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Abstract: We define a dual of the Chow transformation of currents on any complex projective manifold. This
integral transformation is a factor of a left inverse of the Chow transformation and its composition with the
Chow transformation is a right inverse of a linear differential operator, which does not commute with 9 or 9.
We obtain a complete intrinsic resolution of the problem of the algebraicity of the cohomology classes. On
another hand, in the case of the complex projective space, we give the translation in terms of real-analytic
D-modules of the properties of the Chow transformation. Then, the proofs can be simplified by using the
conormal currents, which exist for all currents of bidimension (p, p) on the complex projective space, even
not closed. This is a consequence of the existence of dual currents, defined on the dual complex projective
space. In particular, we obtain a linear differential system of order lower than that of the Gelfand-Gindikin-
Graev differential system, characterizing the images by the Chow transformation of smooth differential
forms on the complex projective space.
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1 Introduction

Let X c Py be a complex projective manifold of dimension dx and let T be a current on X of bidimension
(p, p) with p = dx — q. The Chow transform C(T) of T is a current of bidegree (1, 1) on the space Cgy—p-1(X) of

effective algebraic cycles in X of dimensiondy — p — 1. The fact that C(T) is of bidegree (1, 1) means that it is
of bidegree (1, 1) on each irreducible component M of C4,_,_1(X) of dimension dy (see [1,7]). For [x] € X
generic, we set

d = dim{c € M, c > [x]},

and assuming that the family of cycles ¢ € M covers X, we haved + p = dy - 1.
We prove that we can choose M such that there is a dual integral transform C‘L, defined for (1, 1)-currents

on M, with values in {(p, p)-currents on X} satisfying the following property (see Theorem 1, subsection 2.3).
Theorem. There is a linear differential operator
Pu : {(p, p)-currents on X} — {(dx — p, dy — p)-currents on X}
with smooth coefficients locally on X such that the inversion formula
T = (PuCuCm)(T)

holds for all (dx — p, dx — p)-currents T on X.
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This implies that the Chow transformation C of currents defined on a complex projective manifold is
injective. In this way, we complete the general scheme of integral geometry for the Chow transformation
(see [22,23]).

Note that £ does not commute with d or d in general, so there is no cohomological consequence.
In fact, when S is a (g — 1, g)-current on X, we have (C’;,QM)(GS) = a(C‘LQM)(S), which gives 3S = Py
ICuCm(S).

But S — ((:‘L(A,“ m)(S) is not bijective, since the bidegree has changed.

We use the Chow transformation to solve the problem of the algebraicity of the cohomology classes, by

describing explicitly the obstructions.

Theorem. If T is closed on X and the cohomology class {T} is rational, then {T} is algebraic.

This is obtained by solving the equivalent problem of the approximation by the algebraic cycles (see
Theorem 4, subsection 4.1 and Theorem 5, subsection 4.2).

Let us mention that our result is consistent with ideas previously suggested by Jean-Pierre Demailly
(see [29,30]).

The fact that the Chow transformation C of currents defined on a complex projective manifold is
injective can also be seen in the following way.

We denote by j : X — P(V) the embedding of X into P(V) =Py and by p : G(p + 1, V*) = Cgy—p-1(X)
the induced meromorphic map, which associates X n P(kerdg) n ...n P(kerA,) to a subspace vect(Ao, ...,Ap)
€ G(p + 1, V*). With C, the Chow transformation of currents of bidimension (p, p) on the projective space
Py, we have the equality

p*C(T) = C(L.T)

between (1, 1)-currents on the Grassmannian G(p + 1, V*) = G(q, V) = G4_1,n. In other words, for the injec-
tivity of C at the level of currents it is sufficient to take the irreducible component M of the cycles ¢ =
X n P(ker Ap) n ...n P(ker A,).

In effect, we know (see [33]) the existence of a dual integral transform C*, defined for (1, 1)-currents on
G(p + 1, V*), with values in (p, p)-currents on P(V), satisfying the existence of a linear differential operator
with smooth coefficients

P : {(p, p)-currents on Py} — {(q, q)-currents on Py}

such that T = (PC*C)(T) for all currents T of bidimension (p, p) on Py.

The other purpose of this article is also to prove the existence of # for Py using the theory of left
D-modules (see [5,8,13,19]). We denote by Ap, the sheaf of rings of real-analytic functions with complex
values and, Dp,, the sheaf of rings of real-analytic linear differential operators on Py. Then, AT9TPy is a
sheaf of Ap,-modules and Dp, ®7,, \9TPy becomes a sheaf of left Dp,-modules. The space of smooth
differential (g, q)-forms on Py can be written as follows:

4,9
Cyy(Py) = H(Py, Homyp, (Dpy ®a,, \TPy, C3)),

where the left Dp,-module Cp) is the sheaf of smooth functions on Py.
The transform C(T) is obtained by integrating T on the projective subspaces of Py of dimension g - 1,
i.e., C(T) is obtained from T by means of the double fibration

r
o Y
N
Py Ggan

with I ¢ Py x G4-1,5 the incidence manifold. We denote by Q the universal quotient vector bundle on
G4-1,v = G(g, V) and we replace det Q by Dg v ®Acy det Q to obtain a left Dg +y-module. Then, the
existence of # is a consequence of the following result (see Proposition 10, subsection 3.2).
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Proposition. There is a left Dp,-module N isomorphic to N-1TPy satisfying the following conditions:

(i) H°(Py, Ap,) ® H(Gy-1,n, Ag, ) ® N is contained in @ip*(det Q ® det Q ® P,p*(Dp, ® NPITPy ®
Op,(-1) ® Op\(-1))),

(ii) for every smooth differential (q, q)-form u on Py, the differential (p, p)-form C*C(u) is a global solution on
Py of N with values in Cp, .

Here, H(Py, Ap,) ® H(Gy-1,x, Ag,_, ) is a topological tensor product over C.

The proof of existence of # can also be simplified by using the theory of conormal currents in Py (see
subsection 3.3). Note that tangent currents at a point of closed positive currents were studied by
Dinh-Sibony (see [11]).

The theory of left £ -modules also provides the partial differential equations (PDE) of Gelfand et al. (see
[14,15]), that characterize the (1, 1)-currents © on G4, v that are in the image of C.

Denote by 1 : V4 — G(q, V) the map that associates with z = (z°,...,z97") in the product the vector
subspace 1(z) = vect(z,...,z971). We use the Pliicker coordinates P; of z = (z°,...,z971) € V4, which are
defined by

q
2N . AZT = Y Pee \V,
l=q
where e; = e; A ... A ey, for I =(iy,...,1g) with 0 < i) <...< i; < N, when ey, ..., ey is an orthonormal basis

of V.
A smooth differential (1, 1)-form © on G(gq, V) is a Chow transform when © can be written as follows:

0 = z C[)]dP[ A\ dF],
11=lJ|=q

where the coefficients C;; are smooth functions of z € V7 satisfying:
(i) the homogeneity property i j(A. z) = |det A[2C;;(z) for all A € GL4(C),
(ii) the linear differential equations of order 1
_ksk
Z le(a;(/ JI'J + le]f,] =0= Z Z}-kaj/C[,j]f + C],j’]',

0<k<g-1 0<k<g-1
0<j<N 0<j<N

(iii) the linear differential equations of order 2
@Y - 3¢y = 0 = 353 - 3535)C),

where 6;‘ is the partial derivative with respect to the homogeneous coordinate z}‘ . Actually, the coefficients

Ci; can be expressed as differential operators evaluated in the coefficients <" of © in homogeneous

coordinates (see Proposition 7, subsection 3.1).
This can also be translated in the following way (see Theorem 2, subsection 3.1).

Theorem. There is a left submodule M c \-'TG,_1y of finite type satisfying

(i) the inclusion of H°(Py, Ap,) ® (N'TGy_1,n/ M) into det Q ® det Q ® Yp*(Dpy ® NITPy ® Op,
(-1 ® Opy(-D)),

(i) the equality Im C = H*(G4-1,n, HomDOqfl.N(/\l'lTGq,l,N/M, C%‘;M)).

Thus, if u is a smooth differential (q, q)-form on Py, then C(u) is a global solution on G4_1n of the left
D, ,y-module N''TGy_y y /| M with values in (OF
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2 Chow transformation of holomorphic vector bundles on Py

We denote by P(V) = Py the projective space of lines in a complex vector space V of dimension N + 1 and [x]
the point of P(V) associated to a nonzero vector x in V. For 1 < g <N, let G(gq, V) = G415 be the
Grassmannian of vector subspaces of V of dimension g, and let P(s) be the projective subspace of P(V)
associated to s € G(q, V).

Let T be the incidence manifold, i.e., the submanifold in P(V) x G(q, V) of ([x], s) satisfying x € s.
Then, ¢ : T — P(V) and ¢ : ' — G(g, V) are the restrictions to I' of the canonical projections.

Let E — Py be a holomorphic vector bundle over Py. The Penrose transform of E (see [4,17,27]) is the
coherent sheaf

F=yY9'E

over G,_;y. In the general case, ¥ is not necessarily locally free. But there is ko € N such that
P.9*(E ® Op,(k)) is a vector bundle for every k > ko. So we will implicitly replace E by E ® Op,(k) = E(k).

2.1 Inversion in the derived category

For [x] € P(V), the fiber ¢~ ([x]) is identified with G(g — 1, V /Cx), thus its dimension is d = (q - 1)
(N+1-q).
We denote by w, = \'Q;, the determinant bundle of Q;,, where Q,, is obtained in the following manner.

d
Thanks to the morphism I' A Py, we have the exact sequence TT s @*TPy — 0, then by duality we obtain
the exact sequence

O—>§0*Q[})N—>Q%—>Q}p—>0

with Q, = T*T/@*T*Py. If we take £ = w,', we have

d
Lix,s = N(s/Cx)* ® (V/s))
= (det (s/Cx)*)N*1-1 @ (det (V /s))??
= (det (V/Cx)")N*1-9 @ (det Qs)V,

where Q is the universal quotient vector bundle on G(g, V).
We can also take the holomorphic vector bundle £ of rank 1 over I' defined by Ljy),s = N1(s/Cx)".
Then, the exact sequence

0->s/Cx—>V/Cx—>Q;— 0
allows us to write
Lix,s = det (V/Cx)* ® det Q.
However, since we will be integrating on the fibers of ¢, we will only use the holomorphic line bundle
L =yrdet Q o))

on the incidence manifold I', with det Q > 0 on the Grassmannian G(q, V).

Proposition 1. The correspondence E — ¥ is injective, and we can retrieve E from the coherent sheaf
E'=@(LoyF)

calculated in the derived category on Py.

Proof. We begin by calculating i*# using the base change (see [21])
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rAr
Pll llp
¥
I'=G(g, V),

where I = {(a, b) € T, Y(a) = Y(b)} and p; : ' — T and p, : I' — T are the restrictions of the canonical
projections. In the derived category, we have Y*F = p;. p,¢*E and then the projection formula

AL @ Y P9°E) = 9(L ® pr.p;¢°E) = (¢ ° p)pi L ® (¢ > p2)E).
With
q:T" > P(V) x P(V)
defined by g([x], [x'], s) = ([x], [x]), using the commutation formula ¢ o p; = pr; o g, we arrive at
(p1 > @).(p; L ® (p; ° q)'E) = pu.(q.pi L ® Prok).

Now we have to determine the coherent sheaf g.p; £ on Py x Py, which is a generic holomorphic vector
bundle on Py x Py.

In effect, for[x] # [x'], thefiberg'([x], [x']) = {s > vect(x, x")} ¢ ¢~'([x])isidentified to the Grassmannian
G(qg -2,V /(Cx & Cx')) and

(@27 D,y = Hq (X, [X']), £) = Ho(q7'([x], [X']), Yp*det Q).
Thanks to the exact sequence
0-s/(CxoCx')>V/(CxaCx')—> Qs — 0 (2

on g([x], [x']), we obtain (g.p; L),y = NV 179V /(Cx ® Cx")) because H(G(g, V), det Q) = \N*1-9V by
the Bott theorem (see [6]).

This generic holomorphic vector bundle can be extended by a coherent sheaf in Py x Py in the
following way. When [x] € Py is fixed, we consider A, the image sheaf of the morphism Cx’ — V /Cx
for all [x'] € Py. Then, Ny extends (Cx & Cx')/Cx and A = (V /Cx)/ Ny extends V /(Cx & Cx') when [x']
varies in Py. In such a way,

N+1-g N+1-

AA=" Ve N

extends A\V*1-9(V /(Cx @ Cx')). Note that A\N*1-94A is also a quotient of A¥+1-9(V /Cx) since the canonical
map V /Cx — (V /Cx)/ Ny induces a surjection A\N*1-9(V /Cx) — A\V+1-9A.
But, for all fixed [x] € Py, with ij([x']) = ([x], [X']) € Py x Py, we have

Ejy = HOP(V), ify(g.pi L) ® E).

By taking the limit when [x’] A [x], we conclude that

N+1-q

iapri)= N\ A

Since (NxPx] ®0pyq € = {0}, the evaluation at [x] gives a morphism
N+1-q N+1-q
HO P(V),( A ﬂ) ®E|—> A (V/Cx)® Ey. (3)

In effect, the fiber (A\N*1=4A); ®0,,,,,; C is equal to

N+1-q N+1-q N+1-q
A (A 800y €) = A {(V/€x) © CH{Nidi) ®0py 0 CH = A (V/Cx0).

Moreover, by replacing E by E(k) with k large enough, we can assume the morphism (3) to be surjective.
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So there is a surjective morphism

N+1-q
E[,x] — /\ (V/CX) ® E[X],

i.e. we recover \N*1-9(V /Op,(-1)) ® E from E'. By cancellation, we can recover E from E' too. O

Note that the coherent sheaf g, p; £ involved in the proof of Proposition 1 can also be obtained using the
blow up I & I" of I" along q Y(Dp,), where Dp, is the diagonal in Py x Py. We can use a commutative
diagram

rSMm

Wl K

I’ 1) IPN X IPN,
where y is the blow up of Py x Py along Dp, and o is equidimensional. Then, g.p;'L = pou"p; L is
the direct image by yu of a holomorphic vector bundle defined on M also obtained by extension of the

holomorphic vector bundle AV*1-9(V /(Cx @ Cx")) defined for ([x], [x']) € Py x Py\Dp,. In effect, with
v([x], [x']) the natural morphism Cx’ — V /Cx, we have

M = {([x], [x'], [u]), u € Hom(Cx', V /Cx)\{0} and u colinear to v([x], [x'])}

and the inverse image in M of V /(Cx & Cx') is nothing than the quotient vector bundle (V /Cx)/Im u.

Corollary 1. The correspondence that associates ¥ = Y ¢*E to any coherent sheaf & on Py is injective and we
can retrieve & from

& =L e yPF)
calculated in the derived category on Py.
Proof. We use a projective resolution
O—Ey —E,—..—E —>E—&—00

with holomorphic vector bundles E; defined in Py. If k is large enough, the complex
0 — Y 9" (En(k)) — 9" (En-1(k)) — ... — P9 (E(k)) — 9" (Eo(k)) — e (E(k)) — 0

is exact too (see [27]), and we retrieve E;(k) from i ¢*(E;(k)) by Proposition 1. O

For B, a coherent sheaf of Or-modules, the projection formula in the derived category
. Hom(B, Y*Og(q,v)) = Hom(ih, B, Ogq,v))
can be written as ,(8~) = (,8)". So in Corollary 1, we can replace £ by L*.
Proposition 2. Let Z be an effective algebraic cycle in P(V) = Py of codimension q and let I; be the ideal
sheaves of Z. If & = (Op,, | I7)(k), then
F = 9" = Y9 (Opy/ 1z ® Op,(k))
is a coherent Og(q,vy-module, and for each s € G(q, V'), we have

Fs ®0cqis C = HYP(S), Op(s\(k) | (Tznp(s) - Ops)(K))).

Proof. We first express
F =01/ Ly1z)® 9*Opy (k) = ,(J.O y(z) ® 9*Opy(k))
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with ¢~(2) J, I' the natural injection. Since ¢*Op,(k) is locally free, it becomes
F = 1,J.(0 p1z) ® J*@*Opy(k)) = Lv(¢*Opy(K)p(2))

with X 4 G(q, V) the natural injection and v the modification ¢~'(Z) ﬂ X. For s € X generic, the intersec-
tion Z n P(s) is a point [x;] and the fiber over s of the line bundle v.(¢*Op,(k),, (7)) appears as being

(Cxs)™* = HO(P(s), Ops)(k)) | HO(P(S), jx - Opsy(k)).
Moreover, the short exact sequence
0 — Ipxy - Opsy(k) = Opsy(k) = Opsy(k) | (Zjx1 - Opgs)(k)) — O
implies in cohomology the exact sequence as follows:
0 — HO(P(s), i) - Op(s)(K)) — HO(P(s), Ops)(k)) — HO(P(S), Opsy(k) / (Zjx) - Opis(k))) — O
in cohomology because HY(P(s), I}y - Ops)(k)) = {0} by ampleness. We conclude that
HO(P(s), Ops(k) | (1x,) - Opis(K))) = Fs ®0(q.1,5 C- o

2.2 Yang-Mills connections

We equip the holomorphic vector bundle E on P(V) = Py with a Hermitian metric h and the line bundle
Op,(k) with the Hermitian metric induced by the Hermitian scalar product on V = CN*1,

The induced Hermitian metric on Y ¢*(E ® Op,(k)) is defined in the following way. For i,
v € HO(P(s), (E ® Op,(k))pis)), we denote by u, v the associated vectors in ,¢* (E ® Op,(k))s and we
set

wv = [ @ e @

[x]€P(s)

where w is the Fubini-Study form on P(V) = Py.
We can express the above '[P( ) by writing a point in P(s) as being [x] with x = t - z = t,2° + ...+ t;z9°!
S

where t € $%-1 and s = vect(z?,...,z971). We obtain

U, v) = aA(z) I {(t - z), v(t - z))Dd(t),
teS2-1

a2
where a4 = % and A(z) is the Gram determinant of z, while

D) = — Y (DUt A . AdbA . AdtgAdEA . AdE + (—1)IRdG A .. AdEg A dRA ..
ﬂlgksq

A c/lf\k/\ o A dEy).

Let us now express the Chern connection D on F = i ¢*E, where we implicitly replace E by E(k) =
E ® Op,(k).

When W is an open subset of G(g, V), to define a section u € HY(W, F) that is to say a continuous
section on W of the sheaf O(F) is equivalent to define #i([x], s) € Ejy for every ([x], s) € ~Y(W) satisfying
ii([x], s) is holomorphic on Yp~{(W).

The (1, 0)-part of D can be calculated by means of the relation

(Ou, v))(0) = (Dyu, vy + (u, dyv)
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foru,v e O(F)(W) and 0 € HO(W, TG(q, V)). In W, we have
W, v) = (Y )- oo™,
where f([x], s) = (@([x], ), ¥([x], s)) for ([x], s) € Y~Y(W). Sod{u, v) = (l/)“pfl(w))*(af/\ @*w?1), which gives
@U@ = [ @ APw o 0.,
[x]eP(s)
where the lifting & € T;,jP(V) is such that (£, 05) € Ty, for [x] € P(s). The above contraction is equal to
fix.9E, 0w = e A 0l &)

and its restriction to TjjP(s) is equal to A([x], s)w[’f(]‘llT[X P(s) for some function A([x], s).

To calculate A([x], s), we choose ey,..., ey an orthonormal basis of V = C¥*!, and we assume that
X
M-

For s € W, we set is: P(s) = Y7(s) = (W) c T defined by is([x]) = ([x],s). We use that ijof =
digf = 9f (-,s) and by identifying (eymod Cej) ® e; with e;, we obtain

vect(eo,...,€4-1) = S, and ey =

. q_l
-1 1 * —x * —
Wy 2[5 Zei/\ef] =C ) eing

1<j<N []=g-1

w[‘f(]"l(f,...):C Z Z e A e,

1<j<N|J|=q-2

i@-1%(g — . . . . . .
where & = ZISjSN{j(ejmod Cep) ® e;. Here, C = % and I = (i, ...,i;1) with1 < §i<...< i;y < N, while

J = (s -+e5Jg—2) with 1 <ji<...< j,_; < N. In restriction to TP(s), we have to take jJ = {1,...,q — 1} and
conclude that

@@ = [ o€ - @), 0l
[x]eP(s)

where ps : P(V)—P(V) is the projective map associated to the orthogonal projection of V onto s.
We set

X([x],s) = (- (dps)[x](f)’ ;) € T([x],s)r (5)
since T, s ~1(s) ¢ Tyl and we have
Q) = [ [yl ?) + @ aintug' = [ (Dt Doy’
[x]eP(s) [x]eP(s)

when we take v holomorphic on y~1(W).
We define

Mg : COW~' (W), ¢*E) — COWp~' (W), ¢°E)
the linear operator corresponding for each s € W to the orthogonal projection
C(P(s), E) — HO(P(s), E) c C*®(P(s), E)
where we use the Hermitian scalar product (4) on C®(P(s), E). The above formula becomes

@, V)s(03) = j (Mg » (DY )ik, Dy,

[x]eP(s)



DE GRUYTER Chow transformation of coherent sheaves =— 9

Proposition 3. For all u € O(F)(W), we have
(Dju)~ = (g o (Dgg )x)il = (g o (9*Dp)x)id

on Y\ (W), where ii € H(Y~Y(W), ¢*E) corresponds to u.

Recall that we have a morphism Y*F = Pp*i),¢*E — @*E. When F = O(F) is locally free, this morphism
is nothing more than the evaluation morphism

F; = H(P(s), E) — Epyq
for x € s. We can assume that it is surjective, and so we obtain an injection ¢*E* — p*F*,

Corollary 2. Let Dg- be the Chern connection induced on F*. Then, for every section h € C®(T', ¢p*E*), we
have (Y*Dg-)(h) € CTH(T, ¢*E*).

We calculate now the curvature O of the Chern connection D = Dr by the formula
GF(GI’ 62)11 = Dngazu - DﬁzDglu - D[glﬁz]u
by assuming that [0y, 05] = 0 and u is a local holomorphic section of F. Thus, we have
Or(01, Go)u = Dy dsu — dgDyu = —dg Dy u.
Let X; € T, '/ Tix, s ~'(s) be such that dzp([x],s)(Xi) = g; and the equality (5) holds, then
(8 (01, T)u)~ = —dx,(Te(*Di) x,h)
= (g o O (X, X))il + (Mg o (@*Dp)ix, )il + (Tedg, — di Mg ) (9*Dp) .
Since II3V = [IgV = ¥, we obtain
(©r(01, D)u, v) = j (O e(Xs, X + (9" Dp)ix, ol + (Tedy, — digTle ) (@*Dp)xiil, Vwd,
P(s)
where dgo([x],s)(X,-) = &, — (dps)(&) with
& = —x1® (0;,5(x)mod Cx) € TyP(V) = Hom(Cx, V /Cx)
modulo Tj,P(s).
We consider the term involving the Lie bracket [X;, X;]. We use homogeneous coordinates on G(g, V),
i.e., we write s = vect(z%,...,z971), then, for0 < k,m<q -1,and 0 < j, 1 < N, we choose

d _ _ k
01 = avect(zo,...,zk 1 zk + te, 2K, 297 o = O,

_ d ~ ~ =m
0= Evect(zo,...,zm Lzm o+ te, 2™, ..,z D)0 = 9

which gives

& — (dps)(¢;) = (component of x on zk )(dps) — id)(x ' ® (gmod Cx)),

& — (dps)x (&) = (component of x on z™)((dps)y — id)(x' ® (emod Cx)).

Since 07 and o, are holomorphic vector fields, we have [(}, 01), (&, 0,)] = 0. Then, ((dps)(é;), 0) €
T, ¥ 1(s) and the ~i(s) is a C>-foliation of I'. By involutivity, we have

[((dps)x (€D, 0), ((dps)x((&), 0)] € Ty, 1(S) @ Tipy, it~ '(S).
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Finally, the Lie brackets [(£, 01), ((dps)(&), 0)] and [((dps)pq(é;), 0), (&, 02)] belong to the space
T, 71(S) @ Ty, '(s), since each (dps)(¢;) decomposes on holomorphic sections of Ty s '(s).
So we conclude that

(X1, %] € T, 7(S) @ Ty, st ().

On another hand, we set Y([x], s) = d(p([X],S)(Xi([x], s)) and use that

Yi([x], s) € T P(Cx & s*) < (@*TP(V))(x],s)-

We have (do)([X, X)) = [V, B]. We fix W e G(p + 2, V) and set Fiy = {([x],s) € T, Cx & s* = W}. For all
([x], s) € Fw, we have Y([x], s) € T,jP(W) and the Fy is a foliation of T, so[¥;, B]x,s) € TP(W) & TrgP(W)
for all ([x], s) € Fw. In other words, we obtain

(X1, X] € TP(W) & TP(W),

which implies that [X;, X,] = O.
Finally, a transposition in the last term yields that the curvature ©f € C{3(G(q, V), End F) has the
following expression:

(O(01, T)u, v) = j {(By s (X, X, 7) — (9*Dp)x, (I - Tp)(@*Dp)x, ) fwd-L, ©)
P(s)
In Section 2.3, we calculate, in particular, 81, € C73(G(q, V)) for some holomorphic line bundle
Lg < Y @*(N-9*'E) over G(g, V), when E is a Hermitian holomorphic vector bundle over P(V) of rank r.

2.3 Chow transform of a Chern class

Let X ¢ Py be a complex projective manifold of dimension dy and let T be a smooth differential form on X of
bidimension (p, p) with p = dy — g. The Chow transform C(T) of T is a current of bidegree (1, 1) on the space
Cy4-1(X) of effective algebraic cycles in X of dimension g - 1, obtained in the following way. Let [ be the
incidence variety, i.e., the subvariety in X x C;_1(X) of (x, c) satisfying ¢ > x. With ¢ : [ > X and

1,5 ) g C4-1(X), the restrictions to [' of the canonical projections, we set
C(T) = ,¢'T.

The fact that C(T) is of bidegree (1, 1) means that it is of bidegree (1, 1) on each irreducible component M of
C4-1(X), which covers X.
When E is a Hermitian holomorphic vector bundle over X of rank rz = r, we denote by

O € CTY(X, EndE)
the differential (1, 1)-form of curvature of E. With c(E), the total Chern class of E, whose component of

bidegree (q, q) is c,(E), we calculate the Chow transform lﬁ*(ﬁ*cq(@E) in terms of the Penrose transform
zﬁ,ﬁ(ﬁ*(/\’*“%), which is a holomorphic vector bundle over C,_,(X).

Proposition 4. For E, a Hermitian holomorphic vector bundle over X, we have 1/3*¢)*cq(®E) = q(0y,) with some
singular Hermitian metric on a holomorphic line bundle Lg C l/l(/‘)*(/\’E*q“E) over the cycle space C4_1(X).

Proof. We set L = Op,(1)x, then by replacing E by E ® L* with k large enough, we can assume that there are
sections fy, ..., fi-g in H°(X, E) such that c,(E) = {Z}, where

Z ={[x] € X, fo(Ix]), ...,fr—¢([x]) linearly dependent}
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is the degeneracy locus. So Z is the set of zeroes of the section
r-q+1
foN ... Nfige€ HO(X, A E)

which induces a surjective morphism N-9*E* — I, equivalent to an injective morphism 7% — N9*E.
Furthermore, we obtain an injective morphism

R N r-q+1
BT — lp*@*( A E)

which is equivalent to a surjective morphism (lf)*@*(/\"q“E )t — (113*([7*(1 D).
We denote by D; = C(Z) = 1/3*43*2 ¢ C4-1(X) the Chow divisor of Z, in such a way that 1/3*43*[ 7z = Ip,.
In the derived category, we have (see [16])

W(.p*(TY) = 9" (Iy) = In,.

Thus, there is a section g of lﬁ*é*(/\"‘1+1E), whose set of zeroes is equal to D;. But the section
g € H%(C,-1(X), O(Dy)), therefore O(Dz) ¢ lﬁ*gﬁ*(/\"’l“E). Since O(Dy) is continuous with respect to Z, it
is independent of Z, so O(Dy) = Lg.

By [9,10], we can approximate the closed differential (g, q)-form c,(©g) by rational algebraic cycles Z; of

~

codimension g in X cohomologous to c,(E). Then, the divisor Dz = 1,¢*Z; in C;_1(X) is the set of zeroes of a
holomorphic section g; of O(D;), thus

[D2] = a(6ow))
for some singular Hermitian metric on O(D;) depending on g;. By taking the limit when j — oo, we obtain

113*([)*0,1(@5) = a(0y,) for some singular Hermitian metric on Lg. O

We now prove the injectivity of the Chow transformation C = 1/3*43* acting on the (g, g)-currents on X.
Let dy be the dimension of an irreducible component M of C;_1(X) and for [x] € X generic, let

d =dim{c € M, c > [x]}

be the dimension of the fiber M n @~([x]). Assume that the family of cycles ¢ € M covers X, then
d+dy=dy+q-1.0nM, we define first Q = (A,‘(a)l‘}() = P9 (w%), where w;x = a(€r) = ¢ (04, m)x- Then,
for © a (1, 1)-current on M, we define the dual integral transform:

Cu(®) = ¢’ (0 A Ql?),

which is a current of bidegree (dx — g, dx — q) on X.

Theorem 1. There is an irreducible component M of C;_1(X) such that the transform
C‘LQM : {(q, q)-currents on X} — {(dx - q, dx — q)-currents on X}
is invariant by transposition and satisfies
CuC(Mm)=0=T=0

for all (q, q)-currents T on X. Then, a left inverse of C‘LC] w is a linear differential operator Py, which does not
commute to d nor d in general.

Proof. We assume that (C‘;,G m)(T) = 0. When u is a smooth differential (g, g)-form on X, we have first

(T, w) = [ET) A 8w A Q%2 = (T, EHCua). -
M
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For an algebraic subset Z ¢ X of pure dimension dy — g and a f € C*®(Z), we take further u = f[Z] and we
use that

CUFIZD) = g (FIZ]) = Y((f » PIGZ]) = (f o § o VD,

where v : ¢1Z 4 D is a modification and Z n ¢ is a point 7i(c) = (¢ o V1)(c) for ¢ € D; generic. In other
words, C(f[Z]) = (f » #)[Dz], which gives

(@), w) = [F (i) ((ET) A Q).
A

We obtain the condition
(7ip,om )-((C(T) A QW2)p, o) =0 VZ, ®)
which implies, for all Z, the condition
(C(T) A Q=2 A Dz = O.

We arrive at the conclusion that (C(T) A Q=2), = 0. Thanks to the Lefschetz isomorphism, this implies
that C’(T) =0on M, and thus T = 0 if M is such that C‘| u is injective.
In fact, we take T = ), fy[Z], where fi € C*®(Z,). At the same time, we take Z = Z; with a fixed index I.

With g, = fx o i, we have C(T) = Y«8k[Dz] and the condition (8) becomes

(ﬁl\DzlnM)* (ng [DZk] A QdM—Z] =0.
k

|DzlﬂM

The restriction [Dz]p,, can be assumed smooth, in the cohomology class of {Dz}p, = Cdzd), pz- On another
hand, [DZk]IDz, = [Dg n P*le has a singular support for k # I. We obtain f; = 0 when (C‘;,,C]M)(T) =0, so
T = 0. In other words, (C yCim) is injective, in restriction to the ), fi[Z].

Furthermore, we have the injectivity in the space of all currents of bidimension (dx — q, dxy — q) on X,
thanks to an argument of density. O

So we can choose M such that the relation id = ?A’MCLC]M is satisfied. Then, C‘LCAJ‘M is injective thus
bijective, since this transformation is invariant by transposition by (7).

But there is no corollary in cohomology, since $ does not commute to d or d in general. We have only
the following property, with respect to the algebraic cohomology. Denote by H;}’gp(X ) ¢ HPP(X) the sub-
space of the cohomology classes of algebraic cycles of X of codimension p with complex coefficients (see
[12,20,28]).

1(Mi)*, where M; is the

Proposition 5. The transformation C = 1/3*43* is injective from HEP(X)* to eang”g’,"'fl’def

family of the irreducible components of C;_1(X) with p = dx — q.

Proof. We prove that the transformation
s du-1,dpg—1
QY eH, M (My) — HEP(X)
1

is surjective. Let Y ¢ X be an irreducible algebraic subset of dimension g = dy — p. We write Y = | Jg(Y n H)
where H belongs to the set of all algebraic hypersurfaces of X. With ¢ = Y n H € C;_1(X), the irreducible
component M of ¢ in C4_1(X) does not depend on H when H varies continuously. ThenY =  Jcccc where C is
an algebraic curve in M, in other words Y = (Z)(l,[;_l(C ) & [Y]= @lﬁ*([C]). O
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3 Chow transformation of currents on Py and sheaves of left
modules over the ring of real-analytic linear differential operators

Given T a current on Py = P(V) of bidegree (q, q), we set
C(T) = Y,9°T = pu.([I'] A priT)

as being the Chow transform of T. Then, C(T) is a current of bidegree (1, 1) on G,4_1,x = G(q, V).

3.1 Characterization by PDE of the image of the Chow transformation of currents

We obtain, by slicing and projecting, the linear differential equations characterizing the images by the
Chow transformation of the (g, g)-currents on Py. In this way, we obtain a linear differential system of order
lower than that of the Gelfand-Gindikin-Graev differential system.

If © = C(u) is a smooth differential (1, 1)-form on G(gq, V'), which is in im C, then a first condition is that
forall W € G(q + 1, V), the restriction ©,pw+ of © to P(W*) = G(q, W) c G(q, V) is closed, i.e.,

(d®)paw+ = 0. 9
This follows from the slicing formula
Cw)paw+y = Cw(upewy) (10)

for all W € G(q + 1, V), with Cy, the Chow transformation on P(W). In effect, since ujpaw) is of bidegree
(g, @) on P(W), thus closed, ©,py~ is closed too.

Conversely, if this condition is satisfied, then ©py~ € im Cw. Then, a second condition is that
Cw(©paw) is the restriction to W of a smooth differential (g, q)-form independent of W € G(g + 1, V).

Third, a projection argument allows us to complete the characterization of smooth differential
(1, 1)-forms © on G(g, V), which are in im C.

In effect, for W' a vectorial subspace of V of dimension g - 2, we set

GW’ = {S € G(q’ V), W' c S} = G(z’ V/W,)

and Cy denotes the Chow transformation acting on currents in P(V /W'). We denote by iy : V. — V /W'
the vectorial projection and by 7y : P(V)—P(V /W') the induced projective map.
When u is a differential form of bidegree (g, q) of class C* in P(V), we have the equality

CW)i6y, = CwlFtw 0).

The direct image 7y .u is calculated by integrating u along the fibers of 77y and is a smooth differential
(2, 2)-form in P(V /W').

Proposition 6. A smooth differential (1, 1)-form © on G(q, V) is the Chow transform of a smooth differential
(g, @)-form on P(V), when

(i) the condition d©g(q,w) = dO\paw+) = O is satisfied for all W € G(q + 1, V),

(ii) thereis a smooth differential (q, q)-formu on P(V') such that ©,pay+) = Cw(wpw)) for allW € G(q + 1, V),

(iii) the restriction ©5,, € im Cy for all W' € G(q - 2, V).
Proof. We have (0 — C(u))paw+ = 0 and (0 — C(w)),, € im Cw. By replacing © by © — C(u), it remains to
prove that

O\P(W*) =0 and G\GW' € im éwf =0 =0.

So assume O, = Cw(uw) with uy of bidegree (2,2) in P(V/W') = Py_g+2. For W c W, we take the
restriction to
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(s € G(g, V), W' csc W}=G@2,W/W)=GQ2,C) = Ps,
and we obtain
Cw(uw)p; = (Opew)ps = 0.

Therefore, uypaw w = 0 and uy = 0. We conclude that 66, = 0. For s = vect(z°,...,z9°") and 0 < k,
m < q — 1, we choose W' = vect(z°, ..., 2, ..., 2™, ...,z9"1) and conclude that O4(0y, ) = 0 with

d _ K
0= avect(zo,...,z"*l, zK + tej, 2K, .., z97 ) = Of,

_d =
0y = —vect(z°,...,z2", 2" + te, 2™, ..., z9 Vo = O]
dt
where e, ..., ey is a basis of V. In other words, ©; = 0 in homogeneous coordinates. O

Denote by 1 : V4—G(q, V) the map that associates with z = (z°,...,z97") in the product the vector
subspace 7(z) = vect(z?,...,z971). Assume that the smooth differential (1, 1)-form © on G(g, V) is given in
homogeneous coordinates as follows:

0= ) Oydz Adz"
0<k,m<g-1
0<n,l<N

Recall the linear differential equations in the coefficients of © that are equivalent to condition (i) of
Proposition 6 and are given in [14,15]. These are

K’ K’ k ok’ K ki
ajre);'(lm - af@)}/lm = a}-r@ﬂm - a] @1{?
and
3, el - rel = §rel - 5 el
forO<k,k',mym <q-1,and0<}j,j',,I' <N.
In effect, we have

7@ = Yokekrdzl A dzf A dz + Vo) dzl A dz A dz

We take W = vect(a, z°,...,z97!) with a € V\{0} in such a way that an hyperplane of W can be written as
vect(tia + z%)o<k<q-1 With (t) € C9. In the inverse image in C? of 7*d®© at the point 0, the coefficient of
dti A dtye A dEy, is

. (@) el - 36 g,
'l
while the coefficient of dt;, A df, A di,y is
Z (5,’7,@%’" - 5;7@??1)61]‘(71671/.
Ll
When the smooth differential (1, 1)-form © on G(g, V') satisfies the property (i) of the Proposition 6, then

the function

1 kM ok
Cry=——= (-Dkmafy e n
g) ((q _ 1)|)2 ng’ggqil Y] *j ( )

depends only on jI and IJ. We have denoted here by E)l’2 the linear differential operator

det ik,
0z; K2k

jel
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for |I| = |J| = q — 1. For the proof, we write
Y (ke = (-1t y &0, .., 01, KT 00 IO
0<k<g-1 0<0y, ...,04-1,k<q-1

and we use

Tu@km k@oam _ Ak@oam Tp@km
0;°0j" — 0,05 = 9;677" — 0307

foril<a<qg-1.
The Pliicker coordinates P; of z = (z°,...,z971) € V4 are defined by
q
20N o AZTT = Z Pre; € /\V,
|11=q

where e; = e; A ... Ay, for I = (iy,...,ip) with 0 < ij<...< iy < N.

Lemma 1. If © satisfies the property (i) of the Proposition 6, then we have the decomposition

0 = z CI,]dPI N dF],
HI=lJI=q

where the coefficients C;; are smooth functions of z satisfying the differential equations
kak —kxk
Y. Z0Cry+ CGry=0= > Zf3;Cy + Cyy
0<k<g-1 0<k<g-1
0<j<N 0<j<N

and the homogeneity property C; j(A. z) = |det A[2C;;(z) for all A € GLy(C).
Proof. See [30]. O

For u, a smooth differential (g, g)-form on Py, the inverse image of u by the canonical map
m: V—P(V) is written as follows:

mu = Z ll[Jd.X[ N d)?],
HI=1JI=q
with x; the coordinates of x € V' with respect to an orthonormal basis ey, ..., ey of V, and with smooth
functions u;; on V\{0} satisfying the property of homogeneity vy ;(Ax) = |A|24u; ;(x) for A € C* and satis-
fying for |I'| = |J'| = g — 1, |I| = |J| = q the relations
Y XU () =0=Y XupjXx)
0<j<N 0<j<N

that are equivalent to the fact that the radial contractions of 7*u are 0. By differentiating, these relations are
also equivalent to

d _ 0
Y Xy X) + w0 = 0= Y X——upy(x) + upjp(x) 12)
052N 0% o<jeN 9%’

for0 <j <N.
The inverse image by 7 of the Chow transform C(u) is then written as follows:

TCw) = ) Cri(wydzy A dz
0<k,m<g-1
o<n,lI<N

The coefficients CX(u) can be expressed (see [30]) by means of the uy,; in the following way:



16 —— Michel Méo DE GRUYTER

Ch'w (@) = (DK™ Y il y(2)z 2]
11=1/1=g-1

with zf = det (zX) 11 and the transform
® 70<k'<q-1,k'+k

Unr,y(2) = j Unr,y(t - 2)D(L), 13)

tes2-1
wheret-z=t2%+ ...+ t;z9 ' and

O(t) = L Z (DY tdty A ... /\&E(/\ o ANdtgAndi A L AdE + (F1)2RAG A L AdEgAdE A L
1<k<q

A af\k A .. AdEy).
In such a way, it becomes

™C(u) = z ﬁ[,]dP[ N dﬁ]
HI=lJI=q

Set f1;([x]) = IxI®u;(x) and let R,_1(f,;) be the Radon transform of f;; obtained by integration of that
function in the projective subspaces of P(V) of dimension g — 1. In addition (see [24-26]),

7zq—l(fl,])f(z) = aqﬂI,I(Z)A(Z)’
2
_ (g-plie!

where a, = = and A(z) is the Gram determinant of z. The transforms #;; satisfy the following
properties.
With A = (ax,m)o<k,m<q-1 € GLg(C), set

A. (20...,29° ) = Z a0z, ..., Z Ax,g12" |-
0<k<g-1 0<k<g-1
Then, ﬁ]y](A. Z) = |det Al_zﬁl,](Z).

On another hand, the relations (12) can be expressed as follows:

k.~ ~ —kxk ~ ~
D z} ity j(z) + Gy (z) = 0 = D Z)0;idly jy(2) + dy(2)
0<k<g-1 0<k<g-1
0<j<N 0<j<N

forO<j <N.
Finally, the #i;; satisfy the John linear differential equations

’ N =k=sk' =k=k'\ ~
(040 - 9%ty = 0 = (353} — 3505 iy

Proposition 7. A smooth differential (1, 1)-form © on G(q, V) is a Chow transform when © satisfies the
property (i) of the Proposition 6 and the coefficients C;; of the Lemma 1 satisfy the differential equations

@Y - 35¥)cy = 0 = @353y - 359)C.
Proof. If © = C(u), then C;; = #i;; by unicity. O

Recall now the linear differential equations equivalent to property (iii) of Proposition 6 that are given in
[30]. To this hand, in Proposition 6, we take

—

-3 1
W' = vect(z°, ..., 2%, ..., ZX,...,z47 1)

for 0 < k, k' < q - 1 fixed and we use that the inverse image in V2 of 6,5, is
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Y (©kdzf A dzf + 0 dzf A dzZ) + O dzf A dzft + 0 dz A dZ)

0<j,lIsN

so the expressions

=k’ 1=k ! =k’ / =k 13!
o' 3; k%, — af' 3;elk — akd; el + ofajelf

should be annihilated by 3}d} — 8%3f and 5;‘5;‘/ - 5;55;(/ by applying Proposition 7 for g = 2.

Finally, mention that the linear differential equations equivalent to property (ii) of Proposition 6 are
given explicitly in Proposition 4 of [33].

Our purpose for the rest of this subsection is to obtain the linear differential system characterizing the
Chow transforms of the (g, g)-currents on Py by using the theory of sheaves of left modules over the rings of
real-analytic linear differential operators.

We denote by Ap,, the sheaf of rings of real-analytic functions with complex values and Dp, the sheaf
of rings of real-analytic linear differential operators on Py. Then, A#4TPy is a sheaf of Ap,-modules and
Dpy ®ap, [\PITPy becomes a sheaf of left Dp, -modules. The space of smooth differential (g, g)-forms on
Py can be written as follows:

q9,9
Ciy(Py) = HO(Py, Homyp, (Dp, ®4,, \TPy, CF)),

where the left Dp,-module Cp’ is the sheaf of smooth functions on Py.
We retrieve the conditions on i; ; by transforming the left Dp,-module Dp, ® Apy /\&4TPy on Py into
the left Dg,_, ,-module

9,9 -
lpb*(p*(Dle ®ﬂ[PN /\ T[PN ®.7I\PN OlPN(_l) ®ﬂ‘PN OIPN(_l))

on G,_1,y. In order to calculate this transform, we use the inclusion

9.9
A: AT'Py—> @

(Or\(=q) ® Op,(-q)) @ (e N €)),
11-Ul-q

|
which associates to a differential (g, g)-form u the previous coefficients (u; ;). It follows that A»9TPy is the
quotient of @jj-51=¢(Op,(q) ® Op,(q)) ® (er A &) by Ker!A, where

(i) eKerd o vy = Y xgp, + Y Xhyp
ir'=I i'=J
for systems (g ;) and (h;,y/) of functions. Furthermore, Dp, ®#,, \?TPy becomes the quotient of

i ?;I (Dpy ®1py Opy(Q) ®15, Opy(q)) ® (€1 A &)

=l/1=q

by the submodule of v;; such that vi; =}, g X% +

differential operators with real-analytic coefficients.
We set f;;([x]) = Ix|?u; ;(x) and associate to the differential (g, ¢)-form u the coefficients (f; ;) instead

of the (u). In addition, we have that Dp, ®a4,, /\24TPy is the quotient by a left submodule S of

iy—shiX; for systems (g ;) and (k) of linear

@ DIPN ® (e[ N éj).
HI=lJ1=q

In such a way, we calculate first the left Dg,_, ,-module
V0" (Dpy ®ap, Opy(-1) ®ap, Opy(-1)) = pYZ*{i*Or ® pri(Dpy ®apy Opy(-1) ®a,, OIPN(_l))}s

where i : T — Py x G415 is the inclusion and pn. is calculated in the sense of D-modules. So we
determine
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pr.{i.0r® priDp, ® priDg,,, ® PriOp,(-1) ® Op,(-D)}
= pu.{i.Or @ Dpyue,.y ® PriOpy(-1) ® Op, (D)},
where the left Dp, g, , ,-module i.Or is defined in the following manner.

We identify G4_1,v = G(g, V) = G(p + 1, V*), i.e., we define s = vect(2°, ...,z97!) € G4_1,y by 0 = é°=
...= &P with vect(£9, ...,&P) c V* the polar subspace of s. We denote by

Ic D[P}\/><‘Dq—1‘1v

the left ideal of Dp,xg oy generated, on the one hand, by the local holomorphic functions that define
I' ¢ Py x G414,y and their conjugates, and on the other hand, by the local holomorphic tangent vectors to T
and their conjugates. Since the inverse image of T in V x (V*)P*1 is

{0, (0 ....87)) € V x (V)P (€K, x) = O},

the inverse image of 7 in Dy ® Dy~ is

.Z-=<f,f_,X,X>,
where f = (&K x)andX—a—’k—a—;sorX—a—’k—iior =13 19 ¢or0<k<pand0<j,j <N.Here
’ T X T x gi’f g &k o {I_’f axjr sks=p s)J =N ’

k a k% " .
we have setted 0; = aF when ¢k =Y 5 SN{}. e/ € V*. Then, by definition

LOr = Dpyxc,in/Ls
and when W ¢ G4_,,y is open, it remains to express

HO(IPN X Ws prT(O[PN(_l) ® Oﬂ)N(_l)) ® DPNXG(I,LN/I)-

Lemma 2. For every linear differential operator P € Dpy, ® Dg,_,, on Py x W, there are real-analytic func-
tions h, on Py and linear differential operators Qu € Dg,_, (W), for a in an infinite set, such that

P - ZahaQa € ](W)

. k1% = 9 k~k k 7
Proof. With X = % T Fay € 1, we have Xia, = ].,a]. - x]{j,X € Dg, ,y + L. Therefore, when |a| = |B], we
J

have the same property

olBl ~
ﬁ G qul‘N + ]. D
0X° ... 0Xy

Note that on the open subset of Py x G,4_;,x defined by (£ k x) # 0, the relation
(&%, x)

(&%, x)

AKEX, x)u) = xu + (&, x)oku = xu + k(&K xyw)

provides x; € 7 + (&%, x)((¢, x))'7, but the function (&X, x)((¢X, x))™! is only bounded.
We use the morphism

HO([PN’ ﬂﬂ)N) ® DGq,LN(W) - HO(IPN X W’ prT(O[PN(_l) ® Oﬂ)N(_l)) ® DIPNXGq,LN/I)s
which is obtained by associating to Q € Dg,_, ,(W), the section of
Hom(pri(Opy(1) ® Opy(1)), Dpyxc,,x)

on Py x W defined by A ® i — AQ when A and u are linear forms on V = CN*1,
Let E}ﬂ" be the real-analytic linear differential operators on G,4_;,5 such that

M)A - 35N (A@) 'F(1(2))) & Eff (F)(1(2)) = 0
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forall z € V9, when F € C*(G,4-1,5). We consider the left ideal of Dg,_, , generated by the E = E]-’ﬂ" and their
conjugates E. By the natural morphism,

D, (W) — HY(W, det Q ® det Q) ® HOPy x W, pri(Op,(-1) ® Opy(-1)) ® Dpyug, x/ 1) (14)

the linear differential operator Ej'ﬂ" is send to A(z) ® (ag‘a;&’ - a,&a;") and thus to 0.
In effect, if u is any smooth section of (det Q ® det Q)!, we use the formula

a§,’a§(<§k, xu) = xja;‘,’u + (&K, x>a§<,’a;<u + 6,5)(,-@;‘11,

which gives (&X, x)(9%d% - 3%aK) € (f, X).
Therefore, the morphism of

HO(Py, Apy) ® (Do, ! (B, E))(W)
into
HO(W, det Q ® det Q) ® H/(Py x W, prj(Op,(-1) ® Op,(-1)) ® Dpxg, 1n/ 1)
is injective, and we have the following result.
Proposition 8. The Dg,_, ,-module H°(Py, Ap,) ® (Dg,.,/(E, E)) is contained in
det Q ® det Q ® Y,0*(Dpy ®apy Opy(-1) @1y, Opy(-1)).

When W ¢ G-,y is open, it remains to calculate the space of continuous sections on W of

prz*{pr’{(OpN(—l) ® Opy(-1) ® (DPNqu,l_N/f) ® (IIIG;qDPNXG“’N ® (er A é]))/pr]‘S}

that is to say the space of continuous sections on Py x W of

B/ 11=J1=¢Dpyxc, ,y ® (€1 N &
PrT(OPN(—1)®Ou>N(—1))®{ ne-aDp <y 1 ® (€11 &) }

1(@)11-1/1=¢DpyxG, v ® (€1 A €))) + PIIS

For all fixed 0<j'<N and |K'|=qg-1,|L| =g, we define the element Q= Qj x',1 € ®1=|j=¢
DPNX@%LN ® (e; N é]) by
Q) = Y &0f,u&)
0<k<g-1
0<j<N
for all (f;;). For 0<j'<N and |[K|=g¢,|L'| =q -1, we define the element R =Ry g1 € ®-j=¢
DPNXGq—LN ® (eI N é]) by
= . sk=k -
Ry =) & 0jixu()

0<k<g-1
0<j<N

for all (i;;). We use the formula

> L 0@ = (€L 0QM) + Y, &l 1),
Oékgzgl 0<j<N (15)
<j<

which gives

Q(('fl’ X>ﬂl,]) - ('{l’ X)Q(al,]) = Z( Z gIr]Xm)a]J

ILj\mlI'=I
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with g, = 0if I' # K’ and gg; = 0 if J # L, while g, = é’]l So Q is a continuous section of

pl’T(O[pN(—l) ® O[pN(—l)) ® {[( 2] DPNXGq—l.N ® (eI N é])) + pl’TS}

I=1J1=q

For |K| = |L| = g, we define the linear differential operator Ex; by
Exa({ir,y) = AR} — 959 )ik 1,

and we obtain an injective morphism from

d ) — _
HO(Py, A ® ® D |l — A —= AQ, AR) + {(Exi, E;
( N [PN) {[|1I=|]|=q G (6P1 op, ))/(( Q,AR) + (Ext KL))}
into det Q ® det Q ® Y. 0*(Dpy, ® \g,qTPy ® Op,(-1) ® Op,(-1)).
We denote here by Im C the image of the Chow transformation C acting on the smooth differential
(g, q)-forms u on Py. By applying the Proposition 7, we arrive at the following result.

Theorem 2. There is a left submodule M c N'TG4_1y of finite type satisfying

(i) the inclusion of H°(Py, Ap,) ® (\V'TG, 1x/M) into det Q ® det Q ® P,p*(Dp,y ® NPITPy ® Op,
(1) ® Op,(-1)),

(i) the equality Im C = H(Gg1,n, Homp,  (N'TGg-1n/ M, CG, ,,))-

Gyn

Thus, if u is a smooth differential (g, q)-form on Py, then C(u) is a global solution on G4,y of the left
D, y-module N'TGq_1,v/ M with values in Cg, , ..

3.2 Inversion of the Chow transformation of currents

Recall that the injectivity of the integral transformation

C : {currents of bidegree(q, g) on Py} — {currents of bidegree (1,1) on G4 n}

can be proved by using a dual integral transformation C*.

Let Q be the fundamental (1, 1)-form of the Hermitian metric induced in G415 = G(g, V), which
satisfies Q = ddlog||z! A ... A 29| for s = vect(zl,...,z9). We denote by dg = dim G(q, V) = g(N + 1 - q)
the dimension of G4_1 .

If 2g < N and O is a current of bidegree (1, 1) on G4_1,n, We set

C*0) = %¢*(Qd6—2—N+2q A @), (16)

which is a current of bidegree (g, g) on Py.
If 2q > N, the current

oy (Q2n )

is of bidegree (N — g, N — g) on Py and the integral transformation that associates to T the (N — g, N — q)-
current

QY (Q%2 A C(T)) = (P Q%2 A P*C(T))

on P(V) is injective and has a left inverse, which is a linear differential operator  with smooth coefficients.
We denote by L, the operator of multiplication with the Fubini-Study form w in Py = P(V). Since
2q > N, the operator of multiplication
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N-q,N-q q,9
LN, T*P(V) — AT*P(V)

is an isomorphism, and therefore, the integral transformation that associates to T the (g, g)-current
N A g (Q42 A C(T)) = (@™ A h*Qdo=2 A PC(T))
on P(V) is injective too. So, in this case, we set
C*(0) = w1 N A gy(Qd2 A 0). 17)

In the case 2q < N, recall now the proof of the injectivity of C*C by using the expression of the
coefficients of C*C(u) in terms of the coefficients C?Im(u)(z) for u a smooth differential (g, g)-form on P(V).
For |I| = |I'| = g, let Fip be the smooth function on G(g, V) defined by
Fi(s) = Fp(vect(z, 2,,...,z07)) = )" (-D)**Pdet (M) ietitie C 32;(:1)(2) +det (Mp)ierier Y, CHW(2),
1<a,f<q relh Tl 1<k<q-1
0<I<N

where the Hermitian matrix (M;);  depending only on s = vect(z°,...,z971) is provided as follows:

Alx, 2°...,297Y)

2 _
d(x, s = Az, ...,z9° D)

Y XXMy

0<i,i'’<N
with d(x, s) the distance of x to the vector subspace s of CV*! and with A(z?, ...,z9°1) the Gram determinant

of z%,..., z97. Then, the expression in coordinates of C*C(u) is given by the following result.

Lemma 3. For all x € CN*! = V such that |x|| = 1, we have

rCOWL =K Y dgady [ F0l=K Y dynduR,)ED.

MI=IT'l=q seg il I=IT'l=q

where 'R q-1 IS the dual transform of the projective (q — 1)-dimensional Radon transform R,1 and K' is a

constant factor.

Now, we express the functions F p for |I| = [I'| = g in terms of the transforms iig k', so in terms of the
Radon transforms R,_i(fx,x') for [K| = [K'| = q.

First,
Y. (~1)*Pdet (I\/Iiif)i;g;i;i;ngg(u)(z)
1<a,f<q TR
= Z (_1)(1+ﬁdet (][/Iii,).’ie;,ifiq/(_l)o-ﬁ—o Z ﬂiJ,ié]’(Z)ZPZ?
1saB<q e Vi<l Tg-1
= z Uik x/(2) z (_1)ﬂ+ﬁ(—1)ao+ﬂodet (Mi')iri:{fiiﬁ?,ZI(()\{ia}Zf(()'\{iﬁ}’
IKI=IK"|=q igeK, igeK’ B

where ao and S, are such that i, = k4, and ig = kl’fo when K = (k, ..., k) with 0 < k<...< ks < N and
K' = (K,...,k}) with 0 < kl<...< k} < N.

Then,
Kk,
det Miierirer Y, CHWI(2)
1<k<g-1
0<I<N
. k=k
= Z Z liy, () Z det (My)ier,irerzyZy
0<I<N|J|=|J'|=g-1 1<ksg-1

Z aK,K'(Z) Z (_1)a0+ﬁ0 Z det (Mii')ief,i’EI’ZI]é\{l}ZIlé’\{I};
IK|=IK"|=q leKnK' 1<ks<q-1
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where ao and B, are such that! = k,, = k;;o when K = (k;,...,kg) with 0 < lg<...< k, < Nand K’ = (kj,...,k,)
with 0 < kj<...< k; < N.
With all that together, we conclude that

Fp(s) = Z Rq—l(fK,K’)(s)CjI(’,I[é'(s)’ (18)
|K|=IK"|=q

where the coefficients c,’(’jé,(s) are independent of the smooth differential (g, q)-form u.
2
Set the matrix C(s) = (CIQII'(,(S))[,,,KK, and note that (K, K') and (I, I') belong to a set with (N (; 1)

elements.
Let Ag be the Pliicker coordinates of (1°,...,A4971) € (CN*1)? defined by

ANA . AN = Z Axex.
IKl=q

The coefficients cf%.(s) can be calculated by means of the relation

(XqA(Z) Z z A_KA]</CI£2%;(S)dX] A dxp
HI=|I'|=q|K|=|K"|=q

= DypGOd(IXIR)I A BB A 2 A oo AZTIAO A L A ATTR)

+ szs’z(iaé(llxllz))q Z trace(J(x AzO A ... A KA A zY0 A L AN
1<k<g-1

with D; = (—1)4*1(i(q*1)2(q -DY'and D, = (iqzq!)*1 and with ps: the orthogonal projection onto s*.

Proposition 9. In both cases, 2q < N and 2q > N, there are linear differential operators QII(’K on P(V) =Py
with smooth coefficients satisfying

T(CCW = X Y dgadty ) Qpk(R,Re-DUfxx)-
HI=I"l=q IKI=IK"|=q

Proof. The projective (g — 1)-dimensional Radon transform R,_; is injective, thus the integral transform
‘R, 1Rq-1 is injective too. Then im("R,,_Ry_1) = (ker('R, Rq-D)* and ‘R, ;R 1 is surjective too. In such a
way, a transform of the fi x is a transform of the (‘R g-1Ra-DUx k1)

So there are linear differential operators QII({K on Py with smooth coefficients satisfying
(th—l) Z Rq—l(fK,K’)Céijjé/ = Z Qéijjé/(tﬂq_lﬂq—l)(fK,K’)
IK|=IK'"|=q IK|=IK"|=q
for each system of functions fx x' € C®(Py). O

Theorem 3. The transformation C*C : Cg;(Px) — Cg ,(Px) is an isomorphism, and therefore, C is injective
and C* is surjective.

Proof. The multiplication map Ld~? : \'T*G, 4y — N\ 1% 1T*G, vy by Q%2 is an isomorphism.
The expression @¢*L§G’2¢*¢* is invariant by transposition and to see that C*C is injective, we can say that

> QiR R D frx) =0 = (R, Re-Dfix =0 = fix =0. O
|K|=IK'|=q

Now we reprove Theorem 3 by using the point of view of sheaves of left »-modules, i.e., by using the
fact that for each smooth differential (q, g)-form u on Py, the transform C(u) belongs to the solutions space

1,1
H%G4-1,n, Homy,  (ATGg-1n/M,CG, )

q-1LN
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We calculate the Dg,_, ,-module @y*(\"'TG,_1,x / M), which satisfies the inclusion of

1,1
HO(Py, Apy) ® @Y (A\TCgo1n/ M)
into
q,.9 _
@p*(det Q ® det Q ® Y, 9*(Dp, ® \NTPy ® Op,(-1) ® Op,(-1))).

When U is an open subset of Py, we have to calculate the space of continuous sections on U x G415 of

3 9 . _ _
(Dryxcy il T) ® {(Ill??quPNquLN ® (a_P, A a—p])]/pfz((AQ, AR) + (Egi, EKL))}-

Lemma 4. For every linear differential operator P € Dp, ® Dg,_,, on U x G4_1n, there are real-analytic
functions h, on G4_1,n and linear differential operators Qq € Dp,(U), for a in an infinite set, such that

P - ZahaQa e (E, E)(U).

Proof. Let F be the inverse image in V7 of a smooth function on G(q, V), i.e., a smooth function in V¢
satisfying the homogeneity property F(A. z) = F(z) for all A € GL4(C). Then, Lemma 1 gives that

_ 1 _ _
00OF= ——— (0;0;F)dP; A dP;,
(q- 1)!)2”':'2,':,, B

where we have denoted here by 9; the linear differential operator

det ik
aZj 0<k<g-1

jel

for |I| = g and by P; the Pliicker coordinates of z. As a consequence, 6?5;" decompose on 9;0; with coeffi-
cients, that are polynomials in z and Zz. But d; decompose on a’;a,&’ - a]&af’ s0 0;9; decompose on

@43% - 35@fy - 31d))- O

Let QY € ®\11=71=¢Dp, ® (€1 A &) defined by QR (uy) = Z].xju,-Kf,L. Then, formula (15) shows that

R} 3 —
AQY, € & Dp.x &l — A —= AQ, AR).
QKL [(III—III—q PNxGg-1,n (aP, aP] )] + < Q >

Therefore, the morphism

1,1
H(Gg Ay ) @ {( @ Doy @ (e 1 )/ Qi Rid }U) = @3 (ATGyoa/ MOV

is injective; in other words, we have the inclusion of
4.9
HO([PN, ﬂ[pN) ® HO(Gq_LN, ‘?‘Gq—l,N) ® /\T[PN
into
4.9 _
@p*(det Q ® det Q ® Y, 9p*(Dp, ® \NTPy ® Op,(-1) ® Op,(-1))).

Proposition 10. There is a left Dp,-module N isomorphic to N+1TPy satisfying
(i) H(Py, Ap,) ® H(Gy-1,n, Ag, ) ® N is contained in @ip*(det Q ® det Q ® Y,p*(Dp, ® \P9TPy ®

Opy(-1) ® Op\(-1))),
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(ii) for every smooth differential (q, q)-form u on Py, the differential (q, q)-form C*C(u) is a global solution on
Py of N with values in Cp,-

Proof. By taking the solutions, we have an isomorphism of

q9,9
C,(Py) = HO(Py, Homyp,, (Dp, ®,, N\ TPy, C5))

onto the space of global solutions on Py of N with values in Cp,, which is nothing than Im C*C. O

To calculate the above left Dp,-module, we can first replace Dp, ®ap, NATPy ® Apy Opy(=1) ®ap,,
Op\(-1) by Dp, ®a,, Opy(~-1) ®ay, Op,(-1). So with the same way, we have the following result.

Proposition 11. There is a left Dp,-module N isomorphic to Dy, satisfying
(i) H(Py, Ap,) ® HY(Gg-1,n, Ag, ,v) ® N is contained in  @y*(det Q®a, ,, det Q ®a,, ,, PP

(D[PN ®ﬂIPN O[PN(_l) ®ﬂ|PN O[PN(_l)))y
(i) for every f € C®(Py), the transform (‘R ¢-1Rq-D(f) is a global solution on Py of N with values in Cp, .

Proof. When P € D(Py) and Q € D(G,-1,n), we define the action of P ® Q on (th,qu_l)(f) by
(P® Q-(‘RyRg-D(f) = P(R,_D(QRq1(f),

which is equal to 0 when Q is a global section of (E, E). On the other hand, (‘R ¢-D(F) is calculated by
integration on the fibers of @ and (%, x) = 0 = (&K, x) if s = vect(¢9,...,éP)t 5 x & s € ¢ ([x]). O

3.3 Inversion of the Chow transformation of closed currents by means of conormal
currents

For1< g < N and 0, a current of bidegree (1, 1) on G4_1,x = G(q, V), we set here
C*(©) = Y (Q% 1 A 0), (19)

which is a current of bidegree (N+1-q,N+1-q)=(p+1,p +1) onPy = P(V).
We calculate the conormal current con(C*([Z])), where £ = C(Z) is the Chow form of an algebraic cycle
Z of codimension g in Py.

Proposition 12. When T is a closed (q, q)-current in Py, the conormal current con(T) is well defined as a
closed current of bidegree (N, N) on T*Py.

Proof. We write T = lim[Z,] with Z, algebraic cycle of codimension g in P(V), whose irreducible compo-
nents are projective subspaces of P(V).
We use the surjective morphism

a : T*P(V)\Opy — {([x], [A]) € P(V) x P(V*) such that A(x) = 0},

which associates a(¢) = ([x], [A]) to § € Tj;3P(V) = Hom(V /Cx, Cx) equal to A ® x with A(x) = 0.
For Z, an irreducible algebraic subvariety of codimension g of P(V), we have & € Nj;yZ if and only if

ker A > drr;l(IfX]Z), i.e., a(¢) belongs to W; with
Wz = {([x], [A]) € P(V) x P(V*) suchthat [x] € Z and P(kerd) > T2},
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where Tj,1Z = P(dm, 1(1{,(12 )) ¢ P(V).In other words, (N*Z)\ 0z = a"'(W) and W is an algebraic subvariety of
P(V) x P(V*) with dim W; = N — 1. The image by pr, of W; is the dual subvariety pu(W;) = Z* c P(V*),
which satisfies

codimZ*=p+1edimZ*=q-1=codimZ -1
if Z is a projective subspace of P(V).

When T = lim,[Z,] is positive, then W, has bounded degree. Therefore, we can assume that [Wy,]
converges to a closed positive current on P(V) x P(V*), with support in the incidence manifold

{([x], [A]D € P(V) x P(V*) suchthat A(x) = 0}.
This current is a direct image of a closed positive (N, N)-current Wy defined on this manifold.
When T is a closed smooth differential (q, g)-form on P(V), the closed current Wr is still defined on the
incidence manifold, since T is the difference of closed positive smooth differential (g, q)-forms on P(V).

Finally, the conormal current con(T) is the closed (N, N)-current on T*P(V') defined by con(T) = a*(Wr).
O

Note that Wt satisfies the relations

prZ*( fo.Wr pr]‘wN‘q) __T

deg T deg T*
and
io0.Wr . _ T
. A pry(wHi 1| = ,
P (deg T pryw®) ) deg T

where we equip P(V*) with the dual metric w* and iy is the canonical injection of the incidence manifold into
P(V) x P(V*). Here, T* is the closed (N+1- ¢, N + 1 - q)-current on P(V*) dual of T. Therefore, the
transformation T — Wr is continuous for the weak topology.

When T = [Z] for Z an irreducible algebraic subvariety of codimension g of P(V), we have only
supp(T*) = supp([Z]*) = Z* since the dual subvariety Z* satisfies only dim Z* > g — 1. But con(T) is a closed
positive (N, N)-current with support in con(Z), and therefore, con([Z]) = [con(Z)] = [N*Z].

We use the formula between the conormals (see [18])

N*Z = O, ¥*(N*X)
by denoting by @ : NT — T*Py and ¥ : NT — T*G,_y, 5 the restrictions to the conormal N'T ¢ T*Py x

T*G4-q,y Of the canonical projections. In other words, when we transform con(X) = N*Z by means of the
double fibration
NT
v N
T*Py T*G41N»

we obtain con(Z) = N*Z.

Proposition 13. There is a linear differential operator with smooth coefficients
P :{(p+1,p+ 1)-currents on Py} — {(q, q)-currents on Py}
satisfying

(i) con(C*([Z])) = con(P~X[Z)])) for all algebraic cycles Z of codimension q in Py,
(ii) P transforms closed (p + 1, p + 1)-currents on Py into closed (q, q)-currents on Py.
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Proof. The transformation Z — (C*C)([Z]) is injective, and there is a linear differential operator with smooth
coefficients on Py such that P(C*([Z])) = (PC*C)([Z]) = [Z] for all algebraic cycles Z of codimension g in
P(V). So con(C*C)([Z]) = con(PY([Z])), which can be proved by using the Crofton formula.

In effect, let V,_; ¢ V.1 be vectorial subspaces of V = C¥*! of respective dimensions ¢ — 1 and g + 1.
We set

0 =0y v, =18€G(q V), Vi1 csc Vgt =PV /Vg1) =Py

Then, the Crofton formula (see [34]) can be stated as follows:
Q-1 = K I [o]dv = K j [0, v, ] AV(Vy 1, Vi),
Vg1V Vg-1c Vg1

where K is a constant factor and v is the measure on

{(Vg1, Vgi1) € G(g - 1, V) x G(g + 1, V) such that V;_;  Vg,4}
associated to the Hermitian metric induced by that of G(q — 1, V) x G(q + 1, V). Withi: 0 — G(gq, V) the
canonical injection, we can express

Koaizy= [ ewdolaiza = [ gpiiiziav

Vg1Vt Va1V
By definition of the Chow form, we have
L={seG(qV),PE)NZ+ D} =>1"L={seG(q,V),V_icscV;; and P(s)NZ+ I},

and we can assume that P(V.1) N Z is a finite set of deg Z points [x], [x], ..., so

'S ={V10Cx, V1@ Cx, .} = QPiiE = ) [P(Vy @ Cxy)l.
1<i<deg Z

Finally, we calculate the dual of K-'C*C([Z]), which is a closed (g, q)-current in P(V*). We use that

Y [PV @ CO)I = [PVl A ([Z] A [P(Vgu1)]),
1<i<deg Z

which allows us to express this dual as follows:
ez = [ Ay, AGZ]A PO a0,
Vg11€G(g+1,V)
where the integral is calculated with respect to some invariant measure y on G(q + 1, V) and
A= [ PO = o [P V0 = 0@ )
Vql-HCVql—l

since V;_, is the inverse image of V,_, / V;;, by the projection o : V* — V*/V_,; = Vg,,.

We conclude that (C*C([Z]))* is the dual of a pseudodifferential operator evaluated in [Z]. O

As a consequence, we have T = (PC*C)(T) for all (g, q)-currents T that satisfy dT = 0 on Py. In parti-
cular, we have

C*C(T)=0 and dT=0 T=0.
In the general case, C*C(T) = 0 if and only if
A,T € im 9 + im 9, (20)

where A, = L, is the contraction operator by w. This is a consequence of the adjunction formula
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j CCT) A AT = di j IC(ALT)(s) P Q%

G
P(V) seG(q,V)

The condition (20) is equivalent to

00A,T=0 and degT= _[ TAwN-1=0.
P(V)

N+1

Ifg > -~ note that A,T = 0 & T = 0. For any g, the equation ddA,T = 0 is equivalent to

A,0dT - i9°0T + i30T = 0.

If dT = 0, it becomes A'T = 0 & T = Bw? for some constant B. If aT = 0, it becomes 39*T = 0 & 9*T = 0
since -[p( (09T, T)w" = J |9*T|Pw". Here, 0* = — % 3% is the adjoint operator of d. Thus, if T € im
90 = im '%)a*, then T satisfies (20).

More generally, we can express the solutions T of C*C(T) = 0 as the images of a linear differential
operator with smooth coefficients. In effect, when U is a smooth function on G(gq, V), we have

I C(T) A Qde-1U = I T A g (UQ%1)
G(q,V) P(V)

and @y*(UQ%1) is solution in P(V) of & = 0, where & is a linear differential operator of order 2. In such a
way C(T) A Q41 = 0 implies T € im('E).

Proposition 14.

(i) When T = [Z] is the integration current associated to a projective subspace Z = Py_q, the conormal
current con(T) can be obtained by means of an integral transform from T.

(ii) When T is any (q, q)-current inPy that is not necessarily closed, con(T) is still defined as a (N, N)-current
in T*[PN.

Proof. In the case Z = Py_4, the inverse image of Wz in V x V* is

{6, ) e Vx V5, x e n(Z) and Ker é> T '(Z2)} = nY(Z) x (V /nY(2Z))".

Let us assume 717%(Z) ¢ V = CN*! defined by the equations 0 =g, = ...= 8,-1 with the g; € V* and set
8 = (8o, ---»8;-1)- On the another hand, let us assume nZ) = vect(y,, ..., vy) with the v; € V. We arrive at
{6, 8) e Vx V,0=8,(x) =...= 8,1(x), 0= (§, %) = ...=(§, v} c {(x, §) e Vx V", (§,x) = O},

whose integration current in V x V* is proportional to

6(g0(x),...,gq_1(x), &)y (§, v))Ige) A Lo A agq_l(x)/\
9go(X) A o A gy 1(X) A&, ) Ao AOE, V) A O(E, V) AL A DS, V)

with 6 the Dirac mass at 0 in CV*1, This current is also proportional to

S(go(x)s ,gq,l(X), <€’ Vq)a LRRE] <$’ VN)) z gKngXK A d)?L A Z VIV]d%} A dg],
IK|=IL|=q HI=|JI=p+1

where p = N — g and with the determinants g; = det(gkk;)oskkgqfl and vy = det(vii)q i
'eK <j<

Let A be the matrix of type (N + 1, N + 1) such thatv; = Ae;forg < j < Nand ‘Ag, = ef forO <k <g - 1.
In other words, it is proportional to the inverse image by (x, &) — (47lx, {A¢) of

6(X0, ... s Xg-1, fq,...,fN)don o Adxgop Adxg AL /\dxq_l/\dfq/\ e AdEy A d.fq/\ o A déy.
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Now we recover the distribution 6(xo, ...,x4-1, é,’q, ..,&) in V x V* from 6(xo, ...,x4-1) in V, by means of
an integral transform. First, the inverse Fourier transform with respect to x of the inverse image of
6(X0, ..., Xg-1, fq, ...,&y) by the map (x, &) — (x, { - x) is equal to the function

CN+l55 - esze(sqs?f...JrsNEN)
in other words, the value at x = (xq, ...,xy) of the Fourier transform of this function is equal to
6(x0, ... sXg-1, §q — Xgs .o dy — XN).
Second, there is w;(s, .) € C®(Py) satisfying
el 1980 = [ 803, g DI 2S(E, (s, D"
[x]ePy

= I 88 xq + -+ &pn)(Ixg 2+ ...+ P)weGs, [0, ..., 0, Xg, ..., xy DN .

Py_g
We can write
@2tiRe(sqd .+ snéy) = J 8 xg + -+ Epan)(Ixg 2+ . +xy |2)u(§q,__,,5N)(sq,...,sN, [Xgs ... xnDwN -4
Py_g
and choose wg(s, .) such that
We(s, [0,...,0, Xg, ..., xn]) = u(,gq,“_,;N)(sq,...,sN, [Xgs ..., xn])-
Consequently, 6(xo,...,X4-1, fq, ...,&y) is the value at x of the Fourier transform of
35— [ 80y I8 + £,y ese(s, [yDa
[ylePn

and taking the matrix A unitary, we arrive at the relation

6(8o(X),---84-1(¥), (&, Vg)s -, (&, ) = I 8(8o(¥)s -+ 8g 1 (YDIYVIPIT28((x + &, y)Waer g (x, [y

[ylePy
with Wy, #(x, [y]) the value at x of the Fourier transform of
CN* 5 s — we(s, [yD.

More generally, if the system {y;, ..., v} {0 = g, = ...=g,_;} of vectors is not necessarily orthonormal,
the previous relation becomes

6(g0(x)’ ...,gq_l(x), <€’ Vq)s --~a<£’ VN))"Vq AN A VN"2
J 8(8o(¥)s -8 1 (WNIVIPT*28({x + &, y)Wins (X, [y

[ylePy

| 8. g K, £y

[ylePy

for an integral kernel X, when a Hermitian scalar product(.|.) onV = CN*!is fixed, where x ¢ V is identified
with (.[x) € V*.

By using that [ly, A ... A wi? = ZI 11| ]|:p+1V1\71<€1|€1> and by identifying, we obtain the existence of inte-
gral transformations Ly such that

6(g0(x)s oo ,gq,l(X), <€’ Vq>’ L) <'7;’ VN))VIV] = LU(S(gO’ e ,gq,l))(X, 5)'
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As a conclusion, we can write the integration current in V' x V* of the inverse image of W; in V' x V* as
being proportional to

YooY L8888k, E)dxg A dXp A d& A dE

HI=lJI=p+1|K|=|L|=q
while 7*[Z] is proportional to

Z cho(x), eee 7gq—1(x))gK§LdXK A dYL-
IKI-ILI=q

So Wy and con(T) = a*(Wr) are still defined, when we replace the integration current [Z] on the projective
subspace Z = Py_, ¢ [Py by any (g, g)-current T on Py not necessarily closed. O

4 Approximation by algebraic cycles of X
4.1 Chow transform C(T) defined on the space of cycles of X

Let X be a complex projective manifold of dimension dx and let T be a smooth differential form on X of
bidimension (p, p) with p = dyx — q. The Chow transform C(T) of T is defined in Section 2.3 as a current of
bidegree (1, 1) on the space C,;_1(X) of effective algebraic cycles in X of dimension g — 1.

We assume T closed in X and we recall the condition for writing T = lim;[Z;] weakly in X with Z
algebraic cycle of codimension g in X with complex coefficients. This is equivalent to

C(T) = lim{C(Z0)]
weakly in C,_1(X), thus equivalent to the orthogonality relations on C;_1(X)

C(MHAD=0

Cq—l(X)

for every smooth differential form @ of bidimension (1, 1) on C;_1(X), which satisfies

[CIAD=0

qul(X)

for every algebraic cycle Z of codimension g in X.

We fix ¢ € C;_1(X), then there is an open neighborhood W ¢ X of supp c such that Ty = dd“S with a
smooth differential (g - 1, ¢ — 1)-form S in W. Let ‘W be an open neighborhood of ¢ in C;_1(X) such that
every cycle element of ‘W has support in W.

Then, C‘(T)W = dd<U with the potential U(c) = .L'S’ which is only continuous with respect to ¢’ € ‘W
(see [1-3,35]).

In the above condition on @, we can assume supp ® ¢ ‘W. By applying the characterization of the
algebraic cycles with the Chow transformation, we know that

dd°® = ¥ ('Q))(B)
j

for some measures f; with supp B; ¢ ‘W, where Q; denotes linear differential operators with coefficients
generically smooth in ‘W satisfying

Q}(ﬁ) = 0.
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The obstructions result from the fact that the ﬁj are not C*® in general. We can state the following property
(see [31]).

Proposition 15. If C(T) is globally in C4-1(X), the weak limit of a sequence of smooth closed differential
(1, 1)-forms, whose local potentials U, in ‘W satisfy Q;( U,) — 0 in the C° sense in ‘W for all j and all ‘W, then
T can be approximated by algebraic cycles of X with complex coefficients.

Proof. In general, U is only continuous because 1,5 is equidimensional but not a submersion and because
C4-1(X) has singularities. As being a fiber-integral, it has an asymptotic expansion near each ¢ € C;_;(X).

When we fix ¢ € C;_1(X), we can replace T by a closed (g, g)-current T in the same cohomology class

such that C(T) is smooth near c. But we can repeat this argument for all ¢ simultaneously only if T is
dd¢-exact in X.

So we cannot assume ﬁ‘(T) smooth and have to use a regularization to calculate
[aatna- [oaao-1mY [ OB
m A

w w Y

when B; are measures with compact support in ‘W. If Qj(flm) converges in the C° sense, we arrive at
tim ¥ [ Q@) -0
m ] W

since Q,-(U) =0. O

Since Qj(Um) weakly converges to 0, we have always the convergence of Q,-(f]m)(c) for almost every c.

Therefore, the assumption in the above proposition is equivalent to limej(Um)(c) = 0 for special c. Note
that the @; are smooth only generically.

In such a way, we retrieve the orthogonality conditions of [31,32], which can be written as IXT AA=0
for an infinite set of currents A of bidegree (p, p), which are dd¢-closed in X. When {T?} is rational, then the

obstruction fXT A A is constant with respect to A and even equal to O.

So the transformation C can be used to solve the problem of approximating closed (g, g)-currents in X
by algebraic cycles.
More precisely, we fix an irreducible component M of the cycle space C,;_1(X), which covers X and such

that the Chow transformation T — C‘(T)‘ um is injective, which is equivalent to the surjectivity of
@1[) : {currents of bidegree (dy - 1, dyy — 1) on M} — {currents of bidegree (p, p) on X}.

Then, C‘(T)|M is a closed (1, 1)-current on M of order 0, and if, moreover, {T} is rational, C’(T)\ M is a weak
limit of divisors with complex coefficients. We can write

Oy = j AD)[D], 1)
DeDiv M

where Div M is the space of divisors of M ¢ C,;_1(X) and A is a measure on Div M. In this integral, we can
restrict ourselves to D such that [D] is cohomologous to (A)(T)‘ M in M.
The formula (21) can be written by using the Radon transformation

R : {C* differential forms of bidimension (1,1) on M} — {C* functions on Div M},
which is defined by integration on the divisors D. So we have

C(Tm = (RYA)



DE GRUYTER Chow transformation of coherent sheaves =— 31

and A is not uniquely determined. But we can project A on (Ker!R)* = Im R. With the condition A € Im R,
then A is unique.
The Lebesgue-Nikodym decomposition of A is

A=A+ A

with Ay a L. function and A; a measure such that supp/, is negligible. We now determine suppA; by using
the injection C,(X) — Div M, which associates to Z € C,(X) the incidence divisor,

Dz|M={C€M,ZﬂC:ﬁ®}

of Z.

Lemma 5. There is a current w of bidimension (1, 1) on M such that

j AR(w) = I A6p,

DeDiv M DeDiv M

for all A € Im R smooth.

Proof. The current w should satisfy
(@, (RRIW)) = (R(®D), RW)) = (R(D), bp,) = (@, (‘R)(8p,)) = (@, [Do]) = fD @

for all smooth differential forms @ of bidimension (1,1) on M. In other words, we should have
(‘RR)Y(W) = [Do].
But
(Im fRR)* = Ker'RR = KerR = (KerR n Kerd) + Im d + Im o
in such a way that

Im !{RR = {closed (1,1)-currentson M orthogonal to KerR n Kerd}. O

We fix Dy € M and consider w a current of bidimension (1, 1) on M such that D — J.DW is the Dirac

measure at Dy, when testing on Im R. Thus,

(T, pp'w) = j A(D)Iw

DeDiv M

is a value of ID Abp, = Ao(Do) + Ai(Do) in a generalized sense. Actually, we decompose go*llj w= go*!,b wo +
q)*l,b w;. Then, we identify Ao(Dy) = (T, @11) wo) and A(Dp) = (T, @111 w;), which are well defined when
Do ¢ Cy(X).

In effect, when Dy, is irreducible, we set

Zo={xeX,¢7i(x) ¢ l[)fl(Do)}:{xeX,(c >x and ceM) = ce Dy} cX,

which is of dimension <p and satisfies dim Z, = p when D, is an incidence divisor. Assume, moreover,

Dy ¢ Cy(X), i.e.,dim Zj < p, then the singularities of the current ([J*I,D*W are of a lower order and JD. M)lb‘ Do 1S
v

the effective value of A at D,.

As a conclusion, the (p, p)-currents @lﬁ*wl are orthogonal to all T such that {T} is algebraic in X and
their supports satisfy dim supp@l/;*wl =dy-p

Lemma 6. The absolutely continuous part Ag is smooth on Div M.
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Proof. For D, ¢ suppA;, thus for almost every Dy, we have Ao(Do) = (T, @lﬁ*wo) and Dy — (T, @lﬁ*wo) is
smooth. In effect, w depends smoothly on D, and since lﬁ is equidimensional, l,B is continuous for the weak
topology. As a conclusion, the equality Ao(Do) = (T, @lﬁ*wo) is valid everywhere. O

Theorem 4. If {T} is rational, then T can be approximated in X by algebraic cycles of X.

Proof. The obstruction (f)*lf)*wl is continuous with respect to Dy ¢ Cp(X) and constant and even equal to 0
when {T} is rational. In other words Dy ¢ C,(X) = A(Do) = 0, so supp A; ¢ Cy(X).

The linear differential equations Q,-(f]) = 0 locally in C;_1(X) characterize the Chow transforms of
smooth differential (g, g)-forms on X. Since supp A ¢ C,(X), we can introduce the closed (g, g)-current
To on X such that

¢t = [ Aol
DeDiv M
On the one hand, since A, is smooth, C(Ty) is smooth and Qj(ﬁ) = 0 everywhere in ‘W . By the Proposition
15, Ty can be approximated by algebraic cycles. On the other hand, suppA; ¢ C,(X) implies thatTy = T — T
can also be approximated by algebraic cycles. O

Remark 1. We denote by v : P(V) — P(SkV) the Veronese embedding and by C; the Chow transformation
on P(SXV), where k > 1. When T is a current of bidimension (0, 0) on P(V), the Chow transform Ci(v,T) of v,T
is a closed current of bidegree (1, 1) on P(SXV*), obtained by integrating T on the algebraic hypersurfaces of
P(V) of degree k. This integral transformation is a particular case of the transformation R of the Lemma 5.

In effect, assume T smooth and write T = (deg T)w" + dd‘w with w a smooth differential (N — 1, N — 1)-
form on P(V). Then,

Cu(wT) = (deg T)Ci(vw™) + ddcu,

where u is the smooth function on P(S¥V*), defined by u(D) = ij, for every algebraic hypersurface D of
P(V) of degree k. So we have the following image characterization.

Proposition 16. The integral transformation that associates Ci(w.T) to T € C Ny(P(V)) is injective and
(SRS {Ci’f’l(P(SkV*)), d® = 0} belongs to its image if and only if © = (deg T)Ci(vw") + dd°u, where the smooth
function u satisfies a system of linear differential equations with smooth coefficients on P(SKV*).

Proof. The transposition of the transformation w — u associates ID Pskv*)y(D)[D] to a measure u on
€

P(SXV*). We have to determine the kernel of this transformation. For this purpose, we write D = f~1(0)

with [f] € P(SXV*) and we use the Poincaré-Lelong formula. It is equivalent to determine the kernel of

2
p—fm- u([f])log(M),

IF13 lx[2*
[f1eP(SkV*)

where |fllo is the norm of f. Assume y = dd°® with @ a smooth differential form of bidimension (1, 1) on
P(S*V*). This integral is equal up to a constant to

| @ = =@t
Yy
where Y, = {f € SKV*, (f, x*) = f(x) = 0} and
R : {smooth differential forms of bidimension (1, 1) on P(SXV*)} — C®(P(S'V))
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is the hyperplane Radon transformation. Then, u is in the kernel if and only if the function R(®) is O on the
Veronese submanifold of P(SV). This occurs when @ € Im (tEO), where E; is a linear differential operator
with smooth coefficients. This is equivalent to u € Im('E), where E is a linear differential operator with
smooth coefficients. O

4.2 Chow transform C(j,T) defined on the Grassmannian G4_1x

In this subsection, we reprove Theorem 4 by using an embedding j : X — P(V) of X into P(V) = Py and the
induced meromorphic map

p:Gp+1, V) - Cpui(X),
which associates X n P(ker §) n ...n P(ker é’p) to vect(§y, -..,¢,) € G(p + 1, V*). We have the equality
p*C(T) = C(LT)
between (1, 1)-currents on G(p + 1, V*) = G(N - p, V), with C the Chow transformation on P(V).
Assume T smooth closed in X and write
C(i.T) = (deg T)Q + dd<U

with U a distribution in G(q, V), Q the fundamental differential (1, 1)-form of the metric in G(q, V) and deg T
the degree of T with respect to the metric induced in X by the Fubini-Study form w in P(V).

According to [9,10], every closed (1, 1)-current in Gy_p_1,v is a weak limit of divisors with complex
coefficients. Thus, we can write the (1, 1)-current C(j,T), which is of order 0, in the following way:

C(.T) = j AE)(H],
HeDiv(Gy-p-1,n)

where Div(Gy_p-1,5) is the space of divisors of Gy_,_1,x and A is a measure on Div(Gy_p-_1,n)-
Thanks to the Poincaré-Lelong formula, up to a constant, we have

IF ()l )
Iflo /)’

ve- | A([f])log(
[f1€Div(GN-p-1,v)
where |f|lp is the norm of the polynomial form f.
The local differential equations Q,-(U ) = 0 on C,;_4(X) imply the equations P;(U) = (deg T)l/)j onG(q, V),
with smooth functions lpj. Here, #; denotes linear differential operators with smooth coefficients satis-

fying $;(1) = 0.
For m € N*, we consider

1 FoOR 1
h©=3 f A([f])log(—"f"% N m)
[f1€Div(Gn_p-1,n)

which is C* on Gy_p-1,n and weakly converging to U(s) up to a constant. As a consequence Py(Uy)(s) is
weakly converging to (deg T)l/)j(S) in G(gq, V).
We set Rs([f]) = VOR and e = % > 0 in such a way that

IF 13
(. (R 1)) us([f) [ IR
P{ log( |If||% + m)](s) = 1glzg:m,- R([f]) + 8)1 - !(K%mjl)},s,l—(l ~ 1)!]6 e rdr

by denoting by m; the order of #;.
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Proposition 17. For almost every s € G(g, V), the simple limit

limP(Uns) =tim | MDDy ,(1 g VOF ))
m m ) 2 IF15
[f1€Div(GN-_p-1,n)

“im | W Do (log(llf(S)IP +—|m|o))

m
[f1€Div(GN-p-1,n)

is equal to (deg T)l/Jj(S).

Proof. For w(s), any smooth function of s € G(q, V), we know that

| Pwewe - e [ wemwe
seG(q,V) seG(q,V)

when m — oo. On the other hand, this limit is equal to I w (hmmP,(Um)(s))w(s)
Se
Since the measure A on Div(Gy_p-1,5) depends on T, we can transpose and write

1 If ()l _ _
2 j ALfDlo g( 2 e)- j T(x]) A (X))

[f1€Div(GN-p-1,8) [x]eX

for all s € Gy_p-1,v and all € > 0, with y, = lim. ¢+, . which is singular along X n P(s).
By inverting the Laplace transform, we write the following function of € > 0
P(Un)(s) = IT AP, = f e-ethy(t)dt,
X

0

where hy(t) is integrable on |0, +oo[ and we take the limit when £ — 0*. In such a way, we obtain

lim Py(Up)(s) = Ihs(t)dtz j T A (lim Pi(7,.)) = I T A PG,
X\XNP(s) X\XNP(s)

in other words, we can take € = 0 when calculating the lim,_,qg+.

If T is a closed current of order 0 and of bidimension (p, p) on X, the potential U(s) = -[X\X ” )T AV, is
ne(s

L. on G(g, V) and still satisfies the conditions P;(U) = (deg T)y; on G(q, V). This implies that the differ-
ential form P;(y,), which is defined on X\ X n P(s), has L1 coefficients on X, for almost every s € G(g, V). In
effect, these differential equations are equivalent to £;([X n P(s)]) = 0. Since the distribution £;([X n P(s)])
is a priori of higher order, these equations imply some compensations when calculating #;(,) near each
point of X n P(s), which provide that $;(¥,) can be extended by a current of order 0 in X. O

Let p, : X — [0, 1] be a real-analytic function such that ps’l(O) = X n P(s) with multiplicity 2. As a
consequence, we have

1

tim P s = [ L0

0

dt,
t"y
where aj(t, s) = p,, (T A p"Pj(%)) has the usual asymptotic expansion when ¢t — 0*.

In effect, for (¢, s) € ]O, %] x G(q, V), according to [2,3], we can write
ai(t,s) = Y Ly (s)t'|logt [ + B¢, $)t™,

r,r'
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where f is bounded and (r, r') € Q2. Because of the convergence of the integral on |0, 1[, if £, ,(s) # 0 for
some s, thenr > mj — 1orr = mj - 1 withr’ < -1. In this asymptotic expansion (r, r’) belongs to a finite set
independent of s.

Thus, we knew a priori that the sequence Re P;(Uy,)(s) (respectively, Im #P;(Uy)(s)) converges when
m — oo or limy,_,,Re Pj(Un)(s) = oo (respectively, lim,_,o,Im Pj(Uy)(s) = £oo).

Proposition 18. When m — oo, the simple limit lim,,;(Uy,)(s) exists a priori for every s € Gy_p_1,n-

Proof. We set p,([x]) = d(-- i’ s)? for [x] € X and consider the differential (p, p)-form A; = psf”%SDj()?S), which
is defined in X. Let hg be the function defined almost everywhere in X by

. TAA
T AP =~ = hwk.
pPt:

S
Let s € G(g, V) be such that dim X n P(s) = dx — p and consider a sequence s; — s with k € N such that
dim X n P(sx) = dx — p — 1. Then, hs, — hs almost everywhere in X. Let [x] be a generic point of X n P(s)
and let B be an open neighborhood of [x] in X satisfying _[B Re hg = +00. We can apply the Fatou lemma that
gives

jRe hs < li;fn jRe hs,.

By blowing up X along X n P(s) with view to make flat the family of cycles, we see that limij Re hg, is finite.
This is a contradiction, thus IBRe hs < +00 and in the same way IBRe hs > —0o. We conclude that

J.X\XnP( 9 A Pi(Y,) is finite. .
So TAAS can be divided by p;. Since the dimension of p;'(0) changes, the quotlent MUY s not
“’\X s
continuous with respect to s. O

Consequently, the product A([ f])P;(log|f(s)I]) of distributions is defined in Div(G(q, V)) as follows:

Ay O ) A LS T
2 P’(log( IF13 +e>)—§fg£ 2( 2 u”“(l—vl]e o

1<l<smy

which provides the following expression for the limit

imPUNG = [ ALDPAogIFGD,

[f1€Div(Gn-_p-1,n)

The product A([f)P;(logllf (s)I) can also be defined, as in [32], from the divisions % These divisions exist,
thanks to the Hérmander-Lojasiewicz theorem, but are not unique and for each I appears a residual
distribution with support in f~1(0) n suppA.

In effect, by denoting by (N — p)d(f) the degree of the polynomial form f, since dd°log|f| = [f~(0)], we
have

Pidoglf ()l = d( f)l/Jj(s) + distribution with support in f1(0) (22)

in Gy_p-1,n, in such a way that ||f(s)||2”‘i$‘>,~(log|[f(s)||)1,l)]-(s)*1 is C* in Gy_p-1,N-
The decomposition (22) implies that lim,,#;(Ux)(s) appears as the sum of two terms and that we can also
obtain in the following way. Write

Pi(Un)(s) =

(23)

1<I<m 1<l<sm

W 1 f Re(Mys) j 0
(R+e)’_2 Jon (tre)l 0t+£)’
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where
1 1
8(0) = SR (W1 /AR)(O) = EI50(R5 DA

are measures on [0, 1], since R.(Av; ;) are of order 0 on [0, 1].
Note that, for every, s € G(q, V), we have

1<i<m

lim P(Un)(s) = glggj{ Y L0 w} eerdr

with the Laplace transform £L(g)(r) = J g(t)e "dt, but we cannot take € =

We set u(t) = I g’mdr and use the Lebesgue-dominated convergence theorem to prove that

lim (thuy(t)) =
t—0*

Then, by integrating by parts, we obtain

g(t)
(t l+ ST =2 j dt( )ul(t)dt'

1<l<m 1<lsm;
For each 1 < I < mj, the family dt( s ),) weakly converges to the Dirac mass 6o when € — 0*. We conclude
that
Lm Py(Up)(s) = im | )" w(t) | + residual limit (24)
m =0 lSlSm]‘

since the lim,_,¢u;(t) do not necessarily exist separately for each 1 <1 < m;.
Lemma 7. Each integral along the fibers g(t) has an usual asymptotic expansion whent — 0.

Proof. We write
1
8® =5 [ Wasar =~ [ a
Rg=t Rs>t

with a = %d(/lv]-,s,l /dRy) in such a way that g,’(t)dt = Rs.a. We use the meromorphic continuation
z _
1@ = [Rea=-2 [Re e

for z € C, which satisfies
0

= .[ ez g(e")dr.

-0

@
z

For z = a + iy with a and r real, by the inversion formula for the Fourier transform, we arrive at

+00

_ra .
gl(er) = e_ J‘ e*irdey
2 a+iy

—00

We obtain the classical asymptotic expansion by using the Cauchy residue formula. O
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The first term becomes

1<ismj

li gz(r)
HO*[KE' ul(t)J 1m -[ Z

~(s) j ACFDACF)
[f1€Div(GN-_p-1,n)

- [ aanpesrre.
[f1€Div(GN_p-1,n),
f(s)#0
We now use the function lim,,#;(Uy,)(s) for s € G(q, V) to characterize the closed currents T of bidimen-
sion (p, p) in X, that can be approximated by algebraic cycles of X.
The Lebesgue-Nikodym decomposition of A on Div(Gy_p_1,n) is

/12/10+V

with Ay a L., function and v a measure such that suppv is negligible. Actually, we can assume A, smooth on
Div(Gy-_p-1,n)- The proof is analogous to that of Lemma 6, by replacing the formula A1¢(Dy) = (T, @lﬁ*wo) by
the formula Ao(Hp) = (T, j*@ip*wo).

Then, we set

hos(s) = o 1tim | ij(log('v“)“z m))— | stwrpace.

2 I£1
[£1€Div(Gy_p-1.n) 0 [£1€Div(Gy_p-1.n)

Proposition 19. Since Ao is L, the function ho;(s) is continuous in G(q,V), thus equal to O for
everys € G(q, V).

Proof. Because of the asymptotic expansion of gi(t), we can calculate the lim,_ o+ of (23) by taking € =

Actually, Ao is smooth on Div(Gy_p-1,5), SO the part '[[f Div(E )AO(Z
€ V(G- —p-1,N

and does not create any obstruction, when regularizing U(s). O

logRs([f]) is smooth on Gy_p_1,n

We set

. P; Um
hy(s) = n}grio (% — deg T]

fors € G(gq, V) and A, = U(0o) the polar set of U, which is an algebraic subvariety of G(gq, V). Then, h;is O
on G(gq, V)\4; and continuous on A;.

Theorem 5. If hi(s) is constant for all s € A, then Pi(loglf (s)I) = d( f)l/)i(s) for all s € A, for each [f] €
sing supp A.

Proof. We set

m@=petm [ M ])Pf(log(”f o +%))— [ vara

2 IF1I3
[f1eDiv(GN_p-1,n) 0 [f1€Div(GN_p-1,n)

—(s) j V(L FDPloglF (S)I) - j v(LFDACS),

[f1€Div(GN_p-1,n) [f1€Div(GN-p-1,n)

where the distribution v([ f])P;j(log|f(s)I)) is defined by the Hormander-Lojasiewicz division theorem.
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We use homogeneous coordinates on the Grassmannian, i.e., we use the map
7: (CN*HNP > Gy_p1n
defined by 7(z,...,zNP) = Vect (Z,...,z¥"P). Then,
(PdoglifID) e T = Rj(loglf) + d(f)y; o T

with R; a linear differential operator with smooth coefficients in z, such that

R; (IOngD = ZB} 1 m(f S) ° f’

atlat'"

where 6(t) is the Dirac mass at 0 in C (see [32]).
We can express l[)i(s)‘ISDj(logllf(s)ll) - d(f) as a linear differential operator Nj in [f] with smooth

coefficients in ([f], s) acting on logRs([f]). To this hand, we introduce the Pliicker coordinates P; of z,
which are defined as follows:

N-p
2N AP = N Pee NV,
[[I=N-p

where e; = e; A ... Aey,, for I=(iy,...,Iv-p) with O < ij<...< iy_, < N, denoting by e, ..., ey an ortho-
normal basis of V. Then,

f@ =f(@)) = Y fuP",

where a; € N for each I and P* = [],P;" with|a| = },a; = d(f). By applying, the Poincaré-Lelong formula to
the hypersurface {[f] € Div(G(q, V)), f(z) = 0}, it relies on the fact that

m6(f(2)) = log(f)P) = — %(L)

BB, afaaf P o\ f(2)
S = PT’/sW logRs([f]) modulo a smooth function of the f,.

As a consequence, by using the division by the function f(z) of the f,, the products v([ f ])aﬂatm( f(2)) of
distributions are defined in Div(G(q, V)) whole.

When hy j(s) is constant on 4, the functions Bj;(f,s) and their partial derivatives satisfy some
relations over f~1(0) n 4A; for [f] € suppv. These relations are precisely the differential equations on
f71(0) n A characterizing the fact that [f] € C,(X).

In other words,

h(s) = j V(LFDA;logR([F1) = j (N )W) f D 1ogR([f])

[f]eDiv(G(g,V)) [f1eDiv(G(g,V))

constant in 4, implies hy j(s) = 0 in 4, since the distribution N j)(v) is of higher order, v having a singular
support.

In effect, 4 is the poles set of J.[f] Div(GC V))v([ fDlogRs([f]) and with F; the space of smooth functions
eDiv(G(q,

on Div(G(g, V)) orthogonal to logR,, we should have (‘N )(v) € F5 for each s € A;, which forces some
annulations. o

We can reformulate the proof of the Theorem 5 in the following way. Thanks to the Proposition 19, h;(s)
constant for all s € 4, implies hy j(s) constant for all s € A4;. Since

Piloglf () = d(fHy(s) forall s € A & [f] € Cy(X),

we can write
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Pi(s) ' Ploglf ($)I) = d(f) + Y wik([FDG(s) (25)
k=1

on 4;, where the ¢ji(s) are distributions on A; and the w;«([f]) are functions such that w;«([f]) =
0 & [f] € Cy(X). Formula (25) relies on the fact that

6(ZfaP“) S wpae)
a k=1

with some distributions &(z) in z € VN-P,
If jv([ fOw;x([f]) = 0 for all k, since the measure v is not a L}, function when v # 0, we have
suppv ¢ Cp(X). So we conclude that hy; is O on A4;.

Corollary 3. If{T} is rational, then h(s) = O for all s € A and T can be approximated in X by algebraic cycles
of X.

Proof. If {T} is rational, we can assume that the #; are such that the h; are constant on A;. Theorem 5 implies
that h; = 0 on A4, i.e., there is no obstruction to the approximation. O
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