]/ → / /V x V x x induces a surjection � �( )⋀ / → ⋀+ − + −V xN q N q1 1 .

But, for all fixed �[ ] ∈x N , with � �([ ]) ([ ] [ ])[ ] ′ = ′ ∈ ×i x x x,x N N , we have


( ( ) ( ) )[ ] [ ]′ = ⊗
∗

∗
∗E H P V i q p E, .x x

0
1

By taking the limit when [ ] [ ]′ →
≠

x x , we conclude that


 �( )[ ] = ⋀
∗

∗
∗

+ −

i q p .x

N q

1

1

Since ��� �( ) { }[ ] [ ] [ ]⊗ = 0x x N x, , the evaluation at [ ]x gives a morphism

��⎜ ⎟⎜ ⎟
⎛

⎝

( ) ⎛

⎝

⎞

⎠

⎞

⎠

( ) [ ]⋀ ⊗ → ⋀ / ⊗

+ − + −

H P V E V x E, .
N q N q

x
0

1 1
(3)

In effect, the fiber ��� �( )[ ] [ ]⋀ ⊗+ −N q
x

1
N x, is equal to

� � � � �� �� �� �({( ) } ( ) ) ( )[ ] [ ] [ ][ ] [ ]( ) { }⋀ ⊗ = ⋀ / ⊗ / ⊗ = ⋀ /

+ − + − + −

V x V x .
N q

x
N q

x x
N q1 1 1

N x N x, ,

Moreover, by replacing E by ( )E k with k large enough, we can assume the morphism (3) to be surjective.
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So there is a surjective morphism

�( )[ ] [ ]′ → ⋀ / ⊗

+ −

E V x E ,x

N q
x

1

i.e. we recover �� ( )( )⋀ / − ⊗+ − V E1N q1
N from ′E . By cancellation, we can recover E from ′E too. □

Note that the coherent sheaf 
∗
∗q p1 involved in the proof of Proposition 1 can also be obtained using the

blow up ′ → ′
′

Γ̃ Γ
μ

of ′Γ along �( )−q D1
N , where �D N is the diagonal in � �×N N . We can use a commutative

diagram

� �

′ →

↓ ↓

′→ ×

′

MΓ̃

Γ ,

σ

μ μ

q
N N

where μ is the blow up of � �×N N along �D N and σ is equidimensional. Then, 
 
= ′∗
∗

∗ ∗
∗ ∗q p μ σ μ p1 1 is

the direct image by μ of a holomorphic vector bundle defined on M also obtained by extension of the
holomorphic vector bundle � �( ( ))⋀ / ⊕ ′+ − V x xN q1 defined for � � �([ ] [ ])′ ∈ ×x x D, \N N N . In effect, with

([ ] [ ])′v x x, the natural morphism � �′ → /x V x, we have

� �{([ ] [ ] [ ]) ( ) { } ([ ] [ ])}= ′ ∈ ′ / ′M x x u u x V x u v x x, , , Hom , \ 0 and colinear to ,

and the inverse image in M of � �( )/ ⊕ ′V x x is nothing than the quotient vector bundle �( )/ /V x uIm .

Corollary 1. The correspondence that associates 	 �=
∗

∗ψ φ to any coherent sheaf � on �N is injective and we
can retrieve � from

� 
 	( )′ = ⊗
∗

∗φ ψ

calculated in the derived category on �N .

Proof. We use a projective resolution

�⟶ ⟶ ⟶ … ⟶ ⟶ ⟶ ⟶−E E E E0 0N N 1 1 0

with holomorphic vector bundles Ei defined in �N . If k is large enough, the complex

�( ( )) ( ( )) ( ( )) ( ( )) ( ( ))⟶ ⟶ ⟶ … ⟶ ⟶ ⟶ ⟶
∗

∗

∗

∗
− ∗

∗

∗

∗

∗

∗ψ φ E k ψ φ E k ψ φ E k ψ φ E k ψ φ k0 0N N 1 1 0

is exact too (see [27]), and we retrieve ( )E ki from ( ( ))
∗

∗ψ φ E ki by Proposition 1. □

For � , a coherent sheaf of � Γ-modules, the projection formula in the derived category

� � � �( ) ( )( ) ( )=
∗

∗

∗
ψ ψ ψHom , Hom ,G q V G q V, ,

can be written as � �( ) ( )=
∗ ∗

ψ ψˇ ˇ. So in Corollary 1, we can replace 
 by 
∗.

Proposition 2. Let Z be an effective algebraic cycle in �( ) =P V N of codimension q and let 
Z be the ideal
sheaves of Z. If �� � 
 ( )( )= / kZN , then

� �	 � � 
 �( ( ))= = / ⊗
∗

∗

∗

∗ψ φ ψ φ kZN N

is a coherent � ( )G q V, -module, and for each ( )∈s G q V, , we have

�	 � 
 �� ( ( ) ( ) ( ( )))( ) ( ) ( )( )⊗ = / ⋅∩H P s k k, .s P s Z P s P s
0

G q V s, ,

Proof. We first express

� �	 � 
 � � �( ( )) ( ( ))( ) ( )= / ⊗ = ⊗
∗

∗

∗ ∗
∗

− −ψ φ k ψ j φ kφ Z φ ZΓ N N
1 1
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with ( ) →−φ Z Γ
j1 the natural injection. Since �� ( )∗φ kN is locally free, it becomes

� �	 � � �( ( )) ( ( ) )( ) ( )= ⊗ =
∗ ∗

∗ ∗
∗ ∗

∗
∣

− −ψ j j φ k i ν φ kφ Z φ ZN N
1 1

with ( )→ G q VΣ ,
i

the natural injection and ν the modification ( ) →−φ Z Σ
ψ1 . For ∈s Σ generic, the intersec-

tion ( )∩Z P s is a point [ ]xs and the fiber over s of the line bundle ��( ( ) )( )∗
∗

∣
−ν φ k φ ZN

1 appears as being

� � 
 �( ) ( ( ) ( )) ( ( ) ( ))( ) [ ] ( )= / ⋅−x H P s k H P s k, , .s
k

P s x P s
0 0

s

Moreover, the short exact sequence


 � � � 
 �( ) ( ) ( ) ( ( ))[ ] ( ) ( ) ( ) [ ] ( )→ ⋅ → → / ⋅ →k k k k0 0x P s P s P s x P s

implies in cohomology the exact sequence as follows:


 � � � 
 �( ( ) ( )) ( ( ) ( )) ( ( ) ( ) ( ( )))[ ] ( ) ( ) ( ) [ ] ( )→ ⋅ → → / ⋅ →H P s k H P s k H P s k k0 , , , 0x P s P s P s x P s
0 0 0

in cohomology because 
 �( ( ) ( )) { }[ ] ( )⋅ =H P s k, 0x P s
1 by ampleness. We conclude that

�� 
 � 	 �( ( ) ( ) ( ( )))( ) [ ] ( ) ( )/ ⋅ = ⊗H P s k k, .P s x P s s
0

s G q V s, , □

2.2 Yang-Mills connections

We equip the holomorphic vector bundle E on �( ) =P V N with a Hermitian metric h and the line bundle

�� ( )kN with the Hermitian metric induced by the Hermitian scalar product on �= +V N 1.
The induced Hermitian metric on �� ( )( )⊗

∗

∗ψ φ E kN is defined in the following way. For ũ,
��( ) ( ) ( )( ( ) )∈ ⊗ ∣v H P s E k˜ , P s

0
N , we denote by u v, the associated vectors in �� ( )( )⊗

∗

∗ψ φ E k sN and we
set

([ ]) ([ ])

[ ] ( )

[ ]∫⟨ ⟩ = ⟨ ⟩

∈

−u v u x v x ω, ˜ , ˜ ,
x P s

x
q 1

(4)

where ω is the Fubini-Study form on �( ) =P V N .

We can express the above
( )

∫
P s

by writing a point in ( )P s as being [ ]x with = ⋅ = +…+ −x t z t z t zq
q

1
0 1

where �∈ −t q2 1 and ( )= … −s z zvect , , q0 1 . We obtain

�

( ) ( ) ( ) ( )∫⟨ ⟩ = ⟨ ⋅ ⋅ ⟩

∈ −

u v α z u t z v t z t, Δ ˜ , ˜ Φ ,q

t q2 1

where ( )

( )
=

− ! −

−
αq

q i
π
1

2

q

q

2 1

1 and ( )zΔ is the Gram determinant of z , while





( ) ( ) ( ( )

)

∑= − ∧ … ∧ ∧ … ∧ ∧ ∧ … ∧ + − ∧ … ∧ ∧ ∧ …

∧ ∧ … ∧

≤ ≤

−t i
π

t t t t t t t t t t

t t

Φ
4

1 d d d d d 1 d d d

d d .

k q

k
k k q q

q
k q

k q

1

1
1 1 1 1

Let us now express the Chern connection D on =
∗

∗F ψ φ E, where we implicitly replace E by ( ) =E k
�� ( )⊗E kN .

When W is an open subset of ( )G q V, , to define a section ( )∈u H W F,0 that is to say a continuous
section on W of the sheaf �( )F is equivalent to define ([ ] ) [ ]∈u x s E˜ , x for every ([ ] ) ( )∈ −x s ψ W, 1 satisfying

([ ] )u x s˜ , is holomorphic on ( )−ψ W1 .
The ( )1, 0 -part of D can be calculated by means of the relation

( )( )∂⟨ ⟩ = ⟨ ′ ⟩ + ⟨ ″ ⟩u v σ D u v u d v, , ,σ σ

Chow transformation of coherent sheaves  7



for �( )( )∈u v F W, and ( ( ))∈σ H W TG q V, ,0 . In W , we have

( )( )( )⟨ ⟩ =
∣ ∗

∗ −
−u v ψ fφ ω, ,ψ W

q 11

where ([ ] ) ([ ] ) ([ ] )= ⟨ ⟩f x s u x s v x s, ˜ , , ˜ , for ([ ] ) ( )∈ −x s ψ W, 1 . So ( )( )( )∂⟨ ⟩ = ∂ ∧
∣ ∗

∗ −
−u v ψ f φ ω, ψ W

q 11 , which gives

( ) ( ) ( ) (( ) )

[ ] ( )

([ ] )∫∂⟨ ⟩ = ∂ ∧ …

∈

∗ −u v σ f φ ω ξ σ, , , ,s s

x P s

q
x s s

1
,

where the lifting ( )[ ]∈ξ T P Vx is such that ( ) ([ ] )∈ξ σ T, Γs x s, for [ ] ( )∈x P s . The above contraction is equal to

( ( )) ( )([ ] ) [ ] ([ ] ) [ ]∂ − ∂ ∧ …
− −f ξ σ ω f ω ξ, ,x s s x

q
x s x

q
,

1
,

1

and its restriction to ( )[ ]T P sx is equal to ([ ] ) [ ] ( )[ ]∣

−A x s ω, x T P s
q 1

x
for some function ([ ] )A x s, .

To calculate ([ ] )A x s, , we choose …e e, , N0 an orthonormal basis of �= +V N 1, and we assume that
( )… =−e e svect , , q0 1 , and =

‖ ‖
e x

x0 .

For ∈s W , we set ( ) ( ) ( )= ↪ ⊂− −i P s ψ s ψ W: Γs
1 1 defined by ([ ]) ([ ] )=i x x s,s . We use that ∂ =

∗i fs
( )∂ = ∂ ⋅

∗i f f s,s and by identifying �( ) ⊗
∗e e emodj 0 0 with ej, we obtain

⎛

⎝
⎜

⎞

⎠
⎟

( )

[ ]

∣ ∣

[ ]

∣ ∣

∑ ∑

∑ ∑

= ∧ = ∧

… = ∧

−

≤ ≤

∗ ∗

−

= −

∗ ∗

−

≤ ≤ = −

∗ ∗

ω i
π

e e C e e

ω ξ C ξ e e

2

, ,

x
q

j N
j j

q

I q
I I

x
q

j N J q
j J jJ

1

1

1

1
1

1 2

where �( )= ∑ ⊗
≤ ≤

∗ξ ξ e e emodj N j j1 0 0. Here,
( )

( )

( )

=
− !−

−
C i q

π
1

2

q

q

1 2

1 and ( )= … −I i i, , q1 1 with ≤ <…< ≤−i i N1 q1 1 , while
( )= …

−
J j j, , q1 2 with ≤ <…< ≤

−
j j N1 q1 2 . In restriction to ( )[ ]T P sx , we have to take { }= … −jJ q1, , 1 and

conclude that

( ) ( ) ( ( ) ( ) )

[ ] ( )

([ ] ) [ ] [ ]∫∂⟨ ⟩ = ∂ −

∈

−u v σ f ξ p ξ σ ω, d , ,s s

x P s

x s s x s x
q

,
1

where ( ) ( )⟶p P V P V:s is the projective map associated to the orthogonal projection of V onto s.
We set

([ ] ) ( ( ) ( ) )[ ] ([ ] )= − ∈X x s ξ p ξ σ T, d , Γs x s x s, (5)

since ( )([ ] ) ([ ] )⊂−T ψ s T Γx s x s,
1

, , and we have

( ) ( )

[ ] ( )

[ ]

[ ] ( )

[ ]∫ { ( ) } ∫ ( )∂⟨ ⟩ = ⟨ ′ ⟩ + ⟨ ″ ⟩ = ⟨ ′ ⟩

∈

−

∈

−
∗ ∗u v σ D u v u d v ω D u v ω, ˜, ˜ ˜, ˜ ˜, ˜s s

x P s

φ E X X x
q

x P s

φ E X x
q1 1

when we take ṽ holomorphic on ( )−ψ W1 .
We define

� �( ( ) ) ( ( ) )→∞ − ∗ ∞ − ∗ψ W φ E ψ W φ EΠ : , ,E
1 1

the linear operator corresponding for each ∈s W to the orthogonal projection

� �( ( ) ) ( ( ) ) ( ( ) )→ ⊂∞ ∞P s E H P s E P s E, , ,0

where we use the Hermitian scalar product (4) on � ( ( ) )∞ P s E, . The above formula becomes

( ) ( ) ( )

[ ] ( )

[ ]∫ ( )∂⟨ ⟩ = ⟨ ∘ ′ ⟩

∈

−
∗u v σ D u v ω, Π ˜, ˜ .s s

x P s

E φ E X x
q 1

8  Michel Méo



Proposition 3. For all �( )( )∈u F W , we have

( ) ( ) ( ( ) )( )′ = ∘ ′ = ∘ ′∗
∗D u D u φ D u~ Π ˜ Π ˜σ E φ E X E E X

on ( )−ψ W1 , where ( ( ) )∈ − ∗u H ψ W φ E˜ ,0 1 corresponds to u.

Recall that we have a morphism 	 = →∗ ∗

∗

∗ ∗ψ ψ ψ φ E φ E. When 	 �( )= F is locally free, this morphism
is nothing more than the evaluation morphism

( ( ) ) [ ]= →F H P s E E,s x
0

for ∈x s. We can assume that it is surjective, and so we obtain an injection ↪∗ ∗ ∗ ∗φ E ψ F .

Corollary 2. Let ∗DF be the Chern connection induced on ∗F . Then, for every section � ( )∈ ∞ ∗ ∗h φ EΓ, , we
have �( ) ( )( ) ∈∗ ∞ ∗ ∗∗ψ D h φ EΓ,F 1,0 .

We calculate now the curvature ΘF of the Chern connection =D DF by the formula

( ) [ ]= − −σ σ u D D u D D u D uΘ ,F σ σ σ σ σ σ1 2 ,1 2 2 1 1 2

by assuming that [ ] =σ σ, 01 2 and u is a local holomorphic section of F . Thus, we have

( ) = ′ ″ − ″ ′ = − ″ ′σ σ u D d u d D u d D uΘ , .F σ σ σ σ σ σ1 2 1 2 2 1 2 1

Let ( )([ ] ) ([ ] )∈ / −X T T ψ sΓi x s x s, ,
1 be such that ( )([ ] ) =ψ X σd x s i i, and the equality (5) holds, then

( ( ) ) ( ( ) )

( ( )) ( ( ) ) ( )[ ] ( )

= − ″

= ∘ + ∘ + ″ − ″

∗

∗ ∗∗

σ σ u d φ D u

X X u φ D u d d φ D u

Θ , ~ Π ˜

Π Θ , ˜ Π ˜ Π Π ˜.
F X E E X

E φ E E E X X E X X E E X

1 2

1 2 ,

2 1

1 2 2 2 1

Since = =
∗v v vΠ ˜ Π ˜ ˜E E , we obtain

( ) ( ) ( ) ( )

( )

[ ]∫ ( )⟨ ⟩ = ⟨ + ′ + ″ − ″ ′ ⟩∗ ∗ −∗σ σ u v X X u φ D u d d φ D u v ωΘ , , Θ , ˜ ˜ Π Π ˜, ˜ ,F

P s

φ E E X X E X X E E X
q

1 2 1 2 ,
1

1 2 2 2 1

where ( ) ( ) ( )([ ] ) [ ]= −φ X ξ p ξd dx s i i s x i, with

� � �( ( ) ) ( ) ( )[ ]= − ⊗ ∈ = /−ξ x σ x x T P V x V xmod Hom ,i i s x
1

,

modulo ( )[ ]T P sx .
We consider the term involving the Lie bracket [ ]X X,1 2 . We use homogeneous coordinates on ( )G q V, ,

i.e., we write ( )= … −s z zvect , , q0 1 , then, for ≤ ≤ −k m q0 , 1, and ≤ ≤j l N0 , , we choose

( )

( )

= … + … = ∂

= … + … = ∂

− + −
∣ =

− + −
∣ =

σ
t

z z z te z z

σ
t

z z z te z z

d
d

vect , , , , , , ,

d
d

vect , , , , , ,

k k
j

k q
t j

k

m m
l

m q
t l

m

1
0 1 1 1

0

2
0 1 1 1

0

which gives

�

�

( ) ( ) ( )(( ) )( ( ))

( ) ( ) ( )(( ) )( ( ))

[ ] [ ]

[ ] [ ]

− = − ⊗

− = − ⊗

−

−

ξ p ξ x z p x e x
ξ p ξ x z p x e x

d component of on d id mod ,
d component of on d id mod .

s x
k

s x j

s x
m

s x l

1 1
1

2 2
1

Since σ1 and σ2 are holomorphic vector fields, we have [( ) ( )] =ξ σ ξ σ, , , 01 1 2 2 . Then, (( ) ( ) )[ ] ∈p ξd , 0s x i
( )([ ] )

−T ψ sx s,
1 and the ( )−ψ s1 is a �∞-foliation of Γ. By involutivity, we have

[(( ) ( ) ) (( ) ( ) )] ( ) ( )[ ] [ ] ([ ] ) ([ ] )∈ ⊕− −p ξ p ξ T ψ s T ψ sd , 0 , d , 0 .s x s x x s x s1 2 ,
1

,
1

Chow transformation of coherent sheaves  9



Finally, the Lie brackets [( ) (( ) ( ) )][ ]ξ σ p ξ, , d , 0s x1 1 2 and [(( ) ( ) ) ( )][ ]p ξ ξ σd , 0 , ,s x 1 2 2 belong to the space

( ) ( )([ ] ) ([ ] )⊕− −T ψ s T ψ sx s x s,
1

,
1 , since each ( ) ( )[ ]p ξd s x i decomposes on holomorphic sections of ( )([ ] )

−T ψ sx s,
1 .

So we conclude that

[ ] ( ) ( )([ ] ) ([ ] )∈ ⊕− −X X T ψ s T ψ s, .x s x s1 2 ,
1

,
1

On another hand, we set ([ ] ) ( ([ ] ))([ ] )=Y x s φ X x s, d ,i x s i, and use that

�([ ] ) ( ) ( ( ))[ ] ([ ] )∈ ⊕ ⊂⊥ ∗Y x s T P x s φ TP V, .i x x s,

We have ( )([ ]) [ ]=φ X X Y Yd , ,1 2 1 2 . We fix ( )∈ +W G p V2, and set �	 {([ ] ) }= ∈ ⊕ =⊥x s x s W, Γ,W . For all
	([ ] ) ∈x s, W , we have ([ ] ) ( )[ ]∈Y x s T P W,i x and the 	W is a foliation of Γ, so [ ] ( ) ( )([ ] ) [ ] [ ]∈ ⊕Y Y T P W T P W, x s x x1 2 ,

for all 	([ ] ) ∈x s, W . In other words, we obtain

[ ] ( ) ( )[ ] [ ]∈ ⊕X X T P W T P W, ,x x1 2

which implies that [ ] =X X, 01 2 .
Finally, a transposition in the last term yields that the curvature � ( ( ) )∈

∞ G q V FΘ , , EndF 1,1 has the
following expression:

( ) ( ) ( ) ( )( )

( )

∫ { }⟨ ⟩ = ⟨ ⟩ − ⟨ ′ − ′ ⟩∗ ∗ −∗σ σ u v X X u v φ D u I φ D v ωΘ , , Θ , ˜, ˜ ˜, Π ˜ .F

P s

φ E E X E E X
q

1 2 1 2
1

1 2 (6)

In Section 2.3, we calculate, in particular, � ( ( ))∈
∞ G q VΘ ,L 1,1E for some holomorphic line bundle

( )⊂ ⋀
∗

∗ − +L ψ φ EE
r q 1 over ( )G q V, , when E is a Hermitian holomorphic vector bundle over ( )P V of rank r.

2.3 Chow transform of a Chern class

Let �⊂X N be a complex projective manifold of dimension dX and letT be a smooth differential form on X of

bidimension ( )p p, with = −p d qX . The Chow transform �( )Tˆ ofT is a current of bidegree ( )1, 1 on the space

( )−C Xq 1 of effective algebraic cycles in X of dimension −q 1, obtained in the following way. Let Γ̂ be the

incidence variety, i.e., the subvariety in ( )× −X C Xq 1 of ( )x c, satisfying ∋c x. With →φ Xˆ : Γ̂ and

( )→ −ψ C Xˆ : Γ̂ q 1 , the restrictions to Γ̂ of the canonical projections, we set

�( ) =
∗

∗T ψ φ Tˆ ˆ ˆ .

The fact that �( )Tˆ is of bidegree ( )1, 1 means that it is of bidegree ( )1, 1 on each irreducible component M of
( )−C Xq 1 , which covers X .
When E is a Hermitian holomorphic vector bundle over X of rank =r rE , we denote by

� ( )∈
∞ X EΘ , EndE 1,1

the differential ( )1, 1 -form of curvature of E. With ( )c E , the total Chern class of E, whose component of
bidegree ( )q q, is ( )c Eq , we calculate the Chow transform ( )

∗

∗ψ φ cˆ ˆ Θq E in terms of the Penrose transform
( )⋀

∗

∗ − +ψ φ Eˆ ˆ r q 1 , which is a holomorphic vector bundle over ( )−C Xq 1 .

Proposition 4. For E, a Hermitian holomorphic vector bundle over X, we have ( ) ( )=
∗

∗ψ φ c cˆ ˆ Θ Θq E L1 E with some

singular Hermitian metric on a holomorphic line bundle ( )⊂ ⋀
∗

∗ − +L ψ φ Eˆ ˆE
r q 1E over the cycle space ( )−C Xq 1 .

Proof.We set �� ( )= ∣L 1 XN , then by replacing E by ⊗E Lk with k large enough, we can assume that there are
sections … −f f, , r q0 in ( )H X E,0 such that ( ) { }=c E Zq , where

{[ ] ([ ]) ([ ]) }= ∈ … −Z x X f x f x, , , linearly dependentr q0

10  Michel Méo



is the degeneracy locus. So Z is the set of zeroes of the section

⎜ ⎟
⎛

⎝

⎞

⎠
∧ … ∧ ∈ ⋀−

− +

f f H X E, ,r q
r q

0
0

1

which induces a surjective morphism 
⋀ →− + ∗Er q
Z

1 equivalent to an injective morphism 
 → ⋀
∨ − + EZ

r q 1 .
Furthermore, we obtain an injective morphism


 ⎜ ⎟( ) ⎛

⎝

⎞

⎠
→ ⋀

∗

∗ ∨

∗

∗

− +

ψ φ ψ φ Eˆ ˆ ˆ ˆ ,Z

r q 1

which is equivalent to a surjective morphism 
( ( )) ( ( ))⋀ →
∗

∗ − + ∗

∗

∗ ∨ ∨ψ φ E ψ φˆ ˆ ˆ ˆr q
Z

1 .

We denote by �( ) ( )= = ⊂
∗

∗
−D Z ψ φ Z C Xˆ ˆ ˆZ q 1 the Chow divisor of Z , in such a way that 
 
=

∗

∗ψ φˆ ˆ Z DZ.
In the derived category, we have (see [16])


 
 
( ( )) ( )= =
∗

∗ ∨ ∨

∗

∗ψ φ ψ φˆ ˆ ˆ ˆ .Z Z DZ

Thus, there is a section g of ( )⋀
∗

∗ − +ψ φ Eˆ ˆ r q 1 , whose set of zeroes is equal to DZ. But the section
�( ( ) ( ))∈ −g H C X D,q Z

0
1 , therefore �( ) ( )⊂ ⋀

∗

∗ − +D ψ φ Eˆ ˆZ
r q 1 . Since �( )DZ is continuous with respect to Z , it

is independent of Z , so �( ) =D LZ E.
By [9,10], we can approximate the closed differential ( )q q, -form ( )c Θq E by rational algebraic cycles Zj of

codimension q in X cohomologous to ( )c Eq . Then, the divisor =
∗

∗D ψ φ Zˆ ˆZ jj in ( )−C Xq 1 is the set of zeroes of a

holomorphic section gj of �( )Dj , thus

�( )[ ] ( )=D c ΘZ D1j j

for some singular Hermitian metric on �( )Dj depending on gj. By taking the limit when → ∞j , we obtain
( ) ( )=

∗

∗ψ φ c cˆ ˆ Θ Θq E L1 E for some singular Hermitian metric on LE. □

We now prove the injectivity of the Chow transformation � =
∗

∗ψ φˆ ˆ ˆ acting on the ( )q q, -currents on X .
Let dM be the dimension of an irreducible component M of ( )−C Xq 1 and for [ ] ∈x X generic, let

{ [ ]}= ∈ ∋d c M c xdim ,

be the dimension of the fiber ([ ])∩ −M φ xˆ 1 . Assume that the family of cycles ∈c M covers X , then
+ = + −d d d q 1X M . On M , we define first �( ) ( )= =

∣ ∗

∗
∣

ω ψ φ ωΩ ˆ ˆ ˆX
q

X
q , where

��( ) ( )( )= =∣ ∣ω c cΘ ΘX L X1 1 1N
. Then,

for Θ a ( )1, 1 -current on M , we define the dual integral transform:

� ( ) ( )= ∧
∗

∗

∗

∣

−φψˆ Θ ˆ ˆ Θ Ω ,M M
d 2M

which is a current of bidegree ( )− −d q d q,X X on X .

Theorem 1. There is an irreducible component M of ( )−C Xq 1 such that the transform

� � {( ) } {( ) }- → − − -
∗

∣ q q currents on X d q d q currents on Xˆ ˆ : , ,M M X X

is invariant by transposition and satisfies

� �( ( ) ) = ⇒ =
∗

∣T Tˆ ˆ 0 0M M

for all ( )q q, -currents T on X. Then, a left inverse of � �
∗

∣
ˆ ˆM M is a linear differential operator �̂M, which does not

commute to ∂ nor ∂ in general.

Proof. We assume that � �( )( ) =
∗

∣ Tˆ ˆ 0M M . When u is a smooth differential ( )q q, -form on X , we have first

� � � � � �( )( ) ( ) ( ) ( )( )∫⟨ ⟩ = ∧ ∧ = ⟨ ⟩
∗

∣
−

∗

∣T u T u T uˆ ˆ , ˆ ˆ Ω , ˆ ˆ .M M

M

d
M M

2M (7)
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For an algebraic subset ⊂Z X of pure dimension −d qX and a � ( )∈ ∞f Z , we take further [ ]=u f Z and we
use that

�( [ ]) ( [ ]) (( )[ ]) ( )[ ]= = ∘ = ∘ ∘
∗

∗

∗

− −f Z ψ φ f Z ψ f φ φ Z f φ ν Dˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,Z
1 1

where →−ν φ Z Dˆ : ˆ ψ
Z

1
ˆ

is a modification and ∩Z c is a point ( ) ( )( )= ∘ −π c φ ν cˆ ˆ ˆ 1 for ∈c DZ generic. In other
words, �( [ ]) ( )[ ]= ∘f Z f π Dˆ ˆ Z , which gives

� � �( )( ) ( ( ) )∫ ( ) ( )⟨ ⟩ = ∧
∗

∣ ∣ ∩ ∗
−

∣ ∩T u f π Tˆ ˆ , ˆ ˆ Ω .M M

Z

D M
d

D M
2

Z
M

Z

We obtain the condition

�( ( ) )( ) ( )∧ = ∀∣ ∩ ∗
−

∣ ∩π T Zˆ ˆ Ω 0 ,D M
d

D M
2

Z
M

Z (8)

which implies, for all Z , the condition

�( ( ) [ ])∧ ∧ =−
∣T Dˆ Ω 0.d

Z M
2M

We arrive at the conclusion that �( ( ) )∧ =−
∣Tˆ Ω 0d
M

2M . Thanks to the Lefschetz isomorphism, this implies
that �( ) =Tˆ 0 on M , and thus =T 0 if M is such that �∣

ˆ M is injective.
In fact, we take [ ]= ∑T f Zk k k , where � ( )∈ ∞f Zk k . At the same time, we take =Z Zl with a fixed index l.

With = ∘g f π̂k k k, we have �( ) [ ]= ∑T g Dˆ
k k Zk and the condition (8) becomes

⎜ ⎟

⎛

⎝

⎜
⎜

⎛

⎝

⎞

⎠

⎞

⎠

⎟
⎟

( ) [ ]∑ ∧ =∣ ∩ ∗
−

∣ ∩

π g Dˆ Ω 0.l D M
k

k Z
d

D M

2
Zl k

M

Zl

The restriction[ ]∣DZ Dl Zl
can be assumed smooth, in the cohomology class of �({ }){ } =∣ ∣D ZˆZ D l Dl Zl Zl

. On another
hand, [ ] [ ]= ∩∣D D DZ D Z Zk Zl k l has a singular support for ≠k l. We obtain =f 0l when � �( )( ) =

∗

∣ Tˆ ˆ 0M M , so
=T 0. In other words, � �( )

∗

∣
ˆ ˆM M is injective, in restriction to the [ ]∑ f Zk k k .

Furthermore, we have the injectivity in the space of all currents of bidimension ( )− −d q d q,X X on X ,
thanks to an argument of density. □

So we can choose M such that the relation � � �=
∗

∣id ˆ ˆ ˆM M M is satisfied. Then, � �
∗

∣
ˆ ˆM M is injective thus

bijective, since this transformation is invariant by transposition by (7).
But there is no corollary in cohomology, since �̂M does not commute to ∂ or ∂ in general. We have only

the following property, with respect to the algebraic cohomology. Denote by ( ) ( )⊂H X H Xp p p p
alg

, , the sub-
space of the cohomology classes of algebraic cycles of X of codimension p with complex coefficients (see
[12,20,28]).

Proposition 5. The transformation � =
∗

∗ψ φˆ ˆ ˆ is injective from ( )∗H Xp p
alg

, to ( )⊕
− − ∗H Mi

d d
ialg

1, 1Mi Mi , where Mi is the
family of the irreducible components of ( )−C Xq 1 with = −p d qX .

Proof. We prove that the transformation

( ) ( )⊕ →
∗

∗ − −φψ H M H Xˆ ˆ :
i

d d
i

p p
alg

1, 1
alg

,Mi Mi

is surjective. Let ⊂Y X be an irreducible algebraic subset of dimension = −q d pX . We write ( )= ⋃ ∩Y Y HH
where H belongs to the set of all algebraic hypersurfaces of X . With ( )= ∩ ∈ −c Y H C Xq 1 , the irreducible
component M of c in ( )−C Xq 1 does not depend on H when H varies continuously. Then = ⋃ ∈Y cc C whereC is
an algebraic curve in M , in other words ( ( )) [ ] ([ ])= ⇔ =

−

∗

∗Y φ ψ C Y φψ Cˆ ˆ ˆ ˆ1
. □
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3 Chow transformation of currents on N� and sheaves of left
modules over the ring of real-analytic linear differential operators
Given T a current on � ( )= P VN of bidegree ( )q q, , we set

�( ) ([ ] )= = ∧
∗

∗
∗

∗T ψ φ T Tpr Γ pr2 1

as being the Chow transform of T . Then, �( )T is a current of bidegree ( )1, 1 on � ( )=− G q V,q N1, .

3.1 Characterization by PDE of the image of the Chow transformation of currents

We obtain, by slicing and projecting, the linear differential equations characterizing the images by the
Chow transformation of the ( )q q, -currents on�N . In this way, we obtain a linear differential system of order
lower than that of the Gelfand-Gindikin-Graev differential system.

If �( )= uΘ is a smooth differential ( )1, 1 -form on ( )G q V, , which is in �im , then a first condition is that
for all ( )∈ +W G q V1, , the restriction ( )∣

∗Θ P W of Θ to ( ) ( ) ( )= ⊂∗P W G q W G q V, , is closed, i.e.,

( ) ( ) =∣
∗dΘ 0.P W (9)

This follows from the slicing formula

� �( ) ( )( ) ( )=∣ ∣
∗u uP W W P W (10)

for all ( )∈ +W G q V1, , with �W , the Chow transformation on ( )P W . In effect, since ( )∣u P W is of bidegree
( )q q, on ( )P W , thus closed, ( )∣

∗Θ P W is closed too.
Conversely, if this condition is satisfied, then �( ) ∈∣

∗Θ imP W W . Then, a second condition is that

� ( )( )
−

∣
∗ΘW P W

1 is the restriction to W of a smooth differential ( )q q, -form independent of ( )∈ +W G q V1, .
Third, a projection argument allows us to complete the characterization of smooth differential

( )1, 1 -forms Θ on ( )G q V, , which are in �im .
In effect, for ′W a vectorial subspace of V of dimension −q 2, we set

{ ( ) } ( )= ∈ ′ ⊂ ≃ / ′′G s G q V W s G V W, , 2,W

and � ′
˜W denotes the Chow transformation acting on currents in ( )/ ′P V W . We denote by ⟶ / ′′π V V W:W

the vectorial projection and by ( ) ( )⟶ / ′′π P V P V W˜ :W the induced projective map.
When u is a differential form of bidegree ( )q q, of class �∞ in ( )P V , we have the equality

� �( ) ( )=∣ ′ ′∗′
u π u˜ ˜ .G W WW

The direct image ′∗π u˜W is calculated by integrating u along the fibers of ′π̃W and is a smooth differential
( )2, 2 -form in ( )/ ′P V W .

Proposition 6. A smooth differential ( )1, 1 -form Θ on ( )G q V, is the Chow transform of a smooth differential
( )q q, -form on ( )P V , when
(i) the condition ( ) ( )= =∣ ∣

∗dΘ dΘ 0G q W P W, is satisfied for all ( )∈ +W G q V1, ,

(ii) there is a smooth differential ( )q q, -form u on ( )P V such that � ( )( ) ( )=∣ ∣
∗ uΘ P W W P W for all ( )∈ +W G q V1, ,

(iii) the restriction �∈∣ ′′
Θ im ˜G WW for all ( )′ ∈ −W G q V2, .

Proof. We have �( ( )) ( )− =∣
∗uΘ 0P W and � �( ( ))− ∈∣ ′′

uΘ im ˜G WW . By replacing Θ by �( )− uΘ , it remains to
prove that

�( ) = ∈ ⇒ =∣ ∣ ′
∗

′
Θ 0 and Θ im ˜ Θ 0.P W G WW

So assume � ( )=∣ ′ ′′
uΘ ˜G W WW with ′uW of bidegree ( )2, 2 in �( )/ ′ = − +P V W N q 2. For ′ ⊂W W , we take the

restriction to

Chow transformation of coherent sheaves  13



� �{ ( ) } ( ) ( )∈ ′ ⊂ ⊂ = / ′ = =
∗s G q V W s W G W W G, , 2, 2, ,3
2

and we obtain

� �� ( ) ( )( )= =′ ′ ∣ ∣ ∣
∗ ∗ ∗u˜ Θ 0.W W P W2 2

Therefore, ( ) =′∣ / ′u 0W P W W and =′u 0W . We conclude that =∣ ′
Θ 0GW . For ( )= … −s z zvect , , q0 1 and ≤ k0 ,

≤ −m q 1, we choose  ( )′ = … … … −W z z z zvect , , , , , ,k m q0 1 and conclude that ( ) =σ σΘ , 0s 1 2 with

( )

( )

= … + … = ∂

= … + … = ∂

− + −
∣ =

− + −
∣ =

σ
t

z z z te z z

σ
t

z z z te z z

d
d

vect , , , , , , ,

d
d

vect , , , , , ,

k k
j

k q
t j

k

m m
l

m q
t l

m

1
0 1 1 1

0

2
0 1 1 1

0

where …e e, , N0 is a basis of V . In other words, =Θ 0s in homogeneous coordinates. □

Denote by ( )⟶τ V G q V: ,q the map that associates with ( )= … −z z z, , q0 1 in the product the vector
subspace ( ) ( )= … −τ z z zvect , , q0 1 . Assume that the smooth differential ( )1, 1 -form Θ on ( )G q V, is given in
homogeneous coordinates as follows:

∑= ∧∗

≤ ≤ −

≤ ≤

τ z zΘ Θ d d .
k m q

n l N

nl
km

n
k

l
m

0 , 1
0 ,

Recall the linear differential equations in the coefficients of Θ that are equivalent to condition (i) of
Proposition 6 and are given in [14,15]. These are

∂ − ∂ = ∂ − ∂′

′

′

′

′

′ ′

′Θ Θ Θ Θj
k

jl
km

j
k

j l
k m

j
k

jl
k m

j
k

j l
km

and

∂ − ∂ = ∂ − ∂′

′

′

′

′

′ ′

′Θ Θ Θ Θl
m

jl
km

l
m

jl
km

l
m

jl
km

l
m

jl
km

for ≤ ′ ′ ≤ −k k m m q0 , , , 1, and ≤ ′ ′ ≤j j l l N0 , , , .
In effect, we have

∑ ∑= ∂ ∧ ∧ + ∂ ∧ ∧∗
′

′

′

′

′

′

′

′τ z z z z z zdΘ Θ d d d Θ d d d .j
k

jl
km

j
k

j
k

l
m

l
m

jl
km

j
k

l
m

l
m

We take ( )= … −W a z zvect , , , q0 1 with { }∈ ⧹a V 0 in such a way that an hyperplane of W can be written as
( )+ ≤ ≤ −t a zvect k

k
k q0 1 with �( ) ∈tk

q. In the inverse image in �q of ∗τ dΘ at the point 0, the coefficient of
∧ ∧′t t td d dk k m is

( )∑ ∂ − ∂

′

′

′

′

′
′a a aΘ Θ ,

j j l
j
k

jl
km

j
k

jl
k m

j j l
, ,

while the coefficient of ∧ ∧ ′t t td d dk m m is

( )∑ ∂ − ∂

′

′

′

′

′
′a a aΘ Θ .

j l l
l
m

jl
km

l
m

jl
km

j l l
, ,

When the smooth differential ( )1, 1 -formΘ on ( )G q V, satisfies the property (i) of the Proposition 6, then
the function

(( ) )
( )∑=

− !
− ∂ ∂

≤ ≤ −

+C
q

1
1

1 ΘjI lJ
k m q

k m
I
k

J
m

jl
km

, 2
0 , 1

ˆ ˆ
(11)

depends only on jI and lJ . We have denoted here by ∂I
k̂ the linear differential operator

⎛

⎝
⎜

⎞

⎠
⎟

∂

∂
′

′≠

∈

z
det

j
k

k k
j I
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for ∣ ∣ ∣ ∣= = −I J q 1. For the proof, we write

( ) ( ) ( )∑ ∑− ∂ = − … ∂ …∂

≤ ≤ −

−

≤ … ≤ −

−

−

−

−ε σ σ k1 Θ 1 , , , Θ
k q

k
I
k

jl
km q

σ σ k q
q i

σ
i
σ

jl
km

0 1

ˆ 1

0 , , , 1
1 1

q
q
q

1 1
1
1

1
1

and we use

∂ − ∂ = ∂ − ∂Θ Θ Θ Θi
σ

jl
km

i
k

jl
σ m

j
k

i l
σ m

j
σ

i l
km

α
α

α
α

α
α α

α

for ≤ ≤ −α q1 1.
The Plücker coordinates PI of ( )= … ∈−z z z V, , q q0 1 are defined by

∣ ∣

∑∧ … ∧ = ∈ ⋀−

=

z z P e V ,q

I q
I I

q
0 1

where = ∧ … ∧e e eI i iq1 for ( )= …I i i, , q1 with ≤ <…< ≤i i N0 q1 .

Lemma 1. If Θ satisfies the property (i) of the Proposition 6, then we have the decomposition

∣ ∣ ∣ ∣

∑= ∧∗

= =

τ C P PΘ d d ,
I J q

I J I J,

where the coefficients CI J, are smooth functions of z satisfying the differential equations

∑ ∑∂ + = = ∂ +

≤ ≤ −

≤ ≤

′ ′ ′ ′

≤ ≤ −

≤ ≤

′ ′ ′ ′z C C z C C0
k q

j N

j
k

j
k

jI J j I J
k q

j N

j
k

j
k

I jJ I j J
0 1

0

, ,
0 1

0

, ,

and the homogeneity property ( ) ∣ ∣ ( )= −C A z A C z. detI J I J,
2

, for all �( )∈A GLq .

Proof. See [30]. □

For u, a smooth differential ( )q q, -form on �N , the inverse image of u by the canonical map
( )⟶π V P V: is written as follows:

∣ ∣ ∣ ∣

∑= ∧∗

= =

π u u x xd d ,
I J q

I J I J,

with xj the coordinates of ∈x V with respect to an orthonormal basis …e e, , N0 of V , and with smooth
functions uI J, on { }⧹V 0 satisfying the property of homogeneity ( ) ∣ ∣ ( )= −u λx λ u xI J

q
I J,

2
, for �∈ ∗λ and satis-

fying for ∣ ∣ ∣ ∣′ = ′ = −I J q 1, ∣ ∣ ∣ ∣= =I J q the relations

( ) ( )∑ ∑= =

≤ ≤

′

≤ ≤

′x u x x u x0
j N

j jI J
j N

j I jJ
0

,
0

,

that are equivalent to the fact that the radial contractions of ∗π u are 0. By differentiating, these relations are
also equivalent to

( ) ( ) ( ) ( )∑ ∑
∂

∂
+ = =

∂

∂
+

≤ ≤ ′

′ ′ ′

≤ ≤ ′

′ ′ ′x
x

u x u x x
x

u x u x0
j N

j
j

jI J j I J
j N

j
j

I jJ I j J
0

, ,
0

, , (12)

for ≤ ′ ≤j N0 .
The inverse image by τ of the Chow transform �( )u is then written as follows:

� �( ) ( )∑= ∧∗

≤ ≤ −

≤ ≤

τ u u z zd d .
k m q

n l N

nl
km

n
k

l
m

0 , 1
0 ,

The coefficients � ( )unl
km can be expressed (see [30]) by means of the uI J, in the following way:
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� ( )( ) ( ) ( )
∣ ∣ ∣ ∣

∑= − +

= = −

u z u z z z1 ˜nl
km k m

I J q
nI lJ I

k
J
m

1
,

ˆ ˆ

with ( )=
′

≤ ≤ −

≤ ′≤ − ′≠

z zdetI
k

i
kˆ
α

α q
k q k k
1 1

0 1,
and the transform

�

( ) ( ) ( )∫= ⋅

∈ −

u z u t z t˜ Φ ,nI lJ

t

nI lJ, ,
q2 1

(13)

where ⋅ = + …+ −t z t z t zq
q

1
0 1 and





( ) ( ) ( ( )

)

∑= − ∧ … ∧ ∧ … ∧ ∧ ∧ … ∧ + − ∧ … ∧ ∧ ∧ …

∧ ∧ … ∧

≤ ≤

−t i
π

t t t t t t t t t t

t t

Φ
4

1 d d d d d 1 d d d

d d .

k q

k
k k q q

q
k q

k q

1

1
1 1 1 1

In such a way, it becomes

�( )
∣ ∣ ∣ ∣

∑= ∧∗

= =

τ u u P P˜ d d .
I J q

I J I J,

Set ([ ]) ( )= ‖ ‖f x x u xI J
q

I J,
2

, and let � ( )− fq I J1 , be the Radon transform of fI J, obtained by integration of that
function in the projective subspaces of ( )P V of dimension −q 1. In addition (see [24–26]),

� ( ) ( ) ( )( ) =− f α u z z˜ Δ ,q I J τ z q I J1 , ,

where ( )

( )
=

− ! −

−
αq

q i
π
1

2

q

q

2 1

1 and ( )zΔ is the Gram determinant of z . The transforms ũI J, satisfy the following
properties.

With �( ) ( )= ∈≤ ≤ −A a GLk m k m q q, 0 , 1 , set

( )
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑… = …−

≤ ≤ − ≤ ≤ −

−A z z a z a z. , , , , .q

k q
k

k

k q
k q

k0 1

0 1
,0

0 1
, 1

Then, ( ) ∣ ∣ ( )= −u A z A u z˜ . det ˜I J I J,
2

, .
On another hand, the relations (12) can be expressed as follows:

( ) ( ) ( ) ( )∑ ∑∂ + = = ∂ +

≤ ≤ −

≤ ≤

′ ′ ′ ′

≤ ≤ −

≤ ≤

′ ′ ′ ′z u z u z z u z u z˜ ˜ 0 ˜ ˜
k q

j N

j
k

j
k

jI J j I J
k q

j N

j
k

j
k

I jJ I j J
0 1

0

, ,
0 1

0

, ,

for ≤ ′ ≤j N0 .
Finally, the ũI J, satisfy the John linear differential equations

( ) ( )∂ ∂ − ∂ ∂ = = ∂ ∂ − ∂ ∂′

′

′

′

′

′

′

′u u˜ 0 ˜ .j
k

j
k

j
k

j
k

I J j
k

j
k

j
k

j
k

I J, ,

Proposition 7. A smooth differential ( )1, 1 -form Θ on ( )G q V, is a Chow transform when Θ satisfies the
property (i) of the Proposition 6 and the coefficients CI J, of the Lemma 1 satisfy the differential equations

( ) ( )∂ ∂ − ∂ ∂ = = ∂ ∂ − ∂ ∂′

′

′

′

′

′

′

′C C0 .j
k

j
k

j
k

j
k

I J j
k

j
k

j
k

j
k

I J, ,

Proof. If �( )= uΘ , then =C ũI J I J, , by unicity. □

Recall now the linear differential equations equivalent to property (iii) of Proposition 6 that are given in
[30]. To this hand, in Proposition 6, we take

 
( )′ = … … …

′ −W z z z zvect , , , , , ,k k q0 1

for ≤ ′ ≤ −k k q0 , 1 fixed and we use that the inverse image in V2 of ∣ ′
Θ GW is
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( )∑ ∧ + ∧ + ∧ + ∧

≤ ≤

′ ′ ′ ′ ′ ′ ′ ′z z z z z z z zΘ d d Θ d d Θ d d Θ d d
j l N

jl
kk

j
k

l
k

jl
kk

j
k

l
k

jl
k k

j
k

l
k

jl
k k

j
k

l
k

0 ,

so the expressions

∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂
′ ′ ′ ′ ′ ′ ′ ′

″ ″ ″ ″ ″ ″ ″ ″Θ Θ Θ Θi
k

j
k

j l
kk

i
k

j
k

j l
kk

i
k

j
k

j l
k k

i
k

j
k

j l
k k

should be annihilated by ∂ ∂ − ∂ ∂′

′

′

′

l
k

l
k

l
k

l
k and ∂ ∂ − ∂ ∂′

′

′

′

l
k

l
k

l
k

l
k
by applying Proposition 7 for =q 2.

Finally, mention that the linear differential equations equivalent to property (ii) of Proposition 6 are
given explicitly in Proposition 4 of [33].

Our purpose for the rest of this subsection is to obtain the linear differential system characterizing the
Chow transforms of the ( )q q, -currents on �N by using the theory of sheaves of left modules over the rings of
real-analytic linear differential operators.

We denote by �� N the sheaf of rings of real-analytic functions with complex values and �� N the sheaf
of rings of real-analytic linear differential operators on �N . Then, �⋀ Tq q

N
, is a sheaf of �� N-modules and

�� �� �⊗ ⋀ Tq q
N

,
N N becomes a sheaf of left �� N-modules. The space of smooth differential ( )q q, -forms on

�N can be written as follows:

� � �� �� �� � �� �( ) ( )( )= ⊗ ⋀
∞ ∞H T, Hom , ,q q N N

q q
N,

0
,

N N N N

where the left �� N-module ��
∞

N
is the sheaf of smooth functions on �N .

We retrieve the conditions on ũI J, by transforming the left �� N-module �� �� �⊗ ⋀ Tq q
N

,
N N on �N into

the left ��
−q N1, -module

�� � �� � �� � �� � �( ( ) ( ))⊗ ⋀ ⊗ − ⊗ −
∗

∗ψ φ T 1 1
q q

N
,

N N N N N N

on � −q N1, . In order to calculate this transform, we use the inclusion

� � �� �( ( ) ( )) ( )
∣ ∣ ∣ ∣

⋀ ↪ ⊕ − ⊗ − ⊗ ∧∗

= =

∗ ∗λ T q q e e: ,
q q

N
I J q

I J

,

N N

which associates to a differential ( )q q, -form u the previous coefficients ( )uI J, . It follows that �⋀ Tq q
N

, is the
quotient of � �� �( ) ( ) ( )∣ ∣ ∣ ∣ ( )⊕ ⊗ ⊗ ∧= = q q e eI J q I JN N by λKert , where

( ) ∑ ∑∈ ⇔ = +

′=

′

′=

′v λ v x g x hKerI J
t

I J
iI I

i I J
jJ J

j I J, , , ,

for systems ( )
′

gI J, and ( )′hI J, of functions. Furthermore, �� �� �⊗ ⋀ Tq q
N

,
N N becomes the quotient of

� � �� �� � �� �( ( ) ( )) ( )
∣ ∣ ∣ ∣

⊕ ⊗ ⊗ ⊗ ∧
= =

q q e e
I J q

I JN N N N N

by the submodule of vI J, such that = ∑ + ∑
′= ′ ′= ′v g x h xI J iI I I J i jJ J I J j, , , for systems ( )

′
gI J, and ( )′hI J, of linear

differential operators with real-analytic coefficients.
We set ([ ]) ( )= ‖ ‖f x x u xI J

q
I J,

2
, and associate to the differential ( )q q, -form u the coefficients ( )fI J, instead

of the ( )uI J, . In addition, we have that �� �� �⊗ ⋀ Tq q
N

,
N N is the quotient by a left submodule � of

�� ( )
∣ ∣ ∣ ∣

⊕ ⊗ ∧
= =

e e .
I J q

I JN

In such a way, we calculate first the left ��
−q N1, -module

� � � � � �� � � �� � � � � � �� � � �( ( ) ( )) ( ( ) ( )){ }⊗ − ⊗ − = ⊗ ⊗ − ⊗ −
∗

∗
∗ ∗

∗ψ φ i1 1 pr pr 1 1 ,2 Γ 1N N N N N N N N N N

where � �↪ × −i : Γ N q N1, is the inclusion and ∗pr2 is calculated in the sense of �-modules. So we
determine
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� � � �

� � � �

� � � � �

� � � �

( ( ) ( ))

( ( ) ( ))

{ }

{ }

⊗ ⊗ ⊗ − ⊗ −

= ⊗ ⊗ − ⊗ −

∗ ∗
∗ ∗ ∗

∗ ∗ ×
∗

−

−

i

i

pr pr pr pr 1 1

pr pr 1 1 ,

2 Γ 1 2 1

2 Γ 1

N q N N N

N q N N N

1,

1,

where the left � �� × −N q N1, -module �∗i Γ is defined in the following manner.
We identify � ( ) ( )= = +−

∗G q V G p V, 1,q N1, , i.e., we define �( )= … ∈−
−s z zvect , , q

q N
0 1

1, by = =ξ0 0

…= ξ p with ( )… ⊂ ∗ξ ξ Vvect , , p0 the polar subspace of s. We denote by

� �
 �⊂ × −N q N1,

the left ideal of � �� × −N q N1, generated, on the one hand, by the local holomorphic functions that define
� �⊂ × −Γ N q N1, and their conjugates, and on the other hand, by the local holomorphic tangent vectors to Γ

and their conjugates. Since the inverse image of Γ in ( )× ∗ +V V p 1 is

{( ( )) ( ) }… ∈ × ⟨ ⟩ =∗ +x ξ ξ V V ξ x, , , , , 0 ,p p k0 1

the inverse image of 
 in � � ( )⊗ ∗ +V V p 1 is


 = ⟨ ⟩f f X X˜ , , , ,

where = ⟨ ⟩f ξ x,k and = −
∂ ∂ ′

′

X x x
j
k

j

j
k

j
or = −

∂ ∂

∂
′

′

X x ξ x
1j

k

j j
k j

or = −
∂

∂

∂

∂
′

′

X
ξ x ξ x
1 1

j
k j j

k j
for ≤ ≤k p0 and ≤ ′ ≤j j N0 , . Here,

we have setted ∂ =
∂

∂
j
k

ξj
k when = ∑ ∈

≤ ≤

∗ ∗ξ ξ e Vk
j N j

k
j0 . Then, by definition

� �� � 
= /∗ × −
i ,Γ N q N1,

and when �⊂ −W q N1, is open, it remains to express

� � � � �� � � 
( ( ( ) ( )) )× − ⊗ − ⊗ /
∗

× −
H W , pr 1 1 .N

0
1 N N N q N1,

Lemma 2. For every linear differential operator � �� �∈ ⊗
−

P N q N1, on � × WN , there are real-analytic func-
tions hα on �N and linear differential operators �� ( )∈

−
Q Wα q N1, , for α in an infinite set, such that


( )− ∑ ∈P h Q Wα α α .

Proof. With 
= − ∈
∂ ∂

∂
′

′

X ˜
x ξ x

1j
k

j j
k j

, we have �� 
= ∂ − ∈ +
∂

∂ ′ ′
′

−
x ξ x ξ X ˜j x j

k
j
k

j j
k

j q N1, . Therefore, when ∣ ∣ ∣ ∣=α β , we

have the same property

�� 
…
∂

∂ …∂

∈ +

∣ ∣

−
x x

x x
˜ .α

N
α

β

β
N
β0

0

N

N
q N

0

0
1, □

Note that on the open subset of � �× −N q N1, defined by ⟨ ⟩ ≠ξ x, 0k , the relation

( ) ( )∂ ⟨ ⟩ = + ⟨ ⟩∂ = +
⟨ ⟩

⟨ ⟩

∂ ⟨ ⟩ξ x u x u ξ x u x u ξ x
ξ x

ξ x u, , ,
,

,j
k k

j
k

j
k

j
k

k j
k k

provides 
 
( )∈ + ⟨ ⟩ ⟨ ⟩ −x ξ x ξ x˜ , , ˜j
k k 1 , but the function ( )⟨ ⟩ ⟨ ⟩ −ξ x ξ x, ,k k 1 is only bounded.

We use the morphism

� �� � � � � �� � � � � 
( ) ( ( ( ) ( )) )( ) ⊗ → × − ⊗ − ⊗ /
∗

×− −
H W H W, , pr 1 1 ,N N

0 0
1N q N N N N q N1, 1,

which is obtained by associating to �� ( )∈
−

Q Wq N1, , the section of

� � � �� � �( ( ( ) ( )) )⊗
∗

× −
Hom pr 1 1 ,1 N N N q N1,

on � × WN defined by ⊗ →λ μ λμQ when λ and μ are linear forms on �= +V N 1.

Let ′

′Ejj
kk be the real-analytic linear differential operators on � −q N1, such that

( )( )( ( ) ( ( ))) ( )( ( ))∂ ∂ − ∂ ∂ ⇔ =′

′

′

′ −
′

′z z F τ z E F τ zΔ Δ 0j
k

j
k

j
k

j
k

jj
kk1
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for all ∈z Vq, when �� ( )∈ ∞
−F q N1, . We consider the left ideal of ��

−q N1, generated by the = ′

′E Ejj
kk and their

conjugates E . By the natural morphism,

�� � � � �� � � � 
( ) ( ) ( ( ( ) ( )) )→ ⊗ ⊗ × − ⊗ − ⊗ /
∗

×− −
W H W Q Q H W, det det , pr 1 1N

0 0
1q N N N N q N1, 1, (14)

the linear differential operator ′

′Ejj
kk is send to ( ) ( )⊗ ∂ ∂ − ∂ ∂′

′

′

′zΔ j
k

j
k

j
k

j
k and thus to 0.

In effect, if u is any smooth section of ( )⊗ −Q Qdet det 1 , we use the formula

( )∂ ∂ ⟨ ⟩ = ∂ + ⟨ ⟩∂ ∂ + ∂′

′

′

′

′

′

′ ′ξ x u x u ξ x u δ x u, , ,j
k

j
k k

j j
k k

j
k

j
k

k
k

j j
k

which gives ( )⟨ ⟩ ∂ ∂ − ∂ ∂ ∈ ⟨ ⟩′

′

′

′ξ x f X, ,k
j
k

j
k

j
k

j
k .

Therefore, the morphism of

� � �� � ( )( ) ( )⊗ /⟨ ⟩
−

H E E W, ,N
0

N q N1,

into

� � � � �� � � 
( ) ( ( ( ) ( )) )⊗ ⊗ × − ⊗ − ⊗ /
∗

× −
H W Q Q H W, det det , pr 1 1N

0 0
1 N N N q N1,

is injective, and we have the following result.

Proposition 8. The ��
−q N1, -module � � �� �( ) ( )⊗ /⟨ ⟩

−
H E E, ,N

0
N q N1, is contained in

� � �� �� � �� �( ( ) ( ))⊗ ⊗ ⊗ − ⊗ −
∗

∗Q Q ψ φdet det 1 1 .N N N N N

When �⊂ −W q N1, is open, it remains to calculate the space of continuous sections on W of

� � � � � �� � � 
 � �⎜ ⎟

⎧

⎨
⎩

( ( ) ( )) ⎛

⎝
( )⎞

⎠

⎫

⎬
⎭

∣ ∣ ∣ ∣
( )− ⊗ − ⊗ / ⊗ ⊕ ⊗ ∧ /∗

∗
×

= =
×

∗

− −
e epr pr 1 1 pr

I J q
I J2 1 1N N N q N N q N1, 1,

that is to say the space of continuous sections on � × WN of

� �

� �

� �

� �
�


 � �
( ( ) ( ))

⎧

⎨
⎩

( )

( ( ))

⎫

⎬
⎭

− ⊗ − ⊗
⊕ ⊗ ∧

⊕ ⊗ ∧ +

∗
∣ ∣=∣ ∣= ×

∣ ∣=∣ ∣= ×
∗

−

−

e e
e e

pr 1 1
pr

.I J q I J

I J q I J
1

1
N N

N q N

N q N

1,

1,

For all fixed ≤ ′ ≤j N0 and ∣ ∣ ∣ ∣′ = − =K q L q1, , we define the element ∣ ∣ ∣ ∣= ∈ ⊕′ ′ = =Q Qj K L I J q, ,

� �� ( )⊗ ∧× −
e eI JN q N1, by

( ) ( )∑= ∂

≤ ≤ −

≤ ≤

′ ′Q u ξ u ξ˜ ˜I J
k q

j N

j
k

j
k

jK L,
0 1

0

,

for all ( )ũI J, . For ≤ ′ ≤j N0 and ∣ ∣ ∣ ∣= ′ = −K q L q, 1, we define the element = ∈ ⊕′ ′ ∣ ∣=∣ ∣=R Rj K L I J q, ,

� �� ( )⊗ ∧× −
e eI JN q N1, by

( ) ( )∑= ∂

≤ ≤ −

≤ ≤

′ ′R u ξ u ξ˜ ˜I J
k q

j N

j
k

j
k

K jL,
0 1

0

,

for all ( )ũI J, . We use the formula

( ( )) ( ) ( )∑ ∑∂ ⟨ ⟩ = ⟨ ⟩ +

≤ ≤ −

≤ ≤

′ ′

≤ ≤

′ ′ξ ξ x u ξ ξ x Q u ξ x u ξ, ˜ , ˜ ˜ ,
k q

j N

j
k

j
k l

jK L
l

I J
j N

j
l

j jK L
0 1

0

, ,
0

, (15)

which gives

⎜ ⎟( ) ( )
⎛

⎝

⎞

⎠

∑ ∑⟨ ⟩ − ⟨ ⟩ =

′=

′
Q ξ x u ξ x Q u g x u, ˜ , ˜ ˜l

I J
l

I J
I J mI I

I J m I J, ,
,

,
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with =
′

g 0I J if ′ ≠ ′I K and =
′

g 0K J if ≠J L, while =
′ ′

g ξK L j
l . So Q is a continuous section of

� � � �� � 
 � �⎜ ⎟( ( ) ( ))
⎧

⎨
⎩

⎛

⎝
( )⎞

⎠

⎫

⎬
⎭

∣ ∣ ∣ ∣
− ⊗ − ⊗ ⊕ ⊗ ∧ +

∗

= =
×

∗

−
e epr 1 1 pr .

I J q
I J1 1N N N q N1,

For ∣ ∣ ∣ ∣= =K L q, we define the linear differential operator EKL by

( ) ( )= ∂ ∂ − ∂ ∂′

′

′

′E u u˜ Δ ˜ ,KL I J j
k

j
k

j
k

j
k

K L, ,

and we obtain an injective morphism from

� � �� �⎜ ⎟⎜ ⎟

⎧

⎨
⎩

⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠

( )
⎫

⎬
⎭

∣ ∣ ∣ ∣
( ) ⊗ ⊕ ⊗

∂

∂
∧

∂

∂
/ ⟨ ⟩ + ⟨ ⟩

= =
−

H
P P

Q R E E, Δ , Δ ,N
I J q I J

KL KL
0

N q N1,

into �� � �� � �( ) ( )( )⊗ ⊗ ⊗ ⋀ ⊗ − ⊗ −
∗

∗Q Q ψ φ Tdet det 1 1q q N,N N N .
We denote here by �Im the image of the Chow transformation � acting on the smooth differential

( )q q, -forms u on �N . By applying the Proposition 7, we arrive at the following result.

Theorem 2. There is a left submodule �� ⊂ ⋀ −T q N
1,1

1, of finite type satisfying
(i) the inclusion of � ��� �( )( ) ⊗ ⋀ /−H T,N q N

0 1,1
1,N into �� �� �(⊗ ⊗ ⊗ ⋀ ⊗

∗

∗Q Q ψ φ Tdet det q q
N

,
N N

��( ) ( ))− ⊗ −1 1 ,N

(ii) the equality � � ��
� � ��( ( ))= ⋀ /− −

∞

− −
H TIm , Hom ,q N q N

0
1,

1,1
1,q N q N1, 1,

.

Thus, if u is a smooth differential ( )q q, -form on �N , then �( )u is a global solution on � −q N1, of the left

��
−q N1, -module � �⋀ /−T q N

1,1
1, with values in ��

∞

−q N1,
.

3.2 Inversion of the Chow transformation of currents

Recall that the injectivity of the integral transformation

� �� { ( ) } { ( ) }→ −q q: currents of bidegree , on currents of bidegree 1, 1 onN q N1,

can be proved by using a dual integral transformation �∗.
Let Ω be the fundamental ( )1, 1 -form of the Hermitian metric induced in � ( )=− G q V,q N1, , which

satisfies = ‖ ∧ … ∧ ‖z zΩ dd logc q1 for ( )= …s z zvect , , q1 . We denote by ( ) ( )= = + −d G q V q N qdim , 1G

the dimension of � −q N1, .
If ≤q N2 and Θ is a current of bidegree ( )1, 1 on � −q N1, , we set

� ( ) ( )= ∧∗

∗

∗ − − +φψΘ Ω Θ ,d N q2 2G (16)

which is a current of bidegree ( )q q, on �N .
If ≥q N2 , the current

( )∧
∗

∗ −φψ Ω Θd 2G

is of bidegree ( )− −N q N q, on �N and the integral transformation that associates to T the ( )− −N q N q, -
current

� �( ( )) ( ( ))∧ = ∧
∗

∗ −

∗

∗ − ∗φψ T φ ψ ψ TΩ Ωd d2 2G G

on ( )P V is injective and has a left inverse, which is a linear differential operator � with smooth coefficients.
We denote by Lω the operator of multiplication with the Fubini-Study form ω in � ( )= P VN . Since

≥q N2 , the operator of multiplication
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( ) ( )⋀ → ⋀
−

− −

∗ ∗L T P V T P V:ω
q N

N q N q q q
2

, ,

is an isomorphism, and therefore, the integral transformation that associates to T the ( )q q, -current

� �( ( )) ( ( ))∧ ∧ = ∧ ∧−

∗

∗ −

∗

∗ − ∗ − ∗ω φψ T φ φ ω ψ ψ TΩ Ωq N d q N d2 2 2 2G G

on ( )P V is injective too. So, in this case, we set

� ( ) ( )= ∧ ∧∗ −

∗

∗ −ω φψΘ Ω Θ .q N d2 2G (17)

In the case ≤q N2 , recall now the proof of the injectivity of � �∗ by using the expression of the

coefficients of � �( )∗ u in terms of the coefficients � ( )( )u zjl
km for u a smooth differential ( )q q, -form on ( )P V .

For ∣ ∣ ∣ ∣= ′ =I I q, let ′FI I, be the smooth function on ( )G q V, defined by

� �( ) ( ( )) ( ) ( ) ( )( ) ( ) ( )( )∑ ∑= … = − +′ ′
−

≤ ≤

+
′ ′ ∈ ′∈ ′

≤ ≤ −

≤ ≤

′∈ ≠

′∈ ′ ′≠ ′

F s F z z z M u z M u zvect , , , 1 det det ,I I I I
q

α β q

α β
ii i i ii i I i I

k q
l N

ll
kk

, ,
0 1 1

1 ,

00
,

1 1
0

i I i iα
i I i iβ

α β
,
,

where the Hermitian matrix ( )′ ′Mii i i, depending only on ( )= … −s z zvect , , q0 1 is provided as follows:

( )
( )

( )
∑=

…

…
=

−

−

≤ ′≤

′ ′d x s x z z
z z

x x M, Δ , , ,
Δ , ,

q

q
i i N

i i ii
2

0 1

0 1
0 ,

with ( )d x s, the distance of x to the vector subspace s of � +N 1 and with ( )… −z zΔ , , q0 1 the Gram determinant
of … −z z, , q0 1. Then, the expression in coordinates of � �( )∗ u is given by the following result.

Lemma 3. For all �∈ =+x VN 1 such that ‖ ‖ =x 1, we have

� � �( ( )) ( )( )([ ])
∣ ∣ ∣ ∣

([ ])
∣ ∣ ∣ ∣

∫∑ ∑= ′ ∧ = ′ ∧∗ ∗

= ′ =

′

∈

′

= ′ =

′ − ′

−

π u K x x F K x x F xd d Ω d d ,x
I I q

I I

s φ x

I I
d

I I q
I I q

t
I I, 1 ,

1

where � −q
t

1 is the dual transform of the projective ( )−q 1 -dimensional Radon transform � −q 1 and ′K is a
constant factor.

Now, we express the functions ′FI I, for ∣ ∣ ∣ ∣= ′ =I I q in terms of the transforms ′ũK K, , so in terms of the
Radon transforms � ( )− ′fq K K1 , for ∣ ∣ ∣ ∣= ′ =K K q.

First,

�( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

{ } { }

∑

∑ ∑

∑ ∑

−

= − −

= − −

≤ ≤

+
′

≤ ≤

+
′

+

= ′ = −

′ ′

= ′ =

′

∈ ∈ ′

+ +
′ ⧹ ′⧹

′

′

′

′

∈ ≠

′∈ ′ ′≠ ′

∈ ≠

′∈ ′ ′≠ ′

∈ ≠

′∈ ′ ′≠ ′

M u z

M u z z z

u z M z z

1 det

1 det 1 ˜

˜ 1 1 det ,

α β q

α β
ii i i

α β q

α β
ii

J J q
i J i J J J

K K q
K K

i K i K

α β α β
ii K i K i

1 ,

00

1 ,

0 0

1
,

0̂ 0̂

,
,

0̂ 0̂

i I i iα
i I i iβ

α β

i I i iα
i I i iβ

α β

α β

i I i iα
i I i iβ

α β

,
,

,
,

0 0 ,
,

where α0 and β0 are such that =i kα α0 and ′ = ′i kβ β0
when ( )= …K k k, , q1 with ≤ <…< ≤k k N0 q1 and

( )′ = ′ … ′K k k, , q1 with ≤ ′<…< ′ ≤k k N0 q1 .
Then,

�( ) ( )( )

( ) ( )

( ) ( ) ( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

{ } { }

∑

∑ ∑ ∑

∑ ∑ ∑

=

= −

′ ∈ ′∈ ′

≤ ≤ −

≤ ≤

≤ ≤ = ′ = −

′

≤ ≤ −

′ ∈ ′∈ ′ ′

= ′ =

′

∈ ∩ ′

+

≤ ≤ −

′ ∈ ′∈ ′ ⧹ ′⧹

M u z

u z M z z

u z M z z

det

˜ det

˜ 1 det ,

ii i I i I
k q

l N

ll
kk

l N J J q
lJ lJ

k q
ii i I i I J

k
J
k

K K q
K K

l K K

α β

k q
ii i I i I K l

k
K l
k

,
1 1

0

0 1
,

1 1
,

ˆ ˆ

,
1 1

,
ˆ ˆ0 0
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where α0 and β0 are such that = = ′l k kα β0 0
when ( )= …K k k, , q1 with ≤ <…< ≤k k N0 q1 and ( )′ = ′ … ′K k k, , q1

with ≤ ′<…< ′ ≤k k N0 q1 .
With all that together, we conclude that

�( ) ( )( ) ( )
∣ ∣ ∣ ∣

∑=′

= ′ =

− ′ ′

′F s f s c s ,I I
K K q

q K K K K
I I

, 1 , ,
,

(18)

where the coefficients ( )
′

′c sK K
I I

,
, are independent of the smooth differential ( )q q, -form u.

Set the matrix ( ) ( ( ))=
′

′
′ ′C s c sK K

I I
II KK,

,
, and note that ( )′K K, and ( )′I I, belong to a set with ⎛

⎝
⎞
⎠

+N
q

1 2

elements.
Let λK be the Plücker coordinates of �( ) ( )… ∈− +λ λ, , q N q0 1 1 defined by

∣ ∣

∑∧ … ∧ =−

=

λ λ λ e .q

K q
K K

0 1

The coefficients ( )
′

′c sK K
I I

,
, can be calculated by means of the relation



( ) ( )

( ( )) (∣ ∣ ∣ )

( ( )) (∣ ∣ ∣ )

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∑ ∑

∑

∧

= ∂∂ ‖ ‖ ∧ ∂∂ ⟨ ∧ ∧ … ∧ ∧ … ∧ ⟩

+ ∂∂ ‖ ‖ ⟨ ∧ ∧ … ∧ ∧ … ∧ ∧ … ∧ ⟩

= ′ = = ′ =

′ ′

′
′

∗ − − −

∗

≤ ≤ −

− −

⊥

⊥

α z λ λ c s x x

D p i x x z z λ λ

D p i x x z z z λ λ

Δ d d

trace

q
I I q K K q

K K K K
I I

I I

s
q q q

s
q

k q

k q q

,
,

1
2 1 1 1 0 1 2

2
2

1 1

0 1 0 1 2

with ( ) ( )( )( )= − − !− − −D i q1 1q q
1

1 1 12
and ( )= ! −D i qq

2
12
and with ⊥ps the orthogonal projection onto ⊥s .

Proposition 9. In both cases, ≤q N2 and ≥q N2 , there are linear differential operators
′

′QK K
I I

,
, on �( ) =P V N

with smooth coefficients satisfying

� � � �( ( )) ( )( )
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∑ ∑= ‖ ‖ ∧∗ ∗ −

= ′ =

′

= ′ =

′

′

− − ′π u x x x Q fd d .x
q

I I q
I I

K K q
K K
I I

q
t

q K K
2

,
,

1 1 ,

Proof. The projective ( )−q 1 -dimensional Radon transform � −q 1 is injective, thus the integral transform

� �− −q
t

q1 1 is injective too. Then � � � �( ) ( ( ))=− − − −
⊥im kerq

t
q q

t
q1 1 1 1 and � �− −q

t
q1 1 is surjective too. In such a

way, a transform of the ′fK K, is a transform of the � �( )( )− − ′fq
t

q K K1 1 , .

So there are linear differential operators
′

′QK K
I I

,
, on �N with smooth coefficients satisfying

� � � �( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

( )( )
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∑ ∑=−

= ′ =

− ′ ′

′

= ′ =

′

′

− − ′f c Q fq
t

K K q
q K K K K

I I

K K q
K K
I I

q
t

q K K1 1 , ,
,

,
,

1 1 ,

for each system of functions �� ( )∈′
∞fK K N, . □

Theorem 3. The transformation � �� � � �( ) ( )→∗ ∞ ∞: q q N q q N, , is an isomorphism, and therefore, � is injective
and �∗ is surjective.

Proof. The multiplication map � �⋀ → ⋀
− ∗

−
− − ∗

−L T T:d
q N

d d
q NΩ

2 1,1
1,

1, 1
1,G G G by −Ωd 2G is an isomorphism.

The expression
∗

∗ −

∗

∗φψ L ψ φd
Ω

2G is invariant by transposition and to see that � �∗ is injective, we can say that

� � � �( )( ) ( )
∣ ∣ ∣ ∣

∑ = ⇒ = ⇒ =

= ′ =

′

′

− − ′ − − ′ ′Q f f f0 0 0.
K K q

K K
I I

q
t

q K K q
t

q K K K K,
,

1 1 , 1 1 , , □

Now we reprove Theorem 3 by using the point of view of sheaves of left �-modules, i.e., by using the
fact that for each smooth differential ( )q q, -form u on �N , the transform �( )u belongs to the solutions space

� � ��
� ��( ( ))⋀ /− −

∞

− −
H T, Hom , .q N q N

0
1,

1,1
1,q N q N1, 1,
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We calculate the ��
−q N1, -module � �( )⋀ /

∗

∗
−φψ T q N

1,1
1, , which satisfies the inclusion of

� ��� �( )( ) ⊗ ⋀ /
∗

∗
−H φψ T,N q N

0
1,1

1,N

into

�� � �� � �( ( ( ) ( )))⊗ ⊗ ⊗ ⋀ ⊗ − ⊗ −
∗

∗

∗

∗φψ Q Q ψ φ Tdet det 1 1 .
q q

N
,

N N N

When U is an open subset of �N , we have to calculate the space of continuous sections on �× −U q N1, of

� � � �� 
 �⎜ ⎟⎜ ⎟

⎧

⎨
⎩

⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠

( )
⎫

⎬
⎭

∣ ∣ ∣ ∣
( )/ ⊗ ⊕ ⊗

∂

∂
∧

∂

∂
/ ⟨ ⟩ + ⟨ ⟩×

= =
×

∗

− − P P
Q R E Epr Δ , Δ , .

I J q I J
KL KL2N q N N q N1, 1,

Lemma 4. For every linear differential operator � �� �∈ ⊗
−

P N q N1, on �× −U q N1, , there are real-analytic
functions hα on � −q N1, and linear differential operators �� ( )∈Q Uα N , for α in an infinite set, such that

( )− ∑ ∈ ⟨ ⟩P h Q E E U,α α α .

Proof. Let F be the inverse image in Vq of a smooth function on ( )G q V, , i.e., a smooth function in Vq

satisfying the homogeneity property ( ) ( )=F A z F z. for all �( )∈A GLq . Then, Lemma 1 gives that

(( ) )
( )

∣ ∣ ∣ ∣

∑∂∂ =
− !

∂ ∂ ∧

= =

F
q

F P P1
1

d d ,
I J q

I J I J2

where we have denoted here by ∂I the linear differential operator

⎛

⎝
⎜

⎞

⎠
⎟

∂

∂ ≤ ≤ −

∈

z
det

j
k

k q
j I

0 1

for ∣ ∣ =I q and by PI the Plücker coordinates of z . As a consequence, ∂ ∂j
k

l
m decompose on ∂ ∂I J with coeffi-

cients, that are polynomials in z and z . But ∂I decompose on ∂ ∂ − ∂ ∂′

′

′

′

j
k

j
k

j
k

j
k so ∂ ∂I J decompose on

( )( )∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂′

′

′

′

′

′

′

′ .j
k

j
k

j
k

j
k

l
k

l
k

l
k

l
k

□

Let �� ( )∣ ∣ ∣ ∣∈ ⊕ ⊗ ∧′ = =Q e eK L I J q I J
0

N defined by ( ) = ∑′ ′Q u x uK L IJ j j jK L
0

, . Then, formula (15) shows that

� �
 �⎜ ⎟⎜ ⎟
⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠
∣ ∣ ∣ ∣

∈ ⊕ ⊗
∂

∂
∧

∂

∂
+ ⟨ ⟩′

= =
× −

Q
P P

Q RΔ Δ , Δ .K L
I J q I J

0
N q N1,

Therefore, the morphism

� �� �� � �( ( )) ( ) ( )( )
∣ ∣ ∣ ∣

( ) { }⊗ ⊕ ⊗ ∧ /⟨ ⟩ → ⋀ /−
= =

′ ′ ∗

∗
−−

H e e Q R U φψ T U, ,q N
I J q

I J K L KL q N
0

1,
0 0 1,1

1,q N N1,

is injective; in other words, we have the inclusion of

� � �� �� �( ) ( )⊗ ⊗ ⋀− −
H H T, ,N q N

q q
N

0 0
1,

,

N q N1,

into

�� � �� � �( ( ( ) ( )))⊗ ⊗ ⊗ ⋀ ⊗ − ⊗ −
∗

∗

∗

∗φψ Q Q ψ φ Tdet det 1 1 .
q q

N
,

N N N

Proposition 10. There is a left �� N-module � isomorphic to �⋀ Tq q
N

, satisfying
(i) � �� �� � �( ) ( )⊗ ⊗− −

H H, ,N q N
0 0

1,N q N1, is contained in ���( (⊗ ⊗ ⊗ ⋀ ⊗
∗

∗

∗

∗φψ Q Q ψ φ Tdet det q q
N

,
N

� �� �( ) ( )))− ⊗ −1 1N N ,
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(ii) for every smooth differential ( )q q, -form u on �N , the differential ( )q q, -form � �( )∗ u is a global solution on
�N of � with values in ��

∞

N
.

Proof. By taking the solutions, we have an isomorphism of

� � �� �� �� � �� �( ) ( )( )= ⊗ ⋀
∞ ∞H T, Hom ,q q N N

q q
N,

0
,

N N N N

onto the space of global solutions on �N of � with values in ��
∞

N
, which is nothing than � �∗Im . □

To calculate the above left �� N-module, we can first replace �� �� � �� �� � �( )⊗ ⋀ ⊗ − ⊗T 1q q
N

,
N N N N N

�� ( )−1N by � � �� �� � �� �( ) ( )⊗ − ⊗ −1 1N N N N N . So with the same way, we have the following result.

Proposition 11. There is a left �� N-module � isomorphic to �� N satisfying
(i) � �� �� � �( ) ( )⊗ ⊗− −

H H, ,N q N
0 0

1,N q N1, is contained in � �� �( ⊗ ⊗
∗

∗

∗

∗

− −
φψ Q Q ψ φdet detq N q N1, 1,

� � �� �� � �� �( ) ( )( ))⊗ − ⊗ −1 1 ,N N N N N

(ii) for every �� ( )∈ ∞f N , the transform � �( )( )− − fq
t

q1 1 is a global solution on �N of � with values in ��
∞

N
.

Proof. When ��( )∈P N and ��( )∈ −Q q N1, , we define the action of ⊗P Q on � �( )( )− − fq
t

q1 1 by

� � � �( ) ( )( ) ( )( ) ( )⊗ ⋅ =− − − −P Q f P Q f ,q
t

q q
t t

q1 1 1 1

which is equal to 0 when Q is a global section of ⟨ ⟩E E, . On the other hand, �( )( )− Fq
t

1 is calculated by
integration on the fibers of φ and ⟨ ⟩ = = ⟨ ⟩ξ x ξ x, 0 ,k k if ( ) ([ ])= … ∋ ⇔ ∈⊥ −s ξ ξ x s φ xvect , , p0 1 . □

3.3 Inversion of the Chow transformation of closed currents by means of conormal
currents

For ≤ ≤q N1 and Θ, a current of bidegree ( )1, 1 on � ( )=− G q V,q N1, , we set here

� ( ) ( )= ∧∗

∗

∗ −φψΘ Ω Θ ,d 1G (19)

which is a current of bidegree ( ) ( )+ − + − = + +N q N q p p1 , 1 1, 1 on � ( )= P VN .
We calculate the conormal current �( ([ ]))∗con Σ , where �( )= ZΣ is the Chow form of an algebraic cycle

Z of codimension q in �N .

Proposition 12. When T is a closed ( )q q, -current in �N , the conormal current ( )Tcon is well defined as a
closed current of bidegree ( )N N, on �∗T N .

Proof. We write [ ]=T Zlim
ν

ν with Zν algebraic cycle of codimension q in ( )P V , whose irreducible compo-
nents are projective subspaces of ( )P V .

We use the surjective morphism

( ) {([ ] [ ]) ( ) ( ) ( ) }( )⧹ → ∈ × =∗ ∗α T P V x λ P V P V λ x: 0 , such that 0 ,P V

which associates ( ) ([ ] [ ])=α ξ x λ, to � �( ) ( )[ ]∈ = /
∗ξ T P V V x xHom ,x equal to ⊗λ x with ( ) =λ x 0.

For Z , an irreducible algebraic subvariety of codimension q of ( )P V , we have [ ]∈
∗ξ N Zx if and only if

( )[ ]⊃
−λ π T Zker d x x

1 , i.e., ( )α ξ belongs to WZ with

�{([ ] [ ]) ( ) ( ) [ ] ( ) }[ ]= ∈ × ∈ ⊃∗W x λ P V P V x Z P λ Z, such that and ker ,Z x
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where � ( ( )) ( )[ ] [ ]= ⊂
−Z P π T Z P Vdx x x

1 . In other words, ( ) ( )⧹ =∗ −N Z α W0Z Z
1 andWZ is an algebraic subvariety of

( ) ( )× ∗P V P V with = −W Ndim 1Z . The image by pr2 of WZ is the dual subvariety ( ) ( )= ⊂∗ ∗W Z P Vpr Z2 ,
which satisfies

= + ⇔ = − = −∗ ∗Z p Z q Zcodim 1 dim 1 codim 1

if Z is a projective subspace of ( )P V .
When [ ]=T Zlimν ν is positive, then WZν has bounded degree. Therefore, we can assume that [ ]WZν

converges to a closed positive current on ( ) ( )× ∗P V P V , with support in the incidence manifold

{([ ] [ ]) ( ) ( ) ( ) }∈ × =∗x λ P V P V λ x, such that 0 .

This current is a direct image of a closed positive ( )N N, -current WT defined on this manifold.
WhenT is a closed smooth differential ( )q q, -form on ( )P V , the closed currentWT is still defined on the

incidence manifold, since T is the difference of closed positive smooth differential ( )q q, -forms on ( )P V .
Finally, the conormal current ( )Tcon is the closed ( )N N, -current on ( )∗T P V defined by ( ) ( )= ∗T α Wcon .T

□

Note that WT satisfies the relations

⎜ ⎟
⎛

⎝

⎞

⎠
∧ =∗

∗ ∗ −
∗

∗

i W
T

ω T
T

pr
deg

pr
deg

T N q
2

0
1

and

⎜ ⎟
⎛

⎝
( ) ⎞

⎠
∧ =∗

∗

∗

∗ ∗ −
i W

T
ω T

T
pr

deg
pr

deg
,T q

1
0

2
1

where we equip ( )∗P V with the dual metric ∗ω and i0 is the canonical injection of the incidence manifold into
( ) ( )× ∗P V P V . Here, ∗T is the closed ( )+ − + −N q N q1 , 1 -current on ( )∗P V dual of T . Therefore, the

transformation →T WT is continuous for the weak topology.
When [ ]=T Z for Z an irreducible algebraic subvariety of codimension q of ( )P V , we have only
( ) ([ ] )= =∗ ∗ ∗T Z Zsupp supp since the dual subvariety ∗Z satisfies only ≥ −∗Z qdim 1. But ( )Tcon is a closed

positive ( )N N, -current with support in ( )Zcon , and therefore, ([ ]) [ ( )] [ ]= = ∗Z Z N Zcon con .
We use the formula between the conormals (see [18])

( )=∗
∗

∗ ∗N Z Ψ NΦ Σ

by denoting by �→∗ ∗N TΦ : Γ N and �→∗ ∗
−Ψ N T: Γ q N1, the restrictions to the conormal �⊂ ×∗ ∗N TΓ N

�∗ −T q N1, of the canonical projections. In other words, when we transform ( ) = ∗Ncon Σ Σ by means of the
double fibration

� �

↙ ↘

∗

∗ ∗
−

N

T T

Γ

,N q N1,

we obtain ( ) = ∗Z N Zcon .

Proposition 13. There is a linear differential operator with smooth coefficients

� �� {( ) } {( ) }+ + - → -p p currents on q q currents on: 1, 1 ,N N

satisfying
(i) � �( ([ ])) ( ([ ]))=∗ − Zcon Σ con 1 for all algebraic cycles Z of codimension q in � ,N
(ii) � transforms closed ( )+ +p p1, 1 -currents on �N into closed ( )q q, -currents on �N .

Chow transformation of coherent sheaves  25



Proof. The transformation � �( )([ ])→ ∗Z Z is injective, and there is a linear differential operator with smooth
coefficients on �N such that � � �� �( ([ ])) ( )([ ]) [ ]= =∗ ∗ Z ZΣ for all algebraic cycles Z of codimension q in

( )P V . So � � �( )([ ]) ( ([ ]))=∗ −Z Zcon con 1 , which can be proved by using the Crofton formula.
In effect, let ⊂− +V Vq q1 1 be vectorial subspaces of �= +V N 1 of respective dimensions −q 1 and +q 1.

We set

�{ ( ) } ( )= = ∈ ⊂ ⊂ = / ≃− + + −− +
σ σ s G q V V s V P V V, , .V V q q q q, 1 1 1 1 1q q1 1

Then, the Crofton formula (see [34]) can be stated as follows:

[ ] ( )∫ ∫ [ ]= =−

⊂ ⊂

− +

− + − +

− +
K σ ν K σ ν V VΩ d d , ,d

V V V V

V V q q
1

, 1 1G

q q q q

q q

1 1 1 1

1 1

where K is a constant factor and ν is the measure on

{( ) ( ) ( ) }∈ − × + ⊂− + − +V V G q V G q V V V, 1, 1, such thatq q q q1 1 1 1

associated to the Hermitian metric induced by that of ( ) ( )− × +G q V G q V1, 1, . With ( )→i σ G q V: , the
canonical injection, we can express

� �([ ]) ([ ] [ ]) [ ]∫ ∫= ∧ =− ∗

⊂

∗

∗

⊂

∗

∗
∗

∗

− + − +

K Z φψ σ ν φψ i i νΣ d Σ d .
V V V V

1

q q q q1 1 1 1

By definition of the Chow form, we have

{ ( ) ( ) } { ( ) ( ) }= ∈ ∩ ≠ ∅ ⇒ = ∈ ⊂ ⊂ ∩ ≠ ∅∗
− +s G q V P s Z i s G q V V s V P s ZΣ , , Σ , , and ,q q1 1

and we can assume that ( ) ∩+P V Zq 1 is a finite set of Zdeg points [ ] [ ] …x x, ,1 2 , so

� � �{ } [ ( )]∑= ⊕ ⊕ … ⇒ = ⊕∗
− − ∗

∗
∗

∗

≤ ≤

−i V x V x φψ i i P V xΣ , , Σ .q q
l Z

q l1 1 1 2
1 deg

1

Finally, we calculate the dual of � �([ ])− ∗K Z1 , which is a closed ( )q q, -current in ( )∗P V . We use that

�[ ( )] [ ( )] ([ ] [ ( )])∑ ⊕ = ∧ ∧

≤ ≤

−
∗

−
∗

+
∗P V x P V Z P V ,

l Z
q l q q

1 deg
1 1 1

which allows us to express this dual as follows:

� �( ([ ])) ([ ] [ ( )]) ( )

( )

∫= ∧ ∧− ∗ ∗

∈ +

+
∗

+

+

+
K Z A Z P V μ Vd ,

V G q V

V q q
1

1,

1 1

q

q

1

1

where the integral is calculated with respect to some invariant measure μ on ( )+G q V1, and

[ ( )] [ ( )] (( ) )
( )∫ ∫= = / =

⊂

−
⊥ ∗

−
⊥

+
⊥ ∗ ∗

∣

−

+

+
⊥

−
⊥

+

∗A P V σ P V V σ ωV

V V

q q q P V
q

1 1 1
1

q

q q

q1

1 1

1

since −
⊥Vq 1 is the inverse image of /−

⊥
+

⊥V Vq q1 1 by the projection → / ≃∗ ∗
+

⊥
+

∗σ V V V V: q q1 1.
We conclude that � �( ([ ]))∗ ∗Z is the dual of a pseudodifferential operator evaluated in [ ]Z . □

As a consequence, we have �� �( )( )= ∗T T for all ( )q q, -currents T that satisfy =Td 0 on �N . In parti-
cular, we have

� �( ) = = ⇔ =∗ T T T0 and d 0 0.

In the general case, � �( ) =∗ T 0 if and only if

∈ ∂ + ∂TΛ im im ,ω (20)

where =
∗LΛω ω is the contraction operator by ω. This is a consequence of the adjunction formula
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� � �( ) ( )( )

( ) ( )

∫ ∫∧ = ‖ ‖∗

∈

T T
d

T sΛ 1 Λ Ω .
P V

ω
G

s G q V

ω
d

,

2 G

The condition (20) is equivalent to

( )

∫∂∂ = = ∧ =−T T T ωΛ 0 and deg 0.ω

P V

N q

If ≥
+q N 1
2 , note that = ⇔ =T TΛ 0 0ω . For any q, the equation ∂∂ =TΛ 0ω is equivalent to

∂∂ − ∂ ∂ + ∂∂ =
∗ ∗T i T i TΛ 0.ω

If =Td 0, it becomes ′ = ⇔ =T T βωΔ 0 q for some constant β. If ∂ =T 0, it becomes ∂∂ = ⇔ ∂ =∗ ∗T T0 0
since

( ) ( )
∫ ∫⟨∂∂ ⟩ = ‖∂ ‖∗ ∗T T ω T ω,

P V
N

P V
N2 . Here, ∂ = − ∗ ∂∗∗ is the adjoint operator of ∂. Thus, if ∈T im

∂ ∂ = ∂∂∗ ∗im , then T satisfies (20).
More generally, we can express the solutions T of � �( ) =∗ T 0 as the images of a linear differential

operator with smooth coefficients. In effect, when U is a smooth function on ( )G q V, , we have

�( )

( ) ( )

∫ ∫ ( )∧ = ∧−

∗

∗ −T U T φψ UΩ Ω
G q V

d

P V

d

,

1 1G G

and ( )∗

∗ −φψ UΩd 1G is solution in ( )P V of � = 0, where � is a linear differential operator of order 2. In such a
way �( ) ∧ =−T Ω 0d 1G implies �( )∈T im t .

Proposition 14.
(i) When [ ]=T Z is the integration current associated to a projective subspace �= −Z N q, the conormal

current ( )Tcon can be obtained by means of an integral transform from T.
(ii) When T is any ( )q q, -current in �N that is not necessarily closed, ( )Tcon is still defined as a ( )N N, -current

in �∗T N .

Proof. In the case �= −Z N q, the inverse image of WZ in × ∗V V is

{( ) ( ) ( )} ( ) ( ( ))∈ × ∈ ⊃ = × /∗ − − − − ∗x ξ V V x π Z ξ T π Z π Z V π Z, , and Ker .x
1 1 1 1

Let us assume �( ) ⊂ =− +π Z V N1 1 defined by the equations = = …=
−

g g0 q0 1 with the ∈ ∗g Vi and set
( )= …

−
g g g, , q0 1 . On the another hand, let us assume ( ) ( )= …−π Z v vvect , ,q N

1 with the ∈v Vj . We arrive at

{( ) ( ) ( ) } {( ) }∈ × = =…= = ⟨ ⟩ = …=⟨ ⟩ ⊂ ∈ × ⟨ ⟩ =∗
−

∗x ξ V V g x g x ξ v ξ v x ξ V V ξ x, , 0 , 0 , , , , , 0 ,q q N0 1

whose integration current in × ∗V V is proportional to

( ( ) ( ) ) ( ) ( )

( ) ( )

… ⟨ ⟩ … ⟨ ⟩ ∂ ∧ … ∧ ∂ ∧

∂ ∧ … ∧ ∂ ∧ ∂⟨ ⟩ ∧ … ∧ ∂⟨ ⟩ ∧ ∂⟨ ⟩ ∧ … ∧ ∂⟨ ⟩

− −

−

δ g x g x ξ v ξ v g x g x

g x g x ξ v ξ v ξ v ξ v

, , , , , , ,

, , , ,
q q N q

q q N q N

0 1 0 1

0 1

with δ the Dirac mass at 0 in � +N 1. This current is also proportional to

( ( ) ( ) )
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∑ ∑… ⟨ ⟩ … ⟨ ⟩ ∧ ∧ ∧
−

= = = = +

δ g x g x ξ v ξ v g g x x v v ξ ξ, , , , , , , d d d d ,q q N
K L q

K L K L
I J p

I J I J0 1
1

where = −p N q and with the determinants ( )=
′

≤ ≤ −

′∈

g gdetK kk k q
k K

0 1 and ( )= ∈

≤ ≤
v vdetI ij i I

q j N
.

Let A be the matrix of type ( )+ +N N1, 1 such that =v Aej j for ≤ ≤q j N and =
∗Ag et

k k for ≤ ≤ −k q0 1.
In other words, it is proportional to the inverse image by ( ) ( )→ −x ξ A x Aξ, , t1 of

( )… … ∧ … ∧ ∧ ∧ … ∧ ∧ ∧ … ∧ ∧ ∧ … ∧− − −δ x x ξ ξ x x x x ξ ξ ξ ξ, , , , , d d d d d d d d .q q N q q q N q N0 1 0 1 0 1
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Now we recover the distribution ( )… …−δ x x ξ ξ, , , , ,q q N0 1 in × ∗V V from ( )… −δ x x, , q0 1 in V , by means of

an integral transform. First, the inverse Fourier transform with respect to x of the inverse image of
( )… …−δ x x ξ ξ, , , , ,q q N0 1 by the map ( ) ( )→ −x ξ x ξ x, , is equal to the function

� ( )∋ →+ +…+s eN πi s ξ s ξ1 2 Re q q N N

in other words, the value at ( )= …x x x, , N0 of the Fourier transform of this function is equal to

( )… − … −−δ x x ξ x ξ x, , , , , .q q q N N0 1

Second, there is ��( ) ( )∈ ∞w s, .ξ N satisfying

�

�

( ) ( ) ( [ ])

( )(∣ ∣ ∣ ∣ ) ( [ ])

( )

[ ]

∫

∫

= … ‖ ‖ ⟨ ⟩

= +…+ +…+ … …

+…+

∈

−
+

−

−

e δ x x x δ ξ x w s x ω

δ ξ x ξ x x x w s x x ω

, , , ,

, 0, ,0, , , .

πi s ξ s ξ

x

q
q

ξ
N

q q N N q N ξ q N
N q

2 Re
0 1

2 2

2 2

q q N N

N

N q

We can write

�

( )(∣ ∣ ∣ ∣ ) ( [ ])( )
( )∫= + …+ + …+ … …+…+

…
−

−

e δ ξ x ξ x x x u s s x x ω, , , , ,πi s ξ s ξ
q q N N q N ξ ξ q N q N

N q2 Re 2 2
, ,q q N N

N q

q N

and choose ( )w s, .ξ such that

( [ ]) ( [ ])( )… … = … ……w s x x u s s x x, 0, ,0, , , , , , , , .ξ q N ξ ξ q N q N, ,q N

Consequently, ( )… …−δ x x ξ ξ, , , , ,q q N0 1 is the value at x of the Fourier transform of

�

�

( ) ( ) ( [ ])

[ ]

∫∋ → … ‖ ‖ ⟨ + ⟩+

∈

−
+

+s δ y y y δ x ξ y w s y ω, , , ,N

y

q
q

x ξ
N1

0 1
2 2

N

and taking the matrix A unitary, we arrive at the relation

�

( ( ) ( ) ) ( ( ) ( )) ( ) ( [ ])

[ ]

∫… ⟨ ⟩ … ⟨ ⟩ = … ‖ ‖ ⟨ + ⟩
−

∈

−
+

+δ g x g x ξ v ξ v δ g y g y y δ x ξ y w x y ω, , , , , , , , , , ˜ ,q q N

y

q
q

x ξ
N

0 1 0 1
2 2

N

with ( [ ])+w x y˜ ,x ξ the value at x of the Fourier transform of

� ( [ ])∋ →+
+s w s y, .N

x ξ
1

More generally, if the system { } { }… ⊂ = = …=
−

v v g g, , 0q N q0 1 of vectors is not necessarily orthonormal,
the previous relation becomes

�

�

�

( ( ) ( ) )

( ( ) ( )) ( ) ( [ ])

( ( ) ( )) ( )

[ ]

[ ]

∫

∫

… ⟨ ⟩ … ⟨ ⟩ ‖ ∧ … ∧ ‖

= … ‖ ‖ ⟨ + ⟩

= …

−

∈

−
+

+

∈

−

δ g x g x ξ v ξ v v v

δ g y g y y δ x ξ y w x y ω

δ g y g y x ξ y ω

, , , , , , ,

, , , ˜ ,

, , , ,

q q N q N

y

q
q

x ξ
N

y

q
N

0 1
2

0 1
2 2

0 1

N

N

for an integral kernel � , when a Hermitian scalar product ∣⟨ ⟩. . on �= +V N 1 is fixed, where ∈x V is identified
with ∣⟨ ⟩ ∈ ∗x V. .

By using that ∣
∣ ∣ ∣ ∣

‖ ∧ … ∧ ‖ = ∑ ⟨ ⟩
= = +

v v v v e eq N I J p I J I J
2

1 and by identifying, we obtain the existence of inte-
gral transformations 
IJ such that


( ( ) ( ) ) ( ( ))( )… ⟨ ⟩ … ⟨ ⟩ = …
− −

δ g x g x ξ v ξ v v v δ g g x ξ, , , , , , , , , , .q q N I J IJ q0 1 0 1
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As a conclusion, we can write the integration current in × ∗V V of the inverse image of WZ in × ∗V V as
being proportional to


 ( ( ) )( )
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∑ ∑ … ∧ ∧ ∧

= = + = =

−
δ g g g g x ξ x x ξ ξ, , , d d d d

I J p K L q
IJ q K L K L I J

1
0 1

while [ ]∗π Z is proportional to

( ( ) ( ))
∣ ∣ ∣ ∣

∑ … ∧

= =

−
δ g x g x g g x x, , d d .

K L q
q K L K L0 1

So WT and ( ) ( )= ∗T α Wcon T are still defined, when we replace the integration current [ ]Z on the projective
subspace � �= ⊂−Z N q N by any ( )q q, -current T on �N not necessarily closed. □

4 Approximation by algebraic cycles of X

4.1 Chow transform T�̂( ) defined on the space of cycles of X

Let X be a complex projective manifold of dimension dX and let T be a smooth differential form on X of

bidimension ( )p p, with = −p d qX . The Chow transform �( )Tˆ of T is defined in Section 2.3 as a current of
bidegree ( )1, 1 on the space ( )−C Xq 1 of effective algebraic cycles in X of dimension −q 1.

We assume T closed in X and we recall the condition for writing [ ]=T Zlimk k weakly in X with Zk
algebraic cycle of codimension q in X with complex coefficients. This is equivalent to

� �( ) [ ( )]=T Zˆ lim ˆ
k

k

weakly in ( )−C Xq 1 , thus equivalent to the orthogonality relations on ( )−C Xq 1

�( )

( )

∫ ∧ =

−

Tˆ Φ 0
C Xq 1

for every smooth differential form Φ of bidimension ( )1, 1 on ( )−C Xq 1 , which satisfies

�[ ( )]

( )

∫ ∧ =

−

Zˆ Φ 0
C Xq 1

for every algebraic cycle Z of codimension q in X .
We fix ( )∈ −c C Xq 1 , then there is an open neighborhood ⊂W X of csupp such that =∣T SddW

c with a
smooth differential ( )− −q q1, 1 -form S in W . Let � be an open neighborhood of c in ( )−C Xq 1 such that
every cycle element of � has support in W .

Then, � �( ) =∣T Uˆ dd ˆc with the potential ( ) ∫′ =
′

U c Sˆ
c

, which is only continuous with respect to �′ ∈c
(see [1–3,35]).

In the above condition on Φ, we can assume �⊂supp Φ . By applying the characterization of the
algebraic cycles with the Chow transformation, we know that

�( )( )∑= βdd Φc

j
j

t
j

for some measures βj with �⊂βsupp j , where �j denotes linear differential operators with coefficients
generically smooth in � satisfying

� ( ) =Û 0.j
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The obstructions result from the fact that the βj are not �∞ in general. We can state the following property
(see [31]).

Proposition 15. If �( )Tˆ is globally in ( )−C Xq 1 , the weak limit of a sequence of smooth closed differential

( )1, 1 -forms, whose local potentials Ûm in � satisfy � ( ) →Û 0j m in the �0 sense in � for all j and all � , then
T can be approximated by algebraic cycles of X with complex coefficients.

Proof. In general, Û is only continuous because ψ̂ is equidimensional but not a submersion and because
( )−C Xq 1 has singularities. As being a fiber-integral, it has an asymptotic expansion near each ( )∈ −c C Xq 1 .

When we fix ( )∈ −c C Xq 1 , we can replace T by a closed ( )q q, -current T̃ in the same cohomology class

such that �( )Tˆ ˜ is smooth near c. But we can repeat this argument for all c simultaneously only if T is
ddc-exact in X .

So we cannot assume �( )Tˆ smooth and have to use a regularization to calculate

�

� � �

( )( )∫ ∫ ∫∑∧ = =U U U βdd ˆ Φ ˆ dd Φ lim ˆc c
m j

m j
t

j

when βj are measures with compact support in � . If � ( )Ûj m converges in the �0 sense, we arrive at

�

�

( )( )∫∑ =U βlim ˆ 0
m j

j m j

since � ( ) =Û 0j . □

Since � ( )Ûj m weakly converges to 0, we have always the convergence of � ( )( )U cˆj m for almost every c.
Therefore, the assumption in the above proposition is equivalent to � ( )( ) =U clim ˆ 0m j m for special c. Note
that the �j are smooth only generically.

In such a way, we retrieve the orthogonality conditions of [31,32], which can be written as∫ ∧ =T Δ 0
X

for an infinite set of currents Δ of bidegree ( )p p, , which are ddc-closed in X . When { }T is rational, then the

obstruction∫ ∧T Δ
X

is constant with respect to Δ and even equal to 0.

So the transformation �̂ can be used to solve the problem of approximating closed ( )q q, -currents in X
by algebraic cycles.

More precisely, we fix an irreducible component M of the cycle space ( )−C Xq 1 , which covers X and such

that the Chow transformation �( )→ ∣T Tˆ M is injective, which is equivalent to the surjectivity of

{ ( ) } { ( ) }− − →
∗

∗φψ d d M p p Xˆ ˆ : currents of bidegree 1, 1 on currents of bidegree , on .M M

Then, �( )∣Tˆ M is a closed ( )1, 1 -current on M of order 0, and if, moreover, { }T is rational, �( )∣Tˆ M is a weak
limit of divisors with complex coefficients. We can write

�( ) ( )[ ]∫=∣

∈

T λ D Dˆ ,M

D MDiv
(21)

where MDiv is the space of divisors of ( )⊂ −M C Xq 1 and λ is a measure on MDiv . In this integral, we can
restrict ourselves to D such that [ ]D is cohomologous to �( )∣Tˆ M in M .

The formula (21) can be written by using the Radon transformation

� � �{ ( ) } { }→∞ ∞M M: differential forms of bidimension 1, 1 on functions on Div ,

which is defined by integration on the divisors D. So we have

� �( ) ( )( )=∣T λˆ M
t
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and λ is not uniquely determined. But we can project λ on � �( ) =⊥Ker Imt . With the condition �∈λ Im ,
then λ is unique.

The Lebesgue-Nikodym decomposition of λ is

= +λ λ λ0 1

with λ0 a Lloc
1 function and λ1 a measure such that λsupp 1 is negligible. We now determine λsupp 1 by using

the injection ( ) ↪C X MDivp , which associates to ( )∈Z C Xp the incidence divisor,

{ }= ∈ ∩ ≠ ∅∣D c M Z c,Z M

of Z .

Lemma 5. There is a current w of bidimension (1, 1) on M such that

�( )∫ ∫=

∈ ∈

λ w λδ
D M D M

D

Div Div

0

for all �∈λ Im smooth.

Proof. The current w should satisfy

�� � � � �( )( ) ( ) ( ) ( ) ( ) [ ]( ) ∫⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ =w w δ δ DΦ, Φ , Φ , Φ, Φ, Φt
D

t
D

D
00 0

0

for all smooth differential forms Φ of bidimension (1,1) on M . In other words, we should have

��( )( ) [ ]=w D .t
0

But

�� �� � �( ) ( )= = = ∩ + ∂ + ∂⊥Im Ker Ker Ker Kerd Im Imt t

in such a way that

�� �{ }= ( )- ∩MIm closed 1,1 currents on orthogonal to Ker Kerd .t □

We fix ∈D M0 and consider w a current of bidimension ( )1, 1 on M such that ∫→D w
D

is the Dirac

measure at D0, when testing on �Im . Thus,

( )∫ ∫⟨ ⟩ =
∗

∗

∈

T φψ w λ D w, ˆ ˆ

D M DDiv

is a value of ( ) ( )∫ = +λδ λ D λ D
M DDiv 0 0 1 00 in a generalized sense. Actually, we decompose = +

∗

∗

∗

∗φψ w φψ wˆ ˆ ˆ ˆ 0

∗

∗φψ wˆ ˆ 1. Then, we identify ( ) = ⟨ ⟩
∗

∗λ D T φψ w, ˆ ˆ0 0 0 and ( ) = ⟨ ⟩
∗

∗λ D T φψ w, ˆ ˆ1 0 1 , which are well defined when
( )∉D C Xp0 .

In effect, when D0 is irreducible, we set

{ ( ) ( )} { ( ) }= ∈ ⊂ = ∈ ∋ ∈ ⇒ ∈ ⊂−
−Z x X φ x ψ D x X c x c M c D X, ˆ ˆ , and ,0

1 1
0 0

which is of dimension ≤p and satisfies =Z pdim 0 when D0 is an incidence divisor. Assume, moreover,
( )∉D C Xp0 , i.e., <Z pdim 0 , then the singularities of the current

∗

∗φψ wˆ ˆ are of a lower order and∫ λδ
M DDiv 0 is

the effective value of λ at D0.

As a conclusion, the ( )p p, -currents
∗

∗φψ wˆ ˆ 1 are orthogonal to all T such that { }T is algebraic in X and

their supports satisfy = −
∗

∗φψ w d pdim supp ˆ ˆ X1 .

Lemma 6. The absolutely continuous part λ0 is smooth on MDiv .
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Proof. For ∉D λsupp0 1, thus for almost every D0, we have ( ) = ⟨ ⟩
∗

∗λ D T φψ w, ˆ ˆ0 0 0 and → ⟨ ⟩
∗

∗D T φψ w, ˆ ˆ0 0 is

smooth. In effect, w depends smoothly on D0 and since ψ̂ is equidimensional,
∗ψ̂ is continuous for the weak

topology. As a conclusion, the equality ( ) = ⟨ ⟩
∗

∗λ D T φψ w, ˆ ˆ0 0 0 is valid everywhere. □

Theorem 4. If { }T is rational, then T can be approximated in X by algebraic cycles of X.

Proof. The obstruction
∗

∗φψ wˆ ˆ 1 is continuous with respect to ( )∉D C Xp0 and constant and even equal to 0
when { }T is rational. In other words ( ) ( )∉ ⇒ =D C X λ D 0p0 1 0 , so ( )⊂λ C Xsupp p1 .

The linear differential equations � ( ) =Û 0j locally in ( )−C Xq 1 characterize the Chow transforms of
smooth differential ( )q q, -forms on X . Since ( )⊂λ C Xsupp p1 , we can introduce the closed ( )q q, -current
T0 on X such that

�( ) ( )[ ]∫=

∈

T λ D Dˆ .
D M

0

Div

0

On the one hand, since λ0 is smooth, �( )Tˆ 0 is smooth and � ( ) =Û 0j everywhere in � . By the Proposition
15, T0 can be approximated by algebraic cycles. On the other hand, ( )⊂λ C Xsupp p1 implies that = −T T T1 0
can also be approximated by algebraic cycles. □

Remark 1. We denote by ( ) ( )→v P V P S V: k the Veronese embedding and by �k the Chow transformation
on ( )P S Vk , where ≥k 1. WhenT is a current of bidimension ( )0, 0 on ( )P V , the Chow transform � ( )∗v Tk of ∗v T
is a closed current of bidegree ( )1, 1 on ( )∗P S Vk , obtained by integratingT on the algebraic hypersurfaces of

( )P V of degree k. This integral transformation is a particular case of the transformation � of the Lemma 5.

In effect, assumeT smooth and write ( )= +T T ω wdeg ddN c with w a smooth differential ( )− −N N1, 1 -
form on ( )P V . Then,

� �( ) ( ) ( )= +∗ ∗v T T v ω udeg dd ,k k
N c

where u is the smooth function on ( )∗P S Vk , defined by ( ) ∫=u D w
D

, for every algebraic hypersurface D of
( )P V of degree k. So we have the following image characterization.

Proposition 16. The integral transformation that associates � ( )∗v Tk to � ( ( ))∈
∞T P VN N, is injective and

�{ ( ( )) }∈ =
∞ ∗P S VΘ , dΘ 0k
1,1 belongs to its image if and only if �( ) ( )= +∗T v ω uΘ deg ddk

N c , where the smooth

function u satisfies a system of linear differential equations with smooth coefficients on ( )∗P S Vk .

Proof. The transposition of the transformation →w u associates ( )[ ]
( )

∫
∈

∗
μ D D

D P S Vk to a measure μ on
( )∗P S Vk . We have to determine the kernel of this transformation. For this purpose, we write ( )= −D f 01

with [ ] ( )∈ ∗f P S Vk and we use the Poincaré-Lelong formula. It is equivalent to determine the kernel of

⎜ ⎟

⎛

⎝

⎜
⎜

[ ] ( [ ]) ⎛

⎝

∣ ( )∣ ⎞

⎠

⎞

⎠

⎟
⎟

[ ] ( )

∫→ →
‖ ‖ ‖ ‖

∈ ∗

μ x μ f f x
f x

log ,
f P S V

k

2

0
2 2

k

where ‖ ‖f 0 is the norm of f . Assume =μ dd Φc with Φ a smooth differential form of bidimension ( )1, 1 on
( )∗P S Vk . This integral is equal up to a constant to

�( )( )[ ]

[ ]

∫ = YΦ Φ ,
Y

x

x

where { ( ) }[ ] = ∈ ⟨ ⟩ = =∗Y f S V f x f x, , 0x
k k and

� �{ ( ) ( )} ( ( ))→∗ ∞P S V P S V: smooth differential forms of bidimension 1, 1 on k k
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is the hyperplane Radon transformation. Then, μ is in the kernel if and only if the function �( )Φ is 0 on the
Veronese submanifold of ( )P S Vk . This occurs when ( )∈ EΦ Im t

0 , where E0 is a linear differential operator
with smooth coefficients. This is equivalent to ( )∈μ EIm t , where E is a linear differential operator with
smooth coefficients. □

4.2 Chow transform j T�( )∗ defined on the Grassmannian q N−1,�

In this subsection, we reprove Theorem 4 by using an embedding ( )→j X P V: of X into �( ) =P V N and the
induced meromorphic map

( ) ( )+ →∗
−ρ G p V C X: 1, ,q 1

which associates ( ) ( )∩ ∩ …∩X P ξ P ξker ker p0 to ( ) ( )… ∈ + ∗ξ ξ G p Vvect , , 1,p0 . We have the equality

� �( ) ( )=∗
∗

ρ T j Tˆ

between ( )1, 1 -currents on ( ) ( )+ = −∗G p V G N p V1, , , with � the Chow transformation on ( )P V .
Assume T smooth closed in X and write

�( ) ( )= +
∗
j T T Udeg Ω ddc

withU a distribution in ( )G q V, ,Ω the fundamental differential ( )1, 1 -form of the metric in ( )G q V, and Tdeg
the degree of T with respect to the metric induced in X by the Fubini-Study form ω in ( )P V .

According to [9,10], every closed ( )1, 1 -current in � − −N p N1, is a weak limit of divisors with complex
coefficients. Thus, we can write the ( )1, 1 -current �( )

∗
j T , which is of order 0, in the following way:

�

�( ) ( )[ ]

( )

∫=
∗

∈ − −

j T λ H H ,
H Div N p N1,

where �( )− −Div N p N1, is the space of divisors of � − −N p N1, and λ is a measure on �( )− −Div N p N1, .
Thanks to the Poincaré-Lelong formula, up to a constant, we have

�

⎜ ⎟( ) ([ ]) ⎛

⎝

( ) ⎞

⎠
[ ] ( )

∫=
‖ ‖

‖ ‖
∈ − −

U s λ f f s
f

log ,
f Div

0
N p N1,

where ‖ ‖f 0 is the norm of the polynomial form f .
The local differential equations � ( ) =Û 0j on ( )−C Xq 1 imply the equations � ( ) ( )=U T ψdegj j on ( )G q V, ,

with smooth functions ψj. Here, �j denotes linear differential operators with smooth coefficients satis-
fying � ( ) =1 0j .

For �∈ ∗m , we consider

�

⎜ ⎟( ) ([ ]) ⎛

⎝

( ) ⎞

⎠
[ ] ( )

∫=
‖ ‖

‖ ‖
+

∈ − −

U s λ f f s
f m

1
2

log 1 ,m

f Div

2

0
2

N p N1,

which is �∞ on � − −N p N1, and weakly converging to ( )U s up to a constant. As a consequence � ( )( )U sj m is
weakly converging to ( ) ( )T ψ sdeg j in ( )G q V, .

We set ( [ ])
( )

=
‖ ‖

‖ ‖
R fs

f s
f

2

0
2 and = >ε 0m

1 in such a way that

� ⎜ ⎟⎜ ⎟
⎛

⎝

⎛

⎝

( ) ⎞

⎠

⎞

⎠

( )
( [ ])

( ( [ ]) )

⎛

⎝
⎜ ( )

⎞

⎠
⎟∫∑ ∑

‖ ‖

‖ ‖
+ =

+
=

− !
≤ ≤

∞

≤ ≤

−
− −

f s
f m

s
υ f

R f ε
υ r

l
e e rlog 1

1
dj

l m

j s l

s
l

l m
j s l

l
rR εr

2

0
2

1

, ,

0 1
, ,

1

j j

s

by denoting by mj the order of �j.
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Proposition 17. For almost every ( )∈s G q V, , the simple limit

�

�

� �

�

⎜ ⎟( )( )
([ ]) ⎛

⎝
(

( )
)⎞

⎠

([ ])
⎛
⎝

( ( ) )⎞
⎠

[ ] ( )

[ ] ( )

∫

∫

=
‖ ‖

‖ ‖
+

= ‖ ‖ + ‖ ‖

∈

∈

− −

− −

U s λ f f s
f m

λ f f s
m

f

lim lim
2

log 1

lim
2

log 1

m
j m

m
f

j

m
f

j

Div

2

0
2

Div

2
0
2

N p N

N p N

1,

1,

is equal to ( ) ( )T ψ sdeg j .

Proof. For ( )w s , any smooth function of ( )∈s G q V, , we know that

� ( )( ) ( ) ( ) ( ) ( )

( ) ( )

∫ ∫→

∈ ∈

U s w s T ψ s w sdeg
s G q V

j m

s G q V

j

, ,

when → ∞m . On the other hand, this limit is equal to �( ( )( )) ( )
( )

∫
∈

U s w slim
s G q V m j m,

.
Since the measure λ on �( )− −Div N p N1, depends on T , we can transpose and write

�

⎜ ⎟([ ]) ⎛

⎝

( ) ⎞

⎠
([ ]) ([ ])

[ ] ( ) [ ]

∫ ∫
‖ ‖

‖ ‖
+ = ∧

∈ ∈− −

λ f f s
f

ε T x γ x1
2

log ˜
f x X

s ε

Div

2

0
2 ,

N p N1,

for all �∈ − −s N p N1, and all >ε 0, with = →
+γ γ˜ lim ˜s ε s ε0 , which is singular along ( )∩X P s .

By inverting the Laplace transform, we write the following function of >ε 0

� �( )( ) ( ) ( )∫ ∫= ∧ =

∞

−U s T γ e h t t˜ d ,j m

X

j s ε
εt

s,

0

where ( )h ts is integrable on ] [+∞0, and we take the limit when → +ε 0 . In such a way, we obtain

� � �( )( ) ( ) ( ( )) ( )

( ) ( )

∫ ∫ ∫= = ∧ = ∧

∞

⧹ ∩

→

⧹ ∩

+

U s h t t T γ T γlim d lim ˜ ˜ ,
m

j m s

X X P s
ε

j s ε

X X P s

j s

0
0 ,

in other words, we can take =ε 0 when calculating the →
+limε 0 .

IfT is a closed current of order 0 and of bidimension ( )p p, on X , the potential ( )
( )

∫= ∧
⧹ ∩

U s T γ̃
X X P s s is

Lloc
1 on ( )G q V, and still satisfies the conditions � ( ) ( )=U T ψdegj j on ( )G q V, . This implies that the differ-

ential form � ( )γ̃j s , which is defined on ( )⧹ ∩X X P s , has Lloc
1 coefficients on X , for almost every ( )∈s G q V, . In

effect, these differential equations are equivalent to � ([ ( )])∩ =X P s 0j . Since the distribution � ([ ( )])∩X P sj

is a priori of higher order, these equations imply some compensations when calculating � ( )γ̃j s near each
point of ( )∩X P s , which provide that � ( )γ̃j s can be extended by a current of order 0 in X . □

Let [ ]→ρ X: 0, 1s be a real-analytic function such that ( ) ( )= ∩
−ρ X P s0s

1 with multiplicity 2. As a
consequence, we have

� ( )( )
( )

∫=U s
α t s

t
tlim

,
d ,

m
j m

j
m

0

1

j

where �( ) ( )( )= ∧
∗

α t s ρ T ρ γ, ˜j s s
m

j s
j has the usual asymptotic expansion when → +t 0 .

In effect, for ( ) ⎤⎦ ⎤⎦
( )∈ ×t s G q V, 0, ,1

2 , according to [2,3], we can write


( ) ( ) ∣ ∣ ( )∑= +

′

′
′α t s s t t β t s t, log , ,j

r r
r r

r r m

,
, j
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where β is bounded and �( )′ ∈r r, 2. Because of the convergence of the integral on ] [0, 1 , if 
 ( ) ≠′ s 0r r, for
some s, then > −r m 1j or = −r m 1j with ′ < −r 1. In this asymptotic expansion ( )′r r, belongs to a finite set
independent of s.

Thus, we knew a priori that the sequence � ( )( )U sRe j m (respectively, � ( )( )U sIm j m ) converges when
→ ∞m or � ( )( ) = ±∞→∞ U slim Rem j m (respectively, � ( )( ) = ±∞→∞ U slim Imm j m ).

Proposition 18. When → ∞m , the simple limit � ( )( )U slimm j m exists a priori for every �∈ − −s N p N1, .

Proof.We set ([ ]) ( )=
‖ ‖

ρ x d s,s
x
x

2 for [ ] ∈x X and consider the differential ( )p p, -form � ( )=
+A ρ γ̃s s

p
j s

1
2 , which

is defined in X . Let hs be the function defined almost everywhere in X by

� ( )∧ =
∧

=
+

∣
T γ T A

ρ
h ω˜ .j s

s

s
p s X

dX
1
2

Let ( )∈s G q V, be such that ( )∩ = −X P s d pdim X and consider a sequence →s sk with �∈k such that
( )∩ = − −X P s d pdim 1k X . Then, →h hs sk almost everywhere in X . Let [ ]x be a generic point of ( )∩X P s

and let B be an open neighborhood of [ ]x in X satisfying∫ = +∞hRe
B s . We can apply the Fatou lemma that

gives

∫ ∫≤h hRe lim Re .
B

s
k

B

sk

By blowing up X along ( )∩X P s with view to make flat the family of cycles, we see that ∫ hlim Rek B sk is finite.
This is a contradiction, thus ∫ < +∞hRe

B s and in the same way ∫ > −∞hRe
B s . We conclude that

� ( )
( )

∫ ∧
⧹ ∩

T γ̃
X X P s j s is finite.

So ∧

∣

T A
ω

s

X
dX

can be divided by ρs. Since the dimension of ( )−ρ 0s
1 changes, the quotient

( )∧ /
∣

T A ω
ρ
s X

dX

s
is not

continuous with respect to s. □

Consequently, the product �([ ]) ( ( ) )‖ ‖λ f f slogj of distributions is defined in ( ( ))G q VDiv , as follows:

� ⎜ ⎟

([ ]) ⎛

⎝
(

( )
)⎞

⎠

⎛

⎝
⎜ ( )

⎞

⎠
⎟∫ ∑

‖ ‖

‖ ‖
+ =

− !→ →

∞

≤ ≤

−
− −

+ +

λ f f s
f

ε λ υ r
l

e e rlim
2

log lim
2 1

d
ε

j
ε l m

j s l
l

rR εr
0

2

0
2 0

0 1
, ,

1

j

s

which provides the following expression for the limit

�

� �( )( ) ([ ]) ( ( ) )

[ ] ( )

∫= ‖ ‖

∈ − −

U s λ f f slim log .
m

j m

f

j

Div N p N1,

The product �([ ]) ( ( ) )‖ ‖λ f f slogj can also be defined, as in [32], from the divisions λυ
R2
j s l

s
l

, , . These divisions exist,
thanks to the Hörmander-Lojasiewicz theorem, but are not unique and for each l appears a residual
distribution with support in ( ) ∩−f λ0 supp1 .

In effect, by denoting by ( ) ( )−N p d f the degree of the polynomial form f , since ∣ ∣ [ ( )]= −f fdd log 0c 1 , we
have

� ( ( ) ) ( ) ( ) ( )‖ ‖ = + −f s d f ψ s flog distribution with support in 0j j
1 (22)

in � − −N p N1, , in such a way that �( ) ( ( ) ) ( )‖ ‖ ‖ ‖ −f s f s ψ slogm
j j

2 1j is �∞ in � − −N p N1, .
The decomposition (22) implies that � ( )( )U slimm j m appears as the sum of two terms and that we can also

obtain in the following way. Write

� ( )( )
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( )
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=
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=
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(23)
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where

( ) ( )( ) ( )∫= / = −∗g t R λυ R t δ R t λυ1
2

d 1
2l s j s l s s j s l, , 0 , ,

are measures on [ ]0, 1 , since ( )∗R λυs j s l, , are of order 0 on [ ]0, 1 .
Note that, for every, ( )∈s G q V, , we have
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⎧
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with the Laplace transform 
( )( ) ( )∫= −g r g t e tdl l
tr

0

1
, but we cannot take =ε 0.

We set ( )
( )

∫=u t rdl t
g r

r

1
l

l and use the Lebesgue-dominated convergence theorem to prove that

( ( )) =
→ +

t u tlim 0.
t

l
l

0

Then, by integrating by parts, we obtain
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For each ≤ ≤l m1 j, the family ( )
( )+t

t
t ε

d
d

l

l weakly converges to the Dirac mass δ0 when → +ε 0 . We conclude
that

� ( )( )
⎛

⎝
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(24)

since the ( )→
+u tlimt l0 do not necessarily exist separately for each ≤ ≤l m1 j.

Lemma 7. Each integral along the fibers ( )g tl has an usual asymptotic expansion when → +t 0 .

Proof. We write

( ) ∫ ∫= / = −

= ≥

g t λυ R α1
2

dl

R t

j s l s

R t

, ,

s s

with ( )= /α λυ Rd dj s l s
1
2 , , in such a way that ( )′ = ∗g t t R αdl s . We use the meromorphic continuation
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for �∈z , which satisfies
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For = +z a iy with a and r real, by the inversion formula for the Fourier transform, we arrive at
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We obtain the classical asymptotic expansion by using the Cauchy residue formula. □
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The first term becomes
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We now use the function � ( )( )U slimm j m for ( )∈s G q V, to characterize the closed currentsT of bidimen-
sion ( )p p, in X , that can be approximated by algebraic cycles of X .

The Lebesgue-Nikodym decomposition of λ on �( )− −Div N p N1, is

= +λ λ ν0

with λ0 a Lloc
1 function and ν a measure such that νsupp is negligible. Actually, we can assume λ0 smooth on

�( )− −Div N p N1, . The proof is analogous to that of Lemma 6, by replacing the formula ( ) = ⟨ ⟩
∗

∗λ D T φψ w, ˆ ˆ0 0 0 by
the formula ( ) = ⟨ ⟩∗

∗

∗λ H T j φψ w,0 0 0 .
Then, we set
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Proposition 19. Since λ0 is Lloc
1 , the function ( )h sj0, is continuous in ( )G q V, , thus equal to 0 for

every ( )∈s G q V, .

Proof. Because of the asymptotic expansion of ( )g tl , we can calculate the →
+limε 0 of (23) by taking =ε 0.

Actually, λ0 is smooth on �( )− −Div N p N1, , so the part
�

( [ ])
[ ] ( )

([ ])
∫

∈ − −

R flog
f

λ f
sDiv 2N p N1,

0 is smooth on � − −N p N1,

and does not create any obstruction, when regularizing ( )U s . □

We set
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Tlim degj
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for ( )∈s G q V, and ( )= ∞−A U1
1 the polar set ofU , which is an algebraic subvariety of ( )G q V, . Then, hj is 0

on ( )⧹G q V A, 1 and continuous on A1.

Theorem 5. If ( )h sj is constant for all ∈s A1, then � ( ( ) ) ( ) ( )‖ ‖ =f s d f ψ slogj j for all ∈s A1, for each [ ] ∈f
sing supp λ.

Proof. We set
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where the distribution �([ ]) ( ( ) )‖ ‖ν f f slogj is defined by the Hörmander-Lojasiewicz division theorem.
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We use homogeneous coordinates on the Grassmannian, i.e., we use the map

� �( ) →+ −
− −τ : N N p

N p N
1

1,

defined by ( ) ( )… = …− −τ z z z z, , Vect , ,N p N p1 1 . Then,

� �( ( )) ( ∣ ∣) ( )‖ ‖ ∘ = + ∘f τ f d f ψ τlog logj j j

with �j a linear differential operator with smooth coefficients in z, such that
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∂

∂ ∂
∘

+

f B f s δ
t t

flog , ,j
l m

j l m
l m

l m
,

, ,

where ( )δ t is the Dirac mass at 0 in � (see [32]).
We can express �( ) ( ( ) ) ( )‖ ‖ −−ψ s f s d flogj j

1 as a linear differential operator �j in [ ]f with smooth

coefficients in ([ ] )f s, acting on ( [ ])R flog s . To this hand, we introduce the Plücker coordinates PI of z,
which are defined as follows:

∣ ∣
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= −
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z z P e V ,N p

I N p
I I

N p
1

where = ∧ … ∧
−

e e eI i iN p1 for ( )= … −I i i, , N p1 with ≤ <…< ≤−i i N0 N p1 , denoting by …e e, , N0 an ortho-
normal basis of V . Then,

( ) (( ) ) ∑= =f z f P f P ,I I
α

α
α

where �∈αI for each I and = ∏P Pα
I I

αI with ∣ ∣ ( )= ∑ =α α d fI I . By applying, the Poincaré-Lelong formula to
the hypersurface {[ ] ( ( )) ( ) }∈ =f G q V f zDiv , , 0 , it relies on the fact that
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R flogP P f f s

1
α β α β

2
modulo a smooth function of the fα.

As a consequence, by using the division by the function ( )f z of the fα, the products ([ ]) ( ( ))
∂

∂ ∂

+

ν f f zδ
t t

l m

l m of

distributions are defined in ( ( ))G q VDiv , whole.
When ( )h sj1, is constant on A1, the functions ( )B f s,j l m, , and their partial derivatives satisfy some

relations over ( ) ∩−f A01
1 for [ ] ∈f νsupp . These relations are precisely the differential equations on

( ) ∩−f A01
1 characterizing the fact that [ ] ( )∈f C Xp .

In other words,

� �( ) ([ ]) ( ( [ ])) ( )( )([ ]) ( [ ])
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∫ ∫= =
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h s ν f R f ν f R flog logj
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f G q V

j
t
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Div , Div ,

constant in A1 implies ( ) =h s 0j1, in A1, since the distribution �( )( )νj
t is of higher order, ν having a singular

support.

In effect, A1 is the poles set of ([ ]) ( [ ])
[ ] ( ( ))
∫

∈
ν f R flog

f G q V sDiv ,
and with 	s the space of smooth functions

on ( ( ))G q VDiv , orthogonal to Rlog s, we should have � 	( )( ) ∈νj
t

s for each ∈s A1, which forces some
annulations. □

We can reformulate the proof of the Theorem 5 in the following way. Thanks to the Proposition 19, ( )h sj

constant for all ∈s A1 implies ( )h sj1, constant for all ∈s A1. Since

� ( ( ) ) ( ) ( ) [ ] ( )‖ ‖ = ∈ ⇔ ∈f s d f ψ s s A f C Xlog for all ,j j p1

we can write
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�( ) ( ( ) ) ( ) ([ ]) ( )∑‖ ‖ = +−

=

∞

ψ s f s d f w f c slogj j
k

j k j k
1

1
, , (25)

on A1, where the ( )c sj k, are distributions on A1 and the ([ ])w fj k, are functions such that ([ ]) =w fj k,
[ ] ( )⇔ ∈f C X0 p . Formula (25) relies on the fact that

⎜ ⎟
⎛

⎝

⎞

⎠

( ) ( )∑ ∑=

=

∞

δ f P w f c z˜ ˜
α

α
α

k
k k

1

with some distributions ( )c z˜k in ∈ −z VN p.

If ([ ]) ([ ])∫ =ν f w f 0j k, for all k, since the measure ν is not a Lloc
1 function when ≠ν 0, we have

( )⊂ν C Xsupp p . So we conclude that h j1, is 0 on A1.

Corollary 3. If { }T is rational, then ( ) =h s 0j for all ∈s A1 andT can be approximated in X by algebraic cycles
of X.

Proof. If { }T is rational, we can assume that the �j are such that the hj are constant on A1. Theorem 5 implies
that =h 0j on A1, i.e., there is no obstruction to the approximation. □
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