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Abstract: We compute almost-complex invariants h%”o, hg’o(i and almost-Hermitian invariants h’g’o on families
of almost-Kdhler and almost-Hermitian 6-dimensional solvmanifolds. Finally, as a consequence of almost-
Kahler identities we provide an obstruction to the existence of a compatible symplectic structure on a given
compact almost-complex manifold. Notice that, when (X, J, g, w) is a compact almost Hermitian manifold of
real dimension greater than four, not much is known concerning the numbers hg’q.
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1 Introduction

Let (X, J) be a complex manifold, then the Dolbeault cohomology of X

Ker o
Imo

H%"(X) =

is well defined and it represents an impozrtant holomorphic invariant for the complex manifold. If we drop
the integrability assumption on J, then 8~ # 0 and such a cohomology is not well defined anymore.
However, if we fix a J-Hermitian metric g on an almost-complex manifold (X, J) and with * we denote the
associated Hodge-*-operator, then ..

As:=30 +00
is a well-defined second order, elliptic, differential operator. In particular, if X is compact, then KerAg isa
finite-dimensional complex vector space and we will denote as usual with h%" its dimension. If ] is integrable,
then

Hg’ (X) ~ KerAy,

and in particular the dimension of the space of harmonic forms depends only on the complex structure and
not on the choice of the Hermitian metric. In [11, Problem 20] Kodaira and Spencer asked whether this is the
case also when J is not integrable. More precisely,

Question I Let (M, J) be an almost complex manifold. Choose an Hermitian metric on (M, J) and consider the
numbers h%”q. Is hg’q independent of the choice of the Hermitian metric?

In [12] Holt and Zhang answered negatively to this question, showing with an explicit example that there exist
almost complex structures on the Kodaira-Thurston manifold with Hodge number hg’l varying with different

Nicoletta Tardini: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unita di Matematica e Informatica, Uni-
versita degli Studi di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy, E-mail: nicoletta.tardini@gmail.com, nico-
letta.tardini@unipr.it

*Corresponding Author: Adriano Tomassini: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unita di
Matematica e Informatica, Universita degli Studi di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy, E-mail: adri-
ano.tomassini@unipr.it

80pen Access. © 2022 Nicoletta Tardini and Adriano Tomassini, published by De Gruyter. () IS This work is licensed under the Cre-
ative Commons Attribution 4.0 License.


https://doi.org/10.1515/coma-2021-0139

DE GRUYTER Almost-complex invariants of families = 239

choices of Hermitian metrics.
They also proved that if (M, ], g, w) is a 4-dimensional compact almost-Kdhler manifold, then h%’l =b-+1,

where b_ denotes the dimension of the space of anti self-dual harmonic forms, namely in such a case h%’l
has a cohomological meaning. In this context, (see [12, Question 6.2]) they asked the following

Question II Let (M, J) be an almost complex 4-manifold which admits an almost Kdhler structure. Does it have
a non almost Kéhler Hermitian metric such that h%’l #b_ +1?.

About this, in [16, Theorem 3.7] it is proved that if g is a strictly locally conformally Kihler metric on a 4-
dimensional compact almost complex manifold (X, J), then h%’l = b_. Therefore, since in the non integrable
case almost-Kahler metrics and strictly locally conformally Kahler metrics can coexist, this gives a positive
answer to Question II. For other results on the study of the numbers h%" see [10, 13, 14] and the references
therein.

However, when (X, J, g) is a compact almost Hermitian manifold of real dimension greater than four, not
much is known concerning the numbers h%”q and this may be due also by the lack of explicit computations
of such numbers in the literature.

As a general fact, in special bidegree (p, 0), hg’o is independent of the choice of the Hermitian metric, indeed

in this case being 0-harmonic is equivalent to be 9-closed. So, in particular h%”o is a genuine almost-complex
invariant.

Notice that h™° is related to the computation of the Kodaira dimension of 2n-dimensional almost-complex
manifolds, recently introduced by H. Chen and W. Zhang in [3] and [4]. For explicit computations of the Ko-
daira dimension one can refer to [3] for the Kodaira-Thurston manifold and to [1], [2] for several 6-dimensional
solvmanifolds and 4-dimensional solvmanifolds with no complex structures.

In this paper we will compute explicitly the numbers hg’o, for p = 1, 2,3, on families of six-dimensional
manifolds endowed with non-integrable almost-complex structures. More in detail, we will consider a fam-
ily of completely solvable 6-dimensional solvmanifolds constructed in [9] which is particularly interesting
because it admits invariant symplectic structures and invariant almost-complex structures but it does not
admit any integrable invariant complex structures. For this reason, in such a case, the computation of these
almost-complex invariants is particularly meaningful. We will consider on such manifolds an invariant fam-
ily of almost-Kadhler structures and we will compute h%”o, with p = 1, 2, 3. Furthermore, we will show that
these numbers, differently from the integrable case, can vary when the almost-complex structures are almost-
Kéhler and vary continuously (cf. [12]).

In fact, we will also construct an almost-complex structure which does not admit any compatible symplectic
structure and compute h’ai’o in this case.

Another example will be provided by the computations of hg’o, with p = 1, 2, 3 for an almost-Kdhler structure
on the Iwasawa manifold.
Moreover, denoting with u the (2, —1)-component of the exterior derivative d, in [15] we considered the
following differential operator (cf. also [8])
6:=0+ J7i

and studied the corresponding harmonic forms. In particular, we compute on the aforementioned families of
almost-Hermitian manifolds the §-harmonic forms of bidegree (p, 0).

One should notice that the spaces of 0-harmonic and §-harmonic forms on non-integrable almost-complex
manifolds do not have a cohomological counterpart. However, in [6] ]. Cirici and S. O. Wilson introduced a gen-
eralization of the Dolbeault cohomology on almost-complex manifolds constructing therefore new invariants
in this setting. By [5] these cohomology groups on compact almost-complex manifolds are not finite dimen-
sional in general. This means that we have a deep gap between Hodge theory and cohomological theory on
almost-complex manifolds. However, as noticed in [6], in special bi-degrees, e.g., (p, 0), the almost-complex
Dolbeault cohomology groups have finite dimensions. For this reason, we compute such groups in bi-degree
(p, 0), for the families of almost-complex manifolds considered above.

The paper is organized as follows: in Section 2 we start by fixing some notations and recalling the basic facts
of almost-complex geometry used in the rest of the paper. In Section 3 we construct families of almost-Kahler
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solvmanifolds with no left invariant complex structures and then we compute several numerical almost-
complex and almost-Hermitian invariants on them. The basic tools to compute the space of harmonic (p, 0)-
forms are suitable Fourier expansions series adapted to the lattices of the solvmanifolds. In Sections 5 and 6
we perform similar computations respectively on the same differentiable manifold endowed with an almost-
complex structure that does not admit any compatible symplectic structures and on the Iwasawa manifold
endowed with an almost-Kahler structure. Finally, we apply harmonic theory to give an obstruction to the
existence of compatible symplectic structures on almost-complex manifolds.

Acknowledgments. The authors would like to thank Luca Lorenzi for useful discussions on elliptic differential
operators. They also want to thank Weiyi Zhang for useful suggestions and remarks. Finally, they thank the
anonymous referee, for useful comments which improved the presentation of the results of the paper.

2 Preliminaries

In this Section we recall some basic facts about almost-complex manifolds and fix some notations. Let X be
a smooth manifold of dimension 2n and let J be an almost-complex structure on X, i.e., a (1, 1)-tensor on X
such that J2 = -Id. Then, J induces a natural bigrading on the space of complex valued differential forms
A*(X), namely
A'X) = P A
p+q=*

According to this decomposition, the exterior derivative d splits into four operators
d: API(X) — AP*2I(X) @ APTHI(X) @ APTH(X) @ APTHI(X)
d=pu+0+0+j,
where u and ji are differential operators that are linear over functions. The almost-complex structure J is
integrable, that is J induces a complex structure on X, if and only if u = ji = 0.
In general, since d? = 0, one has the following relations

TS =

UO + Ou
0% + o +opu
00 + 00 + uji + jiu

3+ 10 + Oft
10 + Ojfi =

Il
SO OO © O oo

and so the Dolbeault cohomology of X

is well defined if and only if J is integrable.
If g is an Hermitian metric on (X, J) with associated fundamental form w and * denotes the Hodge-*-operator,
one can consider the following differential operator

A5:=00 +00.
This is a second order, elliptic, differential operator and we will denote its kernel by

ﬂfg’q (X) := Ker A<

Oapacy

If X is compact this space is finite-dimensional and its dimension will be denoted by hg’q(X). By [12] we know
that these Hodge numbers are not almost-complex invariants, more precisely they depend on the choice of
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the Hermitian metric.
In [15] we considered the following differential operator (cf. also [8])

6:=0+p

and we set
A5 = 58" + 55,

This is a second order, elliptic, differential operator and we denote with

kiy) .o )
Hz(X) KerAé‘Ak(X)

the space of §-harmonic k-forms and with
DA(X) .= ,
Nt X) := KerAa‘Ap.q(x)

the space of §-harmonic (p, q)-forms. If X is compact these spaces are finite dimensional, and we will set
h’g(X) and h’g’q(X) for their dimensions respectively.
Moreover, if we set

Ay =pp +pu,

we have that the associated spaces of harmonic forms J—C,’;' (X) and 7, (X) are infinite-dimensional in general.
Indeed, p is linear over functions.
In [15, Proposition 5.5] we showed that on a compact almost-Hermitian manifold (X, J, g) we have

3{3(X) NH(X) C i}fg(X)
and on bi-graded forms we have the equality (cf. [15, Remark 5.6])

IE°(X) N 96" (X) = 3 ().

3 Families of Almost-Kdhler solvmanifolds with no left-invariant
complex structures

We recall the following construction from [9]. Let G be the following connected 2-step solvable 6-dimensional
Lie group

e 0 xe 0 0 y;
0 et 0 xe' 0 y,
¢
G:= g g f) e(zt 82 V1,Y2,21,22, L, x € R
0 0 0 0 1 ¢t
o o 0o o o0 1]
and set
el = dt
e’ = dx
e = eldy, —xeldz
et = eldy, -xeldz,
e’ = eldz
e® = eldz
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for a basis of left-invariant 1-forms on G, and the dual basis is given by

e = %
ey = z)ix
e; = etaiy1
e, = e‘t%
es = ez +xe' P
e = e’ + xe‘taiyZ
In particular, the following structure equations hold
de! = 0
de? = 0
de3 = _el3_e2
de* = el4_e26
deS = —el®
de® = e1°

where, as usual, we set el :=el A e, and
ler, es]l =[es, esl=e3, [er,es]l =-[es, el =-e4, ler,esl=es, [e1,eq]l=-e¢.

Let g be the Lie algebra of G, then g is completely solvable. In fact, G can be seen as a semidirect product
G = R? x ¢ R*, where for every (¢, x) € R?,

~t

ot x) R 5RY, @t0= |0 & O X
0 0 e 0

0 0 0 ef

and the group operation on G is given by
(f,X,Y1,)’2,21’ZZ)* (t,’x,’yll’yIZ’Z,l’Z,Z) =

<t+ t,x+x,y1e' +xziet +y1,y,e t +xz0e  +y,, z1et + 21, Z5e7t +zz> .

A lattice I' for G can be constructed as follows. Let B € SL(2, Z) be a unimodular matrix with integer entries
and distinct eigenvalues e?°, e"%, Then there exists a real invertible matrix P such that

-1 e?o 0
PBP _[0 ey

LetT := apZ x Zand L := ((my, my)P", (ny, ny)P') with my, my, ny, ny € Z. Then, I := I' xp L is alattice in
G and we set X := I'\ G for the associated solvmanifold. In fact, X has the structure of a T*-bundle over T2.
As proven in [9], X is a completely solvable solvmanifold which admits symplectic structures but none of
them satisfies the Hard Lefschetz condition. Moreover, X is not formal but all the triple Massey products
vanish. Finally, X does not admit any invariant integrable almost complex structure.

Now we construct a family of left-invariant almost-complex structures on X. As noticed in [9] the arbitrary
left-invariant symplectic structure on X is given by

Wapc = ae'? + be®® + c(e3® + e®) (3.0)
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with a, b, c € Rand a, ¢ # 0. We define the following compatible almost-complex structure J, p .,

]a,b,cel = ae
Jabc€2 = —iei
]a,b,ce3 = Cégq
Jap,cs = ces—Dbes
]a,b,ceS = —%64 + beG
Jabces = —les

and it acts on forms by
]a,b,ce1 = _%ez
Jap.c€® = ael
Jabce’ = -be' - Lef
]a,b,ce4 = _%65
Japce® = ce
Jap.c€® = be®+ce’

Hence, (U4 p.c, Wa p,c) is a family of left-invariant almost-Kahler structures on X.
A global co-frame of (1, 0)-forms is provided by

1 2

@' = ae' +ie?, @* := be® + cée’

+ie® s (p3 = ce* +ie’ s

and the dual frame of (1, 0)-vectors is given by

V1 = % <%el - iez) s Vz = % <%63 - ie6) s V3 = % (%6’4 - i€5 + 1'283) .

In particular, the complex structure equations become

1

dp* = 0
2 _ ¢p13_1,12 ¢, 13, ¢, 31_ 1,12, c, 13
dp™ = Q7 =P =G0 L9~ g TH P
3 _ c 12 Cc,n12 1 13 Cc 021 Cc,n12 1 13
dp> = 07 =50 "+ 5507 T 59T F 5P+ 550

4 Numerical almost-complex and almost-Hermitian invariants on
(Xs ]a,b,c: wa,b,c)

In this section we compute several almost-complex invariants on (X, J; p ¢, Wg,p,c) Where w, j . was defined
in (3.1). In particular, we start with the Hodge numbers hg’o, withp =1, 2, 3.

4.1 Computations for 3

We compute now 3{%’0 for X := (X, Jq.p.c» Wa,p,c)- Let

l,b =A(P123

with A smooth function on X, be an arbitrary (3, 0)-form on X. By degree reasons, 1 is 9-harmonic if and only
if 01 = 0. Since @123 is 0-closed we have

Sl/) - _Vl(A)(p123i _ VZ(A)q)lZBi _ VB(A)(p123§’

hence 0 = 0 if and only if
V1(4) = V,(4) = V3(4) =0
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hence (V,V; + V,V, + V3V3)(A) = 0. A direct computation shows that

- - _ 19> 0? 1+b%2 5\ 292 5 92
4(V1V1+V2V2+V3V3)(A)=aZatz+aX2+(Cz+x>e a—y%+e 672'%

1 o2 2
+ (—2 +x2) e 2t%+e Zt%.
¢ Y2 Z3
Hence, V1V, + V,V, + V373 is an elliptic differential operator and consequently we have that A is constant.

Therefore,
3,00y _ /123
9{5 X) = <go >

and h%’o =1.

4.2 Computations for }(;°

Let
Y =Ap' + Bp® + Do’

with A, B, D smooth functions on X, be an arbitrary (1, 0)-form on X. By degree reasons, i is 0-harmonic if
and only if 01 = 0. Using the structure equations we have

Y = -1 (Al - V,(A)p"2 - V3(4)p" - 71(B)p?! - V2(B)p?? - V5(B)p?

_7,(D)g*! - (D) - T5(D)g™ - ;%¢1z _ %B(pﬁ +B£(p31 _ %D(pli N %D(pﬁ} + %D(pzi’
hence 0y = 0 if and only if
V1(4) =0
V,(A)+ 4B+5D = 0
73)+1B-LD = o
Vi(B)- D = 0
V,(B) =0
V3(B) = 0
7,(D) - ¢B -0
V(D) = 0
75(D) =0

In particular, by V,(B) = V3(B) = 0 we have that V, V,(B) = V3V3(B) = 0and V, V, + V3 V5 is a strictly elliptic
operator without zero order terms when B is viewed as function of y1, y», z1, z>. Since the fiber is compact by
the maximum principle B is constant on the fibers, then B is a function on the base with (¢, x) as coordinates.
Namely, B = B(t, x) and similarly by the previous system, D = D(t, x).

As a consequence, from the first three equations

(V1 Vl + Vsz + V3 V3)(A) =0

then A is constant.
The previous system reduces to

1

ﬂB + %D = 0
#B-+D =0
ViB)-¢D = 0
ViD)-$B = 0

In particular,
2
B=—ED, and acc+4 =

2 4a
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Therefore we have two cases to consider. First, if a’c + 4 # O then
D=0, B=0, A=const

hence
a0 (o")
and h%’o =1.
If a’c+ 4 =0, since B = -4 D, the system reduces to
{ ETiD)+ 4D -
Vi(D) + % =

that is

V1(D) + D 0
2
(-5 +5a)p = o
By the first equation we have (~a’c? + 4)D = 0, and recalling that a’c + 4 = 0, we have two cases. If a # +2

then
D=0, B=0, A-=const

(o)

hence

and h10 = 1.
If a = +2, we are left with
V1(D) = %D =0, B=zxD, A =const.

Since D = D(t, x), we can expand in Fourier series and get

iAo+ 2
D= Z DAHGZm(AXJr e t)
AMUEZ

with Dy, constants for every A, p € Z. The equation V(D) + %D = 0 becomes

1. .u 1
(EZma—0 =21A)Dy,, * ED"” =0

namely,
(-4mA £ 1) +i(an 2 1) Dy, =0
ap a i
and since -47A £ 1 # O for every A € Z we have that Dy, = O for every A, y € Z. Therefore,
D=0, B=0, A=const

hence
%= (o'

1,0 _
and h5 =1.
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4.3 Computations for 3>
Let
l/) =A(P12 +B(P13 +D¢23

with A, B, D smooth functions on X, be an arbitrary (2, 0)-form on X. By degree reasons, i is 9-harmonic if
and only if 91 = 0. Using the structure equations we have

o = V1(A)e2l + 7,(A)p122 + V5(A)p' B + V1 (B)p'3l + V,(B)p!32+
+V3(B)(p133 + Vl(D)(pBi + VZ(D)(pBi + T_/3(D)<p233 _ %A(pl3i+
_%B(plzi +Dﬁ‘/’13z 4 %D(pné _ %D(plzi " %D(plzé,

hence 0y = 0 if and only if

Vi4)-$B = 0
,A)-$D = 0
734 +4£D = 0
i(B)-$A =0
VQ(B)+%D 0
V3(B)+%D = 0
V1(D) = 0
V,(D) = 0
V(D) =0

From the last three equations we obtain immediately that D = const. Hence, from the system we have that
V,V5(A) = V3V5(4) = V,V2(B) = V3V5(B) = 0
hence, with a similar argument used before we have that
A =A(t,x), B=B(,x).

In particular, this implies that

We can expand in Fourier series and get

. m i i
A= Z AAyezm(AH o t), B= Z BAHeZm(AH ™ t)
AUEZ AuEZ

with A, By, constants for every A, u € Z. The first and fourth equations become respectively

1. .u c _

1, .pu c, _
<Ezﬂla70 - 27TA> BAH - EAAV = 0.

Summing the two equations we get

c, .1 J2i
((—271/1 - E) + I(EZHa—O)> (A/\u + B,l“) =0.
Now we consider two cases: ¢ € 4nZ and ¢ € 4n7Z.
If c ¢ 417, then A At B =0 for every Au € Z, implying that A = —B. In this case, we obtain the following
equation
71(4) + %A -0
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and so

_ [ . -
(( 27A + 2)+l(a2ﬂao)) Ay, =0.

Therefore, under our assumption A,, = 0 for every A, u € Z and therefore By, = O for every A,y € Z. Asa
consequence we have that if ¢ ¢ 417,

A=0, B=0, D=0

hence
H2O0 -0
F)

and hg’o =0.
If ¢ € 417, we set ¢ = 4k with k € Z \ {0}, since by construction ¢ # 0. The equation becomes

((—Zn}l - 2mk) + i(%Zﬂaﬂ)) (Apy + By = 0.
0

If (A, ) # (=k, 0) then Ay, + By, = 0, otherwise the equation is trivially satisfied.
Suppose that (A, p) # (-k, 0), then A Ax = —Bjy, and the first equation becomes

K )) Ap = 0.

L1
((—271/1 +27k) + 1(52na—0

Hence, if, moreover (A, p) # (k, 0) then A, = -B,,, = 0. Namely, resuming we have that

e Ay, =By, = 0if (A, p) # (£k, 0)
® Ao =-Bio =0
¢ we have no informations on A_;q, B_jo.

The Fourier expansions reduces to
A= AkOekax " A_koe—kax

and
B= _AkOQkax + B_koe—kax .

In particular, the equation V1(A) - 7B = 0becomes
27tk(A_io - B_yo)e 2™ = 0
giving A_;o = B_;o, and also the other equations are now satisfied. Therefore,
A= Appe?™ 4 4 ek B o ey g ek p g

satisfy the system of equations for 9{;0 hence, if c € 4n1Z, ¢ # 0, h%’o =2.

Therefore, we just proved the following

Theorem 4.1. Let (X, ], p ¢, Wq,p, ) be the family of almost-Kéhler manifolds previously constructed. Then,

1,0 _
¢ h20=1,
o B2 _ 0 if c¢4nZ
B 2 if ce4nZ ’
o W30 =1,
0

An immediate consequence is the following result that marks a difference with the integrable case (cf. also

[12]).
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Corollary 4.2. The Hodge numbers can vary when the almost-complex structures are almost-Kdhler and vary
continuously.

We compute now the almost-Hermitian invariants h’g’o, withp =1, 2, 3.
First of all we recall that on bi-graded forms SJ-C;” = 9—%" N H,;;*, in particular for bidegree reasons

1,0 1,0
HYO = 320,

hence we are left to compute f}(?s’o and ﬂ{g’o.

4.4 Computations for 3}

Let g, p,. be the Hermitian metric associated to (J, p ¢, W4 o) Where w, j, . is defined in (3.1).
It is immediate to see that
HO = 9(;0 NKer(u").

Since 9%0 = (@'23) we set p = Ap'?> with A € C. Then, ¢ € Ker(u") if and only if 1 * tp = 0. Since
*h = A - const - ¢'23 and, by the structure equation

no123 - 1 1313 € 1313 € on2ia 1 4213
Hp =509 2? 447 *54%

we have that i * i = 0 if and only if A = 0. Therefore,
°=1{0}

and hg’o =0.

4.5 Computations for 33"

It is immediate to see that
K50 =330 NKer ().

If ¢ ¢ 4n7Z then 9{%0 = {0}, hence 33 = {0}.
Let us assume that ¢ € 4717, namely ¢ = 4mk, with k € Z \ {0}.
Since
G020 - <ezmkx(p12 _ e2nikx(p13, e—2ﬂikx(p12 + e—2m’kx(p13>

We set
I,b _ A(ekax(plz _ eankx¢13) + B(e—kax(plz + e—kaxq)B)

with A, B € C. Then, i € Ker (u") ifand only if ji * 1 = 0.

We get
xp12 = L 1233 * 13 _ 1232
=5 ‘P @ ) <P
For instance, by the definition of the C-linear Hodge * operator we have that
3 . .
12 12 12,2 w a,b,c 12,2 112233 2 112233 1 112233 1 121233
A U B fIco " 72<p =53¢ =59

and @U A *@12 = 0 for (i, j) # (1, 2). This shows that *@'2 = §<p1233
Hence, we have that

1 omikx, 1233 | 2mikx, 1233 I, _omikx 1233 _ -2mikx, 1233
*l/)=A§(e 10} +e 10} )+B§(e 0} -e ).
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By the structure equations

- 1233 _ € 13123 _ 1 12133 - 1233 _ 1 43133 | C 12133
Hence, we obtain
= ko — 012123 i.¢c 1 onike i.¢ 1 omike
E {A2(4 2¢ B3T3 ’

13123 [ 4 1,C . 1 onmikx 1,1 ¢y omike
¢ {A2(4+2a)e +B3(za ~%)e ]

Therefore, it * i = 0 if and only if
C_ 1) amit , g€, 1)
A(Z za)e +B(4+2a) 0,

and 1 1
Cc L\ amikx R
A(4+2a)e +B(2a 4) 0.

This implies that A = B = 0, namely ¢ = 0.
Therefore,
320 = {0}

and h;,o =0.

Therefore, we just proved the following

Theorem 4.3. Let (X, ], . ¢, Wq p.c) be the family of almost-Kéhler manifolds previously constructed. Then,

1,0 _
“he b
"o
) hs’ =0.

. . p’o
Now we compute the dimension of the almost-complex Dolbeault cohomology groups Hp .

First of all, notice that by [6, Proposition 4.10],

p,O ~ p’o 17
Hpy =~ 9—(5 N Ker i

4.6 Computation of H.. and H)'\
Clearly, by the structure equations and by the previous computations
1,0 _ q,1,0 /1
Hy |~ J—CE NKerpu = <<p > .
Now, since J{%’O = (¢'?%) and by a direct computation jip'?> # 0, one has that

Hpg = {0}

. 2,0
4.7 Computation of Hy)
Notice that, if ¢ ¢ 471Z, then ﬂ-%’o = {0} and so

Hpg = {0} -
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Let now ¢ € 4n7Z, then

3_%,0 _ <e2”i"x<p12 _ ez”ik"<p13, e—2nikx(p12 + e—2nikx(p13>
We set

l/) _ A(ekax(pH _ ezka@B) + B(e—kax(PlZ + e—2mkx¢13)
with A, B € C. Since

a2 = i(pﬁz _ %(plié b = _%(plii N %(plié ’
then, jy = 0 if and only if

c 1\ 4mikx 1 _ ¢y
A(4+2a)e +B(2a )=0

4
and 1 1
_C L amikx _c_ 1y
A( 4+2a)e + B( 7 Za) 0.
This implies that A = B = 0, and so
HYY = {0}.

Therefore we proved the following

DE GRUYTER

Theorem 4.4. Let (X, ], p,c» Wa,p,c) be the family of almost-Kéihler manifolds previously constructed. Then,

3,0 _
* hDol =0.

5 An almost-complex structure with no compatible symplectic

structures

We will construct now an almost-complex structure J on X which does not admit any compatible symplectic

structures. We set as a global co-frame of (1, 0)-forms
@' = el+ie2, @? :=e3+iel‘, @ :=e5+ie6,

and the dual frame of (1, 0)-vectors is given by

1 . 1 . 1 .
W1 = 5 (e1 - leZ) , Wz = 5 (63 - 194) ’ W3 = E (65 - 16’6) .

The complex structure equations become

do' = 0 ] ] B
i - 400 0y o 0"
d@ = _j(p _j@

Notice that the almost-complex manifold just constructed does not admit any compatible symplectic
structures. Indeed, by contradiction, if (X, J) admits a compatible symplectic structure then, by a symmetriza-
tion process it also admits a compatible left-invariant symplectic structure. As noticed before, every left-

invariant symplectic structure on X is given by

Wapc = ae'? +be®® +c(e®® +e*)

with a, b, c € R and a, ¢ # 0. Hence, by construction J cannot be compatible with any of these symplectic

structures.
We compute now the Hodge numbers hg’o, forp=1,2,3.
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5.1 Computations for 3 *°

Let
P = AD' + BO®? + CP?

with A, B, C smooth functions on X, be an arbitrary (1, 0)-form on X. By degree reasons, ) is 9-harmonic if
and only if 01 = 0. Using the structure equations we have that 01 = 0 if and only if

W1 (4)
Wy(4)+iB =
w4 +ic =
W1(B) =
W, (B) =
W3(B) o=
W1 (C) - 5B =
W5(C) =
ws(C) =

O O OO O oo oo

Then from W;(B) = W,(B) = W5(B) = 0 we get with similar arguments used before that B is constant. Hence
(W1 Wl + Wz Wz + W3 W3)(C) =0

and so C is also constant. As a consequence, the same holds for A. Therefore, having A constant, this implies
that B = C = 0. Therefore,
B=0, C=0, A =const

hence
320 = (@)

1,0 _
and h5 =1.

5.2 Computations for 3(2°
Let
Y = AD'? + BV + co??

with A, B, C smooth functions on X, be an arbitrary (2, 0)-form on X. By degree reasons, i is 9-harmonic if
and only if 01 = 0. Using the structure equations we have that 0y = 0 if and only if

W1(A)
W, (4) =
ws4)-3c =
W,(B)- 1A =
W2(B) + %C =
W5(B) =
W1(C) =
W (C) =
Wws(C) =

O O OO0 O oo oo

Then from W1 (C) = W>(C) = W3(C) = 0 we get with similar arguments used before that C is constant. Hence
(W, W1+ W, W, +W5W3)(A) = 0 and so A is also constant. This implies that C = 0 and therefore B is constant
leading to A being zero. Namely

A=0, C=0, B-=const
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hence
2,0 _ /113
520 = <q> >
2,0 _
and h5 =1.
5.3 Computations for 3°
Let
ll) - A(D123

with A smooth function on X, be an arbitrary (3, 0)-form on X. By degree reasons, i is 0-harmonic if and only
if 01 = 0. Since @23 is 0-closed we have that 01 = 0 if and only if

W1(A) = W, (4) = W5(A) =0
hence (W, W, + W, W, + W3W3)(4) = 0 and so we have that 4 is constant. Therefore,
3,005 _ /123
320(X) = <<1> >
and h%,o =1.
Therefore, we just proved the following

Theorem 5.1. Let (X, ]) be the almost complex manifold previously constructed. Then,

1,0 _

.« mMO-1,
. h%’o =1,
5,0 _

. hg 1.

Let now w be the following Hermitian metric

w = % (@' + 0?2+ ).

We compute now the numbers hg’o, forp=1,2,3.
First of all, as noticed before, for bidegree reasons
1,0 _ 41,0
H 5 = 9{5 R

hence we are left to compute J{l%’o and ﬂ-fg’o.

5.4 Computations for (3

It is immediate to see that
H2O = 9{%0 N Ker (u").

Since 9{%0 = (®13) we set p = A®' with A € C. Then, 1 € Ker (u”) if and only if f1 * i = 0. Since *i) =

~AL@'232 and, by the structure equations

_ 223 _ 1315 1 013
PP = -S04 S0
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we have that . i .
iy =A%(Dl /\ﬂ((DB) AP = —A%(Dlle.
Then, it * = 0 if and only if A = 0. Therefore,
H20 = {0}

and h?s’o =0.

5.5 Computations for 3°

Clearly, as before
3,0 _ 43,0 *
3 —ﬂ-fg NKer(u).

Since J—C%’O = (@23 we set i = AD'? with A € C. Then, i € Ker(u") if and only if ji * 1 = 0. Since
*ih = A®'23 and, by the structure equations

_ 1 1312 1 .1213
* = —_— _—

pryp=A (ZCD 2CD ) .

Then, it * = 0 if and only if A = 0. Therefore,
320 = {0}
3,0 _

and h(-3 =0.
Therefore, we just proved the following

Theorem 5.2. Let (X, J, w) be the almost-Hermitian manifold previously constructed. Then,

1,0 _
e T
o
. h[s’ =0.

We compute now the dimensions of the almost-complex Dolbeault cohomology groups Hgﬁ, for
p=1,2,3.

As done above, notice that by [6, Proposition 4.10],
0 _ a0 _
HY ~ Jf% N Ker fi.
. 1,0 2,0 3,0
5.6 Computations for J(y;, Hy,, and Iy,
Clearly, by the structure equations and by the previous computations
Hig = 320 nKerp= (') .
Now, since J{%O = (@"3) and by a direct computation p®*? = %(D113 # 0, one has that
2,0
Hp, ={0}.
Similarly, since J{%’O = (@'??) and by a direct computation i®'* # 0, one has that
3,0
Hy ={0}.

Therefore, we just proved the following
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Theorem 5.3. Let (X, J) be the almost complex manifold previously constructed. Then,

6 The lwasawa manifold

We study now another 6-dimensional example. Let I be the Iwasawa manifold defined as the quotient I :=
I'\H3 where

1 z1 z3
H3 = 0 1 2z |Zl,Zz,23€(C
0O 0 1
and
1 7
Ir:.= 0 1 | Ilv,y 71 €Zli]
0o 0 1

Then, setting z; = x; + iy}, there exists a basis of left-invariant 1-forms {e;} on I given by

61 = dX1
e’ = dy
e = do
e* = dy, ’
e = dxs-xidx;+yidy;
e = dys;-xidy,-yidx;
and the dual basis is given by
e = bixl
e = %
es = % + X1 6673 Lp4! %
€y = ﬁ 4! 0%3 X1 %
e = 61)(3
g = %
The following structure equations hold
de! = 0
de’ = 0
de> = 0
de* = 0
de® = -—elB et
d€6 - _el4 _ 6’23

We define the almost-complex structure J setting as global co-frame of (1, 0)-forms
ol i=el +ie®, p* = e’ +ie’, @ = e +ie

and let 1 1 1
V1= 5 (e1 —ieg) Va2 =5 (€2 —ies) , V3= 5 (e3 ~ieu)
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be the dual frame of vectors. In particular, the complex structure equations become

dp' = -tpC-leP+leB-lpB+ 19+ lp3?4 Lo - Lo
d(pz _ —Z(plg+%<p23—£¢1§—%<p2§+£¢3i—%(ﬁ32—£¢13—%¢23
dp> = 0

Notice that

is an almost-Kahler metric on I, in particular (J, w) is an almost-Kéhler structure on I.

We compute now the Hodge numbers h%”o, forp=1,2,3.

6.1 Computations for 3

Let
Y = Aga1 +B(p2 + C(p3

with A, B, C smooth functions on T, be an arbitrary (1, 0)-form on I. By degree reasons, 1 is 0-harmonic if
and only if 01 = 0. Using the structure equations we have that 01 = 0 if and only if

V1(4) =
72(4) =
-V3A)+tA-IB
V1(B) =
V>(B) =
V3(B)+ fA+ 1B
-0+ 1A+ 1B
_7(0)+1A-1B
73(C)

O O O O O O o oo

From V;1(4) = V»(4) = V1(B) = V5(B) = 0 we get that
(V1 Vl + V2 Vz)(A) =0 and (Vl ‘71 + V2 Vz)(B) =0

and so A = A(x», y») and B = B(x», y,) depend only on x, and y;.
Hence, from the last three equations we obtain (V1 V1 + V>V, + V3V3)(C) = 0 implying that C is constant.
Therefore, A + iB = 0 giving

~V3()+2A=0 and - V5(B)- 3B=0.
We can expand in Fourier series and get

A= Z A/\yezm(/lxzﬂzyz), B= Z BAHeZHi(/\xZwyz)
AMUEZ AUEZ

with Ay, By, constants for every A, u € Z. Therefore, V3(4) - 3A = 0 gives

(—m')l + U + %) Ay =0
and since p € Z we have that Ay, = 0 for every A, p € Z. Hence,

A=0 and B=0.
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Therefore,
A=0, B=0, C-=const
hence
= (o)
1,0 _
and h5 =1.

6.2 Computations for 32
Let
l/) =A(P12 +B(P13 + C(p23

with A, B, C smooth functions on T, be an arbitrary (2, 0)-form on I. By degree reasons, ¥ is 0-harmonic if
and only if 01 = 0. Using the structure equations we have that 01 = 0 if and only if

71(4) =0
V>(4) =0
73(4) =0
Vi(B)- 1A =0
7,(B) + ;A =0
V3(B)-1B+iC = 0
710+ 7A =0
72(0)+ LA =0
730+iB+1lc = 0

With similar arguments used above we have that A = const, B = B(x;, y,) and C = C(x,, y,). In particular,
since V1(B) = 0 we get that A = 0. Therefore, from

5 lp, i - i 1
V3(B)-;B+,C=0 and  V5(0)+ B+, C=0
we obtain V3(B - iC) = 0 hence, B - iC = const =: k. In particular,
73(B)- Tk =0
3 4

and so B is constant implying that also C is constant. Therefore, k = 0 giving B = iC.
Therefore,
A=0, B=iC =const,

hence
g{%o _ <i(p13 + g023>

and h%’o =1.

6.3 Computations for 3

Let

P=A <p123
with A smooth function on I, be an arbitrary (3, 0)-form on I. By degree reasons, i is 9-harmonic if and only
if 01 = 0. Hence 01 = 0 if and only if

V1(4) = V2(4) = V3(4) =0
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hence (V1 V; + V,V, + V3V3)(4) = 0 and, since V, V4 + V,V, + V3V;3 is an elliptic differential operator we
have that A is constant. Therefore,
3,00y _ /123
10 = (9'?)

and h%’o =1.
Therefore, we just proved the following

Theorem 6.1. Let (I, ], w) be the almost-Kdiihler Iwasawa manifold constructed above. Then,

1,0 _

e

. hs’ =1

o« B20=1.
0

We compute now the numbers h}g’o, forp=1,2,3.

First of all, as noticed before, for bidegree reasons
1,0 _ 41,0
H 5 = J{E s

hence we are left to compute J—C%’O and J—Cg’o.

6.4 Computations for 33

It is immediate to see that
320 = :Hg’o NKer (1).

Since
g_%,o — (ip" + 9?3,
we set
Y = Alip" + 9*)
with A € C. Then, i € Ker (u") if and only if i * i = 0. Since *1p = A - const - (=i@'232 + ¢'231) and by the

structure equations we have that
o 1233 _ 1 23133 1 13133

Hy —Zﬁl’ 4<P
and .

- 1231 _ 1 23123 1 13123

y(p - 4(p + 4(p
we get that

p*y=0
Therefore,
2,0 _ 02,0 _ 4 13 23
9{8 =HZ" = (ip” + )
2,0 _

andh(.s =1.

6.5 Computations for 3°

Clearly, as before

5{2’0 = f}{g’o NKer (1').
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Since 5{%0 = (p'?3), weset p = Ap'?3 with A € C. Then, { € Ker(u") if and only if 1 * i = 0. By the

definition of the Hodge operator, we have that
*h = A - const - ¢p*%3;

in view of the the structure equations, we obtain that

- 1 2313 1 2333, 1 1313, 1 1333
* = . . — —
pH*y =A-const (4<p 4(p +4go +Z<p )

Hence it * ¢ = O if and only if A = 0. Therefore,
3,0 _
I =10}

and hg,o =0.

Therefore, we just proved the following

Theorem 6.2. Let (I, ], w) be the almost-Kihler Iwasawa manifold previously constructed. Then,

* =1,
2,0 _
TN
e h2°=o0.

We compute now the dimensions of the almost-complex Dolbeault cohomology groups H’]S;S, forp=1,2,3.

As done above, notice that by [6, Proposition 4.10],

0 ap0 _
HP ~ ﬂ{g N Ker ji.

. 1,0 2,0 3,0
6.6 Computations for 3(;; |, Hi; and Hp
Clearly, by the structure equations and by the previous computations

Hig =3 nkeri= (¢°) .

Now, since J{g’o = (ip" + ¢*) and by a direct computation ju(ip'> + ¢*?) = 0, one has that

H[z);g = <i(p13 + g023> .
Since J{%’O = (¢'?%) and by a direct computation jip'?* # 0, one has that
Hpy = {0}

In particular, we have the following

Theorem 6.3. Let (I, ], w) be the almost-Kdihler Iwasawa manifold previously constructed. Then,

1,0 _
o hlz)oé =1,
* hpy =1,
o hyy=0

Dol — ™
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7 Obstructions to the existence of a compatible symplectic
structure on an almost-complex manifold

Let (X, J) be an almost-complex manifold and fix a Hermitian metric g with fundamental form w. Then, setting
6:=0+puand § := d + j1 one can consider the following differential operators

A :=86"+8"6,
As:=66 +686.

In [15] we studied Hodge theory for such operators, and even though they do not coincide in general, as a
consequence of the almost-Kahler identities, if (X, J, g, w) is an almost-Kdhler manifold, then A 5and Ag are
related by

Az =As.

In particular, their spaces of harmonic forms coincide, i.e. J5(X) = %E(X) .
We can use now this result to prove an obstruction to the existence of a compatible symplectic structure on
an almost-complex manifold.

Theorem 7.1. Let (X, ]) be a compact almost-complex manifold. Suppose that there exists ¢ € AY°(X) such
that 5(p = 0 and d¢ # 0. Then, there exists no compatible symplectic structure on (X, J).

Proof. Since, 5(p = 0 then, for degree reasons ¢ € Ker A for any arbitrary Hermitian metric. However, since
de # 0 then, for any fixed Hermitian metric, ¢ ¢ KerAgs. Namely, A3z # A5 and the thesis follows, since, by
[15] on almost-K&hler manifolds A = As. O

An immediate corollary is the following

Corollary 7.2. Let (X, ]) be a compact almost-complex manifold such that there exists a global co-frame of
(1, 0)-forms {(pi} such that, there exists an index j with

dg’ € A>°(X) & A%2(X)
and d(pj # 0. Then, there exists no compatible symplectic structure on (X, ]).
We apply this result to the following example.

Example 7.3. Let I be the Iwasawa manifold defined as the quotient I := I'\H3 where

1 =z Z3
H3:=¢ |0 1 2z|l|z1,22,23€C
0O 0 1
and
1 m
Fs==<¢10 1 | Iv,72,7 €Zli]
0O 0 1

Set ! := dzq, Y? := dz, > := dz; - z,dz,. Hence, the structure equations are
dpl =0, dyp?=0, dy’=-yp-,

therefore, by Corollary 7.2 the Iwasawa manifold with this almost-complex structure does not admit any com-
patible symplectic structure.
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Clearly, the converse implication does not hold as we have seen in Section 5.
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