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Abstract: We consider several differential operators on compact almost-complex, almost-Hermitian and
almost-Kdahler manifolds. We discuss Hodge Theory for these operators and a possible cohomological in-
terpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de
Rham, Dolbeault, Bott-Chern and Aeppli cohomologies.
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1 Introduction

On a complex manifold X the exterior derivative d decomposes as the sum of two other cohomological differ-
ential operators, namely d = 9 + J satisfying 02 = 0, 92 = 0 and 90 + 00 = 0. Once a Hermitian metric on X is
fixed one can associate to 0 a natural elliptic differential operator, the Dolbeault Laplacian; if X is compact the
kernel of this operator has a cohomological interpretation, i.e., it is isomorphic to the Dolbeault cohomology
of X. If we do not assume the integrability of the almost-complex structure, i.e., (X, J) is an almost-complex
manifold, the 0 operator is still well-defined but it has no more a cohomological meaning. However, we can
define some natural differential operators.

In this paper we are interested in studying the properties of such operators, their harmonic forms and pos-
sibly their cohomological meaning on compact manifolds endowed with a non-integrable almost-complex
structure. More precisely, in the non-integrable case d decomposes as

d: AP9(X) — AP*2I(X) @ APTHI(X) @ APTTH(X) @ APTHI(X)

and we set
d=u+0+0+Jl.

Then we define a 2-parameter family of differential operators {Da’ b} whose squares are zero and

a,beC\{0

interpolate between d and d€ := J~'dJ. In general d and d€ do not anticommilt};z and so in Proposition 3.4 we
give necessary and sufficient conditions on the parameters in order to have D, ,D¢,e + Dc,eDy j, = 0; in such
a case we define the Bott-Chern and Aeppli cohomology groups. Moreover, if we fix a J-Hermitian metric we
develop a Hodge theory for these cohomologies together with the cohomology of D, ;, (see Theorems 3.8, 3.9,
Proposition 3.10 and Theorems 3.12, 3.13). In particular we show that if |a| = |b| then the cohomology of D, ;,
is isomorphic to the de Rham cohomology (cf. Proposition 3.14). Moreover, in Example 3.17 we compute ex-

plicitly the invariant D, ;-cohomology on the Kodaira-Thurston manifold endowed with an almost-complex
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structure, showing that it is isomorphic to the de Rham cohomology independently on the parameters. Nev-
ertheless, the considered parametrized cohomology groups do not generalize (except for the almost-Kdhler
case) the classical Dolbeault, Bott-Chern and Aeppli cohomology groups of complex manifolds. To the pur-
pose of finding a possible generalization of these cohomologies we consider the operators (cf. [4])

§:=0+ji b:=0+p.

These two operators anticommute but their squares are zero if and only if J is integrable. In Section 5 we
define a generalization of the Dolbeault, Bott-Chern and Aeppli Laplacians and develop a Hodge theory for
these operators studying their kernels.

In the almost-Kéhler setting considered in Section 6 we derive some further relations among the kernels of
these operators, involving also the Betti numbers and the dimension of 6-harmonic forms (see Corollary 6.4).
A Hard-Lefschetz type Theorem for Bott-Chern harmonic forms is also proved (cf. Theorem 6.14).

Finally, in the last Section we compute explicit examples on the two 4-dimensional non-toral nilmanifolds
and the Iwasawa manifold showing that a bi-graded decomposition for the §-harmonic forms cannot be ex-
pected and that the equalities in Theorem 6.7 and the inequalities in Corollary 6.4 are peculiar of the almost-
Kahler case, giving therefore obstructions to the existence of a symplectic structure compatible with a fixed
almost-complex structure on a compact manifold. In particular, we show in Example 7.1 that even if in the
bigraded case the spaces we consider coincide with the spaces considered in [3], this fails on total degree.

2 Preliminaries

Let (X, J) be an almost-complex manifold then the almost-complex structure J induces a natural bi-grading
on the space of forms A*(X) = @p+ = AP-4(X). If ] is non-integrable the exterior derivative d acts on forms as

d: APA(X) — AP*2IH(X) @ APTHI(X) @ APITH(X) @ AP (X)

and so it splits into four components
d=pu+0+0+j,

where u and j are differential operators that are linear over functions. In particular, they are related to the
Nijenhuis tensor N; by

(na+ ) (X, ¥) = 7 Nj(X, V)

where a € A'(X). Since d? = 0 one has

s =

U0 + OU =
0% +ud +ou

00 + 00 + uji + iy
0% + 10 + ot

10 + oji

i =

|
O O O O O O O

Consider the following differential operators (cf. [4])

§:=0+]1, 6:=0+p

with § : A*(X) — A*(X) and § : A*(X) — AT(X), where A*(X) are defined accordingly to the parity of g in the
J-induced bigraduation on A°(X).

Lemma 2.1. Let (X, J) be an almost-complex manifold, the following relations hold
e d=6+5,
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o« §2+82=0,
. §2-02-32
o §6+66=0.

Proof. The first statement follows immediately from the definitions. The second and third points follow from
direct computation
82 =(0+u)(0+u)=0>+ou+uo+u*=0>-0°

and, similarly, §2 = 02 - 9°.
Finally, for the last statement we have

86+066 =00+ 0u+jid + jip + 00 + Ot + Mo + uji = 0.

IfD=d,0,8,6,u, jtweset D := J"1DJ, then 6° = —i6 and 6 = i6 and
d°=i(6-8)=i(0+u-0-f).
Notice that in general if ] is not integrable d and d do not anticommute, indeed we have
dd® +d°d = 2i(6” - 8%) = 4i(3” - 9°).
Therefore, an almost-complex structure J is integrable if and only if d° = i(d - 9) if and only if d and d¢

anticommute.

Let g be a J-Hermitian metric and denote with * the associated anti-linear Hodge-*-operator. If D =
d,0,0,u, 1 we set D* := — * D* and it turns out that D" is the adjoint of D with respect to the L?-pairing
induced on forms (cf. [4], [2]).

As usual one can consider the following differential operators

As =30 +3°3,
Ay:=00"+0°0,
Ap=pj + R,
Ay =+ .

While on compact almost-Hermitian manifolds the operators A, 4, are elliptic, and so the associated spaces
H;"(X) := KerAj, 33*(X) := Ker 4, of harmonic forms are finite dimensional, in case of Ay, 4, the spaces
iI-C};"(X) := Ker A and 3;;*(X) := Ker Ay, are infinite-dimensional in general (recall that j1 and u are linear
over functions). In the following we will consider several spaces of harmonic forms and we will discuss the
relations with these ones.

3 Differential operators on almost-complex manifolds

Let (X, ]) be an almost-complex manifold and consider a linear combination of the differential operators

a,a,ll,l_l,
Dypee:=ad0+bd+cu+ef,

witha, b, c, e € C\ {0}. Clearly D, ;, . . satisfies the Leibniz rule; we are interested in finding conditions on

the parameters ensuring that D? , . , = 0. Notice that if ] is integrable

Da,b,c,e =a (_) +b a,

and D] , ., = O for any choice of the parameters. Therefore from now on J will always be assumed to be

non-integrable if not stated otherwise. In fact we have
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Lemma 3.1. Let (X, J) be an almost-complex manifold. Then Dﬁ, bee=0 if and only if
a’ b?
e= B and c= -

Proof. By a direct computation one has

D} pce=0°(a® - be) +3*(b* - ac) + (39 + d9d)(ab - ce).

We set
2 2

5 b a _
Dgp :=aa+ba+?y+?y,

witha, b € C\ {0}.

Since D}, }, = 0 we define the associated parametrized cohomology

KerDg p

Hba,b(X) = mD,,

Notice that if a = b, one has D,,q = a d i.e., a multiple of the exterior derivative.
In general, D, j is not a real operator, indeed by a straightforward computation one gets

Lemma 3.2. Let (X, ]) be an almost-complex manifold. Then, D, j, = D, j, if and only if a = b.

We set
=2 2

d+q a a _
Da .—aa+aa+7y+€y'
Notice that the family of operators {Da} 4\ {0y contains the operators
Di=Dy1=d and D;=D;_;= dc.

In particular,
Hp, ,(X) = Hyg(X) ~ Hy(X) = Hp,_(X).

Moreover, recall that if J is non-integrable, D1D; + D;D; # 0, therefore we show when two real differential
operators D, and D, anticommute.

Proposition 3.3. Let (X, J) be an almost-complex manifold. Then, DqD}, + DyDq = O ifand only ifa b € R.

Proof. Set
<, at at. < . b b
Da.—aa+aa+7y+3y and Db.—ba+ba+?y+?y.

Then, DqDy, + D,Dq = 0 if and only if

ab+ba = a;gz + b
2ab = % + asz
if and only if ba = ab concluding the proof. O

In fact, with the same argument, more generally one has
Proposition 3.4. Let (X, J) be an almost-complex manifold. Then, D, pDe,et+De,eDg p = Oifandonlyifae = bc.

Proof. Set
2 2 2 2

3 b a _ 3 e co
Da,b:=aa+ba+7y+?,u and Dc,e:=ca+ea+?y+?y.
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Then, D, ,Dc,e + Dc,eD, p = 0 if and only if

ae+bc = G& + 22
2ac = by ?
2be = ae b
if and only if ae = bc concluding the proof. O

Remark 3.5. Notice that when ] is integrable, it is straightforward to show that two arbitrary operators of the
form
Dyp:=ad+bo and Dce:=co+ed

anticommute.

Remark 3.6. If b = 1, namely D), = d then
Dad + dDa = 0

if and only if a € R. Namely, the only operators anticommuting with the exterior derivative in {Da} s\ {0} are
those with the parameter a real.
If b = i, namely D, = d€ then

Dad® +dDg =0

if and only if ia € R. Namely, the only operators anticommuting with d in {Dq} acc\{o} are those with the
parameter a purely imaginary.

As a consequence of the previous considerations, if ae = bc and (a, b) # (c, e) then (A*(X), Dy p, Dc,e) is a
double complex since

D:, =0

D =0,

D, pDc,e + De,eDy b 0

hence one can define the Bott-Chern and Aeppli cohomologies respectively as

KerD, , NKerDc,e

. . KerD, pDc,e
HBC(Da,b’Dc,e)(X) = Im Da bDC . ’ HA(Dayb,Dc’e)(X) =

ImD, , +ImDce’

Let (X, J) be an almost-complex manifold and let g be a J-Hermitian metric on X. Then the adjoint of D, j,
is

D u o+

|
1
N

pi=aod +bo + i

*
a,

o

We consider the second-order differential operator
Aq,b = Da,pDap + Do pDayp -
Lemma3.7. Let (X, ]) be an almost-complex manifold. The differential operators D, j, are elliptic.

Proof. Fix a and b. We can compute the symbol of 4, j as follows. We work in a local unitary frame of T'X
and choose a basis {91, ey, 0"} such that the metric can be written as

g=020+0 6.
Using Einstein notations, a (p, q)-form a locally can be written as

a= a,-l...,-pjl...,-qBil Avee O AFEA B
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Then 0 acts as
((_)(X)p,q+1 = (_)]"ﬁ1 Qi iy -oojy RN N LN - LN [
and p acts as
HO = ey, M (911 A OPAPEAA é]q)

and similarly for 0 and ji. In computing the symbol of A, ;, we are only interested in the highest-order differ-
ential acting on the coefficients a;,...; j,..j,- Denoting with ~ the equivalence of the symbol of the operators
we get

Agp = |al’As + |b|*Ay +ab(dd" +070) + ba(dd” +90"9) ~ |al*As + |b|*A,
hence A, j, is elliptic. O
We denote with %ﬁa ,(X) :=Ker(4,, b| a+) the space of D, ,-harmonic k-forms. By the elliptic operators theory

we get the following;

Theorem 3.8. Let (X, ], g) be a compact almost-Hermitian manifold, then the following Hodge decompositions
holds, for every k,
A¥X) = K, , (X) @ Do p A1 (X) @ D , A (X).

Moreover, the space %Ba , (X) is finite-dimensional.
One has the following

Theorem 3.9. Let (X, ], g) be a compact almost-Hermitian manifold, then there exists an isomorphism, for
every k,
Hp,,(X) ~ 35, (X).

In particular, the space HZ)E , (X) is finite-dimensional and we will denote with h})a , (X) its dimension.
As a consequence we have the analogue of the Poincaré duality for the cohomology groups Hy, , (X).

Proposition 3.10. Let (X, ], g) be a compact almost-Hermitian manifold of dimension 2n, then the Hodge-*-
operator induces a duality isomoprhism, for every k,

*: Hp,,(X) — Hp KX)

In particular, for every k, one has the equalities hﬁa b(X) = h%{;‘bk(X).

Similarly, one could develop a Hodge Theory for the Bott-Chern and Aeppli cohomologies of
(A*(X), Dg p, Dc,e) (with ae = bc and (a, b) # (c, e)) following for instance [8].
In particular, the Bott-Chern and Aeppli Laplacians can be defined as

Apc,,.. = DapDee)DgpDee)” +(DgpDee) (DgpDee) + (De,eDa p)(De,eDg p) +

(Dz,eDa,b)*(Dz,eDa,b) + DZ,eDC,e + D;,bDa,b ’

Ay = Dy pDyp+ DeeDeye + (DgpDese) (DgpDe,e) + (Dg pDe,e)(Dg pDee) +

a,b,ce ©

(Dc,eD;,b)*(Dc,eD;,b) + (Dc,eD;,b)(Dc,eD;,b)* .

These operators are elliptic and we denote with %’E‘,C(Da ».De e)(X) := Ker(A BCapesl 4x) the space of BC-harmonic

k-forms and with :H/I;(Da ».De E)(X) := Ker(A Awneol ax) the space of A-harmonic k-forms. By a direct calculation
one can show the following
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Proposition 3.11. Let (X, ], g) be a compact almost-Hermitian manifold. If ae = bc and (a, b) # (c, e) then, a
differential form a J{EC(DH . De e)(X) if and only if
Dypa=0, Dcea=0, (DgpDee) a=0.
Similarly, a € j{ﬁ(Da,b;Dc,e)(X) if and only if
(Da,b)*a = 0, (Dc,e)*a = 0, Da,ch,ea =0.
By the elliptic operators theory we get the following

Theorem 3.12. Let (X, ], g) be a compact almost-Hermitian manifold. If ae = bc and (a, b) # (c, e) then the
following Hodge decompositions hold, for every k,

AK(X) = e, , 0.y X) & D pDe,e A (X) & (D, A (X) + D , A (X)),

AKX) = 35, , Do) X) & (Dg,p A (X) + De,e A1 (X)) & (Dg,pDe,e) A2 (X)) .

Moreover, the spaces %;C(Da ».De e)(X) and S{A(Da ».De e)(X) are finite-dimensional.
One has the following

Theorem 3.13. Let (X, ], g) be a compact almost-Hermitian manifold, then there exist isomorphisms, for every
k,
k k
HBC(Da,b;Dc,e)(X) = j{BC(Da,b;Dc,e)(X) ’

and
k k
Hyp,,.0.0&X) =~ Hawp, , 0,0 X) .

In particular, the spaces HI?C(Da ».De e)(X) and H;(Dﬂ ».De e)(X) are finite-dimensional.

However, under some hypothesis on the parameters a, b we can write down an explicit isomorphism.

Proposition 3.14. Let (X, ], g) be a compact almost-Hermitian manifold of dimension 2n. Let a, b € C \ {0}
such that |a| = |b|, then there exists an isomoprhism

KerA; ~ KerAgy

given by .
o 5 (5)' e
p+q=k

where aP-4 denotes the (p, q)-component of a k-form a.

Proof. Leta = Zp+q:k aP*? be a d-closed k-form, namely Hence ua + da + oa + fia = 0. Then, by bi-degree
reasons

U aPHI,O = 0

o ap+q,0 = -u ap+q—1,1

o aPHI-l,l - _5 ap+q,0 -u ap+4-2,2

daPti-22 = _§aPra-ll_y qpa-3.3 | gpta.0
d al,p+q—1 _ _5 az,p+q—2 -u ao,p+q _ ﬂ a3,p+q—3
o aO,PHI = _(') aLPHI*l — I_l aZ,PHI*Z

é aO,PHI - _p al,p+q71

il a%pta = 0
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Therefore,
uaP*a0 = 0
2
bo aP+4:0 = -2y (§apra-L1)
=R 2 2
bo (4aPti-t:1) = —ad P90 - by (L gqPta22)
2 = 2 3 2 _
bo (%ap+q—2,2) = -ao (%awq—l,l) _ %}1 (%amq—BJ) — %}1 ab*a.0
p+q-1 — p+q-2 pt+q p+q-3
ba(Zw, LPal) o ) (G a®Pt2) - By (a0 ) - G (G e P r)
p+q p+q-1 — - p+q-2 —
DO (frg@®P*) = —ad (g a P - SR (a7
p+q 2 p+q-1 -
ad (frga® ) = —GA(fat?t )
palrra = 0

Namely, if da = 0 then

2 p+q
p+q,0 . @ p+g-1,1 A" p+g-2,2 Q4 0.p+q | _
Dgp (a +ba +b2a + +bp+qa =0.

Similarly, if d"a = O then
B -1,1 Bz -2.2 Bp+q 0
D, Pra0 y Z Pt Ll 2Pt Ly T 0Pt ) — 0,
ab| @ aa aza awqa 0

Therefore if |a|? = |b|? and A4 « = O then

2 p+q
p+q,0 | A _p+g-1,1 , A" p+q-2,2 a
a + - +—a +oeee

b2 br+a

is A, p-harmonic. O

20Pa

Corollary 3.15. Let (X, ], g) be a compact almost-Hermitian manifold of dimension 2n. Let a, b € C\ {0} such
that |a| =

Hijp(X) =~ H},u’b(X).
Notice that in case of D; _; = d° the isomorphism becomes

a— Z (19”9 = i "]a.

p+g=k

Remark 3.16. If D, is a real operator, namely Dq = D4, a, then by previous corollary there is an isomoprhism
Hapr(X) =~ Hp,(X)

forany a € C\ {0}.

Example 3.17. Let H(3;R) be the 3-dimensional Heisenberg group and H(3; Z) be the subgroup of matrices
with entries in Z. The Kodaira-Thurston manifold is defined as the quotient

X:= (H3;R)xR) / (H(3;Z) x Z) .

The manifold X is a 4-dimensional nilmanifold which admits both complex and symplectic structures. We con-
sider the non-integrable almost-complex structure ] defined by the structure equations

o

deo* =
d(pz _ %§012+% ((pli_(pzi) +%(pii
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where {@", ¢?} is a global co-frame of (1,0)-forms on X.
Hence, directly we get, for any a, b € C\ {0}

{Da,b(Pl = 0

1 12

5 I 2
Da,b(Pz - Lla (<p12—<p21) +%b(p12+%%(p

We fix the J-Hermitian metric w := 2% 21-2:1 @’ A @/, and by a direct computation one gets on invariant 2-forms

- 5 b _ b ~ bz .
KerDa,b,inv =C <(P11, g022’ E(pIZ + (p12’ _E(p12 + @21, _ﬁ§012 + (P12>

and )

=2

12 21 a” 12 12
Qo+ ,_E‘P o >

KerDy iy = C <<pﬂ, 9?2, 2912+ 912,

S Q

Therefore, one gets

i 23 13 i 13 2_|p?* 153 ba
B ~Cloll 02, o124 o2 pl2 - al” - | 12 _ ba 12> ,
Dg,p,inv <(P P ¢ P ¢ ab P ab(p
where we listed the harmonic representatives with respect to w. In particular, for a = b = 1 we get the harmonic
representatives for the de Rham cohomology and for a = —-b = i we get the harmonic representatives for the

d°-cohomology H.(X).

Remark 3.18. Notice that if ] is integrable then (A*(X), D, , Dc,e) is a double complex for any choice of the
parameters (provided (a, b) # (c, e)) and so one can define accordingly the associated Dolbeault, Bott-Chern
and Aeppli cohomologies.

4 Differential operators on symplectic manifolds

Let (X, J, g, w) be a compact almost-Kihler manifold that is an almost-Hermitian manifold with fundamental
form w d-closed. Then, we can generalize the symplectic cohomologies introduced in [12].

Let
Li=whA-:A"(X) = A (X)

and
A=—*L*: A°(X) - A"%(X),

where * = J* = *] is the symplectic-Hodge-*-operator. Denote with
dt :=1[d, Al;

since w is symplectic we have that
d/l _ (_1)k+1 * d*‘Ak(X)

i.e., d! is the Brylinski-codifferential ([1]), namely the symplectic adjoint of d. Then, it is well known that
(d°)" = -d", indeed on k-forms
(d) = —*d* = —*Jldpx = ~(-1) % jax = (1) * @x = -d”.
By the almost-Kéhler identities (cf. Lemma 6.1)
e [0,A]=i0"and [, Al =iy

e [0,A]=-i0"and [u,A] =-ij.
one has the following
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Lemma 4.1. Let (X, ], g, w) be a compact almost-Kdhler manifold, then for a, b € C \ {0},
® [Da,b, L] =0,
° [Da,b!A] =-iD

*
-b,a’

Moreover, [D, p, A] = (1)l * D, p* on k-forms if and only if D, j, is a real operator.

Proof. By direct computations using the almost-Kahler identities

a2

2
(D A1 = ald, A1+ blo, A1+ 2, A1+ & 1, 4] =

Ix 2 * 2 * *
- —iad" +ibd —i%ﬂ +ip = —iD

Moreover, notice that
3 T b? a?
*Da,b*=&*6*+b*a*+—a *}1*+—l_7 * p*

hence, [D, 5, A] = (—1)kt * D, p*ifand only if a = b if and only if D, ; is a real operator by Lemma 3.2. [
As a consequence, we denote

Dg i=[Da, Al = (1) *Da ¥ .
This operator generalizes the Brylinski co-differential, indeed

Dt =at.

In fact using D4 := [Dq, A] and D2 = 0 we have that

D.D4 +D4Dys=0 and (D2)?=o.
In particular, for a = 1 we recover the standard relations

dd"+d*d=0 and (@%)?=o0.

Therefore, one can define

Ker D,D4
ImDg +ImD4 "

. . KerDj

Ker D, N Ker D4
Di " ImDA”’

, H; (X) :=
Im Do D4 AWDa.Dg)

HEIC(D«,DQ)(X) =

The symplectic cohomologies defined in [12] correspond to the parameter a = 1.

5 Harmonic forms on almost-Hermitian manifolds

In the following we try to generalize the spaces of harmonic forms for the Dolbeault, Bott-Chern and Aeppli
cohomology groups of complex manifolds using the intrinsic decomposition of d induced by the almost-
complex structure. However, for a non-integrable almost-complex structure we do not have a cohomological
counterpart (cf. also [2], [3]).

Let (X, J, g) be an almost-Hermitian manifold that means X is a smooth manifold endowed with an al-
most complex structure J and a J-Hermitian metric g. As above denote with * the associated Hodge-*-operator.
Consequently,

and
@) =i(6 -8 =i+ -0 -u").
We define the following differential operators

4y =55+ 55,
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As:=686 +66,
Ageis.5) = (68)(88) + (86 (88) + (5°6)(8°6) +(8°8)'(676) + 56+ 6°5,
Ays.5) = 66 +88" +(88)(68) + (66)(88)" +(867)"(86") + (867)(867)" .

Remark 5.1. Notice that if ] is an integrable almost-complex structure then these differential operators coincide
with the classical Laplacian operators on complex manifolds, namely the Dolbeault Laplacians

A5:=00"+0'0,
As:=00"+0"0,
and the Bott-Chern and Aeppli Laplacians
Apc = (00)(00)" +(90)"(90) + (370)(070)" +(370)"(0"0) + "0+ 070,
Ay = 00" +00" +(00)(30) + (90)(09)" + (307)(30") + (307)(d0")".
We have the following

Proposition 5.2. Let (X, ], g) be an almost-Hermitian manifold, then the operators Az and A are elliptic dif-
ferential operators of the second order.

Proof. The operator Ay is elliptic, indeed it is a lower order perturbation of its integrable counterpart. More
precisely, denoting with ~ the equivalence of the symbol of the operators we have
AS =8*8+85* ~ 55*+é*5:A5.
Similar considerations can be done for A;. O
We denote with tH’é(X) := Ker A the space of 8-harmonic k-forms and with H29(X) := KerA 5 the
_ |Ak(x) ) |AP-4(X)

space of 6-harmonic (p, q)-forms, and similarly for the operator 6. We get the following

Theorem 5.3. Let (X, ], g) be a compact almost-Hermitian manifold, then the following Hodge decompositions

hold
AN(X) = H3(X) @ 84" (X) @ 874 (X)
and

AK(X) = 7h(X0) @ 641 (X) @ 674K (X)

Moreover, a (p, q)-form a € Jfg’q(X) ifand only if a € ng’q NHLA. Similarly, a (p, q)-form a € H59(X) if and
onlyifa € 159 n ﬂ{ﬁ’q.

Proof. The Hodge decompositions follow form the classical theory of elliptic operators. Notice that a k-form
B is 6-harmonic if and only if

68 = 0 op +up 0

{ 5B = { o

-0 O'B+u'B

Hence let a € AP*9(X), then a € Ker Aj if and only if da =0, 0"a = 0, ua = 0, u"a = 0 concluding the proof.
O

Remark 5.4. Since the operator Ay is elliptic the associated space of harmonic forms ﬂ-f(fs(X) is finite-
dimensional on a compact almost-Hermitian manifold. In particular, we denote with hg(X) its dimension. The
same applies for the operator 6.
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Proposition 5.5. Let (X, ], g) be a compact almost-Hermitian manifold, then
Ay =A5+ M+ [0, 17+ [1, ]

and
A(g = Aa +Aﬁ + [a,ﬂ*] + [ﬂ, a*] .

In particular, fHé(X) NHu(X) C H%(X).

Proof. We prove only the first equality since the second one can be easily obtained by conjugation. We have
Ay = 0+ }1)(5* + y*) +(0" + }1*)(5 + )
=00 +ou +ud +up + 30+ u+p O+ U’y
=As+ A+ [0, 1]+, 0]
O

Remark 5.6. Notice that in [3] the authors consider on 2n-dimensional compact almost-Hermitian manifolds
the spaces of harmonic forms 5{5” N H,;*. By Theorem 5.3 we know that on bi-graded forms we are just rein-
terpreting these spaces since J-Cé”(X) NHE*(X) = ﬂ-(;."(X). Hence we refer to [3] for the properties and several
results concerning these spaces. But in general, we just proved that on total degrees we have only the inclusion
ﬂ{s(X) NHu(X) C fH%(X). In particular in Example 7.1 we show that this inclusion can be strict.

Remark 5.7. Let (X, ], g) be a compact almost-Hermitian manifold of real dimension 2n, then the Hodge-*-
operator induces duality isomorphisms for every k

2 HEX) = FERX), * e HEX) - 1R
In particular, for every p, q
* ﬂ{%”q(x) - Hg’p’"’q(x), * HEA(X) — HPUX) .

This follows easily from the relations *Az = Az* and *Ag = Ag*.
In particular, we have the usual symmetries for the Hodge diamonds, namely for every k

RE(X) = 375X, hE(X) = h3MRX)

and for every p, q
hg’q(X) = hg’p’”"q(X), hg’q(X) = hg”p’”"q(X).

Proposition5.8. Let (X, ], g) be an almost-Hermitian manifold, then the operators Ap 5 5 and A s 5, are
elliptic differential operators of the fourth order.

Proof. The calculations for the symbol of Ap 5 5, are similar to the ones for A5 keeping only the highest order
differential terms. Denoting with ~ the equivalence of the symbol of the operators we have

Dposs) ~ 008°8 +8°6°66+6°66°6+6 656~ 06666 +665°5+6566+6 666

~ (6°6+65") (5°6.+58") = 4505 = 4.

Similar considerations can be done for A AG.5)" O
We denote with ﬂ{g C6.5) (X) := Ker(A BC(5,5)| 4¢) the space of A BCG, 5)-harmonic k-forms and with J{g’c‘l( 5.5) X) :=

Ker(Ap s, 3| ava) the space of A s 5-harmonic (p, g)-forms. We have the following Lemma whose proof is a
direct computation.
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Lemma 5.9. Let (X, ], g) be a compact almost-Hermitian manifold. Then, a differential form a ¢ %’E‘; 6.5) X)if
and only if

We get the following

Proposition 5.10. Let (X, ], g) be a compact almost-Hermitian manifold, then the following Hodge decompo-
sition holds

AX) = 3K 5 () @ (6342 & (84 )+ 54 (1)) .

Moreover, a (p, q)-forma € H{’];’Cq(& 5)(X) if and only if

o =
oa =
ua =
fia -
(00 + pp)(*a) =
ou(*a) =
fo(*a)

O O O O O o o

Proof. The Hodge decomposition follows from the ellipticity of Ap (5 5)-
Now let & € AX(X), then in view of Lemma 5.9 a € KerA BC(5.5) if and only if

ba = 0
ba =0
66*a = 0
if and only if
(0+pa =0
(0 +Wa = 0
(00 + o +jid + au)(*a) = O

In particular, if a is a (p, q)-form we obtain the thesis.
Finally, given a € 3} ; 5 (X), B € A**(X), v € A**!(X) and € A**!(X) we have

(a, 668+ 68 v+6"n) =((68)a, B) + (Ba, v) + (ba,n) = 0.
O

Remark 5.11. Notice that the spaces §6A*2(X) and 5" A***(X) + 6" A¥*1(X) are orthogonal if and only if 6% = 0.

Similarly, if we denote with 9{2(5 5)(X) := Ker(4 A6,5)| 4i) the space of A (5.5 harmonic k-forms and with
ﬁ{ﬁ’(’é, 5 (X) = Ker(4 5, 5) ara) the space of 4 5 5 -harmonic (p, g)-forms we get the following

Proposition 5.12. Let (X, ], g) be a compact almost-Hermitian manifold, then the following Hodge decompo-
sition holds

AKX) = 3K 5 () @ (84 + 84 (%)) @ (63) A2 (X)) .

Moreover, a (p, q)-forma € ﬂ{i’(‘é 5.)(X) if and only if

o'a =
o'a =
Wa =
fa =
(00 + ip)a =
oua =
joa =

O O O O O O O




DE GRUYTER Differential operators on almost-Hermitian manifolds = 119

Remark 5.13. Since the operators Apcs 5 and A, 5 are elliptic, the associated spaces of harmonic forms

J{;B 6.5) X, ﬂ-(/’“ 5.5) (X) are finite-dimensional on a compact almost-Hermitian manifold. In particular, we denote

with h;;c( 5 8)(X) and h/.l(& 5)(X) their dimensions.

Remark 5.14. Let (X, ], g) be an almost-Hermitian manifold. Then, by definition, conjugation induces the fol-
lowing isomorphisms

HGX =36, Hp 5@ = s ®)-

In particular, for any p, q

DA(x) = HDP p.q - HDP
HUX) = HgP (X)), SJ-CBC(M)(X)—SJ-CBC(M)(X).

Therefore, we have the following dimensional equalities for every k
hE(X) = h§(X)
and for every p, q
h’g’q(X) = hg’p(X), wd (X)) =h?P _ (X).

BC(8,6) BC(6,6)

Remark 5.15. Let (X, ], g) be a compact almost-Hermitian manifold of real dimension 2n, then the Hodge-*-
operator induces duality isomorphisms for every k

k 2n-k
* . :H:BC(&S)(X) — :H:A?ﬁ’s)(x) .

In particular, for every p, q

. D,q n-p,n-q
* Mo = Hes XD

Therefore we have the usual symmetries for the Hodge diamonds, namely for every k
k 2n-k
hBC(&,S)(X) = hAr(le,S)(X)

and for every p, q

b,q _ ph-p,n—q
hBC(s,S)(X) - hA(s,S) X

6 Harmonic forms on almost-Kdhler manifolds

Let (X, ], g, w) be a compact almost-Kihler manifold. With the usual notations, we have the following almost-
Kahler identities (cf. [4], [3])

Lemma 6.1. Let (X, ], g, w) be an almost-Kdhler manifold then
o [6,A]=i6",[0,A]=i0"and[1,A]l=iy"
o [6,A]=-i6",[0,A]=-i0"and[u,A] = -iji".

Proof. For the sake of completeness we recall here the proof. We have
dt =[d,A]=[6+8,A] =[0+ji+0d+u,Al

and

—d) =i -6)=i(d +u" -0 " -p).
Since w is symplectic, d* = —(d)” as recalled at the beginning of Section 4; hence [6, A] = i §" and [, A] =
-i6".

As a consequence one has the following (see [4, Lemma 3.6])
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Proposition 6.2. Let (X, ], g, w) be an almost-Kdhler manifold, then Az and As are related by

and
Ad =AS +A5 +E]

where
Ej =65 +66+66+65.
In particular, their spaces of harmonic forms coincide, i.e. 3(5(X) = H5(X) .
In fact, we can use this result to characterize Kahler manifolds among the almost-Kahler ones.
Corollary 6.3. Let (X, ], g, w) be a compact almost-Kdhler manifold, then
Ag=24s <= (X,],g,w)isKdhler.
Proof. First of all, on any almost-Kdhler manifold one has (cf. e.g., [3])
[44,L) = [[d,d"],L] = [d,[d", L]] = -[d, d°].

In view of Lemma 6.1, it is

[6,A]=i6;
therefore, taking the adjoint,
[L,68]=-i6.
Furthermore, since w is d-closed, we have
[6,L] =0.

Hence, (cf. Lemma 6.13)
[45,L1=1[6,687], L] =[5, 16", L]l = i[8, 8] = O,

that is
[As, L] = 0.

By Proposition 6.2, on an almost-Kédhler manifold we have that
Ad :AS +A5 +E] = 2A5+E],

and we want to show that E; = 0 if and only if ] is integrable.
Clearly, if J is integrable, then (X, J, g, w) is Kdhler and as a consequence of the Kihler identities, A4 = 24,.
For the converse implication, assume that A; = 2A5. Then, by the above formula,

ddc + dcd = —[Ad,L] = —Z[A(g,L] = O,

and, as noticed in Section 2, d and d¢ anticommute if and only if J is integrable. O

An immediate consequence of Proposition 6.2 is also the following
Corollary 6.4. Let (X, ], g, w) be a compact almost-Kahler manifold, then
H5(X) € Har(X),
namely every 6-harmonic form is harmonic. In particular,
h3(X) < be(X),

where b.(X) denotes the Betti numbers of X.
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We will see with an explicit example that the inequality h;-s(X) < b«(X) does not hold for an arbitrary compact
almost-Hermitian manifold.

Lemma 6.5. Let (X, ], g, w) be an almost-Kdihler manifold, then d* = i(6" - 6”). In particular, a (p, q)-form is
symplectic harmonic, i.e., it belongs to Ker d N Ker d*, if and only if belongs to Ker § N Ker § n Ker " N Ker §”.

Proof. Since d® = —i(-0 + 0 + 1 — u) = i(6 - 6) we have that (d°)" = i(-0" + 0" + 1" - u*) = i(6" - 6") and so the
thesis follows from d” = —(d€)" as noted in Section 4. O

In general, the existence of a symplectic harmonic representative in every de-Rham cohomology class is
equivalent to the Hard-Lefschetz condition (cf. [1], [13], [7], [12]). Therefore, Tseng and Yau in [12] introduced
the space
ker(d + d%) n AK(X)

ImddA n AkK(X)

and they study Hodge theory for it. It turns out that HX_ ,, (X) ~ 3%, ., (X) where

HY, o0 (X) :=

HX, 1 (X) = Kerd N Ker d* N Ker (dd”)" .
Let us denote with 32:9 , (X) the (d + d*)-harmonic (p, ¢)-forms.

Remark 6.6. Notice that on a compact almost-Kéhler manifold (X*", ], g, w) we have the inclusion
THE(X) C 0 (),

indeed if a € 3(3(X) then, by Proposition 6.2, a € Hy(X), namely 6a = 0, §'a=0,6a=0and8 a = 0. Since
d=6+6andd" = -(dY" = -i(8" - §) then we have the inclusion.
Moreover, if ] is C=-pure and full [6] (e.g., this is always the case if n = 2, see [5]) by Corollary 6.4 and [11,
Theorem 4.2] one has

HE(X) € Hir(X) € H, a0 (X)

and in particular, h3(X) < by(X) < h}, ;4(X). Recall that if n = 2 by [10, Theorem 4.5] (cf. also [9, Section 3.2])
br(X) < h§+ 42 (X) unless (X, w), as a symplectic manifold, satisfies the Hard Lefschetz condition.

On bigraded forms we have a different situation from Corollary 6.4.

Theorem 6.7. Let (X, ], g, w) be a compact almost-Kdahler manifold, then on (p, q)-forms
FHO LX) = FHPAX) N FHEAX) = FEI(X) N I (X)) N IHEIX) N IGI(X) =
= ng’q(X) N ﬂ{f,”q(X) = IHZ"’(X).

Proof. Notice that the equality H5?(X) N Jfg’q(X) = ﬂ{g’q(X) N HY(X) N ﬂ{g’q(X) N HE4(X) follows from
Theorem 5.3.
The equalities Hg’q(X) NHEA(X) N %ﬁ’q(X) NHPI(X) = }Cg’q(X) NHY(X) = HE(X) follow from [3, Propo-
sition 3.3, Theorem 4.3].
Indeed,

329(X) N HEU(X) N HEIX) 0 I IX) = Ker (A5 + Ay + A + 4y)

= Ker (45 + Ay) NKer (4, + Ap) = Ker (A5 + Ay) = Ker (45) N Ker (4y) .

We just need to prove that f}{Z;‘;A (X) = #HZ4(X) N H%”q(X). Leta € ﬂfﬁ;‘fjﬂ (X), then da = 0, d%a = 0 and
dd* * a = 0, or equivalently da = 0, d° * « = 0 and d * d°a = 0. Since on (p, q)-forms da = 0 implies d°a = 0
the last condition is superfluous, and da = 0, d€ * a = 0 is equivalent to éa = 0, Sa=0,6*a=0,6*a=0

(cf. Lemma 6.5). O
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Theorem 6.8. Let (X, ], g, w) be an almost-Kdihler manifold, then A BC(5.5) Ay are related by
Ageis.5) = A5+85+86+F
where
Fji==6 (88" +576) 8 + (85" +576) 5'6+5°5 (86" +5'6) ~ 6" (86" +56) 5.
Proof. First of all, since it will be useful in the following, we notice that by the almost-Kéhler identities 6" =
i[6,A] and 8" = —i[6, A] we obtain
86 =i(6A6-A8%), 66 =i(6%A-5A6)

and similarly for their conjugates.
Recall that when J is non-integrable 62 # 0 and 82 # 0 and so we cannot cancel them out in these expressions.
By Proposition 6.2

A% =AsA5=66"88"+66°856+6 666 + 65 68°6.
Now in the first and fourth terms we use the previous formulas, and in the second and third terms we use the
fact that 6 and & anticommute. Hence, we get

A5 = 8(i6A8 - iA8%)8" - 66766 — 67668 + 6" (-i6°A + 16A8)5 .
Using again that 6" = i [6, A] one has
i66A68" = 65(-6"8" +15A8") = 1667 A8 + 665" 6"
and so the first term in the previous expression of Ag becomes
8(i6A8 - iA8%)8" = i66°A8" + 68676 — i6A86%6" = 68676 + 6(i6°A - iA6°)6"

=666"6"+6(8°6+586)8

and similarly the fourth term becomes

8 (~i6°A +16A6)5 = ~i6" 6% A5 + 676766 + 16 1625 = 676766 + 6" (-i62A +iA6%)8

=8°6"66+6°(66"+66)5.

For the second term using again from the Kihler identities that 66" = —i6%2A +i6A8 and 6" = —i [, A] one has

-66"6"6=16°A6"6 - 16A66"5 = i6°A6°6+ 576676 - iA6°6°6 = 66875 + (i6°A - iA6%)86

=5685-(68"+8°6)85

and similarly for the third term

~6"868" = i6"66°A + 6°56"6 — i6°6A6% = 68876 + 8 8(16°A - 1A6?)

=6856-65(68+6"6).

Putting all this together we obtain
2 % *
A5 =Apeis5-00-66-F

concluding the proof. Here in the expression of F; we have used that
86+65 =656"+66

We prove this last statement separately in the following Proposition. O
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Clearly, if J is integrable we recover the classical relations between the Bott-Chern and Dolbeault Laplacians
(cf. e.g., [8]), namely on Kédhler manifolds

ABC = Ag + 5*5 + a*a
In particular, F; = 0 since by the Kéhler identities 90" + 0”9 = 0.

Proposition 6.9. Let (X, ], g, w) be an almost-Kihler manifold, then
66 +86=65+66.
In particular,
e 856 +866=00"+00+030"+d0,
. E =285 +5).
Proof. We have
88 +86=0+wWO +p)+©@ +pH0O+p) =
=00 +0 0+ +A O+ pd" + u+pup + 'y
Now, by [4, Lemma 3.7] we have

and
00" +0 0=op +po+pd" +0'l,
hence
68 +86=0op +u0+ad + "+ + O+ pd" +0p.

Using conjugation we have

86 +866=00 +00+ou +u0+ud +d 1=

—ud + o u+op +pO+ou +u O+ + 011,
therefore 66" + 6"6 = 66" + 676 . O

Proposition 6.10. Let (X, ], g, w) be a compact almost-Kdhler manifold, then

Hpeis,5X) = HG(X).

Proof. Leta € f}CBC 5 5)(X) then by Lemma 5.9, §a = 0, a = 0 and 66" a = 0. We need to prove that §"a = 0.
Using the almost- Kahler identities we have

0=66a=-i6"[6, Ala
which means that §"6Aa = 0. Therefore, pairing with Aa,
0=(6"6Aa, Aa) = |5A0(|2

hence 6Aa = 0. This, means that 6 a = —i[8, A]la = §Aa = 0, giving the first inclusion SJ-CBC(5 5)(X) C f}-((fs(X).
BCG. 5)(X). Leta ¢ ﬂfg(X), i.e., 8a = 0 and 6" a = 0. Moreover,
since 3} (X) = H(X) we also have that a = 0 and 8" a = 0. Hence, putting these relations together we have

that 6a = 0, 5a =0and 6”6 a = 0, i.e., by definition a € :HBC(é 5)(X) giving the second inclusion. O

We now prove the other inclusion 3} (X) C He

Corollary 6.11. Let (X, ], g, w) be a compact almost-Kdhler manifold, then

Ko %) = 9700
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Proof. The thesis follows from the previous Proposition saying that %;;’c‘( 5 5)(X) = H;"(X), the fact that

H-C{'-i"(X) = H;"(X) and Theorem 6.7. O
Corollary 6.12. Let (X, ], g, w) be a compact almost-Kdihler manifold of dimension 2n, then
%;C(ﬁ,S)(X) = %21(5,8)(){)'

Proof. First we show the inclusion fJ-CéC( 5 5)(X) - SJ-(A( 5, 5)(X). Leta € f}CZ;C( 5, 5)(X) then, by Lemma 5.9, §a = 0,
6a = 0and 86 * a = 0. Hence, 66a = 0 and by Propositions 6.10 and 6.2, a € ﬂ{;c(ﬁ,s)(X) = }Cg(X) = H3(X),
sod*a =0and § * a = 0 giving the inclusion.

The other inclusion follows from having h;; C6.5) X) = h;l( 5.5) (X). Indeed by using Remark 5.15, Proposition
6.10 and Remark 5.7 we have the following equalities on the dimensions, for any k,

(%) = hies () = 1300 = W) = B 5,5/X)

BC(8,6 BC(8,6
O
We prove the following Lemma
Lemma 6.13. Let (X, ], g, w) be an almost-Kdhler manifold, then
e [L,Az]=0and[L,As] =0,
L4 [A,AS]=Oand [A,A5]=0.
Proof. We just need to prove the first equality
[Ly AS] = [L’ [89 8*]] = _[8’ [8*, L]] = 1[8’ 6] =0.
O

As a consequence we have the following Hard-Lefschetz Theorem on the spaces of 6— and A BC(, 5 —harmonic
forms.

Theorem 6.14. Let(X, ], g, w) be a compact almost-Kdhler 2n-dimensional manifold, then, for any k, the maps

k . qrn-k Kk
L™: :HZC(Z)‘,S)(X) - Hg}(s,&)(x)

are isomorphisms.
Proof. Since by the previous Lemma [L, Az] = 0 and [A, Ag] = 0 and in general
LK AYk(X) — A™R(X)

are isomorphisms, then the maps
LR 3037R ) — 303 (X)

are injective, and so isomorphisms by Remark 5.7. The maps

k -k k
L™ : He6,5X) = Hies,5X)
are clearly isomorphic by Proposition 6.10. O

For the bigraded case the result holds and it is proven in [3, Theorem 5.1].
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7 Examples

An important source of non-Kdhler examples is furnished by nilmanifolds, namely compact quotients of a
nilpotent connected simply-connected Lie group by a lattice. On almost-complex nilmanifolds, given a left-
invariant Hermitian metric, one can look for left-invariant harmonic (with respect to some operator) forms
but in general they do not exhaust the whole space of harmonic forms. In the following we compute some
examples showing that even on almost-Kdhler manifolds we do not have a decomposition of the form

. p.q
33 # P 1510,
p+q=*
differently from the case (cf. [3, Theorem 4.1])
HX) NIGX) = P 31X N HUX).
p+q=*

Moreover, we will see that when the almost-Hermitian structure is not almost-Kahler the equalities in Theorem
6.7 may fail and also the inequalities in Corollary 6.4 may fail, in particular we construct an example where

h(X) > by (X).

Example 7.1. Let H(3; R) be the 3-dimensional Heisenberg group and H(3; Z) be the subgroup of matrices with
entries in Z. The Kodaira-Thurston manifold is defined as the quotient

X:= (HG;R)xR) / (H(3;Z) < Z) .

The manifold X is a 4-dimensional nilmanifold which admits both complex and symplectic structures. We con-
sider the non-integrable almost-complex structure ] defined by the structure equations

o

do! =
de? = %¢12+% <¢12_(pzi) +%(pii

where { @', ¢} is a global co-frame of (1,0)-forms on X. The (1, 1)-form w := % ((pli + (pﬂ) is a compatible
symplectic structure, hence the pair (J, w) induces a almost-Kahler structure on X.

Recall that f}{g"(X) = J3*(X), but in general H3(X) € IHG(X). One can easily compute the spaces of left-
invariant harmonic forms and one gets

:H‘%,inv(x) = <(pl’(pl>’
H iy X)

é,inv

|
S
hS]
(N
=
hS]
N
N
hS]
-
N
|
hS]
[
N1
hS]
T
N1
+
hS]
N
=
~_—

and (cf. also [3])
HEO (X) =

é,inv

{
1QLm = ('),

0

0

é,inv

120 (X) =

b,inv

HO? (X) =

b,inv

:}fl’l (X)

8,inv

<(pﬁ , (pzz , (p12 . (pzi>
The remaining spaces can be computed easily by duality. A first observation is that

2 s
%S,inv(x) 7 @ :HISJ,ZW(X) :
p+q=2

In particular, by [3, Theorem 4.1] and Theorem 6.7
3 iy X) NI 3 (X) = ) 32 )32 (X) = @ 3B (%) € 35, (%),

0,inv 9,inv u,inv 8,inv d,inv
p+q=2 p+q=2
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Therefore, also in the almost-Kdhler case we can have (cf. Proposition 5.5)

(X) # 55 (X).

8,inv

2 2
fJ-CE),inv(X) n g{ll

,inv

Moreover, since dim H2% . (X) = 4 = b,(X), from Corollary 6.4 we have that

6,inv

2 2
:H[S,inv(X) = %S(X) .
Since dim 9{}3 i (X) = 2 then
2 <dim3(5(X) < b1(X) = 3,

hence dim 9{‘% (X) = 3 if and only if there exists a non-left-invariant 6-harmonic 1-form.

Example 7.2. Let X be the 4-dimensional Filiform nilmanifold and consider the non-integrable almost-complex
structure J defined by the following structure equations

dp! = 0
de? = %<p12+% (¢12_¢2i) —igoﬂ+%goﬁ

where {(pl , (pz} is a global co-frame of (1,0)-forms on X. As observed in [3] ] does not admit any compatible

symplectic structure. We fix the diagonal metric w := 2% ((p1i + (pzj). One can easily compute the spaces of

left-invariant harmonic forms and one gets
1 _ 1 -1
H[S,inv(X) = <(P » @ > s
g{[g)‘,inv(X) = <(P12 - (Piz > —%4’11 + (,012 - %(PZ2 , %(Pli + (pZi + %(P22>

and
MO (X) =

6,inv

(
Hga® = (91,

0

0

6,inv

H20 (X) =

6,inv
H? (X) =

é,inv

KL (X)

é,inv

1 11 3 01 251 93 21 1 25
<§(P tQ 59 59 t9 +59 >
The remaining spaces can be computed easily by duality. Since (J, w) is not an almost-Kdhler structure we cannot
apply Corollary 6.4, in particular in this case we have the opposite inequality

dimH3(X) = 3 = dim 33

6,inv

(X) >2= bz(X) .

Moreover, one can easily compute the A s 5)-harmonic forms
1 _ 1 -1
H{BC(E,S),inv(X) - <(P » P >’
2 _ 11 12 13 13 1 23 21,1 23
Hcie,8,imX) = <<P L Y e LA T >

and
1,0 _
g{BC(z‘S,S),inv(X) -

0,1 _
g{BC(ﬁ,S),inv(X) B <
2,0 _
%BC(é,S),inv(X) = 0,
0

0,2 _
%Bc(s,S),inv(X) -

1,1
g{BC(é,S),inv(X)
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Notice that, unlike the almost-Kdhler case
2 2
:HBC(G,S),inv(X) 4 :Hs,inv(X)

and
1,1 1,1
j_CBC(E,E),inv(X) 7 :H:S,inv(X) :
Example 7.3. Let X := I3 be the Iwasawa manifold, namely the quotient of the complex 3-dimensional Heisen-
berg group H(3; C) by the subgroup of matrices with entries in Z[i]. The manifold X is a 6-dimensional nil-
manifold admitting both complex and symplectic structures. Then there exists a global co-frame of 1-forms
ei} e satisfying the following structure equations
i1, e,
det =
de? =
de* =
de* =
de = -eP+e
d 96 - _el4 _ 6’23 .

o © O O

24

We define the following non-integrable almost-complex structure
Jet =—-e®, Je’=-e°, Je’=-e
and consider the compatible symplectic structure
16 , 25 34

w:=e +e " +e

Therefore, (X, ], w) is a compact 6-dimensional almost-Kdhler manifold. We set

et = el+ied
p? = e’+ie’
9> = & +iet
then the structure equations become
1 1,13 _ i,23 1,13, 1,31 23, i,32 1,13 _i,23
do” = (207 407 )+ (207 +507 — 507 +50 )+(z<p %(p)
2 i 013, 1,23 i 13 31 _ 1,23 _ 1,32 13 _ 1,23
do® = (-0 +307 )+ (407 +50°" - 307 -3¢ )+(—£<p —zw)
de> = 0

One can compute the spaces of left-invariant harmonic forms and one gets
1 _ 3 -3
:Hfi,inv(X) - <(P » ¢ > ’
g_{zz;’inv(x) <(p11 + g022 , (p3§ -2+ (p12> ,

13 (X) = <(p13i +(p232,¢1i§ +(P223>

§,inv

and
HO(X) =

é,inv

HOL (X) =

é,inv

<

<

WX = 0

Hym®) = 0
:}(%:ilnv(x) _ <<pﬁ +<p22,<p33> )

<

<

2! (X)

é,inv

9_(1,2 (X)

§,inv
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The remaining spaces can be computed easily by duality. In particular

H3 X)) # €D H2I (X).

b,inv
p+q=2
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