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Abstract: We consider several di�erential operators on compact almost-complex, almost-Hermitian and
almost-Kähler manifolds. We discuss Hodge Theory for these operators and a possible cohomological in-
terpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de
Rham, Dolbeault, Bott-Chern and Aeppli cohomologies.
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1 Introduction
On a complex manifold X the exterior derivative d decomposes as the sum of two other cohomological di�er-
ential operators, namely d = ∂ + ∂̄ satisfying ∂2 = 0, ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. Once a Hermitian metric on X is
�xed one can associate to ∂̄ a natural elliptic di�erential operator, theDolbeault Laplacian; if X is compact the
kernel of this operator has a cohomological interpretation, i.e., it is isomorphic to the Dolbeault cohomology
of X. If we do not assume the integrability of the almost-complex structure, i.e., (X, J) is an almost-complex
manifold, the ∂̄ operator is still well-de�ned but it has no more a cohomological meaning. However, we can
de�ne some natural di�erential operators.
In this paper we are interested in studying the properties of such operators, their harmonic forms and pos-
sibly their cohomological meaning on compact manifolds endowed with a non-integrable almost-complex
structure. More precisely, in the non-integrable case d decomposes as

d : Ap,q(X)→ Ap+2,q−1(X)⊕ Ap+1,q(X)⊕ Ap,q+1(X)⊕ Ap−1,q+2(X)

and we set
d = µ + ∂ + ∂̄ + µ̄ .

Then we de�ne a 2-parameter family of di�erential operators
{
Da,b

}
a,b∈C\{0} whose squares are zero and

interpolate between d and dc := J−1dJ. In general d and dc do not anticommute and so in Proposition 3.4 we
give necessary and su�cient conditions on the parameters in order to have Da,bDc,e + Dc,eDa,b = 0; in such
a case we de�ne the Bott-Chern and Aeppli cohomology groups. Moreover, if we �x a J-Hermitian metric we
develop a Hodge theory for these cohomologies together with the cohomology of Da,b (see Theorems 3.8, 3.9,
Proposition 3.10 and Theorems 3.12, 3.13). In particular we show that if |a| = |b| then the cohomology of Da,b
is isomorphic to the de Rham cohomology (cf. Proposition 3.14). Moreover, in Example 3.17 we compute ex-
plicitly the invariant Da,b-cohomology on the Kodaira-Thurston manifold endowed with an almost-complex
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structure, showing that it is isomorphic to the de Rham cohomology independently on the parameters. Nev-
ertheless, the considered parametrized cohomology groups do not generalize (except for the almost-Kähler
case) the classical Dolbeault, Bott-Chern and Aeppli cohomology groups of complex manifolds. To the pur-
pose of �nding a possible generalization of these cohomologies we consider the operators (cf. [4])

δ := ∂ + µ̄ δ̄ := ∂̄ + µ .

These two operators anticommute but their squares are zero if and only if J is integrable. In Section 5 we
de�ne a generalization of the Dolbeault, Bott-Chern and Aeppli Laplacians and develop a Hodge theory for
these operators studying their kernels.
In the almost-Kähler setting considered in Section 6 we derive some further relations among the kernels of
these operators, involving also the Betti numbers and the dimension of δ̄-harmonic forms (see Corollary 6.4).
A Hard-Lefschetz type Theorem for Bott-Chern harmonic forms is also proved (cf. Theorem 6.14).
Finally, in the last Section we compute explicit examples on the two 4-dimensional non-toral nilmanifolds
and the Iwasawa manifold showing that a bi-graded decomposition for the δ̄-harmonic forms cannot be ex-
pected and that the equalities in Theorem 6.7 and the inequalities in Corollary 6.4 are peculiar of the almost-
Kähler case, giving therefore obstructions to the existence of a symplectic structure compatible with a �xed
almost-complex structure on a compact manifold. In particular, we show in Example 7.1 that even if in the
bigraded case the spaces we consider coincide with the spaces considered in [3], this fails on total degree.

2 Preliminaries
Let (X , J) be an almost-complex manifold then the almost-complex structure J induces a natural bi-grading
on the space of forms A•(X) =

⊕
p+q=• A

p,q(X). If J is non-integrable the exterior derivative d acts on forms as

d : Ap,q(X)→ Ap+2,q−1(X)⊕ Ap+1,q(X)⊕ Ap,q+1(X)⊕ Ap−1,q+2(X)

and so it splits into four components
d = µ + ∂ + ∂̄ + µ̄ ,

where µ and µ̄ are di�erential operators that are linear over functions. In particular, they are related to the
Nijenhuis tensor NJ by

(µα + µ̄α) (X, Y) = 1
4NJ(X, Y)

where α ∈ A1(X). Since d2 = 0 one has

µ2 = 0
µ∂ + ∂µ = 0
∂2 + µ∂̄ + ∂̄µ = 0
∂∂̄ + ∂̄∂ + µµ̄ + µ̄µ = 0
∂̄2 + µ̄∂ + ∂µ̄ = 0
µ̄∂̄ + ∂̄µ̄ = 0
µ̄2 = 0

Consider the following di�erential operators (cf. [4])

δ := ∂ + µ̄ , δ̄ := ∂̄ + µ

with δ : A±(X)→ A±(X) and δ : A±(X)→ A∓(X), where A±(X) are de�ned accordingly to the parity of q in the
J-induced bigraduation on A•(X).

Lemma 2.1. Let (X, J) be an almost-complex manifold, the following relations hold
• d = δ + δ̄,
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• δ2 + δ̄2 = 0,
• δ2 = ∂2 − ∂̄2,
• δδ̄ + δ̄δ = 0.

Proof. The �rst statement follows immediately from the de�nitions. The second and third points follow from
direct computation

δ̄2 = (∂̄ + µ)(∂̄ + µ) = ∂̄2 + ∂̄µ + µ∂̄ + µ2 = ∂̄2 − ∂2

and, similarly, δ2 = ∂2 − ∂̄2.
Finally, for the last statement we have

δδ̄ + δ̄δ = ∂∂̄ + ∂µ + µ̄∂̄ + µ̄µ + ∂̄∂ + ∂̄µ̄ + µ∂ + µµ̄ = 0.

If D = d, ∂, δ, δ̄, µ, µ̄ we set Dc := J−1DJ, then δc = −iδ and δ̄c = iδ̄ and

dc = i(δ̄ − δ) = i(∂̄ + µ − ∂ − µ̄).

Notice that in general if J is not integrable d and dc do not anticommute, indeed we have

ddc + dcd = 2i(δ̄2 − δ2) = 4i(∂̄2 − ∂2) .

Therefore, an almost-complex structure J is integrable if and only if dc = i(∂̄ − ∂) if and only if d and dc

anticommute.

Let g be a J-Hermitian metric and denote with * the associated anti-linear Hodge-*-operator. If D =
d, ∂, ∂̄, µ, µ̄ we set D* := − * D* and it turns out that D* is the adjoint of D with respect to the L2-pairing
induced on forms (cf. [4], [2]).
As usual one can consider the following di�erential operators

∆∂̄ := ∂̄∂̄* + ∂̄* ∂̄ ,

∆∂ := ∂∂* + ∂*∂ ,

∆µ̄ := µ̄µ̄* + µ̄*µ̄ ,

∆µ := µµ* + µ*µ .

While on compact almost-Hermitianmanifolds the operators ∆∂̄, ∆∂ are elliptic, and so the associated spaces
H•,•
∂̄ (X) := Ker ∆∂̄, H

•,•
∂ (X) := Ker ∆∂ of harmonic forms are �nite dimensional, in case of ∆µ̄, ∆µ the spaces

H•,•
µ̄ (X) := Ker ∆µ̄ and H•,•

µ (X) := Ker ∆µ are in�nite-dimensional in general (recall that µ̄ and µ are linear
over functions). In the following we will consider several spaces of harmonic forms and we will discuss the
relations with these ones.

3 Di�erential operators on almost-complex manifolds
Let (X, J) be an almost-complex manifold and consider a linear combination of the di�erential operators
∂ , ∂̄ , µ , µ̄,

Da,b,c,e := a ∂̄ + b ∂ + c µ + e µ̄ ,

with a, b, c, e ∈ C \ {0}. Clearly Da,b,c,e satis�es the Leibniz rule; we are interested in �nding conditions on
the parameters ensuring that D2

a,b,c,e = 0. Notice that if J is integrable

Da,b,c,e := a ∂̄ + b ∂,

and D2
a,b,c,e = 0 for any choice of the parameters. Therefore from now on J will always be assumed to be

non-integrable if not stated otherwise. In fact we have
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Lemma 3.1. Let (X, J) be an almost-complex manifold. Then D2
a,b,c,e = 0 if and only if

e = a2

b and c = b2

a .

Proof. By a direct computation one has

D2
a,b,c,e = ∂̄2(a2 − be) + ∂2(b2 − ac) + (∂∂̄ + ∂̄∂)(ab − ce) .

We set
Da,b := a ∂̄ + b ∂ + b2

a µ + a2

b µ̄,

with a, b ∈ C \ {0}.
Since D2

a,b = 0 we de�ne the associated parametrized cohomology

H•Da,b (X) := KerDa,b
ImDa,b

.

Notice that if a = b, one has Da,a = a d i.e., a multiple of the exterior derivative.
In general, Da,b is not a real operator, indeed by a straightforward computation one gets

Lemma 3.2. Let (X, J) be an almost-complex manifold. Then, Da,b = Da,b if and only if a = b̄.

We set
Da := a ∂̄ + ā ∂ + ā2

a µ + a2

ā µ̄ .

Notice that the family of operators {Da}a∈C\{0} contains the operators

D1 = D1,1 = d and Di = Di,−i = dc .

In particular,
H•D1,1 (X) = H•dR(X) ' H•dc (X) = H•Di,−i (X) .

Moreover, recall that if J is non-integrable, D1Di + DiD1 ≠ 0, therefore we show when two real di�erential
operators Da and Db anticommute.

Proposition 3.3. Let (X, J) be an almost-complex manifold. Then, DaDb + DbDa = 0 if and only if ā b ∈ R.

Proof. Set

Da := a ∂̄ + ā ∂ + ā2

a µ + a2

ā µ̄ and Db := b ∂̄ + b̄ ∂ + b̄2

b µ + b2

b̄
µ̄ .

Then, DaDb + DbDa = 0 if and only if  ab̄ + bā = ā2b2

ab̄ + a2 b̄2

āb

2āb̄ = b̄2a
b + ā2b

a

if and only if b̄a = āb concluding the proof.

In fact, with the same argument, more generally one has

Proposition 3.4. Let (X, J)beanalmost-complexmanifold. Then, Da,bDc,e+Dc,eDa,b = 0 if andonly if ae = bc.

Proof. Set

Da,b := a ∂̄ + b ∂ + b2

a µ + a2

b µ̄ and Dc,e := c ∂̄ + e ∂ + e2

c µ + c2

e µ̄.
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Then, Da,bDc,e + Dc,eDa,b = 0 if and only if
ae + bc = a2e2

bc + b2c2

ae

2ac = bc2

e + a2e
b

2be = ae2

c + b2c
a

if and only if ae = bc concluding the proof.

Remark 3.5. Notice that when J is integrable, it is straightforward to show that two arbitrary operators of the
form

Da,b := a ∂̄ + b ∂ and Dc,e := c ∂̄ + e ∂

anticommute.

Remark 3.6. If b = 1, namely Db = d then
Dad + dDa = 0

if and only if a ∈ R. Namely, the only operators anticommuting with the exterior derivative in {Da}a∈C\{0} are
those with the parameter a real.
If b = i, namely Db = dc then

Dadc + dcDa = 0

if and only if iā ∈ R. Namely, the only operators anticommuting with dc in {Da}a∈C\{0} are those with the
parameter a purely imaginary.

As a consequence of the previous considerations, if ae = bc and (a, b) ≠ (c, e) then (A•(X), Da,b , Dc,e) is a
double complex since 

D2
a,b = 0

D2
c,e = 0

Da,bDc,e + Dc,eDa,b = 0
,

hence one can de�ne the Bott-Chern and Aeppli cohomologies respectively as

H•BC(Da,b ,Dc,e)(X) := KerDa,b ∩ KerDc,e
ImDa,bDc,e

, H•A(Da,b ,Dc,e)(X) := KerDa,bDc,e
ImDa,b + ImDc,e

.

Let (X, J) be an almost-complexmanifold and let g be a J-Hermitianmetric on X. Then the adjoint of Da,b
is

D*a,b := ā ∂̄* + b̄ ∂* + b̄2

ā µ
* + ā2

b̄
µ̄* .

We consider the second-order di�erential operator

∆a,b := Da,bD*a,b + D*a,bDa,b .

Lemma 3.7. Let (X, J) be an almost-complex manifold. The di�erential operators Da,b are elliptic.

Proof. Fix a and b. We can compute the symbol of ∆a,b as follows. We work in a local unitary frame of T*X
and choose a basis

{
θ1, · · · , θn

}
such that the metric can be written as

g = θi ⊗ θ̄i + θ̄i ⊗ θi .

Using Einstein notations, a (p, q)-form α locally can be written as

α = αi1···ip j1···jqθ
i1 ∧ · · · θip ∧ θ̄j1 ∧ · · · ∧ θ̄jq .
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Then ∂̄ acts as
(∂̄α)p,q+1 = ∂̄jq+1αi1···ip j1···jq θ̄

jq+1 ∧ θi1 ∧ · · · θip ∧ θ̄j1 ∧ · · · ∧ θ̄jq .

and µ acts as
µα = αi1···ip j1···jqµ

(
θi1 ∧ · · · θip ∧ θ̄j1 ∧ · · · ∧ θ̄jq

)
and similarly for ∂ and µ̄. In computing the symbol of ∆a,b we are only interested in the highest-order di�er-
ential acting on the coe�cients αi1···ip j1···jq . Denoting with ' the equivalence of the symbol of the operators
we get

∆a,b ' |a|2∆∂̄ + |b|2∆∂ + ab̄(∂̄∂* + ∂* ∂̄) + bā(∂∂̄* + ∂̄*∂) ' |a|2∆∂̄ + |b|2∆∂

hence ∆a,b is elliptic.

We denote withHk
Da,b (X) := Ker (∆a,b|Ak ) the space of Da,b-harmonic k-forms. By the elliptic operators theory

we get the following

Theorem 3.8. Let (X, J, g) be a compact almost-Hermitianmanifold, then the following Hodge decompositions
holds, for every k,

Ak(X) = Hk
Da,b (X)⊕ Da,bAk−1(X)⊕ D*a,bA

k+1(X) .

Moreover, the spaceH•
Da,b (X) is �nite-dimensional.

One has the following

Theorem 3.9. Let (X, J, g) be a compact almost-Hermitian manifold, then there exists an isomorphism, for
every k,

HkDa,b (X) ' Hk
Da,b (X) .

In particular, the space H•Da,b (X) is �nite-dimensional and we will denote with h•Da,b (X) its dimension.

As a consequence we have the analogue of the Poincaré duality for the cohomology groups H•Da,b (X).

Proposition 3.10. Let (X, J, g) be a compact almost-Hermitian manifold of dimension 2n, then the Hodge-*-
operator induces a duality isomoprhism, for every k,

* : HkDa,b (X)→ H2n−k
Da,b (X) .

In particular, for every k, one has the equalities hkDa,b (X) = h2n−k
Da,b (X).

Similarly, one could develop a Hodge Theory for the Bott-Chern and Aeppli cohomologies of
(A•(X), Da,b , Dc,e) (with ae = bc and (a, b) ≠ (c, e)) following for instance [8].
In particular, the Bott-Chern and Aeppli Laplacians can be de�ned as

∆BCa,b,c,e = (Da,bDc,e)(Da,bDc,e)* + (Da,bDc,e)*(Da,bDc,e) + (D*c,eDa,b)(D*c,eDa,b)*+

(D*c,eDa,b)*(D*c,eDa,b) + D*c,eDc,e + D*a,bDa,b ,

∆Aa,b,c,e := Da,bD*a,b + Dc,eD*c,e + (Da,bDc,e)*(Da,bDc,e) + (Da,bDc,e)(Da,bDc,e)*+

(Dc,eD*a,b)*(Dc,eD*a,b) + (Dc,eD*a,b)(Dc,eD*a,b)* .

These operators are elliptic andwe denote withHk
BC(Da,b ,Dc,e)(X) := Ker(∆BCa,b,c,e|Ak ) the space of BC-harmonic

k-forms and with Hk
A(Da,b ,Dc,e)(X) := Ker(∆Aa,b,c,e|Ak ) the space of A-harmonic k-forms. By a direct calculation

one can show the following
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Proposition 3.11. Let (X, J, g) be a compact almost-Hermitian manifold. If ae = bc and (a, b) ≠ (c, e) then, a
di�erential form α ∈ Hk

BC(Da,b ,Dc,e)(X) if and only if

Da,b α = 0 , Dc,e α = 0 , (Da,bDc,e)* α = 0 .

Similarly, α ∈ Hk
A(Da,b ,Dc,e)(X) if and only if

(Da,b)* α = 0 , (Dc,e)* α = 0 , Da,bDc,e α = 0 .

By the elliptic operators theory we get the following

Theorem 3.12. Let (X, J, g) be a compact almost-Hermitian manifold. If ae = bc and (a, b) ≠ (c, e) then the
following Hodge decompositions hold, for every k,

Ak(X) = Hk
BC(Da,b ,Dc,e)(X)⊕ Da,bDc,eAk−2(X)⊕ (D*c,eAk+1(X) + D*a,bA

k+1(X)) ,

Ak(X) = Hk
A(Da,b ,Dc,e)(X)⊕ (Da,bAk−1(X) + Dc,eAk−1(X))⊕ ((Da,bDc,e)*Ak+2(X)) .

Moreover, the spacesH•
BC(Da,b ,Dc,e)(X) andH•

A(Da,b ,Dc,e)(X) are �nite-dimensional.

One has the following

Theorem 3.13. Let (X, J, g) be a compact almost-Hermitian manifold, then there exist isomorphisms, for every
k,

HkBC(Da,b ,Dc,e)(X) ' Hk
BC(Da,b ,Dc,e)(X) ,

and
HkA(Da,b ,Dc,e)(X) ' Hk

A(Da,b ,Dc,e)(X) .

In particular, the spaces H•BC(Da,b ,Dc,e)(X) and H•A(Da,b ,Dc,e)(X) are �nite-dimensional.

However, under some hypothesis on the parameters a, b we can write down an explicit isomorphism.

Proposition 3.14. Let (X, J, g) be a compact almost-Hermitian manifold of dimension 2n. Let a, b ∈ C \ {0}
such that |a| = |b|, then there exists an isomoprhism

Ker ∆d ' Ker ∆a,b

given by
α 7→

∑
p+q=k

(a
b

)q
αp,q

where αp,q denotes the (p, q)-component of a k-form α.

Proof. Let α =
∑

p+q=k α
p,q be a d-closed k-form, namely Hence µα + ∂α + ∂̄α + µ̄α = 0. Then, by bi-degree

reasons 

µ αp+q,0 = 0
∂ αp+q,0 = −µ αp+q−1,1

∂ αp+q−1,1 = −∂̄ αp+q,0 − µ αp+q−2,2

∂ αp+q−2,2 = −∂̄ αp+q−1,1 − µ αp+q−3,3 − µ̄ αp+q,0

...
...

...
∂ α1,p+q−1 = −∂̄ α2,p+q−2 − µ α0,p+q − µ̄ α3,p+q−3

∂ α0,p+q = −∂̄ α1,p+q−1 − µ̄ α2,p+q−2

∂̄ α0,p+q = −µ̄ α1,p+q−1

µ̄ α0,p+q = 0

.
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Therefore,

µ αp+q,0 = 0
b∂ αp+q,0 = − b

2

a µ ( ab α
p+q−1,1)

b∂ ( ab α
p+q−1,1) = −a∂̄ αp+q,0 − b2

a µ ( a
2

b2 αp+q−2,2)

b∂ ( a
2

b2 αp+q−2,2) = −a∂̄ ( ab α
p+q−1,1) − b2

a µ ( a
3

b3 αp+q−3,3) − a2

b µ̄ α
p+q,0

...
...

...
b∂ ( a

p+q−1

bp+q−1 α1,p+q−1) = −a∂̄ ( a
p+q−2

bp+q−2 α2,p+q−2) − b2

a µ ( a
p+q

bp+q α0,p+q) − a2

b µ̄ ( a
p+q−3

bp+q−3 α3,p+q−3)

b∂ ( a
p+q

bp+q α0,p+q) = −a∂̄ ( a
p+q−1

bp+q−1 α1,p+q−1) − a2

b µ̄ ( a
p+q−2

bp+q−2 α2,p+q−2)

a∂̄ ( a
p+q

bp+q α0,p+q) = − a
2

b µ̄ ( a
p+q−1

bp+q−1 α1,p+q−1)

µ̄ α0,p+q = 0

Namely, if dα = 0 then

Da,b
(
αp+q,0 + a

b α
p+q−1,1 + a2

b2 α
p+q−2,2 + · · · + ap+q

bp+q α
0,p+q

)
= 0 .

Similarly, if d*α = 0 then

D*a,b
(
αp+q,0 + b̄

ā α
p+q−1,1 + b̄2

ā2 α
p+q−2,2 + · · · + b̄p+q

āp+q α
0,p+q

)
= 0 .

Therefore if |a|2 = |b|2 and ∆d α = 0 then

αp+q,0 + a
b α

p+q−1,1 + a2

b2 α
p+q−2,2 + · · · + ap+q

bp+q α
0,p+q

is ∆a,b-harmonic.

Corollary 3.15. Let (X, J, g) be a compact almost-Hermitian manifold of dimension 2n. Let a, b ∈ C \ {0} such
that |a| = |b|, then there exists an isomoprhism

H•dR(X) ' H•Da,b (X).

Notice that in case of Di,−i = dc the isomorphism becomes

α 7→
∑
p+q=k

(−1)qαp,q = i−kJα .

Remark 3.16. If Da is a real operator, namely Da = Da,ā, then by previous corollary there is an isomoprhism

H•dR(X) ' H•Da (X)

for any a ∈ C \ {0}.

Example 3.17. Let H(3;R) be the 3-dimensional Heisenberg group and H(3;Z) be the subgroup of matrices
with entries in Z. The Kodaira-Thurston manifold is de�ned as the quotient

X :=
(
H(3;R) ×R

)
/
(
H(3;Z) × Z

)
.

The manifold X is a 4-dimensional nilmanifold which admits both complex and symplectic structures. We con-
sider the non-integrable almost-complex structure J de�ned by the structure equations{

dφ1 = 0
dφ2 = 1

2iφ
12 + 1

2i

(
φ12̄ − φ21̄

)
+ 1

2iφ
1̄2̄
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where
{
φ1 , φ2} is a global co-frame of (1,0)-forms on X.

Hence, directly we get, for any a, b ∈ C \ {0}{
Da,bφ1 = 0
Da,bφ2 = 1

2i a
(
φ12̄ − φ21̄

)
+ 1

2i bφ
12 + 1

2i
a2

b φ
1̄2̄ .

We �x the J-Hermitian metric ω := 1
2i
∑2

j=1 φ
j ∧ φ̄j, and by a direct computation one gets on invariant 2-forms

Ker Da,b,inv = C
〈
φ11̄, φ22̄, baφ

12 + φ12̄, −baφ
12 + φ21̄, −b

2

a2 φ
12 + φ1̄2̄

〉
and

Ker D*a,b,inv = C
〈
φ11̄, φ22̄, − ā

b̄
φ12 + φ12̄, ā

b̄
φ12 + φ21̄, − ā

2

b̄2 φ
12 + φ1̄2̄

〉
.

Therefore, one gets

H2
Da,b ,inv ' C

〈
φ11̄, φ22̄, φ12̄ + φ21̄, φ1̄2̄ − |a|

2 − |b|2

ab̄
φ12̄ − bā

ab̄
φ12

〉
,

where we listed the harmonic representatives with respect to ω. In particular, for a = b = 1 we get the harmonic
representatives for the de Rham cohomology and for a = −b = i we get the harmonic representatives for the
dc-cohomology H2

dc (X).

Remark 3.18. Notice that if J is integrable then (A•(X), Da,b , Dc,e) is a double complex for any choice of the
parameters (provided (a, b) ≠ (c, e)) and so one can de�ne accordingly the associated Dolbeault, Bott-Chern
and Aeppli cohomologies.

4 Di�erential operators on symplectic manifolds
Let (X, J, g, ω) be a compact almost-Kähler manifold that is an almost-Hermitianmanifold with fundamental
form ω d-closed. Then, we can generalize the symplectic cohomologies introduced in [12].

Let
L := ω ∧ − : A•(X)→ A•+2(X)

and
Λ := − * L* : A•(X)→ A•−2(X) ,

where * = J* = *J is the symplectic-Hodge-*-operator. Denote with

dΛ := [d, Λ] ;

since ω is symplectic we have that
dΛ = (−1)k+1 * d*|Ak(X)

i.e., dΛ is the Brylinski-codi�erential ([1]), namely the symplectic adjoint of d. Then, it is well known that
(dc)* = −dΛ, indeed on k-forms

(dc)* = − * dc* = − * J−1dJ* = −(−1)k+1 * Jd* = (−1)k * d* = −dΛ .

By the almost-Kähler identities (cf. Lemma 6.1)
• [∂, Λ] = i ∂̄* and [µ̄, Λ] = i µ*

• [∂̄, Λ] = −i ∂* and [µ, Λ] = −i µ̄*.
one has the following
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Lemma 4.1. Let (X, J, g, ω) be a compact almost-Kähler manifold, then for a, b ∈ C \ {0},
• [Da,b , L] = 0,
• [Da,b , Λ] = −i D*−b̄,ā.

Moreover, [Da,b , Λ] = (−1)k+1 * Da,b* on k-forms if and only if Da,b is a real operator.

Proof. By direct computations using the almost-Kähler identities

[Da,b , Λ] = a[∂̄, Λ] + b[∂, Λ] + b2

a [µ, Λ] + a2

b [µ̄, Λ] =

= −ia∂* + ib∂̄* − i b
2

a µ̄
* + i a

2

b µ
* = −i D*−b̄,ā .

Moreover, notice that

*Da,b* = ā * ∂̄ * +b̄ * ∂ * + b̄
2

ā * µ * + ā
2

b̄
* µ̄*

hence, [Da,b , Λ] = (−1)k+1 * Da,b* if and only if a = b̄ if and only if Da,b is a real operator by Lemma 3.2.

As a consequence, we denote
DΛa := [Da , Λ] = (−1)k+1 * Da *|Ak (X)

.

This operator generalizes the Brylinski co-di�erential, indeed

DΛ1 = dΛ .

In fact using DΛa := [Da , Λ] and D2
a = 0 we have that

DaDΛa + DΛaDa = 0 and (DΛa )2 = 0.

In particular, for a = 1 we recover the standard relations

ddΛ + dΛd = 0 and (dΛ)2 = 0.

Therefore, one can de�ne

H•DΛa := KerDΛa
ImDΛa

, H•BC(Da ,DΛa )(X) := KerDa ∩ KerDΛa
ImDaDΛa

, H•A(Da ,DΛa )(X) := KerDaDΛa
ImDa + ImDΛa

.

The symplectic cohomologies de�ned in [12] correspond to the parameter a = 1.

5 Harmonic forms on almost-Hermitian manifolds
In the following we try to generalize the spaces of harmonic forms for the Dolbeault, Bott-Chern and Aeppli
cohomology groups of complex manifolds using the intrinsic decomposition of d induced by the almost-
complex structure. However, for a non-integrable almost-complex structure we do not have a cohomological
counterpart (cf. also [2], [3]).

Let (X, J, g) be an almost-Hermitian manifold that means X is a smooth manifold endowed with an al-
most complex structure J and a J-Hermitianmetric g. As above denotewith * the associatedHodge-*-operator.
Consequently,

δ* = ∂* + µ̄* , δ̄* = ∂̄* + µ*

and
(dc)* = i(δ* − δ̄*) = i(∂* + µ̄* − ∂̄* − µ*) .

We de�ne the following di�erential operators

∆δ̄ := δ̄δ̄* + δ̄* δ̄ ,
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∆δ := δδ* + δ*δ ,

∆BC(δ,δ̄) := (δδ̄)(δδ̄)* + (δδ̄)*(δδ̄) + (δ̄*δ)(δ̄*δ)* + (δ̄*δ)*(δ̄*δ) + δ̄* δ̄ + δ*δ ,

∆A(δ,δ̄) := δδ* + δ̄δ̄* + (δδ̄)*(δδ̄) + (δδ̄)(δδ̄)* + (δ̄δ*)*(δ̄δ*) + (δ̄δ*)(δ̄δ*)* .

Remark 5.1. Notice that if J is an integrable almost-complex structure then these di�erential operators coincide
with the classical Laplacian operators on complex manifolds, namely the Dolbeault Laplacians

∆∂̄ := ∂̄∂̄* + ∂̄* ∂̄ ,

∆δ := ∂∂* + ∂*∂ ,

and the Bott-Chern and Aeppli Laplacians

∆BC = (∂∂̄)(∂∂̄)* + (∂∂̄)*(∂∂̄) + (∂̄*∂)(∂̄*∂)* + (∂̄*∂)*(∂̄*∂) + ∂̄* ∂̄ + ∂*∂ ,

∆A := ∂∂* + ∂̄∂̄* + (∂∂̄)*(∂∂̄) + (∂∂̄)(∂∂̄)* + (∂̄∂*)*(∂̄∂*) + (∂̄∂*)(∂̄∂*)* .

We have the following

Proposition 5.2. Let (X, J, g) be an almost-Hermitian manifold, then the operators ∆δ̄ and ∆δ are elliptic dif-
ferential operators of the second order.

Proof. The operator ∆δ̄ is elliptic, indeed it is a lower order perturbation of its integrable counterpart. More
precisely, denoting with' the equivalence of the symbol of the operators we have

∆δ̄ = δ̄* δ̄ + δ̄δ̄* ' ∂̄∂̄* + ∂̄* ∂̄ = ∆∂̄ .

Similar considerations can be done for ∆δ.

We denote with Hk
δ̄(X) := Ker ∆δ̄|Ak (X)

the space of δ̄-harmonic k-forms and with H
p,q
δ̄ (X) := Ker ∆δ̄|Ap,q (X)

the
space of δ̄-harmonic (p, q)-forms, and similarly for the operator δ. We get the following

Theorem 5.3. Let (X, J, g) be a compact almost-Hermitianmanifold, then the following Hodge decompositions
hold

Ak(X) = Hk
δ̄(X)⊕ δ̄Ak−1(X)⊕ δ̄*Ak+1(X)

and
Ak(X) = Hk

δ(X)⊕ δAk−1(X)⊕ δ*Ak+1(X)

Moreover, a (p, q)-form α ∈ H
p,q
δ̄ (X) if and only if α ∈ H

p,q
∂̄ ∩H

p,q
µ . Similarly, a (p, q)-form α ∈ H

p,q
δ (X) if and

only if α ∈ H
p,q
∂ ∩Hp,q

µ̄ .

Proof. The Hodge decompositions follow form the classical theory of elliptic operators. Notice that a k-form
β is δ̄-harmonic if and only if{

δ̄β = 0
δ̄*β = 0

⇐⇒

{
∂̄β + µβ = 0
∂̄*β + µ*β = 0

.

Hence let α ∈ Ap,q(X), then α ∈ Ker ∆δ̄ if and only if ∂̄α = 0, ∂̄*α = 0, µα = 0, µ*α = 0 concluding the proof.

Remark 5.4. Since the operator ∆δ̄ is elliptic the associated space of harmonic forms H•
δ̄(X) is �nite-

dimensional on a compact almost-Hermitian manifold. In particular, we denote with h•δ̄(X) its dimension. The
same applies for the operator δ.
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Proposition 5.5. Let (X, J, g) be a compact almost-Hermitian manifold, then

∆δ̄ = ∆∂̄ + ∆µ + [∂̄, µ*] + [µ, ∂̄*]

and
∆δ = ∆∂ + ∆µ̄ + [∂, µ̄*] + [µ̄, ∂*] .

In particular,H•
∂̄(X) ∩H•

µ(X) ⊆ H•
δ̄(X).

Proof. We prove only the �rst equality since the second one can be easily obtained by conjugation. We have

∆δ̄ = (∂̄ + µ)(∂̄* + µ*) + (∂̄* + µ*)(∂̄ + µ)
= ∂̄∂̄* + ∂̄µ* + µ∂̄* + µµ* + ∂̄* ∂̄ + ∂̄*µ + µ* ∂̄ + µ*µ
= ∆∂̄ + ∆µ + [∂̄, µ*] + [µ, ∂̄*] .

Remark 5.6. Notice that in [3] the authors consider on 2n-dimensional compact almost-Hermitian manifolds
the spaces of harmonic forms H•,•

∂̄ ∩H•,•
µ . By Theorem 5.3 we know that on bi-graded forms we are just rein-

terpreting these spaces sinceH•,•
∂̄ (X) ∩H•,•

µ (X) = H•,•
δ̄ (X). Hence we refer to [3] for the properties and several

results concerning these spaces. But in general, we just proved that on total degrees we have only the inclusion
H•
∂̄(X) ∩H•

µ(X) ⊆ H•
δ̄(X). In particular in Example 7.1 we show that this inclusion can be strict.

Remark 5.7. Let (X, J, g) be a compact almost-Hermitian manifold of real dimension 2n, then the Hodge-*-
operator induces duality isomorphisms for every k

* : Hk
δ̄(X)→ H2n−k

δ̄ (X) , * : Hk
δ(X)→ H2n−k

δ (X) .

In particular, for every p, q

* : Hp,q
δ̄ (X)→ H

n−p,n−q
δ̄ (X) , * : Hp,q

δ (X)→ H
n−p,n−q
δ (X) .

This follows easily from the relations *∆δ̄ = ∆δ̄* and *∆δ = ∆δ*.
In particular, we have the usual symmetries for the Hodge diamonds, namely for every k

hkδ̄(X) = h2n−k
δ̄ (X) , hkδ(X) = h2n−k

δ (X)

and for every p, q
hp,qδ̄ (X) = hn−p,n−qδ̄ (X) , hp,qδ (X) = hn−p,n−qδ (X) .

Proposition 5.8. Let (X, J, g) be an almost-Hermitian manifold, then the operators ∆BC(δ,δ̄) and ∆A(δ,δ̄) are
elliptic di�erential operators of the fourth order.

Proof. The calculations for the symbol of ∆BC(δ,δ̄) are similar to the ones for ∆δ̄ keeping only the highest order
di�erential terms. Denoting with' the equivalence of the symbol of the operators we have

∆BC(δ,δ̄) ' δδ̄δ̄
*δ* + δ̄*δ*δδ̄ + δ̄*δδ* δ̄ + δ* δ̄δ̄*δ ' δδ* δ̄δ̄* + δ*δδ̄* δ̄ + δδ* δ̄* δ̄ + δ*δδ̄δ̄*

'
(
δ*δ + δδ*

)(
δ̄* δ̄ + δ̄δ̄*

)
= ∆δ∆δ̄ ' ∆

2
δ̄ .

Similar considerations can be done for ∆A(δ,δ̄).

We denote withHk
BC(δ,δ̄)(X) := Ker(∆BC(δ,δ̄)|Ak ) the space of ∆BC(δ,δ̄)-harmonic k-forms and withH

p,q
BC(δ,δ̄)(X) :=

Ker(∆BC(δ,δ̄)|Ap,q ) the space of ∆BC(δ,δ̄)-harmonic (p, q)-forms. We have the following Lemma whose proof is a
direct computation.
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Lemma 5.9. Let (X, J, g) be a compact almost-Hermitian manifold. Then, a di�erential form α ∈ Hk
BC(δ,δ̄)(X) if

and only if
δα = 0 , δ̄α = 0 , (δδ̄)*α = 0 .

We get the following

Proposition 5.10. Let (X, J, g) be a compact almost-Hermitian manifold, then the following Hodge decompo-
sition holds

Ak(X) = Hk
BC(δ,δ̄)(X)

⊥
⊕
(
δδ̄Ak−2(X)⊕

(
δ̄*Ak+1(X) + δ*Ak+1(X)

))
.

Moreover, a (p, q)-form α ∈ H
p,q
BC(δ,δ̄)(X) if and only if

∂α = 0
∂̄α = 0
µα = 0
µ̄α = 0
(∂∂̄ + µ̄µ)(*α) = 0
∂µ(*α) = 0
µ̄∂̄(*α) = 0

.

Proof. The Hodge decomposition follows from the ellipticity of ∆BC(δ,δ̄).
Now let α ∈ Ak(X), then in view of Lemma 5.9 α ∈ Ker ∆BC(δ,δ̄) if and only if

δα = 0
δ̄α = 0
δδ̄ * α = 0

.

if and only if 
(∂ + µ̄)α = 0
(∂̄ + µ)α = 0
(∂∂̄ + ∂µ + µ̄∂̄ + µ̄µ)(*α) = 0

.

In particular, if α is a (p, q)-form we obtain the thesis.
Finally, given α ∈ Hk

BC(δ,δ̄)(X), β ∈ Ak−2(X), γ ∈ Ak+1(X) and η ∈ Ak+1(X) we have

(α, δδ̄β + δ̄*γ + δ*η) = ((δδ̄)*α, β) + (δ̄α, γ) + (δα, η) = 0 .

Remark 5.11. Notice that the spaces δδ̄Ak−2(X) and δ̄*Ak+1(X) +δ*Ak+1(X) are orthogonal if and only if δ2 = 0.

Similarly, if we denote with Hk
A(δ,δ̄)(X) := Ker(∆A(δ,δ̄)|Ak ) the space of ∆A(δ,δ̄)-harmonic k-forms and with

H
p,q
A(δ,δ̄)(X) := Ker(∆A(δ,δ̄)|Ap,q ) the space of ∆A(δ,δ̄)-harmonic (p, q)-forms we get the following

Proposition 5.12. Let (X, J, g) be a compact almost-Hermitian manifold, then the following Hodge decompo-
sition holds

Ak(X) = Hk
A(δ,δ̄)(X)

⊥
⊕
((
δAk−1(X) + δ̄Ak−1(X)

)
⊕
(
δδ̄
)* Ak+2(X)

)
.

Moreover, a (p, q)-form α ∈ H
p,q
A(δ,δ̄)(X) if and only if

∂*α = 0
∂̄*α = 0
µ*α = 0
µ̄*α = 0
(∂∂̄ + µ̄µ)α = 0
∂µα = 0
µ̄∂̄α = 0

.
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Remark 5.13. Since the operators ∆BC(δ,δ̄) and ∆A(δ,δ̄) are elliptic, the associated spaces of harmonic forms
H•
BC(δ,δ̄)(X),H•

A(δ,δ̄)(X)are �nite-dimensional ona compact almost-Hermitianmanifold. In particular,wedenote
with h•BC(δ,δ̄)(X) and h•A(δ,δ̄)(X) their dimensions.

Remark 5.14. Let (X, J, g) be an almost-Hermitian manifold. Then, by de�nition, conjugation induces the fol-
lowing isomorphisms

H•
δ̄(X) = H•

δ(X) , H•
BC(δ,δ̄)(X) = H•

BC(δ,δ̄)(X) .

In particular, for any p, q

H
p,q
δ̄ (X) = H

q,p
δ (X) , H

p,q
BC(δ,δ̄)(X) = H

q,p
BC(δ,δ̄)(X) .

Therefore, we have the following dimensional equalities for every k

hkδ̄(X) = hkδ(X)

and for every p, q
hp,qδ̄ (X) = hq,pδ (X) , hp,qBC(δ,δ̄)(X) = hq,pBC(δ,δ̄)(X) .

Remark 5.15. Let (X, J, g) be a compact almost-Hermitian manifold of real dimension 2n, then the Hodge-*-
operator induces duality isomorphisms for every k

* : Hk
BC(δ,δ̄)(X)→ H2n−k

A(δ,δ̄)(X) .

In particular, for every p, q
* : Hp,q

BC(δ,δ̄)(X)→ H
n−p,n−q
A(δ,δ̄) (X) .

Therefore we have the usual symmetries for the Hodge diamonds, namely for every k

hkBC(δ,δ̄)(X) = h2n−k
A(δ,δ̄)(X)

and for every p, q
hp,qBC(δ,δ̄)(X) = hn−p,n−qA(δ,δ̄) (X) .

6 Harmonic forms on almost-Kähler manifolds
Let (X, J, g, ω) be a compact almost-Kählermanifold.With the usual notations, we have the following almost-
Kähler identities (cf. [4], [3])

Lemma 6.1. Let (X, J, g, ω) be an almost-Kähler manifold then
• [δ, Λ] = i δ̄*, [∂, Λ] = i ∂̄* and [µ̄, Λ] = i µ*

• [δ̄, Λ] = −i δ*, [∂̄, Λ] = −i ∂* and [µ, Λ] = −i µ̄*.

Proof. For the sake of completeness we recall here the proof. We have

dΛ = [d, Λ] = [δ + δ̄, Λ] = [∂ + µ̄ + ∂̄ + µ, Λ]

and
−(dc)* = i(δ̄* − δ*) = i(∂̄* + µ* − ∂* − µ̄*).

Since ω is symplectic, dΛ = −(dc)* as recalled at the beginning of Section 4; hence [δ, Λ] = i δ̄* and [δ̄, Λ] =
−i δ*.

As a consequence one has the following (see [4, Lemma 3.6])
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Proposition 6.2. Let (X, J, g, ω) be an almost-Kähler manifold, then ∆δ̄ and ∆δ are related by

∆δ̄ = ∆δ

and
∆d = ∆δ̄ + ∆δ + EJ

where
EJ = δδ̄* + δ̄*δ + δ̄δ* + δ* δ̄ .

In particular, their spaces of harmonic forms coincide, i.e.H•
δ(X) = H•

δ̄(X) .

In fact, we can use this result to characterize Kähler manifolds among the almost-Kähler ones.

Corollary 6.3. Let (X, J, g, ω) be a compact almost-Kähler manifold, then

∆d = 2∆δ ⇐⇒ (X, J, g, ω) is Kähler.

Proof. First of all, on any almost-Kähler manifold one has (cf. e.g., [3])

[∆d , L] = [[d, d*], L] = [d, [d*, L]] = −[d, dc].

In view of Lemma 6.1, it is
[δ, Λ] = i δ̄*;

therefore, taking the adjoint,
[L, δ*] = −iδ̄.

Furthermore, since ω is d-closed, we have
[δ, L] = 0.

Hence, (cf. Lemma 6.13)
[∆δ , L] = [[δ, δ*], L] = [δ, [δ*, L]] = i[δ, δ̄] = 0,

that is
[∆δ , L] = 0.

By Proposition 6.2, on an almost-Kähler manifold we have that

∆d = ∆δ̄ + ∆δ + EJ = 2∆δ + EJ ,

and we want to show that EJ = 0 if and only if J is integrable.
Clearly, if J is integrable, then (X, J, g, ω) is Kähler and as a consequence of the Kähler identities, ∆d = 2∆∂.
For the converse implication, assume that ∆d = 2∆δ. Then, by the above formula,

ddc + dcd = −[∆d , L] = −2[∆δ , L] = 0,

and, as noticed in Section 2, d and dc anticommute if and only if J is integrable.

An immediate consequence of Proposition 6.2 is also the following

Corollary 6.4. Let (X, J, g, ω) be a compact almost-Kähler manifold, then

H•
δ̄(X) ⊆ H•

dR(X) ,

namely every δ̄-harmonic form is harmonic. In particular,

h•δ̄(X) ≤ b•(X) ,

where b•(X) denotes the Betti numbers of X.
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Wewill see with an explicit example that the inequality h•δ̄(X) ≤ b•(X) does not hold for an arbitrary compact
almost-Hermitian manifold.

Lemma 6.5. Let (X, J, g, ω) be an almost-Kähler manifold, then dΛ = i(δ̄* − δ*). In particular, a (p, q)-form is
symplectic harmonic, i.e., it belongs to Ker d ∩ Ker dΛ, if and only if belongs to Ker δ ∩ Ker δ̄ ∩ Ker δ* ∩ Ker δ̄*.

Proof. Since dc = −i(−∂̄ + ∂ + µ̄ − µ) = i(δ̄ − δ) we have that (dc)* = i(−∂̄* + ∂* + µ̄* − µ*) = i(δ* − δ̄*) and so the
thesis follows from dΛ = −(dc)* as noted in Section 4.

In general, the existence of a symplectic harmonic representative in every de-Rham cohomology class is
equivalent to the Hard-Lefschetz condition (cf. [1], [13], [7], [12]). Therefore, Tseng and Yau in [12] introduced
the space

Hkd+dΛ (X) := ker(d + dΛ) ∩ Ak(X)
Im ddΛ ∩ Ak(X)

,

and they study Hodge theory for it. It turns out that Hkd+dΛ (X) ' Hk
d+dΛ (X) where

Hk
d+dΛ (X) = Ker d ∩ Ker dΛ ∩ Ker (ddΛ)* .

Let us denote withH
p,q
d+dΛ (X) the (d + dΛ)-harmonic (p, q)-forms.

Remark 6.6. Notice that on a compact almost-Kähler manifold (X2n , J, g, ω) we have the inclusion

H•
δ̄(X) ⊆ H•

d+dΛ (X),

indeed if α ∈ H•
δ̄(X) then, by Proposition 6.2, α ∈ H•

δ(X), namely δα = 0, δ*α = 0, δ̄α = 0 and δ̄*α = 0. Since
d = δ + δ̄ and dΛ = −(dc)* = −i(δ* − δ̄*) then we have the inclusion.
Moreover, if J is C∞-pure and full [6] (e.g., this is always the case if n = 2, see [5]) by Corollary 6.4 and [11,
Theorem 4.2] one has

H2
δ̄(X) ⊆ H2

dR(X) ⊆ H2
d+dΛ (X)

and in particular, h2
δ̄(X) ≤ b2(X) ≤ h2

d+dΛ (X). Recall that if n = 2 by [10, Theorem 4.5] (cf. also [9, Section 3.2])
b2(X) < h2

d+dΛ (X) unless (X, ω), as a symplectic manifold, satis�es the Hard Lefschetz condition.

On bigraded forms we have a di�erent situation from Corollary 6.4.

Theorem 6.7. Let (X, J, g, ω) be a compact almost-Kähler manifold, then on (p, q)-forms

H
p,q
d+dΛ (X) = H

p,q
δ (X) ∩Hp,q

δ̄ (X) = H
p,q
∂̄ (X) ∩Hp,q

∂ (X) ∩Hp,q
µ̄ (X) ∩Hp,q

µ (X) =

= H
p,q
∂̄ (X) ∩Hp,q

µ (X) = H
p,q
d (X) .

Proof. Notice that the equality H
p,q
δ (X) ∩ H

p,q
δ̄ (X) = H

p,q
∂̄ (X) ∩ H

p,q
∂ (X) ∩ H

p,q
µ̄ (X) ∩ H

p,q
µ (X) follows from

Theorem 5.3.
The equalitiesHp,q

∂̄ (X) ∩Hp,q
∂ (X) ∩Hp,q

µ̄ (X) ∩Hp,q
µ (X) = H

p,q
∂̄ (X) ∩Hp,q

µ (X) = H
p,q
d (X) follow from [3, Propo-

sition 3.3, Theorem 4.3].
Indeed,

H
p,q
∂̄ (X) ∩Hp,q

∂ (X) ∩Hp,q
µ̄ (X) ∩Hp,q

µ (X) = Ker (∆∂̄ + ∆∂ + ∆µ̄ + ∆µ)

= Ker (∆∂̄ + ∆µ) ∩ Ker (∆∂ + ∆µ̄) = Ker (∆∂̄ + ∆µ) = Ker (∆∂̄) ∩ Ker (∆µ) .

We just need to prove that Hp,q
d+dΛ (X) = H

p,q
δ (X) ∩ H

p,q
δ̄ (X). Let α ∈ H

p,q
d+dΛ (X), then dα = 0, dΛα = 0 and

ddΛ * α = 0, or equivalently dα = 0, dc * α = 0 and d * dcα = 0. Since on (p, q)-forms dα = 0 implies dcα = 0
the last condition is super�uous, and dα = 0, dc * α = 0 is equivalent to δα = 0, δ̄α = 0, δ * α = 0, δ̄ * α = 0
(cf. Lemma 6.5).
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Theorem 6.8. Let (X, J, g, ω) be an almost-Kähler manifold, then ∆BC(δ,δ̄), ∆δ̄ are related by

∆BC(δ,δ̄) = ∆2
δ̄ + δ̄* δ̄ + δ*δ + FJ

where
FJ := −δ

(
δδ̄* + δ̄*δ

)
δ̄* +

(
δδ̄* + δ̄*δ

)
δ* δ̄ + δ* δ̄

(
δδ̄* + δ̄*δ

)
− δ*

(
δδ̄* + δ̄*δ

)
δ̄ .

Proof. First of all, since it will be useful in the following, we notice that by the almost-Kähler identities δ* =
i [δ̄, Λ] and δ̄* = −i [δ, Λ] we obtain

δ* δ̄ = i(δ̄Λδ̄ − Λδ̄2) , δ̄δ* = i(δ̄2Λ − δ̄Λδ̄)

and similarly for their conjugates.
Recall thatwhen J is non-integrable δ2 ≠ 0 and δ̄2 ≠ 0 and sowe cannot cancel themout in these expressions.
By Proposition 6.2

∆2
δ̄ = ∆δ∆δ̄ = δδ* δ̄δ̄* + δδ* δ̄* δ̄ + δ*δδ̄δ̄* + δ*δδ̄* δ̄.

Now in the �rst and fourth terms we use the previous formulas, and in the second and third terms we use the
fact that δ and δ̄ anticommute. Hence, we get

∆2
δ̄ = δ(iδ̄Λδ̄ − iΛδ̄2)δ̄* − δδ̄*δ* δ̄ − δ* δ̄δδ̄* + δ*(−iδ2Λ + iδΛδ)δ̄ .

Using again that δ* = i [δ̄, Λ] one has

iδδ̄Λδ̄δ̄* = δδ̄(−δ* δ̄* + iδ̄Λδ̄*) = iδδ̄2Λδ̄* + δδ̄δ̄*δ*

and so the �rst term in the previous expression of ∆2
δ̄ becomes

δ(iδ̄Λδ̄ − iΛδ̄2)δ̄* = iδδ̄2Λδ̄* + δδ̄δ̄*δ* − iδΛδ̄2 δ̄* = δδ̄δ̄*δ* + δ(iδ̄2Λ − iΛδ̄2)δ̄*

= δδ̄δ̄*δ* + δ(δ* δ̄ + δ̄δ*)δ̄*

and similarly the fourth term becomes

δ*(−iδ2Λ + iδΛδ)δ̄ = −iδ*δ2Λδ̄ + δ̄*δ*δδ̄ + iδ*Λδ2 δ̄ = δ̄*δ*δδ̄ + δ*(−iδ2Λ + iΛδ2)δ̄

= δ̄*δ*δδ̄ + δ*(δδ̄* + δ̄*δ)δ̄ .

For the second term using again from the Kähler identities that δδ̄* = −iδ2Λ + iδΛδ and δ̄* = −i [δ, Λ] one has

−δδ̄*δ* δ̄ = iδ2Λδ* δ̄ − iδΛδδ* δ̄ = iδ2Λδ* δ̄ + δ̄*δδ* δ̄ − iΛδ2δ* δ̄ = δ̄*δδ* δ̄ + (iδ2Λ − iΛδ2)δ* δ̄

= δ̄*δδ* δ̄ − (δδ̄* + δ̄*δ)δ* δ̄

and similarly for the third term

−δ* δ̄δδ̄* = iδ* δ̄δ2Λ + δ* δ̄δ̄*δ − iδ* δ̄Λδ2 = δ* δ̄δ̄*δ + δ* δ̄(iδ2Λ − iΛδ2)

= δ* δ̄δ̄*δ − δ* δ̄(δδ̄* + δ̄*δ) .

Putting all this together we obtain
∆2
δ̄ = ∆BC(δ,δ̄) − δ̄

* δ̄ − δ*δ − FJ

concluding the proof. Here in the expression of FJ we have used that

δ* δ̄ + δ̄δ* = δδ̄* + δ̄*δ

We prove this last statement separately in the following Proposition.
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Clearly, if J is integrable we recover the classical relations between the Bott-Chern and Dolbeault Laplacians
(cf. e.g., [8]), namely on Kähler manifolds

∆BC = ∆2
∂̄ + ∂̄* ∂̄ + ∂*∂ .

In particular, FJ = 0 since by the Kähler identities ∂∂̄* + ∂̄*∂ = 0.

Proposition 6.9. Let (X, J, g, ω) be an almost-Kähler manifold, then

δ̄δ* + δ* δ̄ = δδ̄* + δ̄*δ .

In particular,
• δδ̄* + δ̄*δ = ∂∂̄* + ∂̄*∂ + ∂̄∂* + ∂* ∂̄ ,
• EJ = 2(δδ̄* + δ̄*δ).

Proof. We have
δ̄δ* + δ* δ̄ = (∂̄ + µ)(∂* + µ̄*) + (∂* + µ̄*)(∂̄ + µ) =

= ∂̄∂* + ∂* ∂̄ + ∂̄µ̄* + µ̄* ∂̄ + µ∂* + ∂*µ + µµ̄* + µ̄*µ .

Now, by [4, Lemma 3.7] we have
µµ̄* + µ̄*µ = 0

and
∂̄∂* + ∂* ∂̄ = ∂µ* + µ*∂ + µ̄∂̄* + ∂̄*µ̄ ,

hence
δ̄δ* + δ* δ̄ = ∂µ* + µ*∂ + µ̄∂̄* + ∂̄*µ̄ + ∂̄µ̄* + µ̄* ∂̄ + µ∂* + ∂*µ .

Using conjugation we have

δδ̄* + δ̄*δ = ∂∂̄* + ∂̄*∂ + ∂µ* + µ*∂ + µ̄∂̄* + ∂̄*µ̄ =

= µ∂* + ∂*µ + ∂̄µ̄* + µ̄* ∂̄ + ∂µ* + µ*∂ + µ̄∂̄* + ∂̄*µ̄ ,

therefore δ̄δ* + δ* δ̄ = δδ̄* + δ̄*δ .

Proposition 6.10. Let (X, J, g, ω) be a compact almost-Kähler manifold, then

H•
BC(δ,δ̄)(X) = H•

δ̄(X) .

Proof. Let α ∈ Hk
BC(δ,δ̄)(X); then by Lemma 5.9, δα = 0, δ̄α = 0 and δ* δ̄*α = 0. We need to prove that δ̄*α = 0.

Using the almost-Kähler identities we have

0 = δ* δ̄*α = −iδ*[δ, Λ]α

which means that δ*δΛα = 0. Therefore, pairing with Λα,

0 = (δ*δΛα, Λα) = |δΛα|2

hence δΛα = 0. This, means that δ̄*α = −i[δ, Λ]α = δΛα = 0, giving the �rst inclusionH•
BC(δ,δ̄)(X) ⊆ H•

δ̄(X).
We now prove the other inclusion H•

δ̄(X) ⊆ H•
BC(δ,δ̄)(X). Let α ∈ Hk

δ̄(X), i.e., δ̄α = 0 and δ̄*α = 0. Moreover,
sinceH•

δ̄(X) = H•
δ(X) we also have that δα = 0 and δ*α = 0. Hence, putting these relations together we have

that δ̄α = 0, δα = 0 and δ* δ̄*α = 0, i.e., by de�nition α ∈ H•
BC(δ,δ̄)(X) giving the second inclusion.

Corollary 6.11. Let (X, J, g, ω) be a compact almost-Kähler manifold, then

H•,•
BC(δ,δ̄)(X) = H•,•

d (X) .
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Proof. The thesis follows from the previous Proposition saying that H•,•
BC(δ,δ̄)(X) = H•,•

δ̄ (X), the fact that
H•,•
δ̄ (X) = H•,•

δ (X) and Theorem 6.7.

Corollary 6.12. Let (X, J, g, ω) be a compact almost-Kähler manifold of dimension 2n, then

H•
BC(δ,δ̄)(X) = H•

A(δ,δ̄)(X) .

Proof. First we show the inclusionH•
BC(δ,δ̄)(X) ⊆ H•

A(δ,δ̄)(X). Let α ∈ H•
BC(δ,δ̄)(X) then, by Lemma 5.9, δα = 0,

δ̄α = 0 and δδ̄ * α = 0. Hence, δδ̄α = 0 and by Propositions 6.10 and 6.2, α ∈ H•
BC(δ,δ̄)(X) = H•

δ̄(X) = H•
δ(X),

so δ * α = 0 and δ̄ * α = 0 giving the inclusion.
The other inclusion follows from having h•BC(δ,δ̄)(X) = h•A(δ,δ̄)(X). Indeed by using Remark 5.15, Proposition
6.10 and Remark 5.7 we have the following equalities on the dimensions, for any k,

hkA(δ,δ̄)(X) = h2n−k
BC(δ,δ̄)(X) = h2n−k

δ̄ (X) = hkδ̄(X) = hkBC(δ,δ̄)(X) .

We prove the following Lemma

Lemma 6.13. Let (X, J, g, ω) be an almost-Kähler manifold, then
• [L, ∆δ̄] = 0 and [L, ∆δ] = 0,
• [Λ, ∆δ̄] = 0 and [Λ, ∆δ] = 0.

Proof. We just need to prove the �rst equality

[L, ∆δ̄] = [L, [δ̄, δ̄*]] = −[δ̄, [δ̄*, L]] = i[δ̄, δ] = 0 .

As a consequence we have the following Hard-Lefschetz Theorem on the spaces of δ̄− and ∆BC(δ,δ̄)−harmonic
forms.

Theorem 6.14. Let (X, J, g, ω) be a compact almost-Kähler 2n-dimensionalmanifold, then, for any k, themaps

Lk : Hn−k
BC(δ,δ̄)(X)→ Hn+k

BC(δ,δ̄)(X)

are isomorphisms.

Proof. Since by the previous Lemma [L, ∆δ̄] = 0 and [Λ, ∆δ̄] = 0 and in general

Lk : An−k(X)→ An+k(X)

are isomorphisms, then the maps
Lk : Hn−k

δ̄ (X)→ Hn+k
δ̄ (X)

are injective, and so isomorphisms by Remark 5.7. The maps

Lk : Hn−k
BC(δ,δ̄)(X)→ Hn+k

BC(δ,δ̄)(X)

are clearly isomorphic by Proposition 6.10.

For the bigraded case the result holds and it is proven in [3, Theorem 5.1].
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7 Examples
An important source of non-Kähler examples is furnished by nilmanifolds, namely compact quotients of a
nilpotent connected simply-connected Lie group by a lattice. On almost-complex nilmanifolds, given a left-
invariant Hermitian metric, one can look for left-invariant harmonic (with respect to some operator) forms
but in general they do not exhaust the whole space of harmonic forms. In the following we compute some
examples showing that even on almost-Kähler manifolds we do not have a decomposition of the form

H•
δ̄(X) ≠

⊕
p+q=•

H
p,q
δ̄ (X) ,

di�erently from the case (cf. [3, Theorem 4.1])

H•
∂̄(X) ∩H•

µ(X) =
⊕
p+q=•

H
p,q
∂̄ (X) ∩Hp,q

µ (X) .

Moreover,wewill see thatwhen the almost-Hermitian structure is not almost-Kähler the equalities in Theorem
6.7 may fail and also the inequalities in Corollary 6.4 may fail, in particular we construct an example where

h2
δ̄(X) > b2(X) .

Example 7.1. LetH(3;R) be the 3-dimensional Heisenberg group andH(3;Z) be the subgroup of matrices with
entries in Z. The Kodaira-Thurston manifold is de�ned as the quotient

X :=
(
H(3;R) ×R

)
/
(
H(3;Z) × Z

)
.

The manifold X is a 4-dimensional nilmanifold which admits both complex and symplectic structures. We con-
sider the non-integrable almost-complex structure J de�ned by the structure equations{

dφ1 = 0
dφ2 = 1

2iφ
12 + 1

2i

(
φ12̄ − φ21̄

)
+ 1

2iφ
1̄2̄

where
{
φ1 , φ2} is a global co-frame of (1,0)-forms on X. The (1, 1)-form ω := 1

2i

(
φ11̄ + φ22̄

)
is a compatible

symplectic structure, hence the pair (J, ω) induces a almost-Kähler structure on X.
Recall that H•,•

δ̄ (X) = H•,•
d (X), but in general H•

δ̄(X) ⊆ H•
d(X). One can easily compute the spaces of left-

invariant harmonic forms and one gets

H1
δ̄,inv(X) =

〈
φ1, φ̄1

〉
,

H2
δ̄,inv(X) =

〈
φ11̄ , φ22̄ , φ12 − φ1̄2̄ , φ12̄ + φ21̄

〉
and (cf. also [3])

H1,0
δ̄,inv(X) =

〈
φ1
〉
,

H0,1
δ̄,inv(X) =

〈
φ̄1
〉
,

H2,0
δ̄,inv(X) = 0 ,

H0,2
δ̄,inv(X) = 0 ,

H1,1
δ̄,inv(X) =

〈
φ11̄ , φ22̄ , φ12̄ + φ21̄

〉
The remaining spaces can be computed easily by duality. A �rst observation is that

H2
δ̄,inv(X) ≠

⊕
p+q=2

H
p,q
δ̄,inv(X) .

In particular, by [3, Theorem 4.1] and Theorem 6.7

H2
∂̄,inv(X) ∩H2

µ,inv(X) =
⊕
p+q=2

H
p,q
∂̄,inv(X) ∩Hp,q

µ,inv(X) =
⊕
p+q=2

H
p,q
δ̄,inv(X) ⊂ H2

δ̄,inv(X) ,
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Therefore, also in the almost-Kähler case we can have (cf. Proposition 5.5)

H2
∂̄,inv(X) ∩H2

µ,inv(X) ≠ H2
δ̄,inv(X).

Moreover, since dimH2
δ̄,inv(X) = 4 = b2(X), from Corollary 6.4 we have that

H2
δ̄,inv(X) = H2

δ̄(X) .

Since dimH1
δ̄,inv(X) = 2 then

2 ≤ dimH1
δ̄(X) ≤ b1(X) = 3 ,

hence dimH1
δ̄(X) = 3 if and only if there exists a non-left-invariant δ̄-harmonic 1-form .

Example 7.2. Let X be the 4-dimensional Filiform nilmanifold and consider the non-integrable almost-complex
structure J de�ned by the following structure equations{

dφ1 = 0
dφ2 = 1

2iφ
12 + 1

2i

(
φ12̄ − φ21̄

)
− iφ11̄ + 1

2iφ
1̄2̄

where
{
φ1 , φ2} is a global co-frame of (1,0)-forms on X. As observed in [3] J does not admit any compatible

symplectic structure. We �x the diagonal metric ω := 1
2i

(
φ11̄ + φ22̄

)
. One can easily compute the spaces of

left-invariant harmonic forms and one gets

H1
δ̄,inv(X) =

〈
φ1, φ̄1

〉
,

H2
δ̄,inv(X) =

〈
φ12 − φ1̄2̄ , −1

2φ
11̄ + φ12̄ − 1

2φ
22̄ , 1

2φ
11̄ + φ21̄ + 1

2φ
22̄
〉

and
H1,0
δ̄,inv(X) =

〈
φ1
〉
,

H0,1
δ̄,inv(X) =

〈
φ̄1
〉
,

H2,0
δ̄,inv(X) = 0 ,

H0,2
δ̄,inv(X) = 0 ,

H1,1
δ̄,inv(X) =

〈
−1

2φ
11̄ + φ12̄ − 1

2φ
22̄ , 1

2φ
11̄ + φ21̄ + 1

2φ
22̄
〉

The remaining spaces canbe computed easily by duality. Since (J, ω) is not analmost-Kähler structurewe cannot
apply Corollary 6.4, in particular in this case we have the opposite inequality

dimH2
δ̄(X) ≥ 3 = dimH2

δ̄,inv(X) > 2 = b2(X) .

Moreover, one can easily compute the ∆BC(δ,δ̄)-harmonic forms

H1
BC(δ,δ̄),inv(X) =

〈
φ1, φ̄1

〉
,

H2
BC(δ,δ̄),inv(X) =

〈
φ11̄ , φ12 − φ1̄2̄ , φ12̄ − 1

2φ
22̄ , φ21̄ + 1

2φ
22̄
〉

and
H1,0
BC(δ,δ̄),inv(X) =

〈
φ1
〉
,

H0,1
BC(δ,δ̄),inv(X) =

〈
φ̄1
〉
,

H2,0
BC(δ,δ̄),inv(X) = 0 ,

H0,2
BC(δ,δ̄),inv(X) = 0 ,

H1,1
BC(δ,δ̄),inv(X) =

〈
φ11̄ , φ12̄ − 1

2φ
22̄ , φ21̄ + 1

2φ
22̄
〉
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Notice that, unlike the almost-Kähler case

H2
BC(δ,δ̄),inv(X) ≠ H2

δ̄,inv(X)

and
H1,1
BC(δ,δ̄),inv(X) ≠ H1,1

δ̄,inv(X) .

Example 7.3. Let X := I3 be the Iwasawa manifold, namely the quotient of the complex 3-dimensional Heisen-
berg group H(3;C) by the subgroup of matrices with entries in Z[i]. The manifold X is a 6-dimensional nil-
manifold admitting both complex and symplectic structures. Then there exists a global co-frame of 1-forms{
ei
}
i=1, ··· ,6

satisfying the following structure equations

d e1 = 0
d e2 = 0
d e3 = 0
d e4 = 0
d e5 = −e13 + e24

d e6 = −e14 − e23 .

We de�ne the following non-integrable almost-complex structure

Je1 = −e6, Je2 = −e5, Je3 = −e4

and consider the compatible symplectic structure

ω := e16 + e25 + e34.

Therefore, (X, J, ω) is a compact 6-dimensional almost-Kähler manifold. We set
φ1 = e1 + ie6

φ2 = e2 + ie5

φ3 = e3 + ie4

then the structure equations become
d φ1 =

(
−1

4φ
13 − i

4φ
23
)

+
(

1
4φ

13̄ + 1
4φ

31̄ − i
4φ

23̄ + i
4φ

32̄
)

+
(

1
4φ

1̄3̄ − i
4φ

2̄3̄
)

d φ2 =
(
− i4φ

13 + 1
4φ

23
)

+
(
− i4φ

13̄ + i
4φ

31̄ − 1
4φ

23̄ − 1
4φ

32̄
)

+
(
− i4φ

1̄3̄ − 1
4φ

2̄3̄
)

d φ3 = 0

One can compute the spaces of left-invariant harmonic forms and one gets

H1
δ̄,inv(X) =

〈
φ3, φ̄3

〉
,

H2
δ̄,inv(X) =

〈
φ11̄ + φ22̄ , φ33̄ , −φ12 + φ1̄2̄

〉
,

H3
δ̄,inv(X) =

〈
φ131̄ + φ232̄ , φ11̄3̄ + φ22̄3̄

〉
and

H1,0
δ̄,inv(X) =

〈
φ3
〉
,

H0,1
δ̄,inv(X) =

〈
φ̄3
〉
,

H2,0
δ̄,inv(X) = 0 ,

H0,2
δ̄,inv(X) = 0 ,

H1,1
δ̄,inv(X) =

〈
φ11̄ + φ22̄ , φ33̄

〉
,

H2,1
δ̄,inv(X) =

〈
φ131̄ + φ232̄

〉
,

H1,2
δ̄,inv(X) =

〈
φ11̄3̄ + φ22̄3̄

〉
.
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The remaining spaces can be computed easily by duality. In particular

H2
δ̄,inv(X) ≠

⊕
p+q=2

H
p,q
δ̄,inv(X) .
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