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Abstract:We compute almost-complex invariants hp,0
∂

, hp,0Dol and almost-Hermitian invariants hp,0δ̄ on families
of almost-Kähler and almost-Hermitian 6-dimensional solvmanifolds. Finally, as a consequence of almost-
Kähler identities we provide an obstruction to the existence of a compatible symplectic structure on a given
compact almost-complex manifold. Notice that, when (X, J, g, ω) is a compact almost Hermitian manifold of
real dimension greater than four, not much is known concerning the numbers hp,q

∂
.
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1 Introduction
Let (X, J) be a complex manifold, then the Dolbeault cohomology of X

H•,•∂ (X) := Ker ∂
Im ∂

is well de�ned and it represents an important holomorphic invariant for the complex manifold. If we drop
the integrability assumption on J, then ∂2 ≠ 0 and such a cohomology is not well de�ned anymore.
However, if we �x a J-Hermitian metric g on an almost-complex manifold (X, J) and with * we denote the
associated Hodge-*-operator, then

∆∂ := ∂ ∂* + ∂*∂
is a well-de�ned second order, elliptic, di�erential operator. In particular, if X is compact, then Ker∆∂ is a
�nite-dimensional complex vector space andwewill denote as usualwith h•,•

∂
its dimension. If J is integrable,

then
H•,•∂ (X) ' Ker∆∂ ,

and in particular the dimension of the space of harmonic forms depends only on the complex structure and
not on the choice of the Hermitian metric. In [11, Problem 20] Kodaira and Spencer asked whether this is the
case also when J is not integrable. More precisely,

Question I Let (M, J) be an almost complex manifold. Choose an Hermitian metric on (M, J) and consider the
numbers hp,q

∂
. Is hp,q

∂
independent of the choice of the Hermitian metric?

In [12] Holt and Zhang answered negatively to this question, showingwith an explicit example that there exist
almost complex structures on the Kodaira-Thurston manifold with Hodge number h0,1

∂
varying with di�erent

Nicoletta Tardini: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Uni-
versità degli Studi di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy, E-mail: nicoletta.tardini@gmail.com, nico-
letta.tardini@unipr.it
*Corresponding Author: Adriano Tomassini: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di
Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy, E-mail: adri-
ano.tomassini@unipr.it

https://doi.org/10.1515/coma-2021-0139


Almost-complex invariants of families | 239

choices of Hermitian metrics.
They also proved that if (M, J, g, ω) is a 4-dimensional compact almost-Kähler manifold, then h1,1

∂
= b− + 1,

where b− denotes the dimension of the space of anti self-dual harmonic forms, namely in such a case h1,1
∂

has a cohomological meaning. In this context, (see [12, Question 6.2]) they asked the following

Question II Let (M, J) be an almost complex 4-manifold which admits an almost Kähler structure. Does it have
a non almost Kähler Hermitian metric such that h1,1

∂
≠ b− + 1?.

About this, in [16, Theorem 3.7] it is proved that if g is a strictly locally conformally Kähler metric on a 4-
dimensional compact almost complex manifold (X, J), then h1,1

∂
= b−. Therefore, since in the non integrable

case almost-Kähler metrics and strictly locally conformally Kähler metrics can coexist, this gives a positive
answer to Question II. For other results on the study of the numbers h•,•

∂
see [10, 13, 14] and the references

therein.
However, when (X, J, g) is a compact almost Hermitian manifold of real dimension greater than four, not
much is known concerning the numbers hp,q

∂
and this may be due also by the lack of explicit computations

of such numbers in the literature.
As a general fact, in special bidegree (p, 0), hp,0

∂
is independent of the choice of the Hermitianmetric, indeed

in this case being ∂-harmonic is equivalent to be ∂-closed. So, in particular hp,0
∂

is a genuine almost-complex
invariant.
Notice that hn,0 is related to the computation of the Kodaira dimension of 2n-dimensional almost-complex
manifolds, recently introduced by H. Chen and W. Zhang in [3] and [4]. For explicit computations of the Ko-
daira dimension one can refer to [3] for the Kodaira-Thurstonmanifold and to [1], [2] for several 6-dimensional
solvmanifolds and 4-dimensional solvmanifolds with no complex structures.
In this paper we will compute explicitly the numbers hp,0

∂
, for p = 1, 2, 3, on families of six-dimensional

manifolds endowed with non-integrable almost-complex structures. More in detail, we will consider a fam-
ily of completely solvable 6-dimensional solvmanifolds constructed in [9] which is particularly interesting
because it admits invariant symplectic structures and invariant almost-complex structures but it does not
admit any integrable invariant complex structures. For this reason, in such a case, the computation of these
almost-complex invariants is particularly meaningful. We will consider on such manifolds an invariant fam-
ily of almost-Kähler structures and we will compute hp,0

∂
, with p = 1, 2, 3. Furthermore, we will show that

these numbers, di�erently from the integrable case, can varywhen the almost-complex structures are almost-
Kähler and vary continuously (cf. [12]).
In fact, we will also construct an almost-complex structure which does not admit any compatible symplectic
structure and compute hp,0

∂
in this case.

Another examplewill be provided by the computations of hp,0
∂

, with p = 1, 2, 3 for an almost-Kähler structure
on the Iwasawa manifold.

Moreover, denoting with µ the (2, −1)-component of the exterior derivative d, in [15] we considered the
following di�erential operator (cf. also [8])

δ̄ := ∂ + µ

and studied the corresponding harmonic forms. In particular, we compute on the aforementioned families of
almost-Hermitian manifolds the δ̄-harmonic forms of bidegree (p, 0).
One should notice that the spaces of ∂-harmonic and δ̄-harmonic forms on non-integrable almost-complex
manifolds donot have a cohomological counterpart.However, in [6] J. Cirici andS.O.Wilson introducedagen-
eralization of the Dolbeault cohomology on almost-complexmanifolds constructing therefore new invariants
in this setting. By [5] these cohomology groups on compact almost-complex manifolds are not �nite dimen-
sional in general. This means that we have a deep gap between Hodge theory and cohomological theory on
almost-complex manifolds. However, as noticed in [6], in special bi-degrees, e.g., (p, 0), the almost-complex
Dolbeault cohomology groups have �nite dimensions. For this reason, we compute such groups in bi-degree
(p, 0), for the families of almost-complex manifolds considered above.
The paper is organized as follows: in Section 2 we start by �xing some notations and recalling the basic facts
of almost-complex geometry used in the rest of the paper. In Section 3 we construct families of almost-Kähler
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solvmanifolds with no left invariant complex structures and then we compute several numerical almost-
complex and almost-Hermitian invariants on them. The basic tools to compute the space of harmonic (p, 0)-
forms are suitable Fourier expansions series adapted to the lattices of the solvmanifolds. In Sections 5 and 6
we perform similar computations respectively on the same di�erentiable manifold endowed with an almost-
complex structure that does not admit any compatible symplectic structures and on the Iwasawa manifold
endowed with an almost-Kähler structure. Finally, we apply harmonic theory to give an obstruction to the
existence of compatible symplectic structures on almost-complex manifolds.

Acknowledgments. The authors would like to thank Luca Lorenzi for useful discussions on elliptic di�erential
operators. They also want to thank Weiyi Zhang for useful suggestions and remarks. Finally, they thank the
anonymous referee, for useful comments which improved the presentation of the results of the paper.

2 Preliminaries
In this Section we recall some basic facts about almost-complex manifolds and �x some notations. Let X be
a smooth manifold of dimension 2n and let J be an almost-complex structure on X, i.e., a (1, 1)-tensor on X
such that J2 = −Id. Then, J induces a natural bigrading on the space of complex valued di�erential forms
A•(X), namely

A•(X) =
⊕
p+q=•

Ap,q(X) .

According to this decomposition, the exterior derivative d splits into four operators

d : Ap,q(X)→ Ap+2,q−1(X)⊕ Ap+1,q(X)⊕ Ap,q+1(X)⊕ Ap−1,q+2(X)

d = µ + ∂ + ∂ + µ̄ ,

where µ and µ̄ are di�erential operators that are linear over functions. The almost-complex structure J is
integrable, that is J induces a complex structure on X, if and only if µ = µ̄ = 0.
In general, since d2 = 0, one has the following relations

µ2 = 0
µ∂ + ∂µ = 0
∂2 + µ∂ + ∂µ = 0
∂∂ + ∂∂ + µµ̄ + µ̄µ = 0
∂2 + µ̄∂ + ∂µ̄ = 0
µ̄∂ + ∂µ̄ = 0
µ̄2 = 0

and so the Dolbeault cohomology of X

H•,•∂ (X) := Ker ∂
Im ∂

is well de�ned if and only if J is integrable.
If g is an Hermitianmetric on (X, J) with associated fundamental form ω and * denotes the Hodge-*-operator,
one can consider the following di�erential operator

∆∂ := ∂ ∂* + ∂*∂ .

This is a second order, elliptic, di�erential operator and we will denote its kernel by

H
p,q
∂

(X) := Ker ∆∂|Ap,q (X)
.

If X is compact this space is �nite-dimensional and its dimension will be denoted by hp,q
∂

(X). By [12] we know
that these Hodge numbers are not almost-complex invariants, more precisely they depend on the choice of
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the Hermitian metric.
In [15] we considered the following di�erential operator (cf. also [8])

δ̄ := ∂ + µ

and we set
∆δ̄ := δ̄δ̄* + δ̄* δ̄ .

This is a second order, elliptic, di�erential operator and we denote with

Hk
δ̄(X) := Ker ∆δ̄|Ak (X)

the space of δ̄-harmonic k-forms and with

H
p,q
δ̄ (X) := Ker ∆δ̄|Ap,q (X)

the space of δ̄-harmonic (p, q)-forms. If X is compact these spaces are �nite dimensional, and we will set
hkδ̄(X) and hp,qδ̄ (X) for their dimensions respectively.
Moreover, if we set

∆µ := µµ* + µ*µ ,

we have that the associated spaces of harmonic formsH•,•
µ (X) andH•

µ(X) are in�nite-dimensional in general.
Indeed, µ is linear over functions.
In [15, Proposition 5.5] we showed that on a compact almost-Hermitian manifold (X, J, g) we have

H•
∂(X) ∩H•

µ(X) ⊆ H•
δ̄(X)

and on bi-graded forms we have the equality (cf. [15, Remark 5.6])

H•,•
∂ (X) ∩H•,•

µ (X) = H•,•
δ̄ (X) .

3 Families of Almost-Kähler solvmanifolds with no left-invariant
complex structures

We recall the following construction from [9]. Let G be the following connected 2-step solvable 6-dimensional
Lie group

G :=





et 0 xet 0 0 y1
0 e−t 0 xe−t 0 y2
0 0 et 0 0 z1
0 0 0 e−t 0 z2
0 0 0 0 1 t
0 0 0 0 0 1


∣∣∣ y1, y2, z1, z2, t, x ∈ R


and set 

e1 = dt
e2 = dx
e3 = e−tdy1 − xe−tdz1
e4 = etdy2 − xetdz2
e5 = e−tdz1
e6 = etdz2

,
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for a basis of left-invariant 1-forms on G, and the dual basis is given by

e1 = ∂
∂t

e2 = ∂
∂x

e3 = et ∂
∂y1

e4 = e−t ∂
∂y2

e5 = et ∂
∂z1

+ xet ∂
∂y1

e6 = e−t ∂
∂z2

+ xe−t ∂
∂y2

.

In particular, the following structure equations hold

de1 = 0
de2 = 0
de3 = −e13 − e25

de4 = e14 − e26

de5 = −e15

de6 = e16

,

where, as usual, we set eij := ei ∧ ej, and

[e1, e3] = [e2, e5] = e3, [e1, e4] = −[e2, e6] = −e4, [e1, e5] = e5, [e1, e6] = −e6 .

Let g be the Lie algebra of G, then g is completely solvable. In fact, G can be seen as a semidirect product
G = R2 nΦ R4, where for every (t, x) ∈ R2,

Φ(t, x) : R4 → R4, Φ(t, x) =


et 0 xet 0
0 e−t 0 xe−t
0 0 et 0
0 0 0 e−t


and the group operation on G is given by

(t, x, y1, y2, z1, z2) *
(
t′, x′, y′1, y′2, z′1, z′2

)
=(

t + t′, x + x′, y′1et + xz′1et + y1, y′2e−t + xz′2e−t + y2, z′1et + z1, z′2e−t + z2
)
.

A lattice Γ for G can be constructed as follows. Let B ∈ SL(2,Z) be a unimodular matrix with integer entries
and distinct eigenvalues ea0 , e−a0 . Then there exists a real invertible matrix P such that

PBP−1 =
[
ea0 0
0 e−a0

]
.

Let Γ̃ := a0Z × Z and L :=
(

(m1,m2)Pt , (n1, n2)Pt
)
with m1,m2, n1, n2 ∈ Z. Then, Γ := Γ̃ nΦ L is a lattice in

G and we set X := Γ\G for the associated solvmanifold. In fact, X has the structure of a T4-bundle over T2.
As proven in [9], X is a completely solvable solvmanifold which admits symplectic structures but none of
them satis�es the Hard Lefschetz condition. Moreover, X is not formal but all the triple Massey products
vanish. Finally, X does not admit any invariant integrable almost complex structure.

Nowwe construct a family of left-invariant almost-complex structures on X. As noticed in [9] the arbitrary
left-invariant symplectic structure on X is given by

ωa,b,c = ae12 + be56 + c(e36 + e45) (3.1)
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with a, b, c ∈ R and a, c ≠ 0. We de�ne the following compatible almost-complex structure Ja,b,c,

Ja,b,ce1 = ae2
Ja,b,ce2 = − 1

a e1
Ja,b,ce3 = ce6
Ja,b,ce4 = ce5 − be3
Ja,b,ce5 = −1

c e4 + be6
Ja,b,ce6 = −1

c e3

,

and it acts on forms by 

Ja,b,ce1 = − 1
a e2

Ja,b,ce2 = ae1

Ja,b,ce3 = −be4 − 1
c e6

Ja,b,ce4 = −1
c e5

Ja,b,ce5 = ce4

Ja,b,ce6 = be5 + ce3

.

Hence, (Ja,b,c , ωa,b,c) is a family of left-invariant almost-Kähler structures on X.
A global co-frame of (1, 0)-forms is provided by

φ1 := ae1 + ie2 , φ2 := be5 + ce3 + ie6 , φ3 := ce4 + ie5 ,

and the dual frame of (1, 0)-vectors is given by

V1 := 1
2

(
1
a e1 − ie2

)
, V2 := 1

2

(
1
c e3 − ie6

)
, V3 := 1

2

(
1
c e4 − ie5 + i bc e3

)
.

In particular, the complex structure equations become
dφ1 = 0
dφ2 = c

4φ13 − 1
2aφ12̄ − c

4φ13̄ + c
4φ31̄ − 1

2aφ1̄2̄ + c
4φ1̄3̄

dφ3 = c
4φ12 − c

4φ12̄ + 1
2aφ13̄ + c

4φ21̄ + c
4φ1̄2̄ + 1

2aφ1̄3̄
.

4 Numerical almost-complex and almost-Hermitian invariants on
(X, Ja,b,c, ωa,b,c)

In this section we compute several almost-complex invariants on (X, Ja,b,c , ωa,b,c) where ωa,b,c was de�ned
in (3.1). In particular, we start with the Hodge numbers hp,0

∂
, with p = 1, 2, 3.

4.1 Computations forH3,0
∂

We compute nowH3,0
∂

for X := (X, Ja,b,c , ωa,b,c). Let

ψ = Aφ123

with A smooth function on X, be an arbitrary (3, 0)-form on X. By degree reasons, ψ is ∂-harmonic if and only
if ∂ψ = 0. Since φ123 is ∂-closed we have

∂ψ = −V̄1(A)φ1231̄ − V̄2(A)φ1232̄ − V̄3(A)φ1233̄,

hence ∂ψ = 0 if and only if
V̄1(A) = V̄2(A) = V̄3(A) = 0
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hence (V1V̄1 + V2V̄2 + V3V̄3)(A) = 0. A direct computation shows that

4(V1V̄1 + V2V̄2 + V3V̄3)(A) = 1
a2

∂2

∂t2 + ∂2

∂x2 +
(

1 + b2

c2 + x2
)
e2t ∂2

∂y2
1

+ e2t ∂2

∂z2
1

+
(

1
c2 + x2

)
e−2t ∂2

∂y2
2

+ e−2t ∂2

∂z2
2
.

Hence, V1V̄1 + V2V̄2 + V3V̄3 is an elliptic di�erential operator and consequently we have that A is constant.
Therefore,

H3,0
∂ (X) =

〈
φ123

〉
and h3,0

∂
= 1.

4.2 Computations forH1,0
∂

Let
ψ = Aφ1 + Bφ2 + Dφ3

with A, B, D smooth functions on X, be an arbitrary (1, 0)-form on X. By degree reasons, ψ is ∂-harmonic if
and only if ∂ψ = 0. Using the structure equations we have

∂ψ = −V̄1(A)φ11̄ − V̄2(A)φ12̄ − V̄3(A)φ13̄ − V̄1(B)φ21̄ − V̄2(B)φ22̄ − V̄3(B)φ23̄

−V̄1(D)φ31̄ − V̄2(D)φ32̄ − V̄3(D)φ33̄ − B
2aφ

12̄ − 1
4Bφ

13̄ + B c4φ
31̄ − c4Dφ

12̄ + 1
2a Dφ

13̄ + c
4Dφ

21̄,

hence ∂ψ = 0 if and only if 

V̄1(A) = 0
V̄2(A) + 1

2aB + c
4D = 0

V̄3(A) + 1
4B − 1

2aD = 0
V̄1(B) − c

4D = 0
V̄2(B) = 0
V̄3(B) = 0
V̄1(D) − c

4B = 0
V̄2(D) = 0
V̄3(D) = 0

.

In particular, by V̄2(B) = V̄3(B) = 0 we have that V2V̄2(B) = V3V̄3(B) = 0 and V2V̄2 +V3V̄3 is a strictly elliptic
operator without zero order terms when B is viewed as function of y1, y2, z1, z2. Since the �ber is compact by
the maximum principle B is constant on the �bers, then B is a function on the base with (t, x) as coordinates.
Namely, B = B(t, x) and similarly by the previous system, D = D(t, x).
As a consequence, from the �rst three equations

(V1V̄1 + V2V̄2 + V3V̄3)(A) = 0

then A is constant.
The previous system reduces to 

1
2aB + c

4D = 0
1
4B − 1

2aD = 0
V̄1(B) − c

4D = 0
V̄1(D) − c

4B = 0

.

In particular,
B = −ac2 D , and a2c + 4

4a D = 0 .
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Therefore we have two cases to consider. First, if a2c + 4 ≠ 0 then

D = 0, B = 0, A = const

hence
H1,0
∂ =

〈
φ1
〉

and h1,0
∂

= 1.
If a2c + 4 = 0, since B = − ac2 D, the system reduces to{

ac
2 V̄1(D) + c

4D = 0
V̄1(D) + ac2

8 D = 0
.

that is {
V̄1(D) + 1

2aD = 0(
− ac2

8 + 1
2a

)
D = 0 .

By the �rst equation we have (−a2c2 + 4)D = 0, and recalling that a2c + 4 = 0, we have two cases. If a ≠ ±2
then

D = 0, B = 0, A = const

hence
H1,0
∂ =

〈
φ1
〉

and h1,0
∂

= 1.
If a = ±2, we are left with

V̄1(D) ± 1
4D = 0, B = ±D, A = const .

Since D = D(t, x), we can expand in Fourier series and get

D =
∑
λ,µ∈Z

Dλµe2πi(λx+ µ
a0
t)

with Dλµ constants for every λ, µ ∈ Z. The equation V̄1(D) ± 1
4D = 0 becomes

( 1
a2πi µa0

− 2πλ)Dλµ ±
1
2Dλµ = 0

namely, (
(−4πλ ± 1) + i(4π µa0

1
a )
)
Dλµ = 0

and since −4πλ ± 1 ≠ 0 for every λ ∈ Z we have that Dλµ = 0 for every λ, µ ∈ Z. Therefore,

D = 0, B = 0, A = const

hence
H1,0
∂ =

〈
φ1
〉

and h1,0
∂

= 1.
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4.3 Computations forH2,0
∂

Let
ψ = Aφ12 + Bφ13 + Dφ23

with A, B, D smooth functions on X, be an arbitrary (2, 0)-form on X. By degree reasons, ψ is ∂-harmonic if
and only if ∂ψ = 0. Using the structure equations we have

∂ψ = V̄1(A)φ121̄ + V̄2(A)φ122̄ + V̄3(A)φ123̄ + V̄1(B)φ131̄ + V̄2(B)φ132̄+

+V̄3(B)φ133̄ + V̄1(D)φ231̄ + V̄2(D)φ232̄ + V̄3(D)φ233̄ − c
4Aφ131̄+

− c4Bφ121̄ + D 1
2aφ132̄ + c

4Dφ133̄ − c
4Dφ122̄ + 1

2aDφ123̄,

hence ∂ψ = 0 if and only if 

V̄1(A) − c
4B = 0

V̄2(A) − c
4D = 0

V̄3(A) + 1
2aD = 0

V̄1(B) − c
4A = 0

V̄2(B) + 1
2aD = 0

V̄3(B) + c
4D = 0

V̄1(D) = 0
V̄2(D) = 0
V̄3(D) = 0

.

From the last three equations we obtain immediately that D = const. Hence, from the system we have that

V2V̄2(A) = V3V̄3(A) = V2V̄2(B) = V3V̄3(B) = 0

hence, with a similar argument used before we have that

A = A(t, x), B = B(t, x).

In particular, this implies that
D = 0.

We can expand in Fourier series and get

A =
∑
λ,µ∈Z

Aλµe2πi(λx+ µ
a0
t), B =

∑
λ,µ∈Z

Bλµe2πi(λx+ µ
a0
t)

with Aλµ , Bλµ constants for every λ, µ ∈ Z. The �rst and fourth equations become respectively(
1
a2πi µa0

− 2πλ
)
Aλµ −

c
2Bλµ = 0

(
1
a2πi µa0

− 2πλ
)
Bλµ −

c
2Aλµ = 0.

Summing the two equations we get(
(−2πλ − c2 ) + i( 1

a2π µa0
)
)

(Aλµ + Bλµ) = 0.

Now we consider two cases: c ∈ ̸ 4πZ and c ∈ 4πZ.
If c ∈ ̸ 4πZ, then Aλµ + Bλµ = 0 for every λµ ∈ Z, implying that A = −B. In this case, we obtain the following
equation

V̄1(A) + c
4A = 0
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and so (
(−2πλ + c

2 ) + i( 1
a2π µa0

)
)
Aλµ = 0.

Therefore, under our assumption Aλµ = 0 for every λ, µ ∈ Z and therefore Bλµ = 0 for every λ, µ ∈ Z. As a
consequence we have that if c ∈ ̸ 4πZ,

A = 0, B = 0, D = 0

hence
H2,0
∂ = 0

and h2,0
∂

= 0.
If c ∈ 4πZ, we set c = 4πk with k ∈ Z \ {0}, since by construction c ≠ 0. The equation becomes(

(−2πλ − 2πk) + i( 1
a2π µa0

)
)

(Aλµ + Bλµ) = 0.

If (λ, µ) ≠ (−k, 0) then Aλµ + Bλµ = 0, otherwise the equation is trivially satis�ed.
Suppose that (λ, µ) ≠ (−k, 0), then Aλµ = −Bλµ and the �rst equation becomes(

(−2πλ + 2πk) + i( 1
a2π µa0

)
)
Aλµ = 0.

Hence, if, moreover (λ, µ) ≠ (k, 0) then Aλµ = −Bλµ = 0. Namely, resuming we have that

• Aλµ = Bλµ = 0 if (λ, µ) ≠ (±k, 0)
• Ak0 = −Bk0 = 0
• we have no informations on A−k0, B−k0.

The Fourier expansions reduces to
A = Ak0e2πikx + A−k0e−2πikx

and
B = −Ak0e2πikx + B−k0e−2πikx .

In particular, the equation V̄1(A) − c
4B = 0 becomes

2πk(A−k0 − B−k0)e−2πikx = 0

giving A−k0 = B−k0, and also the other equations are now satis�ed. Therefore,

A = Ak0e2πikx + A−k0e−2πikx , B = −Ak0e2πikx + A−k0e−2πikx , D = 0

satisfy the system of equations forH2,0
∂

hence, if c ∈ 4πZ, c ≠ 0, h2,0
∂

= 2.

Therefore, we just proved the following

Theorem 4.1. Let (X, Ja,b,c , ωa,b,c) be the family of almost-Kähler manifolds previously constructed. Then,

• h1,0
∂

= 1,

• h2,0
∂

=
{

0 if c ∉ 4πZ
2 if c ∈ 4πZ ,

• h3,0
∂

= 1.

An immediate consequence is the following result that marks a di�erence with the integrable case (cf. also
[12]).
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Corollary 4.2. The Hodge numbers can vary when the almost-complex structures are almost-Kähler and vary
continuously.

We compute now the almost-Hermitian invariants hp,0δ̄ , with p = 1, 2, 3.
First of all we recall that on bi-graded formsH•,•

δ̄ = H•,•
∂
∩H•,•

µ , in particular for bidegree reasons

H1,0
δ̄ = H1,0

∂ ,

hence we are left to computeH2,0
δ̄ andH3,0

δ̄ .

4.4 Computations forH3,0
δ̄

Let ga,b,c be the Hermitian metric associated to (Ja,b,c , ωa,b,c) where ωa,b,c is de�ned in (3.1).
It is immediate to see that

H3,0
δ̄ = H3,0

∂ ∩ Ker (µ*) .

Since H3,0
∂

= 〈φ123〉 we set ψ = Aφ123 with A ∈ C. Then, ψ ∈ Ker (µ*) if and only if µ̄ * ψ = 0. Since
*ψ = A · const · φ123 and, by the structure equation

µ̄φ123 = 1
2aφ

131̄2̄ − c4φ
131̄3̄ + c

4φ
121̄2̄ + 1

2aφ
121̄3̄,

we have that µ̄ * ψ = 0 if and only if A = 0. Therefore,

H3,0
δ̄ = {0}

and h3,0
δ̄ = 0.

4.5 Computations forH2,0
δ̄

It is immediate to see that
H2,0
δ̄ = H2,0

∂ ∩ Ker (µ*) .

If c ∈ ̸ 4πZ thenH2,0
∂

= {0}, henceH2,0
δ̄ = {0}.

Let us assume that c ∈ 4πZ, namely c = 4πk, with k ∈ Z \ {0}.
Since

H2,0
∂ =

〈
e2πikxφ12 − e2πikxφ13, e−2πikxφ12 + e−2πikxφ13

〉
We set

ψ = A(e2πikxφ12 − e2πikxφ13) + B(e−2πikxφ12 + e−2πikxφ13)

with A, B ∈ C. Then, ψ ∈ Ker (µ*) if and only if µ̄ * ψ = 0.
We get

*φ12 = i
2φ

1233̄ , *φ13 = − i2φ
1232̄ .

For instance, by the de�nition of the C-linear Hodge * operator we have that

φ1̄2̄ ∧ *φ12 = |φ12|2
ω3
a,b,c
6 = − i8 |φ

12|2φ11̄22̄33̄ = − i8 22φ11̄22̄33̄ = − i2φ
11̄22̄33̄ = i

2φ
1̄2̄1233̄

and φ ī j̄ ∧ *φ12 = 0 for (i, j) ≠ (1, 2). This shows that *φ12 = i
2φ1233̄.

Hence, we have that

*ψ = A i2 (e2πikxφ1233̄ + e2πikxφ1232̄) + B i2 (e−2πikxφ1233̄ − e−2πikxφ1232̄) .
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By the structure equations

µ̄φ1232̄ = c
4φ

131̄2̄3̄ − 1
2aφ

121̄2̄3̄ , µ̄φ1233̄ = 1
2aφ

131̄2̄3̄ + c
4φ

121̄2̄3̄ .

Hence, we obtain
µ̄ * ψ = φ121̄2̄3̄

[
A i2 ( c4 −

1
2a )e2πikx + B i2 ( c4 + 1

2a )e−2πikx
]

+

φ131̄2̄3̄
[
A i2 ( c4 + 1

2a )e2πikx + B i2 ( 1
2a −

c
4 )e−2πikx

]
.

Therefore, µ̄ * ψ = 0 if and only if

A( c4 −
1

2a )e4πikx + B( c4 + 1
2a ) = 0 ,

and
A( c4 + 1

2a )e4πikx + B( 1
2a −

c
4 ) = 0.

This implies that A = B = 0, namely ψ = 0.
Therefore,

H2,0
δ̄ = {0}

and h2,0
δ̄ = 0.

Therefore, we just proved the following

Theorem 4.3. Let (X, Ja,b,c , ωa,b,c) be the family of almost-Kähler manifolds previously constructed. Then,

• h1,0
δ̄ = 1,

• h2,0
δ̄ = 0,

• h3,0
δ̄ = 0.

Now we compute the dimension of the almost-complex Dolbeault cohomology groups Hp,0Dol .

First of all, notice that by [6, Proposition 4.10],

Hp,0Dol ' H
p,0
∂
∩ Ker µ̄

4.6 Computation of H1,0
Dol and H

3,0
Dol

Clearly, by the structure equations and by the previous computations

H1,0
Dol ' H1,0

∂ ∩ Ker µ̄ =
〈
φ1
〉
.

Now, sinceH3,0
∂

=
〈
φ123〉 and by a direct computation µ̄φ123 ≠ 0, one has that

H3,0
Dol = {0} .

4.7 Computation of H2,0
Dol

Notice that, if c ∉ 4πZ, thenH2,0
∂

= {0} and so

H2,0
Dol = {0} .
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Let now c ∈ 4πZ, then

H2,0
∂ =

〈
e2πikxφ12 − e2πikxφ13, e−2πikxφ12 + e−2πikxφ13

〉
We set

ψ = A(e2πikxφ12 − e2πikxφ13) + B(e−2πikxφ12 + e−2πikxφ13)

with A, B ∈ C. Since
µ̄φ12 = 1

2aφ
11̄2̄ − c4φ

11̄3̄ , µ̄φ13 = − c4φ
11̄2̄ − 1

2aφ
11̄3̄ ,

then, µ̄ψ = 0 if and only if
A( c4 + 1

2a )e4πikx + B( 1
2a −

c
4 ) = 0.

and
A(− c4 + 1

2a )e4πikx + B(− c4 −
1

2a ) = 0 .

This implies that A = B = 0, and so
H2,0

Dol = {0} .

Therefore we proved the following

Theorem 4.4. Let (X, Ja,b,c , ωa,b,c) be the family of almost-Kähler manifolds previously constructed. Then,

• h1,0
Dol = 1,

• h2,0
Dol = 0,

• h3,0
Dol = 0.

5 An almost-complex structure with no compatible symplectic
structures

We will construct now an almost-complex structure J on X which does not admit any compatible symplectic
structures. We set as a global co-frame of (1, 0)-forms

Φ1 := e1 + ie2 , Φ2 := e3 + ie4 , Φ3 := e5 + ie6 ,

and the dual frame of (1, 0)-vectors is given by

W1 := 1
2 (e1 − ie2) , W2 := 1

2 (e3 − ie4) , W3 := 1
2 (e5 − ie6) .

The complex structure equations become
dΦ1 = 0
dΦ2 = i

2Φ13 − 1
2Φ12̄ + i

2Φ31̄ − 1
2Φ1̄2̄

dΦ3 = −1
2Φ13̄ − 1

2Φ1̄3̄
.

Notice that the almost-complex manifold just constructed does not admit any compatible symplectic
structures. Indeed, by contradiction, if (X, J) admits a compatible symplectic structure then, by a symmetriza-
tion process it also admits a compatible left-invariant symplectic structure. As noticed before, every left-
invariant symplectic structure on X is given by

ωa,b,c = ae12 + be56 + c(e36 + e45)

with a, b, c ∈ R and a, c ≠ 0. Hence, by construction J cannot be compatible with any of these symplectic
structures.

We compute now the Hodge numbers hp,0
∂

, for p = 1, 2, 3.
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5.1 Computations forH1,0
∂

Let
ψ = AΦ1 + BΦ2 + CΦ3

with A, B, C smooth functions on X, be an arbitrary (1, 0)-form on X. By degree reasons, ψ is ∂-harmonic if
and only if ∂ψ = 0. Using the structure equations we have that ∂ψ = 0 if and only if

W̄1(A) = 0
W̄2(A) + 1

2B = 0
W̄3(A) + 1

2C = 0
W̄1(B) = 0
W̄2(B) = 0
W̄3(B) = 0
W̄1(C) − i

2B = 0
W̄2(C) = 0
W̄3(C) = 0

.

Then from W̄1(B) = W̄2(B) = W̄3(B) = 0 we get with similar arguments used before that B is constant. Hence

(W1W̄1 + W2W̄2 + W3W̄3)(C) = 0

and so C is also constant. As a consequence, the same holds for A. Therefore, having A constant, this implies
that B = C = 0. Therefore,

B = 0, C = 0, A = const

hence
H1,0
∂ =

〈
Φ1
〉

and h1,0
∂

= 1.

5.2 Computations forH2,0
∂

Let
ψ = AΦ12 + BΦ13 + CΦ23

with A, B, C smooth functions on X, be an arbitrary (2, 0)-form on X. By degree reasons, ψ is ∂-harmonic if
and only if ∂ψ = 0. Using the structure equations we have that ∂ψ = 0 if and only if

W̄1(A) = 0
W̄2(A) = 0
W̄3(A) − 1

2C = 0
W̄1(B) − i

2A = 0
W̄2(B) + 1

2C = 0
W̄3(B) = 0
W̄1(C) = 0
W̄2(C) = 0
W̄3(C) = 0

.

Then from W̄1(C) = W̄2(C) = W̄3(C) = 0 we get with similar arguments used before that C is constant. Hence
(W1W̄1 +W2W̄2 +W3W̄3)(A) = 0 and so A is also constant. This implies that C = 0 and therefore B is constant
leading to A being zero. Namely

A = 0, C = 0, B = const
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hence
H2,0
∂ =

〈
Φ13

〉
and h2,0

∂
= 1.

5.3 Computations forH3,0
∂

Let
ψ = AΦ123

with A smooth function on X, be an arbitrary (3, 0)-form on X. By degree reasons, ψ is ∂-harmonic if and only
if ∂ψ = 0. Since Φ123 is ∂-closed we have that ∂ψ = 0 if and only if

W̄1(A) = W̄2(A) = W̄3(A) = 0

hence (W1W̄1 + W2W̄2 + W3W̄3)(A) = 0 and so we have that A is constant. Therefore,

H3,0
∂ (X) =

〈
Φ123

〉
and h3,0

∂
= 1.

Therefore, we just proved the following

Theorem 5.1. Let (X, J) be the almost complex manifold previously constructed. Then,

• h1,0
∂

= 1,
• h2,0

∂
= 1,

• h3,0
∂

= 1.

Let now ω be the following Hermitian metric

ω = i
2
(
Φ11̄ + Φ22̄ + Φ33̄

)
.

We compute now the numbers hp,0δ̄ , for p = 1, 2, 3.

First of all, as noticed before, for bidegree reasons

H1,0
δ̄ = H1,0

∂ ,

hence we are left to computeH2,0
δ̄ andH3,0

δ̄ .

5.4 Computations forH2,0
δ̄

It is immediate to see that
H2,0
δ̄ = H2,0

∂ ∩ Ker (µ*) .

Since H2,0
∂

= 〈Φ13〉 we set ψ = AΦ13 with A ∈ C. Then, ψ ∈ Ker (µ*) if and only if µ̄ * ψ = 0. Since *ψ =
−A i

2Φ1232̄ and, by the structure equations

µ̄Φ23 = −1
2Φ

31̄2̄ + 1
2Φ

21̄3̄
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we have that
µ̄ * ψ = A i2Φ

1 ∧ µ̄(Φ23) ∧ Φ2̄ = −A i4Φ
121̄2̄3̄.

Then, µ̄ * ψ = 0 if and only if A = 0. Therefore,

H2,0
δ̄ = {0}

and h2,0
δ̄ = 0.

5.5 Computations forH3,0
δ̄

Clearly, as before
H3,0
δ̄ = H3,0

∂ ∩ Ker (µ*) .

Since H3,0
∂

= 〈Φ123〉 we set ψ = AΦ123 with A ∈ C. Then, ψ ∈ Ker (µ*) if and only if µ̄ * ψ = 0. Since
*ψ = AΦ123 and, by the structure equations

µ̄ * ψ = A
(

1
2Φ

131̄2̄ − 1
2Φ

121̄3̄
)
.

Then, µ̄ * ψ = 0 if and only if A = 0. Therefore,

H3,0
δ̄ = {0}

and h3,0
δ̄ = 0.

Therefore, we just proved the following

Theorem 5.2. Let (X, J, ω) be the almost-Hermitian manifold previously constructed. Then,

• h1,0
δ̄ = 1,

• h2,0
δ̄ = 0,

• h3,0
δ̄ = 0.

We compute now the dimensions of the almost-complex Dolbeault cohomology groups Hp,0Dol , for
p = 1, 2, 3.

As done above, notice that by [6, Proposition 4.10],

Hp,0Dol ' H
p,0
∂
∩ Ker µ̄.

5.6 Computations forH1,0
Dol,H

2,0
Dol andH3,0

Dol

Clearly, by the structure equations and by the previous computations

H1,0
Dol ' H1,0

∂ ∩ Ker µ̄ =
〈
Φ1
〉
.

Now, sinceH2,0
∂

=
〈
Φ13〉 and by a direct computation µ̄Φ13 = 1

2Φ11̄3̄ ≠ 0, one has that

H2,0
Dol = {0} .

Similarly, sinceH3,0
∂

=
〈
Φ123〉 and by a direct computation µ̄Φ123 ≠ 0, one has that

H3,0
Dol = {0} .

Therefore, we just proved the following
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Theorem 5.3. Let (X, J) be the almost complex manifold previously constructed. Then,

• h1,0
Dol = 1,

• h2,0
Dol = 0,

• h3,0
Dol = 0.

6 The Iwasawa manifold
We study now another 6-dimensional example. Let I be the Iwasawa manifold de�ned as the quotient I :=
Γ\H3 where

H3 :=


1 z1 z3

0 1 z2
0 0 1

 | z1, z2, z3 ∈ C


and

Γ :=


1 γ1 γ3

0 1 γ2
0 0 1

 | γ1, γ2, γ3 ∈ Z[ i ]

 .

Then, setting zj = xj + iyj, there exists a basis of left-invariant 1-forms {ei} on I given by

e1 = dx1
e2 = dy1
e3 = dx2
e4 = dy2
e5 = dx3 − x1dx2 + y1dy2
e6 = dy3 − x1dy2 − y1dx2

,

and the dual basis is given by 

e1 = ∂
∂x1

e2 = ∂
∂y1

e3 = ∂
∂x2

+ x1
∂
∂x3

+ y1
∂
∂y3

e4 = ∂
∂y2
− y1

∂
∂x3

+ x1
∂
∂y3

e5 = ∂
∂x3

e6 = ∂
∂y3

.

The following structure equations hold 

de1 = 0
de2 = 0
de3 = 0
de4 = 0
de5 = −e13 + e24

de6 = −e14 − e23

.

We de�ne the almost-complex structure J setting as global co-frame of (1, 0)-forms

φ1 := e1 + ie6 , φ2 := e2 + ie5 , φ3 := e3 + ie4

and let
V1 := 1

2 (e1 − ie6) , V2 := 1
2 (e2 − ie5) , V3 := 1

2 (e3 − ie4)
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be the dual frame of vectors. In particular, the complex structure equations become
dφ1 = −1

4φ13 − i
4φ23 + 1

4φ13̄ − i
4φ23̄ + 1

4φ31̄ + i
4φ32̄ + 1

4φ1̄3̄ − i
4φ2̄3̄

dφ2 = − i4φ13 + 1
4φ23 − i

4φ13̄ − 1
4φ23̄ + i

4φ31̄ − 1
4φ32̄ − i

4φ1̄3̄ − 1
4φ2̄3̄

dφ3 = 0
.

Notice that

ω := i
2

3∑
j=1

φjj̄

is an almost-Kähler metric on I, in particular (J, ω) is an almost-Kähler structure on I.

We compute now the Hodge numbers hp,0
∂

, for p = 1, 2, 3.

6.1 Computations forH1,0
∂

Let
ψ = Aφ1 + Bφ2 + Cφ3

with A, B, C smooth functions on I, be an arbitrary (1, 0)-form on I. By degree reasons, ψ is ∂-harmonic if
and only if ∂ψ = 0. Using the structure equations we have that ∂ψ = 0 if and only if

V̄1(A) = 0
V̄2(A) = 0
−V̄3(A) + 1

4A − i
4B = 0

V̄1(B) = 0
V̄2(B) = 0
V̄3(B) + i

4A + 1
4B = 0

−V̄1(C) + 1
4A + i

4B = 0
−V̄2(C) + i

4A − 1
4B = 0

V̄3(C) = 0

.

From V̄1(A) = V̄2(A) = V̄1(B) = V̄2(B) = 0 we get that

(V1V̄1 + V2V̄2)(A) = 0 and (V1V̄1 + V2V̄2)(B) = 0

and so A = A(x2, y2) and B = B(x2, y2) depend only on x2 and y2.
Hence, from the last three equations we obtain (V1V̄1 + V2V̄2 + V3V̄3)(C) = 0 implying that C is constant.
Therefore, A + iB = 0 giving

−V̄3(A) + 1
2A = 0 and − V̄3(B) − 1

2B = 0.

We can expand in Fourier series and get

A =
∑
λ,µ∈Z

Aλµe2πi(λx2+µy2), B =
∑
λ,µ∈Z

Bλµe2πi(λx2+µy2)

with Aλµ , Bλµ constants for every λ, µ ∈ Z. Therefore, V̄3(A) − 1
2A = 0 gives(

−πiλ + πµ + 1
2

)
Aλµ = 0

and since µ ∈ Z we have that Aλµ = 0 for every λ, µ ∈ Z. Hence,

A = 0 and B = 0.
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Therefore,
A = 0, B = 0, C = const

hence
H1,0
∂ =

〈
φ3
〉

and h1,0
∂

= 1.

6.2 Computations forH2,0
∂

Let
ψ = Aφ12 + Bφ13 + Cφ23

with A, B, C smooth functions on I, be an arbitrary (2, 0)-form on I. By degree reasons, ψ is ∂-harmonic if
and only if ∂ψ = 0. Using the structure equations we have that ∂ψ = 0 if and only if

V̄1(A) = 0
V̄2(A) = 0
V̄3(A) = 0
V̄1(B) − i

4A = 0
V̄2(B) + 1

4A = 0
V̄3(B) − 1

4B + i
4C = 0

V̄1(C) + 1
4A = 0

V̄2(C) + i
4A = 0

V̄3(C) + i
4B + 1

4C = 0

.

With similar arguments used above we have that A = const, B = B(x2, y2) and C = C(x2, y2). In particular,
since V̄1(B) = 0 we get that A = 0. Therefore, from

V̄3(B) − 1
4B + i

4C = 0 and V̄3(C) + i
4B + 1

4C = 0

we obtain V̄3(B − iC) = 0 hence, B − iC = const =: k. In particular,

V̄3(B) − 1
4 k = 0

and so B is constant implying that also C is constant. Therefore, k = 0 giving B = iC.
Therefore,

A = 0, B = iC = const,

hence
H2,0
∂ =

〈
iφ13 + φ23

〉
and h2,0

∂
= 1.

6.3 Computations forH3,0
∂

Let
ψ = Aφ123

with A smooth function on I, be an arbitrary (3, 0)-form on I. By degree reasons, ψ is ∂-harmonic if and only
if ∂ψ = 0. Hence ∂ψ = 0 if and only if

V̄1(A) = V̄2(A) = V̄3(A) = 0
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hence (V1V̄1 + V2V̄2 + V3V̄3)(A) = 0 and, since V1V̄1 + V2V̄2 + V3V̄3 is an elliptic di�erential operator we
have that A is constant. Therefore,

H3,0
∂ (X) =

〈
φ123

〉
and h3,0

∂
= 1.

Therefore, we just proved the following

Theorem 6.1. Let (I, J, ω) be the almost-Kähler Iwasawa manifold constructed above. Then,

• h1,0
∂

= 1,
• h2,0

∂
= 1

• h3,0
∂

= 1.

We compute now the numbers hp,0δ̄ , for p = 1, 2, 3.

First of all, as noticed before, for bidegree reasons

H1,0
δ̄ = H1,0

∂ ,

hence we are left to computeH2,0
δ̄ andH3,0

δ̄ .

6.4 Computations forH2,0
δ̄

It is immediate to see that
H2,0
δ̄ = H2,0

∂ ∩ Ker (µ*) .

Since
H2,0
∂ = 〈iφ13 + φ23〉,

we set
ψ = A(iφ13 + φ23)

with A ∈ C. Then, ψ ∈ Ker (µ*) if and only if µ̄ * ψ = 0. Since *ψ = A · const · (−iφ1232̄ + φ1231̄) and by the
structure equations we have that

µ̄φ1232̄ = −1
4φ

231̄2̄3̄ − i4φ
131̄2̄3̄

and
µ̄φ1231̄ = − i4φ

231̄2̄3̄ + 1
4φ

131̄2̄3̄

we get that
µ̄ * ψ = 0

Therefore,
H2,0
δ̄ = H2,0

∂ = 〈iφ13 + φ23〉

and h2,0
δ̄ = 1.

6.5 Computations forH3,0
δ̄

Clearly, as before
H3,0
δ̄ = H3,0

∂ ∩ Ker (µ*) .
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Since H3,0
∂

= 〈φ123〉, we set ψ = Aφ123 with A ∈ C. Then, ψ ∈ Ker (µ*) if and only if µ̄ * ψ = 0. By the
de�nition of the Hodge operator, we have that

*ψ = A · const · φ123;

in view of the the structure equations, we obtain that

µ̄ * ψ = A · const ·
(

1
4φ

231̄3̄ − i4φ
232̄3̄ + i

4φ
131̄3̄ + 1

4φ
132̄3̄

)
.

Hence µ̄ * ψ = 0 if and only if A = 0. Therefore,

H3,0
δ̄ = {0}

and h3,0
δ̄ = 0.

Therefore, we just proved the following

Theorem 6.2. Let (I, J, ω) be the almost-Kähler Iwasawa manifold previously constructed. Then,

• h1,0
δ̄ = 1,

• h2,0
δ̄ = 1,

• h3,0
δ̄ = 0.

We compute now the dimensions of the almost-complex Dolbeault cohomology groups Hp,0Dol , for p = 1, 2, 3.

As done above, notice that by [6, Proposition 4.10],

Hp,0Dol ' H
p,0
∂
∩ Ker µ̄.

6.6 Computations forH1,0
Dol,H

2,0
Dol andH3,0

Dol

Clearly, by the structure equations and by the previous computations

H1,0
Dol ' H1,0

∂ ∩ Ker µ̄ =
〈
φ3
〉
.

Now, sinceH2,0
∂

=
〈
iφ13 + φ23〉 and by a direct computation µ̄(iφ13 + φ23) = 0, one has that

H2,0
Dol =

〈
iφ13 + φ23

〉
.

SinceH3,0
∂

=
〈
φ123〉 and by a direct computation µ̄φ123 ≠ 0, one has that

H3,0
Dol = {0} .

In particular, we have the following

Theorem 6.3. Let (I, J, ω) be the almost-Kähler Iwasawa manifold previously constructed. Then,

• h1,0
Dol = 1,

• h2,0
Dol = 1,

• h3,0
Dol = 0.
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7 Obstructions to the existence of a compatible symplectic
structure on an almost-complex manifold

Let (X, J) be an almost-complexmanifold and�x aHermitianmetric gwith fundamental formω. Then, setting
δ̄ := ∂ + µ and δ := ∂ + µ̄ one can consider the following di�erential operators

∆δ̄ := δ̄δ̄* + δ̄* δ̄ ,

∆δ := δδ* + δ*δ .

In [15] we studied Hodge theory for such operators, and even though they do not coincide in general, as a
consequence of the almost-Kähler identities, if (X, J, g, ω) is an almost-Kähler manifold, then ∆δ̄ and ∆δ are
related by

∆δ̄ = ∆δ .

In particular, their spaces of harmonic forms coincide, i.e.H•
δ(X) = H•

δ̄(X) .
We can use now this result to prove an obstruction to the existence of a compatible symplectic structure on
an almost-complex manifold.

Theorem 7.1. Let (X, J) be a compact almost-complex manifold. Suppose that there exists φ ∈ A1,0(X) such
that ∂φ = 0 and dφ ≠ 0. Then, there exists no compatible symplectic structure on (X, J).

Proof. Since, ∂φ = 0 then, for degree reasons φ ∈ Ker ∆δ̄ for any arbitrary Hermitian metric. However, since
dφ ≠ 0 then, for any �xed Hermitian metric, φ ∈ ̸ Ker ∆δ. Namely, ∆δ̄ ≠ ∆δ and the thesis follows, since, by
[15] on almost-Kähler manifolds ∆δ̄ = ∆δ.

An immediate corollary is the following

Corollary 7.2. Let (X, J) be a compact almost-complex manifold such that there exists a global co-frame of
(1, 0)-forms

{
φi
}
such that, there exists an index j with

dφj ∈ A2,0(X)⊕ A0,2(X)

and dφj ≠ 0. Then, there exists no compatible symplectic structure on (X, J).

We apply this result to the following example.

Example 7.3. Let I be the Iwasawa manifold de�ned as the quotient I := Γ\H3 where

H3 :=


1 z1 z3

0 1 z2
0 0 1

 | z1, z2, z3 ∈ C


and

Γ :=


1 γ1 γ3

0 1 γ2
0 0 1

 | γ1, γ2, γ3 ∈ Z[ i ]

 .

Set ψ1 := dz̄1, ψ2 := dz̄2 ψ3 := dz̄3 − z1dz2. Hence, the structure equations are

dψ1 = 0, dψ2 = 0, dψ3 = −ψ1̄2̄,

therefore, by Corollary 7.2 the Iwasawa manifold with this almost-complex structure does not admit any com-
patible symplectic structure.
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Clearly, the converse implication does not hold as we have seen in Section 5.
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