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Abstract: LetM be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and
let ϖ : Â −→ M be the relative Albanese over M. We prove that Â has a natural holomorphic symplec-
tic structure. The projection ϖ de�nes a completely integrable structure on the symplectic manifold Â. In
particular, the �bers of ϖ are complex Lagrangians with respect to the symplectic form on Â. We also prove
analogous results for the relative Picard over M.
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1 Introduction
A compact Kähler manifold admits a holomorphic symplectic form if and only if it admits a hyperKähler
structure [1], [10]. To explain this, let X be a compact manifold equipped with almost complex structures
J1, J2, J3, and let g be a Riemannian metric on X, such that (X, J1, J2, J3, g) is a hyperKähler manifold.
Then g de�nes a C∞ isomorphism,

T0,1X g1−→ (T1,0X)* ,

where TRX ⊗C = T1,0X ⊕ T0,1X is the type decomposition with respect to the almost complex structure J1;
also J2 produces a C∞ isomorphism

T1,0X J′2−→ T0,1X .

The composition of homomorphisms

T1,0X J′2−→ T0,1X g1−→ (T1,0X)* ,

which is a section of (T1,0X)*⊗ (T1,0X)*, is actually is a holomorphic symplectic form on the compact Kähler
manifold (X, J1, g). The compact Kähler manifold (X, J1, g) is Ricci–�at. Conversely, if a compact Kähler
manifold admits a holomorphic symplectic form, then its canonical line bundle is holomorphically trivial
and hence it admits a Ricci–�at Kähler metric [10]. Let (X, J1, g) be a Ricci–�at compact Kähler manifold
equipped with a holomorphic symplectic form. Then we may recover J2 by reversing the above construction.
Finally, we have J3 = J1 ◦ J2.
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Let X be a compact Kähler Ricci–�at manifold admitting a holomorphic symplectic form. Fix a Ricci–
�at Kähler form ω on X (such a Kähler form exists [10]), and take a holomorphic symplectic form Φ on X.
It is known that Φ is parallel (meaning, covariant constant) with respect to the Levi–Civita connection on X
associated to ω [1, p. 760, “Principe de Bochner”], [9, p. 142].

Let M denote the moduli space of compact complex submanifolds of X that are Lagrangian with respect
to the symplectic form Φ. Consider the corresponding universal family of Lagrangians

Z −→ M . (1.1)

Let
ϖ : Â −→ M

be the relative Albanese over M. So for any Lagrangian L ∈ M, the �ber of Â over L is Alb(L) =
H0(L, Ω1

L)*/H1 (L, Z). This φ is a holomorphic family of compact complex tori over M.
We prove the following (see Theorem 3.3):
The complex manifold Â has a natural holomorphic symplectic form.
The symplectic form on Â is constructed using the canonical Liouville symplectic form on the holomor-

phic cotangent bundle T*M of M. The symplectic form Φ on X is implicitly used in the construction of the
symplectic form on Â. Recall that the Lagrangian submanifolds, and hence M, are de�ned using Φ.

We prove the following (see Lemma 3.4):
The projection ϖ : Â −→ M de�nes a completely integrable structure on the symplectic manifold Â. In

particular, the �bers of ϖ are Lagrangians with respect to the symplectic form on Â.
In Section 4 we consider the relative Picard bundle over M for the family Z in (1.1). Let

ϖ0 : A −→ M

be the relative Picard bundle for the family Z.
We prove thatA is equipped with a natural holomorphic symplectic structure; see Proposition 4.3.
Let ΘA denote the above mentioned holomorphic symplectic structure on A. The following lemma is

proved (see Lemma 4.4):
The projection ϖ0 : A −→ M de�nes a completely integrable structure onA for the symplectic form ΘA.
These results are natural generalizations of some known cases of integrable systems, such as the Hitchin

system [4] or the Mukai system [7] (see also [2]). One of our motivations has been mirror symmetry; we hope
to come back to the study ofA and Â from the point of view of hyperKähler geometry.

2 Cotangent bundle of family of Lagrangians
Let X be a compact Kähler Ricci–�at manifold of complex dimension 2d equipped with a Kähler form ω. Let
Φ be a holomorphic symplectic form on X which is parallel with respect to the Levi–Civita connection on X
given by the Kähler metric on X associated to ω.

A complexLagrangian submanifold ofX is a compact complex submanifold L ⊂ X of complexdimension
d such that ι*Φ = 0, where

ι : L ↪→ X (2.1)

is the inclusion map.
It is known that the in�nitesimal deformations of a complex Lagrangian submanifold of X are unob-

structed [6], [8], [5]. Furthermore, the moduli space of complex Lagrangian submanifolds of X is a special
Kähler manifold [5, p. 84, Theorem 3].

Let M be the moduli space of complex Lagrangian submanifolds of X. Let

L ⊂ X
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be a complex Lagrangian submanifold. The point ofM representing Lwill also be denoted by L. Let NL −→ L
be the normal bundle of L ⊂ X; it is a quotient bundle of ι*TX of rank d, where ι is the map in (2.1). The
in�nitesimal deformations of the complex submanifold L are parametrized by H0(L, NL). Since L is complex
Lagrangian, the holomorphic symplectic form Φ on X produces a holomorphic isomorphism

NL
∼−→ (TL)* = Ω1

L ,

where TL (respectively, Ω1
L) is the holomorphic tangent (respectively, cotangent) bundle of L. Using this iso-

morphism we have
H0(L, NL) = H0(L, Ω1

L) .

Among the in�nitesimal deformations of the complex submanifold L, there are those which arise from defor-
mations within the category of complex Lagrangian submanifolds, meaning those arise from deformations
of complex Lagrangian submanifolds as Lagrangian submanifolds. An in�nitesimal deformation

α ∈ H0(L, NL) = H0(L, Ω1
L)

of L lies in this subclass if and only if the holomorphic 1–form α on L is closed [5, pp. 78–79]. But any holomor-
phic 1–form on L is closed because L is Kähler. Therefore, M is in fact an open subset of the corresponding
Douady space for X.

Consider the Ricci–�at Kähler form ω on X. The form

ωL := ι*ω (2.2)

on L is also Kähler, where ι is the map in (2.1). Therefore, the pairing

ϕL : H0(L, Ω1
L)⊗ H1(L, OL) −→ C , w ⊗ c 7−→

∫
L

w ∧ c ∧ ωd−1L (2.3)

is nondegenerate. We shall identify H1(L, OL) with H0(L, Ω1
L)* using this nondegenerate pairing.

It was noted above that
TLM = H0(L, NL) = H0(L, Ω1

L) . (2.4)

Using the pairing in (2.3) and (2.4), we have

T*LM = H0(L, Ω1
L)* = H1(L, OL) . (2.5)

Let
Z ⊂ X ×M (2.6)

be the universal family of complex Lagrangians over M. So Z is the locus of all (x, L′) ∈ X × M such that
x ∈ L′ ⊂ X. Consider the natural projections pX : X ×M −→ X and pM : X ×M −→ M. Let

p : Z −→ X and q : Z −→ M (2.7)

be the restrictions of pX and pM respectively to the submanifold Z ⊂ X × M. So p(q−1(L′)) ⊂ X for every
L′ ∈ M is the Lagrangian L′ itself.

LetΩ1
Z/M −→ Z be the relative cotangent bundle for the projection q toM in (2.7). It �ts in the short exact

sequence of holomorphic vector bundles

0 −→ q*Ω1
M −→ Ω1

Z −→ Ω1
Z/M −→ 0

over M. The direct image R1q*OZ �ts in the short exact sequence of sheaves on M

0 −→ R0q*Ω1
Z/M −→ R1q*C −→ R1q*OZ −→ 0 , (2.8)
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where C is the constant sheaf on Z with stalk C. The direct image R1q*C is a �at complex vector bundle,
equipped with the Gauss–Manin connection. We brie�y recall the construction of the Gauss–Manin connec-
tion. For any point L′ = y ∈ M, let Uy ⊂ M be a contractible open neighborhood of y. Since Uy is con-
tractible, the inverse image q−1(Uy) is di�eomorphic to Uy ×L′ such that the di�eomorphism between q−1(Uy)
and Uy × L′ takes q to the natural projection from Uy × L′ to Uy. Using this di�eomorphism, the restriction of
R1q*C to Uy coincides with the trivial vector bundle

Uy × H1(L′, C) −→ Uy (2.9)

with �ber H1(L′, C). Using this isomorphism between (R1q*C)|Uy and the trivial vector bundle Uy ×H1(L′, C)
in (2.9), the trivial connection on the trivial vector bundle in (2.9) produces a �at connection on (R1q*C)|Uy .
This connection on (R1q*C)|Uy does not depend on the choice of the di�eomorphism between q−1(Uy) and
Uy × L′. Consequently, these locally de�ned �at connections on R1q*C patch together compatibly to de�ne a
�at connection on R1q*C. This �at connection is the Gauss–Manin connection mentioned above.

Since the Gauss–Manin connection on R1q*C is �at, and M is a complex manifold, the Gauss–Manin
connection produces a natural holomorphic structure on the C∞ vector bundle R1q*C. The direct image
R0q*Ω1

Z/M is a holomorphic subbundle of R1q*C, but it is not preserved by the �at connection in general.
The holomorphic structure on the quotient R1q*OZ induced by that of R1q*C coincides with its own holo-
morphic structure; the �ber of R1q*OZ over any L′ ∈ M is H1(L′, OL′ ).

Since ωL in (2.2) is the restriction of a global Kähler form on X, the section of R2q*C

M −→ R2q*C , L′ 7−→ [ωL′ ] = [ω|L′ ] ∈ H2(L′, C)

is covariant constant with respect to the Gauss–Manin connection on R2q*C. Consequently, the homomor-
phism

(R1q*C)⊗ (R1q*C) −→ C , (2.10)

that sends any v ⊗ w ∈ (R1q*C)t ⊗ (R1q*C)t, t ∈ M, to∫
q−1(t)

v ∧ w ∧ (ω|q−1(t))
d−1 ∈ C

is also covariant constant with respect to the connection on (R1q*C)⊗ (R1q*C) induced by the Gauss–Manin
connection on R1q*C. Hence the pairing in (2.10) produces a holomorphic isomorphism of vector bundles

(q*Ω1
Z/M)*

∼−→ R1q*OZ (2.11)

onM. The restriction of this isomorphism to any point L ∈ M coincides with the isomorphism H0(L, Ω1
L)* =

H1(L, OL) in (2.5).
On the other hand, the pointwise isomorphisms in (2.4) combine together to produce a holomorphic iso-

morphism of vector bundles
Ω1
M
∼−→ (q*Ω1

Z/M)* (2.12)

onM. Composing the isomorphisms in (2.11) and (2.12), we obtain a holomorphic isomorphism of vector bun-
dles

χ : Ω1
M −→ R1q*OZ (2.13)

over M.
For notational convenience, the total space of R1q*OZ will be denoted by Y. Let

γ : Y −→ M (2.14)

be the natural projection. Consider the canonical Liouville 1-form on Ω1
M. Using the isomorphism χ in (2.13)

this Liouville 1-form on Ω1
M gives a holomorphic 1-form on Y. Let

θ ∈ H0(Y, Ω1
Y) (2.15)
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be theholomorphic 1-formgivenby the Liouville 1-formonΩ1
M. Note that for any L ∈ M, and any v ∈ γ−1(L),

the form
θ(v) : TvY −→ C

coincides with the composition of homomorphisms

TvY
dγ−→ TLM = H0(L, Ω1

L)
ϕL(−,v)−→ C ,

where ϕL is the bilinear pairing constructed in (2.3), and dγ is the di�erential of the projection γ in (2.14); the
above identi�cation

TLM = H0(L, Ω1
L)

is the one constructed in (2.4).
It is straight-forward to check that the 2-form

dθ ∈ H0(Y, Ω2
Y) (2.16)

is a holomorphic symplectic form on the manifold Y in (2.14). Indeed, dθ evidently coincides with the 2-form
on Y given by the Liouville symplectic form on Ω1

M via the isomorphism χ in (2.13).

3 The family of Albanese tori
Take a compact complex Lagrangian submanifold L ⊂ X represented by a point of M. We know that T*LM ∼=
H0(L, Ω1

L)* (see (2.4)). Note that the non-degenerate pairing

H1,0(L)⊗ Hd−1,d(L) −→ C , α ⊗ β 7−→
∫
L

α ∧ β ,

which is also the Serre duality pairing, yields an isomorphism

H0(L, Ω1
L)* ∼= Hd(L, Ωd−1L ) .

For a �xed L, we have the Hodge decomposition

H2d−1(L, C) = Hd,d−1(L)⊕ Hd−1,d(L) ;

but if we move L in the family M, meaning if we consider the universal family

q : Z −→ M

in (2.6), then only Rd−1q*ΩdZ/M is a holomorphic subbundle of R2d−1q*C, and we have the short exact se-
quence of holomorphic vector bundles

0 −→ Rd−1q*ΩdZ/M −→ R2d−1q*C −→ Rdq*Ωd−1Z/M −→ 0 , (3.1)

on M.
The holomorphic vector bundle R2d−1q*C is equipped with the Gauss–Manin connection, which is an

integrable connection. The quotient Rdq*Ωd−1Z/M, in (3.1), of R2d−1q*C is a holomorphic vector bundle on M
with �ber Hd(L′, Ωd−1L′ ) over any L′ ∈ M.

The homomorphism
(R1q*C)⊗ (R2d−1q*C) −→ C , (3.2)

that sends any α ⊗ β ∈ (R1q*C)t ⊗ (R2d−1q*C)t, t ∈ M, to∫
q−1(t)

v ∧ w ∈ C
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is covariant constant with respect to the connection on (R1q*C) ⊗ (R2d−1q*C) induced by the Gauss–Manin
connections on R1q*C and R2d−1q*C. Consequently, the pairing in (3.2) yields a holomorphic isomorphism
of vector bundles

(q*Ω1
Z/M)*

∼−→ Rdq*Ωd−1Z/M

over M. Combining this isomorphism with the isomorphism in (2.12) we get a holomorphic isomorphism of
vector bundles

χ̂ : Ω1
M
∼−→ Rdq*Ωd−1Z/M (3.3)

over M.
We shall denote the total space of the holomorphic vector bundle Rdq*Ωd−1Z/M byW, so

W := Rdq*Ωd−1Z/M
γ̂−→ M (3.4)

is a holomorphic �ber bundle.
As in Section 2, consider the canonical Liouville holomorphic 1-form on the total space of Ω1

M. Using the
isomorphism in (3.3), this Liouville 1-form on the total space of Ω1

M produces a holomorphic 1-form onW in
(3.4). Let

θ′ ∈ H0(W, Ω1
W)

be this holomorphic 1-form onW. We note that

dθ′ ∈ H0(W, Ω2
W) (3.5)

is a holomorphic symplectic formonW. Indeed, the isomorphism in (3.3) takes dθ′ to the Liouville symplectic
form on the total space of Ω1

M.

Remark 3.1. Note that while the Kähler form ω on X was used in the construction of the symplectic form dθ
on Y in (2.16) (see the pairing in (2.10)), the construction of dθ′ in (3.5) does not use the Kähler form ω on
X. We recall that the isomorphism in (2.12) is constructed from the the pointwise isomorphisms in (2.4). Note
that the isomorphism in (2.4) does not depend on the Kähler form ω.

The Albanese Alb(Y) of a compact Kähler manifold Y is de�ned to be

Alb(Y) = H0(Y , Ω1
Y )*/H1 (Y , Z) = Hn(Y , Ωn−1Y )/H1 (Y , Z) ,

where n = dimC Y (see [3, p. 331]). It is a compact complex torus.
For each point L ∈ M, consider the composition of homomorphisms

H2d−1(L, Z) −→ H2d−1(L, C) −→ H2d−1(L, C)/Hd−1(L, ΩdL) = Hd(L, Ωd−1L )

(see (3.1)). It produces a homomorphism

R2d−1q*Z −→ W , (3.6)

whereW is de�ned in (3.4).

Remark 3.2. The Gauss–Manin connection on R2d−1q*C −→ M evidently preserves the subbundle of lat-
tices

R2d−1q*Z ⊂ R2d−1q*C .

From this it follows immediately that the C∞ submanifold R2d−1q*Z ⊂ W in (3.6) is in fact a complex sub-
manifold.

The quotient
Â := W/(R2d−1q*Z) −→ M (3.7)
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for the homomorphism in (3.6) is in fact a holomorphic family of compact complex tori overM. Note that the
�ber of Â over each L ∈ M is the Albanese torus

Alb(L) = Hd(L, Ωd−1L )/H2d−1(L, Z) .

For any complex Lagrangian L ∈ M, using Serre duality,

Hd(L, Ωd−1L ) = H0(L, Ω1
L)* ,

and the underlying real vector space for H0(L, Ω1
L)* is identi�ed with

H1(L, R)* = H1(L, R) .

Using Poincaré duality for L, we have H2d−1(L, Z)/Torsion = H1(L, Z)/Torsion. Consequently, Â in (3.7)
admits the following isomorphism:

Â = W/(R2d−1q*Z) = W/H̃1(Z) = (q*Ω1
Z/M)*/H̃1(Z) , (3.8)

where H̃1(Z) is the local system on M whose stalk over any L ∈ M is H1(L, Z)/Torsion. Also we have the
isomorphism of real tori

Â = (R1q*R)*/H̃1(Z) = H̃1(R)/H̃1(Z) , (3.9)

where H̃1(R) is the local system on M whose stalk over any L ∈ M is H1(L, R).

Theorem 3.3. The 2-form dθ′ in (3.5) onW descends to the quotient torus Â in (3.7).

Proof. Take a point L0 ∈ M. In [5] Hitchin constructed a C∞ coordinate function on M de�ned around the
point L0 ∈ M that takes values in H1(L0, R) [5, p. 79, Theorem 2]; we will brie�y recall this construction.

Take any
c ∈ H1(L0, Z)/Torsion . (3.10)

Let U ⊂ M be a contractible neighborhood of the point L0. Choose a S1-subbundle of the �ber bundle Z (see
(2.6)) over U

B ιU
↪→ Z|U

q−→ U (3.11)

such that the �ber of the S1-bundle B over L0 represents the homology class c in (3.10); recall that the �ber
of Z over the point L0 ∈ M is the Lagrangian L0 itself.

Consider the symplectic formΦ on X. Integrating ι*Up*Re(Φ) along the �bers of B, where ιU and p are the
maps in (3.11) and (2.7) respectively, we get a closed 1-form ξc on U. Let fc be the unique function on U such
that fc(L0) = 0 and dfc = ξc. Now, let

µ : U −→ H1(L0, R)

be the function uniquely determined by the condition that ϕLx (c ⊗ µ(x)) = fc(x) for all x ∈ U and c ∈
H1(L0, Z)/Torsion,whereϕLx is the pairing constructed as in (2.3) for the complex Lagrangian Lx = q−1(x) ⊂
X, where q is the projection in (2.7). This µ is a local di�eomorphism [5, p. 79, Theorem 2].

Using the Kähler form ωL0 := ω|L0 on L0 (see (2.2)), we identify H1(L0, R) with H1(L0, R) as follows.
Since the pairing

H1(L0, R)⊗ H1(L0, R) −→ R , v ⊗ w 7−→
∫
L

v ∧ w ∧ ωd−1L0

is nondegenerate, it produces an isomorphism

H1(L0, R)
∼−→ H1(L0, R)* = H1(L0, R) . (3.12)

On the other hand, there is the natural homomorphism H1(L0, Z) −→ H1(L0, R). Let

Γ ⊂ H1(L0, R) (3.13)
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be the subgroup that corresponds to H1(L0, Z) by the isomorphism in (3.12).
Using the above coordinate function µ on U, we have

T*U ∼−→ T*µ(U) = µ(U) × H1(L0, R)* = µ(U) × H1(L0, R) ,

where T* denotes the real cotangent bundle.
The Liouville symplectic form on T*µ(U) is clearly the constant 2-form on

H1(L0, R) × H1(L0, R)

given by the natural isomorphism of H1(L0, R) with H1(L0, R)*. From this it follows immediately that

µ(U) × Γ ⊂ µ(U) × H1(L0, R)

is a Lagrangian submanifold with respect to the Liouville symplectic form on T*µ(U), where Γ de�ned in
(3.13).

Since µ(U) × Γ ⊂ µ(U) × H1(L0, R) is a Lagrangian submanifold, it follows that for W = (R1q*R)* (see
(3.9) and (3.4)), the image of the natural map

H̃1(Z) −→ (R1q*R)* = W

(see (3.8)) is Lagrangian with respect to the real symplectic form Re(dθ′) on W, where dθ′ is constructed in
(3.5).

It was noted in Remark 3.2 that R2d−1q*Z is a complex submanifold of W. Consequently, the 2-form on
R2d−1q*Z obtained by restricting the holomorphic 2-form dθ′ onW is also holomorphic. Since the real part of
the holomorphic 2-from on R2d−1q*Z given by dθ′ vanishes identically, we conclude that the holomorphic 2-
from on R2d−1q*Z, given by dθ′, itself vanishes identically. Therefore, R2d−1q*Z is a Lagrangian submanifold
of the holomorphic symplectic manifoldW equipped with the holomorphic symplectic form dθ′.

To complete the proof we recall a general property of the Liouville symplectic form.
Let N be a manifold and α a 1-form on N. Let

t : T*N −→ T*N

be the di�eomorphism that sends any v ∈ T*nN to v + α(n). If ψ is the Liouville symplectic form on T*N, the

t*ψ = ψ + dα .

In particular, the map t preserves ψ if and only if the form α is closed. Also, the image of t is Lagrangian
submanifold of T*N for ψ if and only α is closed.

Since
R2d−1q*Z

is a Lagrangian submanifold of the symplectic manifold (W, dθ′), from the above property of the Liouville
symplectic form it follows immediately that the 2-form dθ′ onWdescends to the quotient space Â in (3.7).

Let
q
Â

: W −→ Â := W/(R2d−1q*Z) (3.14)

be the quotient map (see (3.7)). From Theorem 3.3 we know that there is a unique 2-form

Θ
Â
∈ H0(Â, Ω2

Â
) (3.15)

such that
q*
Â
Θ
Â

= dθ′ , (3.16)

where qA is the map in (3.14). Since dθ′ is a holomorphic symplectic form, it follows immediately that Θ
Â

is
a holomorphic symplectic form on Â.



238 | Indranil Biswas, Tomás L. Gómez, and André Oliveira

The projection γ̂ : W −→ M in (3.4) clearly descends to a map fromA to M. Let

ϖ : Â −→ M (3.17)

be the map given by γ̂; so we have
γ̂ = ϖ ◦ q

Â
,

where q
Â

is constructed in (3.14).

Lemma 3.4. The projection ϖ in (3.17) de�nes a completely integrable structure on Â for the symplectic form
Θ
Â

constructed in (3.15). In particular, the �bers of ϖ are Lagrangians with respect to the symplectic form Θ
Â
.

Proof. Recall thatW is holomorphically identi�ed with Ω1
M by the map χ̂ in (3.3) (see (3.4)). This map χ̂ takes

the Liouville symplectic form on Ω1
M to the symplectic form dθ′ on W. Therefore, from (3.14) and (3.16) we

conclude that Â is locally isomorphic to Ω1
M such that the projection ϖ is taken to the natural projection

Ω1
M −→ M, and the symplectic form Θ

Â
on Â is taken to the Liouville symplectic form on Ω1

M. The lemma
follows immediately from these, because the natural projection Ω1

M −→ M de�nes a completely integrable
structure on Ω1

M for the Liouville symplectic form.

4 The relative Picard group
For any L ∈ M, consider the homomorphisms

H1(L, Z) −→ H1(L, C) −→ H1(L, OL) , (4.1)

where H1(L, Z) −→ H1(L, C) is the natural homomorphism given by the inclusion of Z in C, and the pro-
jection H1(L, C) −→ H1(L, OL) corresponds to the isomorphism

H1(L, C)/H0(L, Ω1
L) = H1(L, OL)

(see (2.8)). The image of the composition of homomorphisms in (4.1) is actually a cocompact lattice in
H1(L, OL); so H1(L, OL)/H1(L, Z) is a compact complex torus. We note that the composition of homomor-
phisms in (4.1) is in fact injective.When the compact complexmanifold L is a complex projective variety, then
H1(L, OL)/H1(L, Z) is in fact an abelian variety.

As L moves over the family M, these cocompact lattices �t together to produce a C∞ submanifold of the
complex manifold Y in (2.14).

The Gauss–Manin connection on R1q*C −→ M evidently preserves the above bundle of cocompact
lattices R1q*Z ⊂ R1q*C. From this it follows immediately that the above C∞ submanifold R1q*Z ⊂ Y is in
fact a complex submanifold.

Taking �ber-wise quotients, we conclude that

A := Y/(R1q*Z) −→ M (4.2)

is a holomorphic family of compact complex tori over M.

Remark 4.1. Let Y be a compact Kähler manifold. Consider the short exact sequence of sheaves on Y given
by the exponential map

0 −→ Z −→ OY
λ 7→exp(2π

√
−1λ)−→ O*Y −→ 0 ,

where O*Y is a multiplicative sheaf of holomorphic functions with values in C \ {0}. For the corresponding
long exact sequence of cohomologies

H1(Y , Z) −→ H1(Y , OY ) −→ H1(Y , O*Y )
c1−→ H2(Y , Z) ,
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where the connecting homomorphism c1 sends any holomorphic line bundle ξ ∈ H1(Y , O*Y ) to c1(ξ ), the
quotient

H1(Y , OY )/H1(Y , Z)

gets identi�edwith the Picard group Pic0(Y) that parametrizes the topologically trivial holomorphic line bun-
dles on Y.

Consequently, the quotientA in (4.2) is naturally identi�edwith themoduli space Pic0Z/M of topologically
trivial holomorphic line bundles on the �bers of q : Z −→ M. In other words, A parametrizes all pairs of
the form (L, ξ ), where L ∈ M, and ξ is a topologically trivial holomorphic line bundle on L.

Recall that we have the holomorphic symplectic form dθ on Y, where θ is constructed in (2.15).

Remark 4.2. Recall from Remark 3.1 that dθ does depend on the Kähler form ω on X.

Proposition 4.3. The 2-form dθ on Y descends to the quotient space A in (4.2), or in other words, dθ is the
pullback of a 2-form onA.

Proof. The proof of the proposition is very similar to the proof of Theorem 3.3. As before, the local coordinate
functions on M constructed in [5] play a crucial role. We omit the details of the proof.

Let
qA : Y −→ A := Y/(R1q*Z) (4.3)

be the quotient map (see (4.2)). Let ΘA ∈ H0(A, Ω2
A) be the holomorphic symplectic form given by Proposi-

tion 4.3, so
q*AΘA = dθ , (4.4)

where qA is the map in (4.3).
The projection γ in (2.14) clearly descends to a map

ϖ0 : A −→ M . (4.5)

Note that the isomorphism betweenA and Pic0Z/M in Remark 4.1 takes ϖ0 to the forgetful map

Pic0Z/M −→ M

that forgets the line bundle, or in other words, it sends any (L, ξ ) ∈ Pic0Z/M to the complex Lagrangian L
forgetting the line bundle ξ .

Lemma 4.4. The projection ϖ0 in (4.5) de�nes a completely integrable structure on A for the symplectic form
ΘA.

Proof. Recall that Y is holomorphically identi�ed with Ω1
M by the map χ in (2.13), and χ takes the Liouville

symplectic form on Ω1
M to the symplectic form dθ on Y. Therefore, from (3.14) and (4.4) we conclude thatA is

locally isomorphic to Ω1
M such that the projection ϖ0 is taken to the natural projection Ω1

M −→ M, and the
symplectic form ΘA on A is taken to the Liouville symplectic form on Ω1

M. The lemma follows immediately
from these.
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