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Abstract: We classify and investigate locally conformally Kähler structures on four-dimensional solvable Lie
algebras up to linear equivalence. As an application we can produce many examples in higher dimension,
here including lcK structures on Oeljeklaus-Toma manifolds, and we also give a geometric interpretation of
some of the 4-dimensional structures in our classi�cation.
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Introduction
The aim of this note is to provide explicit examples of locally conformally Kähler structures on complex sur-
faces andhigher dimensionalmanifolds, by classifying left-invariant lcK structures on four-dimensional solv-
able Lie groups.

A locally conformally Kähler (shortly, lcK) metric g on a complexmanifold (X, J) is a Hermitianmetric that
locally admits a conformal change exp (−f )g|U making it Kähler. Equivalently, the associated (1, 1)-form Ω :=
g(J_, _) satis�es dΩ = θ∧Ωwhere the Lee form θ loc= df is a closed 1-form. In other words, one gets a covering
endowed with a Kähler metric on which the deck transformations group acts by holomorphic homotheties.
One can refer to [9, 16, 28] and references therein for an open-ended account on lcK geometry: just to cite
a few of the several contributions to lcK geometry in the last twenty years, see [1, 8, 10, 13, 14, 18, 20, 22–
24, 26, 27, 29, 30, 34, 40]. With the only exception of some Inoue surfaces, every known compact complex
surface admits lcK metrics by [10, 13], see also [34] for a survey on the Vaisman question.

Among compact complex surfaces, one can describe complex tori, hyperelliptic surfaces, Inoue surfaces
of type S0, primary Kodaira surfaces, secondary Kodaira surfaces, and Inoue surfaces of type S± as compact
quotients of solvable Lie groups endowed with left-invariant complex structures by [21, Theorem 1]. Complex
structures on four-dimensional Lie algebras are classi�ed by [1, 31, 37, 38], see also [32]. On the other hand,
locally conformally Kählermetrics underlie locally conformally symplectic (lcs) structures, which are similarly
de�ned. ExtendingOvando’s results on four-dimensional symplectic Lie algebras [33], a classi�cation of four-
dimensional locally conformally symplectic Lie algebras is given with structure results in [6].

Locally conformally Kähler structures on four-dimensional reductive Lie algebras are studied in [1, The-
orem 4.6]. In this note, we classify locally conformally Kähler structures on four-dimensional solvable Lie
groups. (See [5] for a survey and results on invariant lcK structures on solvmanifolds.) The classi�cation is
up to linear equivalence, and complex automorphisms are speci�ed. The results are summarized in Theorem
1.1 and Table 2. We use the classi�cation of complex structures [32] and the classi�cation of lcs structures
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[6] for four-dimensional solvable Lie algebras, and the computations have been performed with the help of
the mathematical open-source software system Sage [35] (the authors will be happy to share the code with
anyone who might be interested).

We are also interested inVaisman structures on a 4-dimensional Lie algebra, that is, lcK structures whose
Lee form is parallel with respect to the Levi-Civita connection of the Hermitian structure. Let us recall the
following characterization result from [2].

Lemma 0.1 ([2, Lemma 3.3]). Let g be a Lie algebra with an lcK structure (J, Ω, θ) and let A ∈ g be such that
A ∈ (ker θ)⊥ with respect to the compatible metric given by (J, Ω) and θ(A) = 1. Then (J, Ω, θ) is Vaisman if and
only if the adjoint operator adA is a skew-symmetric endomorphism of g.

Using this characterization, we determine, among all lcK structures for each 4-dimensional Lie algebra, the
ones being Vaisman (see also [3] for a nice description of unimodular Lie algebras admitting Vaisman struc-
tures).

With the same aim as [32, page 56], hopefully the classi�cation in Table 2 might be useful in the future to
provide speci�c examples and to solve open problems. In this direction we use our classi�cation to exhibit
explicit examples of Lie algebras in dimension higher than four admitting an lcK structure. More precisely,
we adapt some constructions in [6, 25] to the lcK case and, as an application, we can producemany examples
in higher dimension starting from dimension four, as well as we give a geometric interpretation of some of
the 4-dimensional structures in Table 2. In particular, the lcK extension discussed in Proposition 3.1 allows
to recover lcK structures on Oeljeklaus-Toma manifolds [24].
Notation. Structure equations for Lie algebras arewritten using the Salamon notation: e.g. rh3 = (0, 0, −12, 0)
means thatwe�xa coframe (e1, e2, e3, e4) for rh∨3 such that de1 = de2 = de4 = 0and de3 = −e1∧e2. Complex
structures and tensors are usually expressed in terms of the above coframe. For example, complex structures
on g are de�ned in terms of their dual J : g∨ → g∨ with the convention Jα = α(J−1_). By lcs structure, wemean
a non-symplectic structure, namely, the Lee form is assumed to be non-exact (actually non-zero).

1 Classi�cation of lcK structures on four-dimensional Lie algebras
In this section, we summarize the classi�cation of locally conformally Kähler structures on 4-dimensional
Lie algebras up to linear equivalence. Here, by linear equivalent lcK structures (J1, Ω1, θ1) and (J2, ω2, θ2) on
the Lie algebra g of dimension dimR g ≥ 4 wemean that there is an automorphism A ∈ gl(g) of the Lie algebra
such that J2 = A−1 ◦ J1 ◦ A and Ω1 = A*Ω2 = Ω2(A_, A_); by the injectivity of Ω1 ∧ _: ∧1 g∨ → ∧3g∨, we also
get θ1 = A*θ2.

1.1 LcK structures on four-dimensional solvable Lie algebras

Complex structures on 4-dimensional solvable Lie algebras up to linear equivalence are classi�ed by G.
Ovando, see [32] and references therein. In Table 1, we summarize her results as in [32, Proposition 3.2] (note
just the correction of a typo in case J2 for rr′3,γ). Locally conformally symplectic structures on 4-dimensional
Lie algebras are classi�ed in [6]. In the next Section 2, we will combine these classi�cation results to get the
following.

Theorem 1.1. Non-Kähler locally conformally Kähler structures on 4-dimensional solvable Lie algebras are
classi�ed up to linear equivalence in Table 2 in Appendix A.

Existence of lattices for solvable Lie groups is investigated in [12], and compact complex surfaces di�eomor-
phic to solvmanifolds are studied in [21]. Recall that:
• R4 is the Lie algebra associated to complex tori;
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Table 1: Complex non-Kähler structures on solvable Lie algebras in dimension 4 up to linear equivalence, following [32]. ("c.s."
is for "completely-solvable", "n." is for "nilpotent", and Z denotes the center.)

Lie algebra c.s. n. parameters structure equations complex structure Z(g)

rh3 X X (0, 0, −12, 0) Je1 = e2, Je3 = e4 〈e3, e4〉

rr3,λ X ×
λ = 0 (0, −12, 0, 0) Je1 = e2, Je3 = e4

〈e4〉
λ = 1 (0, −12, −13, 0) Je1 = e4, Je2 = −e3

rr′3,γ × ×

γ = 0 (0, −13, 12, 0) Je1 = e4, Je2 = e3

〈e4〉
γ > 0 (0, −γ12 − 13, 12 − γ13, 0)

J1e1 = e4, J1e2 = e3

J2e1 = e4, J2e2 = −e3

r2r2 X × (0, −12, 0, −34) Je1 = e2, Je3 = e4 0

r′2 × × (0, 0, −13 + 24, −14 − 23)
J1e1 = e3, J1e2 = e4

0J2e1 = −ae1 + a2+1
b e2, J2e3 = e4

with b ≠ 0

r4,µ X × µ = 1 (14, 24 + 34, 34, 0) Je1 = e2, Je3 = −e4 0

r4,α,β X ×
−1 < α < 1, α ≠ 0, β = 1 (14, α24, 34, 0) Je1 = e3, Je2 = −e4

0
−1 ≤ α = β < 1, α ≠ 0 (14, α24, α34, 0) Je1 = −e4, Je2 = e3

r′4,γ,δ × × γ ∈ R, δ > 0 (14, γ24 + δ34, −δ24 + γ34, 0)
J1e1 = −e4, J1e2 = e3 0
J2e1 = −e4, J2e2 = −e3

d4 X × (14, −24, −12, 0)
J1e1 = −e3, J1e2 = −e4

〈e3〉
J2e1 = e2 − e3, J2e2 = −e4

d4,λ X ×

λ = 1 (14, 0, −12 + 34, 0) Je1 = e4, Je2 = e3

0
λ = 1

2 (12 × 14, 12 × 24, −12 + 34, 0)

J1e1 = e2, J1e3 = −e4

J2e1 = −e2, J2e3 = −e4

J3e1 = −e4, J3e2 = −12 e3

λ > 1
2 , λ ≠ 1 (λ14, (1 − λ)24, −12 + 34, 0)

J1e1 = λe4, J1e2 = e3

J2e1 = e3, J2e2 = (λ − 1)e4

d′4,δ × ×

δ = 0 (24, −14, −12, 0)
J2e1 = e2, J2e3 = e4

〈e3〉
J3e1 = e2, J3e3 = −e4

δ > 0 ( δ214 + 24, −14 + δ
224, −12 + δ34, 0)

J1e1 = −e2, J1e3 = −e4

0
J2e1 = e2, J2e3 = e4

J3e1 = e2, J3e3 = −e4

J4e1 = −e2, J4e3 = e4

h4 X × (1214 + 24, 1224, −12 + 34, 0) Je1 = 1
2 e

3, Je2 = −e4 0

• rh3 is the Lie algebra associated to primary Kodaira surfaces;
• rr′3,0 is the Lie algebra associated to hyperelliptic surfaces;
• r′4,− 1

2 ,δ
with δ > 0 is the Lie algebra associated to Inoue surfaces of type S0;

• d4 is the Lie algebra associated to Inoue surfaces of type S+;
• d′4,0 is the Lie algebra associated to secondary Kodaira surfaces;
• and the Lie groups associated to the other algebras do not admit compact quotients.
See also [10, 34] and references therein as for the problem of existence of lcK structures on compact complex
surfaces, known as the Vaisman question.
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1.2 LcK structures on four-dimensional reductive Lie algebras

Locally conformally Kähler structures on4-dimensional reductive Lie algebras are studied in [1, Theorem4.6].
More precisely, they show that the only 4-dimensional reductive Lie algebras admitting locally conformally
pseudo-Kähler structures are gl2 = sl2 ⊕ R = (−23, −2 × 12, 2 × 13, 0) (see [1, Proposition 4.7] for complex
structures, see [6, Section 3.2] for lcs structures) and u2 = su2 ⊕ R = (23, −13, 12, 0) (see [1, Proposition 4.4]
for complex structures, see [6, Section 3.1] for lcs structures). For the sake of completeness, we recall here the
lcK structures in [1, Theorem 4.9, Theorem 4.6].

1.2.1 gl2

Consider the Lie algebra
gl2 = sl2 ⊕R = (−23, −2 × 12, 2 × 13, 0),

where e4 is a generator of R. Left-invariant complex structures are described in [1, Proposition 4.7]: they
belong to two families, both depending on one parameter µ = µ1 +

√
−1µ2 ∈ C \

√
−1R, and they are de�ned

by 
J1,µe1 = e2 + e3
J1,µe2 = −12 e1 −

µ2
2µ1 (e2 − e3) +

1
µ1 e4

J1,µe3 = −12 e1 +
µ2
2µ1 (e2 − e3) −

1
µ1 e4

J1,µe4 = − |µ|
2

2µ1 (e2 − e3) +
µ2
µ1 e4

and 
J2,µe1 = −e2 − e3
J2,µe2 = 1

2 e1 −
µ2
2µ1 (e2 − e3) −

1
µ1 e4

J2,µe3 = 1
2 e1 +

µ2
2µ1 (e2 − e3) +

1
µ1 e4

J2,µe4 = |µ|2
2µ1 (e2 − e3) +

µ2
µ1 e4

namely, with respect to the dual coframe, they are associated to the matrices

J1,µ =


0 −1 −1 0
1
2

µ2
2 µ1 − µ2

2 µ1 − 1
µ1

1
2 − µ2

2 µ1
µ2
2 µ1

1
µ1

0 µ21+µ22
2 µ1 − µ

2
1+µ22
2 µ1 − µ2µ1

 ∈ End(gl∨2 )
and

J2,µ =


0 1 1 0
−12

µ2
2 µ1 − µ2

2 µ1
1
µ1

−12 − µ2
2 µ1

µ2
2 µ1 − 1

µ1
0 − µ

2
1+µ22
2 µ1

µ21+µ22
2 µ1 − µ2µ1

 ∈ End(gl∨2 ).
These two families are related by an automorphism of gl2, namely,

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ∈ Aut(gl2).
Then it is su�cient to consider the family J1,µ. The only non-trivial automorphism of (gl2, J1,µ) is

−1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

 ∈ Aut(gl2). (1.1)
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The generic lcs structure is

θ = θ4e4, Ω = ω12e12 + ω13e13 − ω23θ4e14 + ω23e23 −
1
2 ω12θ4e24 +

1
2 ω13θ4e34,

with (ω12ω13 − ω2
23)θ4 ≠ 0.

Assuming Ω is J1,µ-invariant we have two cases. Indeed, the condition reduces to the system
µ1 + θ4 −µ1 − θ4 −2µ2
µ2 −µ2 −2(µ21 + µ22) − 2µ1θ4
µ2 −µ2 2µ1 + 2θ4

(µ21 + µ22) + µ1θ4 −(µ21 + µ22) − µ1θ4 −2µ2θ4

 ·
ω12
ω13
ω23

 =


0
0
0
0

 .

We consider �rst when µ2 = 0 and θ4 = −µ1, when the rank of the above 4×3matrix is zero. In this case,Ω
is always J1,µ-invariant. The J1,µ-positivity of the lcs structure forces ω12 > 0, ω13 > 0, and ω12ω13 −ω2

23 > 0.
And the general lck structure is

θ = −µ1e4
Ω = ω12e12 + ω13e13 + ω23µ1e14 + ω23e23 + 1

2 ω12µ1e24 − 1
2 ω13µ1e34

with ω12 > 0, ω13 > 0, ω12ω13 − ω2
23 > 0

.

Applying the only non-trivial automorphism we can assume that ω12 ≥ ω13 and ω23 ≥ 0:
θ = −µ1e4
Ω = ω12e12 + ω13e13 + ω23µ1e14 + ω23e23 + 1

2 ω12µ1e24 − 1
2 ω13µ1e34

with ω12 ≥ ω13 > 0, ω23 ≥ 0, ω12ω13 − ω2
23 > 0

, (1.2)

see also [1, Theorem 4.9, item (ii)].
In the other case, when µ2 ≠ 0 or θ4 ≠ −µ1, the rank of the above 4 × 3 matrix is two. The compatibility

of the lcs with the complex structure J1,µ forces ω23 = 0 and ω12 = ω13, with ω12 > 0, θ4µ1 < 0. Summarizing,
up to equivalence, the lcK structure on (gl2, J1,µ) is of the form, see [1, Theorem 4.9, item (i)],

θ = θ4e4
Ω = ω12e12 + ω12e13 − 1

2 ω12θ4e24 + 1
2 ω12θ4e34

with ω12 > 0, θ4µ1 < 0, µ22 + (θ4 + µ1)2 ≠ 0
. (1.3)

And there is no further reduction since the non-trivial automorphism �xes the lck structure.

Remark 1.2. Among the above lcK structures, the ones being Vaisman are speci�ed in [1, Theorem 4.9]. More
precisely, lcK structures of type (1.2) are Vaisman if and only if ω23 = 0 and ω12 = ω13; and lcK structures of
type (1.3) are always Vaisman. In other words, Vaisman structures are

θ = θ4e4
Ω = ω12e12 + ω12e13 − 1

2 ω12θ4e24 + 1
2 ω12θ4e34

with ω12 > 0, θ4µ1 < 0
.

1.2.2 u2

Consider the Lie algebra
u2 = su2 ⊕R = (23, −13, 12, 0),

where e4 is a generator of R. Left-invariant complex structures are described in [1, Proposition 4.4]: they
depend on two-parameters a ∈ R and b ∈ R \ {0} and they are de�ned by

Ja,be4 = be1 + ae4, Ja,be3 = e2,
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namely, with respect to the dual coframe, it is associated to the matrix

Ja,b =


a 0 0 a2+1

b
0 0 1 0
0 −1 0 0
−b 0 0 −a

 ∈ End(u∨2 ).
The automorphisms of (u2, Ja,b) are of the form

1 0 0 0
0 a22 a23 0
0 −a23 a22 0
0 0 0 1

 ∈ Aut(u2)
with the condition a222 + a223 = 1.

The generic lcs structure is

θ = θ4e4, Ω = ω12e12 + ω13e13 + ω23θ4e14 + ω23e23 − ω13θ4e24 + ω12θ4e34

with
(
ω2
12 + ω2

13 + ω2
23
)
θ4 ≠ 0.

By imposing the Ja,b-invariance, we get the condition(
b + θ4 aθ4
θ4a −(b + θ4)

)
·
(
ω12
ω13

)
=
(
0
0

)
.

Assuming Ω to be Ja,b-positive we obtain ω23 < 0, θ4b > 0. In particular b ≠ −θ4, and therefore the Ja,b-
invariance implies that ω12 = ω13 = 0. Summarizing we reduce to the generic lcK structure, see [1, Theorem
4.6, item (i)], 

θ = θ4e4
Ω = ω23θ4e14 + ω23e23

with θ4 ∉ {0, − 1
b }, ω23 < 0, θ4b > 0

, (1.4)

and no further reduction is possible since a possible automorphism �xs the lcK structure.

Remark 1.3. Among the above lcK structures, the ones being Vaisman are speci�ed in [1, Theorem 4.6]. More
precisely, all the lcK structures in (1.4) are of Vaisman type.

2 Proof of Theorem 1.1: lcK structures on four-dimensional solvable
Lie algebras

2.1 rh3

Consider the Lie algebra rh3 = (0, 0, −12, 0), namely, (e1, e2, e3, e4) is a coframe of 1-forms such that

de1 = 0, de2 = 0, de3 = −e1 ∧ e2, de4 = 0.

Equivalently, in terms of the dual frame (e1, e2, e3, e4) for rh3, we have the structure equations

[e1, e2] = e3, [e1, e3] = 0, [e1, e4] = 0,

[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0.

According to [32], there is only one complex structure up to linear equivalence. In terms of the frame
for rh3, it is given by specifying the (−

√
−1)-eigenspace to be 〈e1 +

√
−1 e2, e3 +

√
−1 e4〉; namely, Je1 = e2,
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Je2 = −e1, Je3 = e4, Je4 = −e3. On rh∨3 , we set the linear complex structure J ∈ End(rh∨3 ) by Jα := α(J−1_).
Then, in terms of the coframe above, we have Je1 = e2, Je2 = −e1, Je3 = e4, Je4 = −e3, that is, J is given by
the matrix

J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ∈ End(rh∨3 ).
As in [6, Appendix 6.1 of the arXiv version, page 28], by requiring dθ = 0, dΩ − θ ∧Ω = 0, and Ω ∧Ω ≠ 0,

we get that the generic (non-symplectic) lcs structure is of the form
θ = θ1e1 + θ2e2 + θ4e4

Ω =
(
−ω24θ1−ω14θ2+ω34

θ4

)
e12 − ω34θ1

θ4 e13 + ω14e14 − ω34θ2
θ4 e23 + ω24e24 + ω34e34

with θ4 ≠ 0, ω34 ≠ 0
.

We impose now Ω to be J-invariant, (namely, Jω := ω(J_, J_) = ω,) and J-positive, (namely, ω(x, Jx) > 0
for any x ∈ rh3 \ {0}). The J-invariance forces ω24 = −ω34θ1

θ4 and ω14 = ω34θ2
θ4 , namely, we get

Ω =
(
θ21 + θ22 − θ4

θ24

)
ω34e12 −

ω34θ1
θ4

e13 + ω34θ2
θ4

e14 − ω34θ2
θ4

e23 − ω34θ1
θ4

e24 + ω34e34.

In our case, for the J-positivity, it su�ces to check that ω(e1, Je1) =
(
θ21+θ22−θ4

θ24

)
ω34 > 0 and ω(e3, Je3) =

ω34 > 0 and 1
2ω

2(e1, Je1, e3, Je3) = −ω
2
34
θ4 > 0.) We get that the generic lcK structure is of the form

θ = θ1e1 + θ2e2 + θ4e4

Ω =
(
θ21+θ22−θ4

θ24

)
ω34e12 − ω34θ1

θ4 e13 + ω34θ2
θ4 e14 − ω34θ2

θ4 e23 − ω34θ1
θ4 e24 + ω34e34

with ω34 > 0, θ4 < 0
.

The generic complex automorphism of (rh∨3 , J) are given, with respect to the chosen coframe, by
a11 a12 a13 a14
−a12 a11 −a14 a13
0 0 a211 + a212 0
0 0 0 a211 + a212

 ∈ Aut(h∨3 )
with the condition

a211 + a212 ≠ 0.
First, we apply the automorphism with parameters a11 = 0, a12 = 1, a13 = θ1

θ4 , and a14 = − θ2θ4 . This
reduces the lcK structure to θ = θ4e4 and Ω = −ω34

θ4 e
12 + ω34e34, where ω34 < 0 and θ4 < 0. Then we apply

the automorphism with parameters a12 =
√
− 1
θ4 , the others zero, so to transform the generic lcK form in (we

set σ = ω34
θ24

) 
θ = −e4
Ω = σe12 + σe34
with σ > 0

.

It is easy to see that such forms cannot be further reduced, since the generic automorphism trans-
forms θ as −a14e1 − a13e2 + (−a211 − a212)e4, and correspondingly the coe�cient of Ω along e12 as((
a211 + a212 + a213 + a214

)
σ
)
.

Remark 2.1. We determine nowwhich of these lcK structures on rh3 are of Vaisman type. Let A = a1e1+a2e2+
a3e3 + a4e4. We determine ai such that θ(A) = 1 and A ∈ (ker θ)⊥, that is, Ω(A, Jx) = 0 for any x ∈ ker θ. In
this case ker θ is generated by {e1, e2, e3} and we obtain that A = −e4 ∈ Z(g) and adA = 0. Therefore, it follows
from Lemma 0.1 that all the lcK structures above are of Vaisman type.

Remark 2.2. We observe that the Morse-Novikov cohomology with respect to θ = −e4 vanishes in any degree.
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2.2 rr3,0

Consider the Lie algebra rr3,0 = (0, −12, 0, 0) with the complex structure de�ned as

J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ∈ End(rr∨3,0)
in terms of the chosen coframe.

According to [6, Appendix 6.3 of the arXiv version, pages 31–32], the generic lcs structures fall in two
di�erent families.

We �rst consider the case when the generic closed 1-form θ = θ1e1 + θ3e3 + θ4e4 has θ3 = θ4 = 0. Then
the generic lcs structure with Lee form θ is

θ = −e1
Ω = ω12e12 + ω13e13 + ω14e14 + ω23e23 + ω24e24

with ω14ω23 − ω13ω24 ≠ 0
.

It is clear that such a form is never J-positive: indeed, with respect to the dual frame (e1, e2, e3, e4), we have
ω(e3, Je3) = 0. Then, there is no lcK structure in this case.

Consider now the case θ23 + θ24 ≠ 0. The generic complex automorphisms (rr3,0, J) are given, with respect
to the chosen coframe, by

1 0 0 0
0 1 0 0
0 0 a33 a34
0 0 −a34 a33

 ∈ Aut(rr∨3,0), with a233 + a234 ≠ 0.

In particular, the complex automorphism
1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 ∈ Aut(rr∨3,0)
transforms θ1e1 + θ3e3 + θ4e4 to θ1e1 + θ4e3 − θ3e4. So, without loss of generality, we can assume ϑ3 ≠ 0.
The generic lcs structure in this case reduces to

θ = θ1e1 + θ3e3 + θ4e4

Ω =
(
− (θ1+1)ω23

θ3

)
e12 + ω13e13 +

(
ω34θ1+ω13θ4

θ3

)
e14 + ω23e23 + ω23θ4

θ3 e24 + ω34e34

with θ3 ≠ 0, ω23ω34 ≠ 0
.

The J-invariance requires ω13 = −ω34θ1θ4
θ23+θ24

and ω23 = −ω34θ1θ3
θ23+θ24

. The J-positivity requires ω34 > 0 and θ1 > 0.
Then the generic lcK structure is

θ = θ1e1 + θ3e3 + θ4e4

Ω =
(
ω34(θ1+1)θ1

θ23+θ24

)
e12 +

(
−ω34θ1θ4

θ23+θ24

)
e13

+
(
ω34θ1θ3
θ23+θ24

)
e14 +

(
−ω34θ1θ3

θ23+θ24

)
e23 +

(
−ω34θ1θ4

θ23+θ24

)
e24 + ω34e34

with θ1 > 0, θ3 ≠ 0, ω34 > 0

.

Applying the complex automorphism
1 0 0 0
0 1 0 0
0 0 ω34θ1θ3

θ23+θ24
ω34θ1θ4
θ23+θ24

0 0 −ω34θ1θ4
θ23+θ24

ω34θ1θ3
θ23+θ24

 ∈ Aut(rr∨3,0)
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we reduce the lck pair (Ω, θ) to
θ = θ1e1 + ω34θ1e3

Ω =
(
ω34θ1 θ1+1

θ23+θ24

)
e12 +

(
ω2
34θ

2
1

θ23+θ24

)
e14 +

(
−ω

2
34θ

2
1

θ23+θ24

)
e23 +

(
ω3
34θ

2
1

θ23+θ24

)
e34

with θ1 > 0, θ3 ≠ 0, ω34 > 0
.

Now we apply the complex automorphism
1 0 0 0
0 1 0 0
0 0 θ23+θ24

ω2
34θ21

0

0 0 0 θ23+θ24
ω2
34θ21

 ∈ Aut(rr∨3,0)
and we obtain the lck structure 

θ = δe1 + σ
δ e

3

Ω = δ(δ+1)
σ e12 + e14 − e23 + σ

δ2 e
34

with δ > 0, σ > 0
,

where we denoted σ = θ23+θ24
ω34

and δ = θ1. This lck structure cannot be further reduced. Indeed, the generic
automorphism transforms the coe�cient of θ along e4 to −a34 σδ , whence we chose a34 = 0. The coe�cient of
Ω along e14 is transformed to a33: we then choose a33 = 1, getting the identity.

Remark 2.3. Wedetermine nowwhich of these lcK structures on rr3,0 are of Vaisman type. Let A = a1e1+a2e2+
a3e3 + a4e4. We determine ai such that θ(A) = 1 and A ∈ (ker θ)⊥, that is, Ω(A, Jx) = 0 for any x ∈ ker θ. In
this case we obtain that A = δ

σ e3 ∈ Z(g). Therefore, it follows from Lemma 0.1 that all the lcK structures above
are of Vaisman type.

2.3 rr3,1

Consider the Lie algebra rr3,1 = (0, −12, −13, 0). Consider the complex structure associated, in the chosen
coframe, to the matrix

J =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ∈ Aut(rr∨3,1).
The generic lcs structures are the following: either

θ = −e1
Ω = ω12e1 ∧ e2 + ω13e1 ∧ e3 + ω14e1 ∧ e4 + ω24e2 ∧ e4 + ω34e3 ∧ e4

with ω12ω34 − ω13ω24 ≠ 0
or 

θ = −2e1
Ω = ω12e1 ∧ e2 + ω13e1 ∧ e3 + ω14e1 ∧ e4 + ω23e2 ∧ e3

with ω14ω23 ≠ 0
.

There is no lcK structure with Lee form θ = −e1. Indeed, the corresponding lcs structures are never J-
positive, since Ω(e2, Je2) = 0.

We consider lcK structures with Lee form θ = −2e1. The J-invariance of Ω requires ω12 = 0 and ω13 = 0.
Therefore we are reduced to Ω = ω14e14 + ω23e23. The J-positivity requires ω14 > 0 and ω23 < 0. Finally, the
generic lcK structure is 

θ = −2e1
Ω = ω14e1 ∧ e4 + ω23e2 ∧ e3

with ω14 > 0, ω23 < 0
.
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The generic automorphisms of (rr3,1, J) are associated to
1 0 0 0
0 a22 a23 0
0 −a23 a22 0
0 0 0 1

 ∈ Aut(rr∨3,1), with a222 + a223 ≠ 0.

For a22 = 1√−ω23
and a23 = 0, we apply the automorphism


1 0 0 0
0 1√−ω23

0 0
0 0 1√−ω23

0
0 0 0 1

 ∈ Aut(rr∨3,1)
to get the normal form 

θ = −2e1
Ω = σe1 ∧ e4 − e2 ∧ e3
with σ > 0

.

There is no further reduction, since the generic linear complex automorphism transforms σe14 − e23 into
σe14 −

(
a222 + a223

)
e23, �xing the coe�cient along e14.

Remark 2.4. The Lie algebras rr3,1, rr′3,γ with γ ≥ 0, r′2, r4,1, r4,α,β with α and β as in Table 1, r′4,γ,δ with γ ∈ R
and δ > 0, do not admit any Vaisman structure, thanks to [26, Structure Theorem], [29, Corollary 3.5], and to
the classi�cation of 3-dimensional Sasaki Lie algebras, see [15, 19].

2.4 rr′3,0

Consider the Lie algebra rr′3,0 = (0, −13, 12, 0), endowedwith the complex structure associated to thematrix

J =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ∈ Aut((rr′3,0)∨).
The generic lcs structure is

θ = θ1e1 + θ4e4

Ω = ω12e12 + ω13e13 + ω14e14 +
(
− (ω12θ1+ω13)θ4

θ21+1

)
e24 +

(
− (ω13θ1−ω12)θ4

θ21+1

)
e34

with
(
ω2
12 + ω2

13
)
θ4 ≠ 0

.

It is clear that Ω is never J-positive: indeed ω(e2, Je2) = 0. Then, there is no lcK structure in this case.

2.5 rr′3,γ with γ > 0

Consider the Lie algebra rr′3,γ = (0, −γ12−13, 12−γ13, 0). It admits two non-equivalent complex structures.
We �rst consider the complex structure J1 associated to the matrix

J1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ∈ Aut((rr′3,γ)∨)
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According to [6, Appendix 6.4 of the arXiv version, pages 36–37], the generic lcs structures are the following:
either 

θ = −2γe1
Ω = ω12e1 ∧ e2 + ω13e1 ∧ e3 + ω14e1 ∧ e4 + ω23e2 ∧ e3

with ω14ω23 ≠ 0, γ ≠ 0
or 

θ = θ1e1 + θ4e4
Ω = ω12e12 + ω13e13 + ω14e14 +

(
−(ω12(γ+θ1)+ω13)θ4

(γ+θ1)2+1

)
e24 +

(
−(ω13(γ+θ1)−ω12)θ4

(γ+θ1)2+1

)
e34

with
(
ω2
12 + ω2

13
)
θ4 ≠ 0

.

There is no lcK structure with Lee form θ = θ1e1 + θ4e4. Indeed, the corresponding lcs structures are
never J1-positive, since Ω(e2, Je2) = ω23 = 0.

We consider lcK structureswith Lee form θ = −2γe1. The J1-invariance ofΩ requiresω12 = 0 andω13 = 0.
Therefore we are reduced to Ω = ω14e14 +ω23e23. The J1-positivity requires ω14 > 0 and ω23 > 0. Finally, the
generic lcK structure is 

θ = −2γe1
Ω = ω14e1 ∧ e4 + ω23e2 ∧ e3

with ω14 > 0, ω23 > 0, γ ≠ 0
.

The generic automorphisms of (rr3,λ , J1) are associated to
1 0 0 0
0 a22 a23 0
0 −a23 a22 0
0 0 0 1

 ∈ Aut((rr′3,γ)∨), with a222 + a223 ≠ 0.

For a22 = 1√ω23
and a23 = 0, we apply the automorphism


1 0 0 0
0 1√ω23

0 0
0 0 1√ω23

0
0 0 0 1

 ∈ Aut((rr′3,γ)∨)
to get the lcK form 

θ = −2γe1
Ω = σe1 ∧ e4 + e2 ∧ e3
with σ > 0, γ ≠ 0

.

There is no further reduction, since the generic linear complex automorphism transforms σe14 + e23 into
σe14 +

(
a222 + a223

)
e23, �xing the coe�cient along e14.

Next we consider the complex structure J2 associated to the matrix

J2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ∈ Aut((rr′3,γ)∨),
the only di�erence in this case is that Ω(e2, J2e2) = −ω23 > 0, then ω23 < 0. In the same way as above we get
the �nal lcK form 

θ = −2γe1
Ω = σe1 ∧ e4 − e2 ∧ e3
with σ > 0, γ ≠ 0

.

Remark 2.5. This algebra does not admit any Vaisman structure, see Remark 2.4.
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2.6 r2r2

Consider the Lie algebra r2r2 = (0, −12, 0, −34) with the complex structure de�ned as

J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ∈ Aut((r2r2)∨)
in terms of the chosen coframe. A generic automorphism for (r2r∨2 , J) is associated to the identity matrix or to

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∈ Aut((r2r2)∨). (2.1)

As in [6, Appendix 6.5 of the arXiv version, pages 38–39], the generic lcs structures are either
θ = θ3e3
Ω = −ω23

θ3 e
12 + ω13e13 + ω14e14 + ω23e23 + ω34e34

with ω14(θ3 + 1) = 0, ω23(ω14θ3 − ω34) ≠ 0, θ3 ≠ 0
,

or 
θ = θ1e1
Ω = ω12e12 + ω13e13 + ω14e14 + ω23e23 + ω14

θ1 e
24

with ω23(θ1 + 1) = 0, ω14(ω12 + θ1ω23) ≠ 0, θ1 ≠ 0
,

or 
θ = −e1 − e3
Ω = ω13e13 + ω14e14 + ω23e23 + ω24e24

with ω13ω14 − ω14ω23 ≠ 0
,

or 
θ = θ1e1 + θ3e3
Ω = −1+θ1θ3 ω23e12 + ω13e13 + ω14e14 + ω23e23 + θ3+1

θ1 ω14e34

with θ1θ3 ≠ 0, θ1 + θ3 ≠ −1, ω14ω23 ≠ 0
.

First we consider the case θ = θ3e3. The lcK condition yields the generic form
θ = −e3
Ω = ω12(e12 − e14 + e23) + ω34e34

with ω34 > ω12 > 0
.

The only complex automorphism �xing the Lee form is the identity.Whence the above form is the generic
lcK form up to linear equivalence.

Remark 2.6. We determine now which of these lcK structures on r2r2 with Lee form θ = −e3 are of Vaisman
type. Let A = a1e1 + a2e2 + a3e3 + a4e4. We determine ai such that θ(A) = 1 and A ∈ (ker θ)⊥. In this case we
obtain that A = −e1 + ω34

ω12
e2 − e3 + ω34

ω12
. Therefore

adA =


0 0 0 0
−ω34
ω12

−1 0 0
0 0 0 0
0 0 −ω34

ω12
−1

 .

From Lemma 0.1, it follows that none of the lcK structures above are of Vaisman type.
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We now assume θ = θ1e1. Requiring Ω to be J-positive and J-invariant, we obtain
θ = −e1
Ω = ω12e12 + ω34(−e14 + e23 + e34)
with ω12 > ω34 > 0

.

In the same way as above there is no further reduction.

Remark 2.7. We determine now which of these lcK structures on r2r2 with Lee form θ = −e1 are of Vaisman
type. Let A = a1e1 + a2e2 + a3e3 + a4e4. We determine ai such that θ(A) = 1 and A ∈ (ker θ)⊥. In this case we
obtain that A = −e1 − e3. Therefore

adA =


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 −1

 .

From Lemma 0.1, it follows that none of the lcK structures above are of Vaisman type.

If θ = −e1 − e3 does not produce lcK forms since Ω(e1, Je1) = 0, therefore Ω is never J-positive.
Finally if θ = θ1e1 + θ3e3, requiring the lcK conditions we obtain

θ = σe1 + τe3
Ω = µ(1+στ e12 + e14 − e23 + τ+1

σ e
34)

with στ ≠ 0, σ + τ ≠ −1, µ ≠ 0, µ(1+σ)τ > 0, µ(τ+1)σ > 0, σ+τ+1στ > 0
,

where σ = θ1, τ = θ3, µ = ω14. Applying the automorphism (2.1) we can assume that σ ≤ τ.

Remark 2.8. Wedetermine nowwhich of these lcK structures on r2r2with Lee form θ = σe1+τe3 are of Vaisman
type. Let A = a1e1 + a2e2 + a3e3 + a4e4. We determine ai such that θ(A) = 1 and A ∈ (ker θ)⊥. In this case we
obtain that A = 1+2τ

σ+2στ+τ e1 + 1
σ+2στ+τ e3. Therefore

adA =


0 0 0 0
0 1+2τ

σ+2στ+τ 0 0
0 0 0 0
0 0 0 1

σ+2στ+τ

 .

From Lemma 0.1, it follows that none of the lcK structures above are of Vaisman type.

2.7 r′2

Consider the Lie algebra r′2 = (0, 0, −13 + 24, −14 − 23).
As in [6, Appendix 6.6 of the arXiv version, pages 43–45], the generic lcs structure is either

θ = θ1e1 + θ2e2

Ω = ω12e12 + ω13e13 +
(
ω24(θ1+1)+ω13

θ2

)
e14 +

(
(θ22+1)ω13+ω24(θ1+1)

(θ1+1)θ2

)
e23 + ω24e24

with ω2
13 + ω2

14 ≠ 0, θ1 ≠ −1, θ2 ≠ 0

,

or 
θ = −2e1
Ω = ω12e12 + ω13(e13 + e24) + ω14(e14 − e23) + ω34e34

with ω12ω34 − ω2
13 − ω2

14 ≠ 0, ω34 ≠ 0
,

or 
θ = θ1e1
Ω = ω12e12 − (θ1 + 1)ω24e13 + (θ1 + 1)ω23e14 + ω23e23 + ω24e24

with ω2
23 + ω2

24 ≠ 0, θ1 ≠ 0
.



14 | Daniele Angella and Marcos Origlia

According to [32] this Lie algebra admits several di�erent complex structures given by

J1 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ∈ Aut((r′2)∨), J2 =


−a −b 0 0
a2+1
b a 0 0
0 0 0 −1
0 0 1 0

 ∈ Aut((r′2)∨)
in terms of the chosen coframe.

We study �rst the complex structure J1. The only complex automorphisms of (r′2, J1) are
1 0 0 0
0 ±1 0 0
0 0 1 0
0 0 0 ±1

 ∈ Aut((r′2)∨). (2.2)

If the lcs structure is as in the �rst case, then the generic lcK form is
θ = θ1e1 + θ2e2

Ω = ω13
(
e13 + θ2

θ1 (e
14 + e23) + θ22−θ1

θ1(θ1+1) e
24
)

with ω13 > 0, θ2 ≠ 0, θ1 + 1 < 0
.

Applying the automorphism (2.2) we can assume θ2 > 0.
Wenowconsider the second case for the lcs form. RequiringΩ to be J1-positive and J1-invariantwe obtain

the lcK form 
θ = −2e1
Ω = ω12(e12 + e34) + ω13(e13 + e24)
with ω13 > 0, ω2

13 − ω2
12 > 0

.

Applying the automorphism (2.2) we can assume ω12 > 0.
In the last case, the generic lcK form is

θ = θ1e1
Ω = ω24

(
−(θ1 + 1)e13 + e24

)
with ω24 > 0, θ1 + 1 < 0

.

There is no further reduction, since Ω is �xed by a generic automorphism (2.2).
Now we consider the second complex structure J2.
The complex automorphisms of (r′2, J2) are

1 0 0 0
0 1 0 0
a13 −a14 a33 −a34
a14 a13 a34 a33

 ∈ Aut((r′2)∨), (2.3)

with a233 + a234 ≠ 0, and moreover, if (a, b) ≠ (0, 1), then a13 = 0, a14 = 0.
By J2-positivity, we are reduced to only one possibility for the lcs structure, namely,

θ = −2e1
Ω = ω12e12 + ω13(e13 + e24) + ω14(e14 − e23) + ω34e34

with ω12ω34 − ω2
13 − ω2

14 ≠ 0, ω34 ≠ 0
.

In the general case (a, b) ≠ (0, 1), the conditions for J2-invariance and J2-positivity yield to the general
lcK form 

θ = −2e1
Ω = ω12e12 + ω34e34

with bω12 > 0, ω34 > 0
.
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Using the automorphism with a33 = 1√ω34
and a34 = 0, we get the normal form
θ = −2e1
Ω = ω12e12 + e34
with bω12 > 0

,

and no further reduction is possible.
In the particular case (a, b) = (0, 1), the generic lcK structure is

θ = −2e1
Ω = ω12e12 + ω13(e13 + e24) + ω14(e14 − e23) + ω34e34

with ω12 > 0, ω34 > 0, ω12ω34 − ω2
13 − ω2

14 > 0
.

We use the automorphisms with a13 = −ω14
ω34

, a14 = ω13
ω34

, a33 = 1√ω34
, and a34 = 0 to get

θ = −2e1
Ω = σe12 + ω34e34

with σ > 0
,

and no further reduction is possible.

Remark 2.9. This algebra does not admit any Vaisman structure, see Remark 2.4.

2.8 r4,1

Consider the Lie algebra r4,1 = (14, 24 + 34, 34, 0) with the complex structure de�ned as

J =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ∈ End(r∨4,1)
in terms of the chosen coframe.

According to [6, Appendix 6.9 of the arXiv version, page 51] the generic lcs structure is
θ = −2e4
Ω = ω13e13 + ω14e14 + ω23e23 + ω24e24 + ω34e34

with ω13ω24 − ω14ω23 ≠ 0
.

It is clear that Ω is never J-positive: indeed Ω(e1, Je1) = 0. Then, there is no lcK structure for this Lie
algebra.

2.9 r4,α,1 with α ≠ 0, 1

Consider the Lie algebra r4,α,1 = (14, α24, 34, 0) with the complex structure de�ned as

J =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ∈ End(r∨4,α,1)
in terms of the chosen coframe.
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According to [6, Appendix 6.10 of the arXiv version, page 54] the generic lcs structures are either
θ = −(1 + α)e4
Ω = ω12e12 + ω14e14 + ω23e23 + ω24e24 + ω34e34

with ω12ω34 + ω14ω23 ≠ 0
,

only when α ≠ −1, or 
θ = −2e4
Ω = ω13e13 + ω14e14 + ω24e24 + ω34e34

with ω13ω24 ≠ 0
.

In the �rst case θ = −(1 + α)e4, we have that Ω is never J-positive: indeed Ω(e1, Je1) = 0. Then, there is
no lcK structure in this case. In the second case θ = −2e4, the J-invariance of Ω requires ω14 = 0 and ω34 = 0
and J-positive implies ω13 > 0 and ω24 < 0. Finally the generic lcK structure is

θ = −2e4
Ω = ω13e13 + ω24e24

with ω13 > 0, ω24 < 0
.

The generic automorphisms of (r4,α,1, J) with α ≠ 0, 1 are associated to
a11 0 a13 0
0 1 0 0
−a13 0 a11 0
0 0 0 1

 ∈ End(r∨4,α,1) with a211 + a213 ≠ 0.

For a11 = 1√ω13
and a13 = 0, we apply the automorphism


1√ω13

0 0 0
0 1 0 0
0 0 1√ω13

0
0 0 0 1

 ∈ End(r∨4,α,1)
to get the lcK form 

θ = −2e4
Ω = e1 ∧ e3 + σe2 ∧ e4
with σ < 0

.

There is no further reduction, since the generic linear complex automorphism transforms e13 + σe24 into(
a211 + a213

)
e13 + σe24, �xing the coe�cient along e24.

Remark 2.10. This algebra does not admit any Vaisman structure, see Remark 2.4.

2.10 r4,α,α with α ∉ {0, 1}

Consider the Lie algebras r4,α,α = (14, α24, α34, 0) for α ∈ ̸ {0, 1} (the case α = −1 is sometimes also denoted
as r̂4,−1 = r4,α=−1,α=−1 = (14, −24, −34, 0)), with the complex structure de�ned as

J =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 ∈ End(r∨4,α,α)
in terms of the chosen coframe.
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According to [6, Appendix 6.10 of the arXiv version, page 52, and Appendix 6.11 of the arXiv version, page
55] the generic lcs structure for both Lie algebras is

θ = −2αe4
Ω = ω14e14 + ω23e23 + ω24e24 + ω34e34

with ω14ω23 ≠ 0
.

Requiring J-positive we obtain Ω(e1, Je1) = −ω14 > 0, Ω(e2, Je2) = ω23 > 0. Assuming Ω is J-positive, we
obtain ω34 = ω12 = 0 and ω24 = −ω13 = 0. Therefore the generic lcK structure for these Lie algebras is

θ = −2αe4
Ω = ω14e14 + ω23e23

with ω14 < 0, ω23 > 0
.

The generic complex automorphisms for these Lie algebras are associated to
1 0 0 0
0 a22 a23 0
0 −a23 a22 0
0 0 0 1

 ∈ End(r∨4,α,α) with a222 + a223 ≠ 0

For a22 = 1√ω23
and a23 = 0, we apply the automorphism

1 0 0 0
0 1√ω23

0 0
0 0 1√ω23

0
0 0 0 1

 ∈ End(r∨4,α,α)
to get the lcK form 

θ = −2αe4
Ω = σe1 ∧ e4 + e2 ∧ e3
with σ < 0

.

There is no further reduction, since the generic linear complex automorphism transforms σe14 + e23 into
σe14 +

(
a222 + a223

)
e23, �xing the coe�cient along e14.

Remark 2.11. This algebra does not admit any Vaisman structure, see Remark 2.4.

2.11 r′4,γ ,δ with δ > 0

Consider the Lie algebra r′4,γ,δ = (14, γ24 + δ34, −δ24 + γ34, 0). According to [6, Appendix 6.12 of the arXiv
version, page 56] the generic lcs structure is

θ = −2γe4
Ω = ω14e14 + ω23e23 + ω24e24 + ω34e34

with ω14ω23 ≠ 0
,

only when γ ≠ 0.
According to [32] this Lie algebra admits two not equivalent complex structures. We consider �rst the

complex structure de�ned as

J1 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 ∈ End((r′4,γ,δ)∨)
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We impose now Ω to be J1-invariant and J1-positive and we reduce the generic lcs structure to
θ = −2γe4
Ω = ω14e14 + ω23e23

with ω14 < 0, ω23 > 0
,

only when γ ≠ 0. The generic automorphisms of (r′4,γ,δ , J1) with α ≠ 0, 1 are associated to
1 0 0 0
0 a22 a23 0
0 −a23 a22 0
0 0 0 1

 ∈ End((r′4,γ,δ)∨) with a222 + a223 ≠ 0. (2.4)

For a22 = 1√ω23
and a23 = 0, we apply the automorphism


1 0 0 0
0 1√ω23

0 0
0 0 1√ω23

0
0 0 0 1

 ∈ End((r′4,γ,δ)∨)
to get the lcK form 

θ = −2γe4
Ω = σe1 ∧ e4 + e2 ∧ e3
with σ < 0

,

only when γ ≠ 0.
There is no further reduction, since the generic linear complex automorphism transforms σe14 + e23 into

σe14 +
(
a222 + a223

)
e23, �xing the coe�cient along e14.

Next we consider the second complex structure given by

J2 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ∈ End((r′4,γ,δ)∨)
in terms of the chosen coframe. Requiring Ω to be J2-positive we get ω23 < 0, this is the only di�erence with
the case J1. Also the complex automorphisms are the same. Taking the automorphism

1 0 0 0
0 1√−ω23

0 0
0 0 1√−ω23

0
0 0 0 1

 ∈ End((r′4,γ,δ)∨)
the generic lcK form for this Lie algebra reduces to

θ = −2γe4
Ω = σe1 ∧ e4 − e2 ∧ e3
with σ < 0

,

only when γ ≠ 0.
There is no further reduction: the generic automorphism trasforms σe14 − e23 into σe14 − (a222 + a223)e23.

Remark 2.12. This algebra does not admit any Vaisman structure, see Remark 2.4.
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2.12 d4

Consider the Lie algebra d4 = (14, −24, −12, 0). According to [6, Appendix 6.13 of the arXiv version, pages
56–57] the generic lcs structure are either

θ = θ4e4
Ω = ω12(e12 − θ4e34) + ω14e14 + ω24e24

with θ4 ∈ ̸ {−1, 0, 1}, ω12 ≠ 0
,

or 
θ = e4
Ω = ω12(e12 − e34) + ω14e14 + ω23e23 + ω24e24

with ω2
12 − ω14ω23 ≠ 0

,

or 
θ = −e4
Ω = ω12(e12 + e34) + ω13e13 + ω14e14 + ω24e24

with ω2
12 + ω13ω24 ≠ 0

.

According to [32] this Lie algebra admits two not equivalent complex structures de�ned as

J1 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ∈ End(d∨4 ), J2 =


0 0 1 0
1 0 0 1
−1 0 0 0
0 −1 −1 0

 ∈ End(d∨4 ).
Let us start with J1. Requiring J1 to be positive we obtain ω13 < 0, in particular ω13 ≠ 0. Then the only

possibility for a compatible lcs structure is
θ = −e4
Ω = ω12(e12 + e34) + ω13e13 + ω14e14 + ω24e24

with ω2
12 + ω13ω24 ≠ 0

.

Assuming Ω to be J1-invariant and J1-positive we obtain a generic lcK structure
θ = −e4
Ω = ω12(e12 + e34) + ω13e13 + ω24e24

with ω13 < 0, ω24 < 0, −ω2
12 + ω13ω24 > 0

.

The generic automorphisms of (d4, J1) in the chosen coframe are associated to
a11 0 0 −a23
0 1 0 0
0 a23 a11 0
0 0 0 1

 ∈ End(d∨4 ) with a11 ≠ 0.

A generic automorphisim transforms θ = −e4 into a23e1 − e4 hence a23 must be 0. Then for a11 = 1√−ω13
, we

apply the automorphism 
1√−ω13

0 0 0
0 1 0 0
0 0 1√−ω13

0
0 0 0 1

 ∈ End(d∨4 )
to get the lcK form 

θ = −e4
Ω = µ(e12 + e34) − e1 ∧ e3 + σe2 ∧ e4
with µ2 + σ < 0

.

Finally applying the automorphism a23 = 0 and a21 = −1 (if it is necessary) we can assume that µ ≥ 0. There
is no further reduction, since the generic linear complex automorphism �xes the coe�cient along e24 and
the sign of the coe�cient along to e12.
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Remark 2.13. The generic A = a1e1 + a2e2 + a3e3 + a4e4 yields

adA =


a4 0 0 −a1
0 −a4 0 a2
−a2 a1 0 0
0 0 0 0

 .

Then adA is skew-symmetric if and only if A = a3e3. But then θ(A) = 0. Therefore, by Lemma 0.1, there is no
Vaisman structure among the above lcK structures.

Now we consider the complex structure J2. We impose now Ω to be J2-positive. In the �rst and second case,
there is no lcK structure becauseweneedω13 < 0. In the third case,weneedω12−ω24 > 0 and−ω12−ω24 > 0,
but J2-invariance for Ω yields ω24 = 0. Then, there is no lcK structure for J2.

2.13 d4,1

Consider the Lie algebra d4,1 = (14, 0, −12 + 34, 0) with the complex structure

J =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ∈ End(d∨4,1)
in terms of the chosen coframe.

According to [6, Appendix 6.14 of the arXiv version, pages 61–62] the generic lcs structures are either
θ = θ4e4
Ω = ω12(e12 − (θ4 + 1)e34) + ω14e14 + ω24e24

with ω12 ≠ 0, θ4 ≠ {−1, −2, 0}
,

or 
θ = −2e4
Ω = ω12(e12 + e34) + ω13e13 + ω14e14 + ω24e24

with ω2
12 − ω13ω24 ≠ 0

,

or 
θ = −e4
Ω = ω12e12 + ω14e14 + ω23e23 + ω24e24

with ω14ω23 ≠ 0
,

or 
θ = θ2e2 + θ4e4
Ω = ω12e12 + (θ4+1)(θ2ω12−ω23)

θ22
e14 + ω23e23 + ω24e24 − (θ4+1)ω23

θ2 e34

with (θ4 + 1)ω23 ≠ 0, θ2 ≠ 0
.

In the cases θ = θ4e4 with θ4 ≠ −1, we have that Ω is never J-positive: indeed Ω(e2, Je2) = ω23 = 0. Then,
there is no lcK structure in this case. In the case θ = −e4, the J-invariance of Ω requires ω12 = −ω34 = 0 and
ω13 = ω24 = 0 and J-positive implies ω14 > 0 and ω23 > 0. Finally the generic lcK structure is

θ = −e4
Ω = ω14e14 + ω23e23

with ω14 > 0, ω23 > 0
.

The generic automorphisms of (d4,1, J) are associated to
1 0 0 0
0 a22 0 0
0 0 a22 0
0 0 0 1

 ∈ End(d∨4,1) with a222 ≠ 0. (2.5)
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For a22 = 1√ω23
, we apply the automorphism

1 0 0 0
0 1√ω23

0 0
0 0 1√ω23

0
0 0 0 1

 ∈ End(d∨4,1)
to get the lcK form 

θ = −e4
Ω = σe1 ∧ e4 + e2 ∧ e3
with σ > 0

.

There is no further reduction, since the generic linear complex automorphism transforms σe14 + e23 into
σe14 + a222e23, �xing the coe�cient along e14.

Finally we consider the case
θ = θ2e2 + θ4e4
Ω = ω12e12 + (θ4+1)(θ2ω12−ω23)

θ22
e14 + ω23e23 + ω24e24 − (θ4+1)ω23

θ2 e34

with (θ4 + 1)ω23 ≠ 0, θ2 ≠ 0
.

Assuming Ω is J-invariant and J-positive, we reduced it to the lcK form
θ = θ2e2 + θ4e4

Ω =
(
ω23(θ4+1)

θ22

)
e12 +

(
ω23θ4(θ4+1)

θ22

)
e14 + ω23e23 +

(
−ω23(θ4+1)

θ22

)
e34

with ω23 > 0, θ4 + 1 < 0
.

We consider (2.5) with a22 = 1
θ2 and we get

θ = e2 + θ4e4
Ω = ω23

θ22

(
(θ4 + 1)(e12 + θ4e14 − e34) + e23

)
with ω23 > 0, θ4 + 1 < 0

.

There is no further reduction because a generic automorphism applied to the Lee form θ = e2 + θ4e4 gives
a22e2 + σe4, then the only possible automorphism between two lcK forms of this kind is the identity.

2.14 d4, 12

Consider the Lie algebra d4, 12 = ( 1214, 1224, −12 + 34, 0). According to [6, Appendix 6.14 of the arXiv version,
pages 60–61] the generic lcs structures are either

θ = −32 e4
Ω = ω12(e12 + 1

2 e
34) + ω13e13 + ω14e14 + ω23e23 + ω24e24

with ω2
12 − 2ω13ω24 + 2ω14ω23 ≠ 0

,

or 
θ = θ4e4
Ω = ω12(e12 − (θ4 + 1)e34) + ω14e14 + ω24e24

with ω12(θ4 + 1) ≠ 0, θ4 ≠ − 32 , θ4 ≠ 0
.

According to [32] d4, 12 admits three di�erent complex structures associated to

J1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ∈ End(d∨4, 12 ), J2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ∈ End(d∨4, 12 ),
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J3 =


0 0 0 1
0 0 2 0
0 −12 0 0
−1 0 0 0

 ∈ End(d∨4, 12 ).
We consider �rst the complex structure J1. If θ = −32 e4, then the associated lcs form Ω is never J1-positive.
Indeed, Ω(e1, J1e1) = ω12 > 0 and Ω(e3, J1e3) = −ω34 = −12ω12 > 0, wich is a contradiction. Therefore the
only possibility is θ = θ4e4 with θ4 ≠ − 32 . Assuming Ω is J1-invariant and J1-positive we reduce to

θ = θ4e4
Ω = τ(e12 − (σ + 1)e34)
with τ > 0, σ + 1 > 0, θ4 ≠ 0

.

A generic automorphism for (d4, 12 , J1) is given by
a11 a12 0 0
−a12 a11 0 0
0 0 1 0
0 0 0 1

 ∈ End(d∨4, 12 ) with a211 + a212 = 1. (2.6)

This automorphism �xes Ω, therefore there is no further reduction in this case.
Nowwe focus on the complex structure J2. If θ = −32 e4, andwe requireΩ to be J2-positive and J2-invariant

we obtain 
θ = −32 e4
Ω = ω12(e12 + 1

2 e
34) + ω13(e13 + e24) + ω14(e14 − e23)

with ω2
12 − 2ω2

13 − 2ω2
14 > 0, ω12 < 0

.

Suppose that ω13 = ω14 = 0, then the lcK form is
θ = −32 e4
Ω = σ(e12 + 1

2 e
34)

with σ < 0.
.

There is no further reduction since a generic automorphism for (d4, 12 , J2) has the same form as in (2.6) �xing
the coe�cients of Ω along to e12 and e34. If ω2

13 + ω2
14 ≠ 0, then applying (2.6) with a11 = ω13√

(ω2
13+ω2

14)
,

a12 = −ω14√
(ω2

13+ω2
14)

we obtain the lcK form


θ = −32 e4
Ω = σ(e12 + 1

2 e
34) + τ(e13 + e24)

with σ < 0, τ > 0.
.

In the same way as above, there is no further reduction in this case.
Finally we consider the complex structure J3. If θ = θ4e4 with θ4 ≠ −32 then Ω is not positive. Indeed,

Ω(e2, J3e2) = 0. Therefore the only possibility for the Lee form is θ = −32 e4. Requiring Ω to be J3-positive and
J3-invariant we get that ω12 = 0 and 2ω13 = ω24 and it reduces to the lcK form

θ = −32 e4
Ω = ω13(e13 + 2e24) + ω14e14 + ω23e23

with ω14 < 0, ω23 < 0, ω14ω23 − 2ω2
13 > 0

.

A generic automorphism for (d4, 12 , J3) in the chosen coframe is
1 0 0 0
a12 a22 0 0
0 0 a22 2 a12
0 0 0 1

 ∈ End(d∨4, 12 ) with a22 ≠ 0.
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Applying the automorphism with a12 = 0 and a22 = 1√−ω23
we get

θ = −32 e4
Ω = µ(e13 + 2e24) + σe14 − e23
with σ < 0, σ + 2µ2 > 0

,

where we denote µ = ω13√−ω23
σ = ω14. There is no further reduction, since a generic automorphism applied to

the Lee form θ = −32 e4 gives 2a12e3− 3
2 e

4, then a12 must be 0. The only possible automorphisms between two
lcK forms of this kind transform the coe�cient along e23 into a222e23, then a22 = 1 and the automorphism is
the identity.

2.15 d4,λ with λ > 1
2 , λ ≠ 1

Consider the Lie algebra d4,λ = (λ14, (1 − λ)24, −12 + 34, 0) with λ > 1
2 and λ ≠ 1. According to [6, Appendix

6.14 of the arXiv version, page 58] the generic lcs structures are either
θ = −(1 + λ)e4
Ω = ω12(e12 + λe34) + ω13e13 + ω14e14 + ω24e24

with λω2
12 − ω13ω24 ≠ 0

,

only when λ ≠ −1, or 
θ = (λ − 2)e4
Ω = ω12(e12 − (λ − 1)e34) + ω14e14 + ω23e23 + ω24e24

with (λ − 1)ω2
12 − ω14ω23 ≠ 0

,

only when λ ≠ 2, or 
θ = θ4e4, with θ4 ≠ −(1 + λ), λ − 2
Ω = ω12(e12 − (θ4 + 1)e34) + ω14e14 + ω24e24

with ω2
12(θ4 + 1) ≠ 0, θ4 ≠ 0

.

According to [32] d4,λ admits two di�erent complex structures associated to

J1 =


0 0 0 −1λ
0 0 −1 0
0 1 0 0
λ 0 0 0

 ∈ End(d∨4,λ), J2 =


0 0 −1 0
0 0 0 1

1−λ
1 0 0 0
0 λ − 1 0 0

 ∈ End(d∨4,λ).
We consider �rst the complex structure J1. Requiring Ω(e2, J1e2) = ω23 > 0, we get that the only possibility
for the Lee form is θ = (λ−2)e4. Assuming Ω is J1-invariant and J1-positive we reduce to the following generic
lcK structure 

θ = (λ − 2)e4
Ω = ω14e14 + ω23e23

with ω14 > 0, ω23 > 0, λ ≠ 2
.

A generic automorphism for (d4,λ , J1) is given by
1 0 0 0
0 a22 0 0
0 0 a22 0
0 0 0 1

 ∈ End(d∨4,λ) with a22 ≠ 0.

We apply the automorphism with a22 = 1√ω23
and we reduce to lcK form

θ = (λ − 2)e4
Ω = σe14 + e23
with σ > 0, λ ≠ 2

,
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where σ = ω14. And there is no further reduction since a generic automorphism �xes the coe�cient along to
e14.

Now we focus on the complex structure J2. If θ ≠ −(1 + λ)e4, then associated 2-form Ω is never positive.
Indeed,Ω(e1, J2e1) = ω13 = 0.We consider the case θ = −(1+λ)e4. AssumingΩ is J2-invariant and J2-positive
we obtain that ω12 = ω14 = 0 and we reduce the lcK form to

θ = −(1 + λ)e4
Ω = ω13e13 + ω24e24

with ω13 > 0, (λ − 1)ω24 > 0
,

A generic automorphism for (d4,λ , J2) is given by
a11 0 0 0
0 1 0 0
0 0 a11 0
0 0 0 1

 ∈ End(d∨4,λ)with a11 ≠ 0.

Taking a11 = 1√ω13
we get the lcK form 

θ = −(1 + λ)e4
Ω = e13 + σe24
with (λ − 1)σ > 0

,

and there is no further reduction since a possible automorphism applied to Ω �xes the coe�cient along to
e24.

Remark 2.14. Consider all the cases d4,λ for λ ≥ 1
2 together. For the generic A = a1e1 + a2e2 + a3e3 + a4e4, we

get

adA =


λa4 0 0 −λa1
0 (a − λ)a4 0 (λ − 1)a2
−a2 a1 a4 −a3
0 0 0 0

 .

Therefore, adA is skew-symmetric if and only if A = 0. By Lemma 0.1, we get that there is no Vaisman structure
on d4,λ for any possible value of the parameter λ.

2.16 d′
4,δ with δ ≥ 0

Consider the Lie algebra d′4,δ = ( δ214 + 24, −14 + δ
224, −12 + δ34, 0) with δ ≥ 0. According to [6, Appendix

6.15 of the arXiv version, page 63] the generic lcs structures are
θ = θ4e4
Ω = ω12(e12 − (δ + θ4)e34) + ω14e14 + ω24e24

with ω2
12(δ + θ4) ≠ 0, θ4 ≠ 0

.

According to [32] d′4,δ with δ ≥ 0 admits two di�erent complex structures associated to

J2 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ∈ End((d′4,δ)∨), J3 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ∈ End((d′4,δ)∨).
In the case δ > 0 there are other two more non equivalent complex structures

J4 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 ∈ End((d′4,δ)∨), J1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ∈ End((d′4,δ)∨).
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A generic automorphism for (d′4,δ , J) with J ∈ {J1, J2, J3, J4} is given by
a11 a12 0 0
−a12 a11 0 0
0 0 1 0
0 0 0 1

 ∈ End((d′4,δ)∨) with a211 + a212 = 1. (2.7)

Notice that for any choice of the complex structure the J-invariance condition implies that ω14 = 0 and ω24 =
0. Therefore the generic lcs structure reduces to

θ = θ4e4
Ω = ω12(e12 − (δ + θ4)e34)
with ω2

12(δ + θ4) ≠ 0, θ4 ≠ 0
,

and this lcs form is invariant by a generic automorphism given by (2.7).
We consider �rst the complex structure J2. Assuming Ω is J2-invariant and J2-positive we get

θ = µe4
Ω = σ(e12 − (δ + µ)e34)
with σ > 0, δ + µ < 0, µ ≠ 0

,

where µ = θ4 and σ = ω12. As we mention above there is no further reduction.
If we consider the complex structure J3, in a very similar way we obtain

θ = µe4
Ω = σ(e12 − (δ + µ)e34)
with σ > 0, δ + µ > 0, µ ≠ 0

,

where µ = θ4 and σ = ω12.
We now focus on the complex structure J4 (case δ > 0), and we have that the generic lcK structures are

θ = µe4
Ω = σ(e12 − (δ + µ)e34)
with σ < 0, δ + µ > 0, µ ≠ 0

,

where µ = θ4 and σ = ω12.
Finally, if J = J1 (case δ > 0), then we obtain

θ = µe4
Ω = σ(e12 − (δ + µ)e34)
with σ < 0, δ + µ < 0, µ ≠ 0

,

where µ = θ4 and σ = ω12.

Remark 2.15. In any of the above four cases, it follows from Lemma 0.1 that any lcK structure above is of
Vaisman type if and only if δ = 0. Indeed, if A ∈ d′4,δ such that θ(A) = 1 and A ∈ (ker θ)⊥, then A = 1

µ e4.
Therefore

adA =


δ
2µ

1
µ 0 0

− 1
µ

δ
2 0 0

0 0 δ
µ 0

0 0 0 0


is skew-symmetric if and only if δ = 0. More precisely, all lcK structures on d′4,0 are of Vaisman type, and any
lcK structure on d′4,δ with δ > 0 is not of Vaisman type.
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2.17 h4

Consider the Lie algebra h4 = ( 1214+24, 1224, −12+34, 0). According to [6, Appendix 6.16 of the arXiv version,
pages 64–65] the generic lcs structures are either

θ = θ4e4
Ω = ω12(e12 − (θ4 + 1)e34) + ω14e14 + ω24e24

with ω12 ≠ 0, θ4 ∉ {−32 , −1, 0}
,

or 
θ = −32 e4
Ω = ω12(e12 + 1

2 e
34) + ω14e14 + ω23e23 + ω24e24

with ω2
12 + 2ω14ω23 ≠ 0

.

According to [32], h4 admits a complex structure associated to

J =


0 0 −2 0
0 0 0 1
1
2 0 0 0
0 −1 0 0

 ∈ End(h∨4 ).
In both cases we obtain that Ω is not J-positive, since Ω(e1, Je1) = 0. Therefore there is no lcK structure for
this Lie algebra.

3 Applications
In this section,we show some applications of our classi�cation of lcK structures in dimension 4. In particular,
we adapt some constructions of lcs structures in [25] and [6] to the lcK case and, as an application, we can
producemany examples in higher dimension, including lcK structures onOeljeklaus-Tomamanifolds, or give
a geometric interpretation of some of the 4-dimensional structures in Table 2.

3.1 LcK extensions

LethbeaLie algebra equippedwith an lcK structure (J, 〈·, ·〉), and let (ω, θ) be theunderlying lcs structure. Let
V be a vector space of dimension 2nwith a Hermitian structure (J0, 〈·, ·〉0) and denote byω0 the fundamental
2-form induced by (J0, 〈·, ·〉0). We consider a representation

π : h→ End(V),

given by π(X) = −12 θ(X) Id +ρ(X) such that ρ(X) ∈ u(n) ⊂ sp(n,R) for all X ∈ h. According to [25], the Lie
algebra g de�ned by g = hnπ V admits an lcs structure (ω′, θ′) given by ω′|h = ω, ω′|V = ω0, ω′(X, Y) = 0 for
any X ∈ h, Y ∈ V and the 1-form θ′ ∈ g* by θ′|h = θ and θ′|V = 0.

We de�ne the almost Hermitian structure (J′, 〈·, ·〉′) on g given by

〈·, ·〉′|h = 〈·, ·〉, 〈·, ·〉′|V = 〈·, ·〉0,
J′|h = J, J′|V = J0.

(3.1)

It is easy to see that ω′ is the fundamental 2-form associated to the almost Hermitian structure (J′, 〈·, ·〉′) on
g. Moreover, J′ is integrable since π(X) ◦ J0 = J0 ◦ π(X) for any X ∈ h (see [7]). Therefore, we obtain that:

Proposition 3.1. Let h be a Lie algebra equipped with an lcK structure (J, 〈·, ·〉) and let V be a vector space
endowed with a Hermitian structure (J0, 〈·, ·〉0). Take the representation π : h→ End(V) given by π = −12 θ Id +ρ
where ρ(X) ∈ u(n) ⊂ sp(n,R). Then (J′, 〈·, ·〉′) as in (3.1) is an lcK structure on g.
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Remark 3.2. If the initial Lie algebra h is solvable, then ρ(h) is solvable. Since ρ(h) ⊂ u(n) and u(n) is a compact
Lie algebra, then we obtain that ρ(h) is Abelian, and therefore it is contained in a maximal Abelian subalgebra
of u(n). In particular ρ(h′) = 0, where h′ = [h, h] denotes the commutator ideal. Moreover, we may assume that
J ∈ u(n) is in the same maximal Abelian subalgebra which contains ρ(h).

According to [25], we have that g is unimodular if and only if tr(adhX) = nθ(X) for all X ∈ h. Recall that given a
Lie algebra h, the map χ : h → R de�ned by χ(X) = tr(adX) is a Lie algebra homomorphism, and its kernel is
called the unimodular kernel of the Lie algebra h. We have then the following result:

Proposition 3.3. Let h be a Lie algebra with an lcK structure (ω, θ), and let (π, V) be a 2n-dimensional repre-
sentation such that π(X) = −12 θ(X) Id +ρ(X)with ρ(X) ∈ u(n) for all X ∈ h. Then the Lie algebra g = hnπ V with
the lcK structure (ω′, θ′) as above is unimodular if and only if the unimodular kernel of h is equal to ker θ and
tr(adhA) = n.

Note that in order to build unimodular examples we have to start with a non unimodular Lie algebra h. In
particular we need that tr(adhA) = n = dim V

2 ∈ N. This condition is enough when the commutator ideal
h′ = [h, h] = ker θ.

Using Lemma 0.1, it is easy to see that the lcK structure constructed with Proposition 3.1 is not Vaisman.
Indeed, the endomorphism adgA : g→ g is

adgA =
(

adhA
−12 Id +ρ(A)

)
,

with ρ(A) skew-symmetric. Then adgA cannot be skew-symmetric, and therefore, the lcK structure is not Vais-
man. Moreover, we will prove next that these Lie algebras do not admit any Vaisman structure when n > 1:

Proposition 3.4. Let g = h nπ V be the unimodular solvable Lie algebra built as above with dimV = 2n and
n > 1. Then g does not admit any Vaisman structure.

Proof. Suppose that g admits a Vaisman structure (ω, θ). Then we know that the Morse-Novikov cohomology
vanishes in any degree, and therefore ω = dθη = dη − θ∧ η for some 1-form η. Let ω̃ the be restriction of ω to
V × V, then we have that ω̃ is a symplectic form on V. Moreover, ω̃ = −θ ∧ η since V is Abelian. If n > 1, then
ω̃ is degenerate.

3.2 Examples arising from 4-dimensional lcK Lie algebras

We summarize which Lie algebras in Table 2 are not unimodular, and therefore can be used to construct new
examples of unimodular Lie algebras of dimension higher or equal than six with an lcK structure. They are:
rr3,0, rr3,1, rr′3,γ , r2r2, r′2, r4,α,1, r4,α,α, r′4,γ,δ, d4,λ, and d′4,δ.

Taking into account the lcK structures for each of these Lie algebras as exhibited in Table 2, it can be
shown, using Proposition 3.3, that the only lcK Lie algebras which admit a unimodular lcK extension are the
following, where the complex structure is written in the frame {e1, e2, e3, e4}:

r2r2 :


θ = σ(e1 + e3)
ω = µ(1+σσ e12 + e14 − e23 + σ+1

σ e34)
σ ≠ 0, σ > −12 , µ ≠ 0, µ(1+σ)σ > 0

J =
( 0 −1 0 0

1 0 0 0
0 0 0 −1
0 0 1 0

)

r4,α,α :
α ∉ {−1, 0, 1}


θ = −2αe4
ω = σe14 + e23
σ < 0

J =
( 0 0 0 1

0 0 −1 0
0 1 0 0
−1 0 0 0

)
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r′4,γ,δ :
δ > 0, γ ≠ 0


θ = −2γe4
ω = σe14 + e23
σ < 0

J =
( 0 0 0 1

0 0 −1 0
0 1 0 0
−1 0 0 0

)

d4, 12
:


θ = θ4e4
ω = τ(e12 − (σ + 1)e34))
τ > 0, σ + 1 > 0, θ4 ≠ 0

J =
( 0 −1 0 0

1 0 0 0
0 0 0 1
0 0 −1 0

)

d4,λ :
λ ∉ {12 , 1}


θ = (λ − 2)e4
ω = σe14 + e23
σ > 0, λ ≠ 2

J =
( 0 0 0 −λ

0 0 −1 0
0 1 0 0
1
λ

0 0 0

)

d′4,δ :
δ > 0


θ = µe4
ω = σ(e12 − (δ + µ)e34)
σ < 0, δ + µ < 0, µ ≠ 0

J =
( 0 −1 0 0

1 0 0 0
0 0 0 1
0 0 −1 0

)

Remark 3.5. Applying Proposition 3.1 to the Lie algebras r4,α,α and r′4,γ,δ, we obtain Lie algebras of dimension
greater than or equal to six, which are almost-Abelian Lie algebras. Recall that a Lie algebra is called almost-
Abelian if it has an Abelian ideal of codimension one. Almost-Abelian Lie algebras admitting lcK structures were
studied in [4], where the second-named author andAdriánAndrada proved that the associated Lie groups admit
no lattices, whenever the dimension is greater than four.

Remark 3.6. If we extend the Lie algebras d4, 12 , d4,λ and d′4,δ by Proposition 3.1, we obtain almost-nilpotent Lie
algebras of dimension greater than or equal to six with an lcK structure. We will explain in detail how to extend
one of these Lie algebras in Example 3.7. Recall that a Lie algebra is called almost-nilpotent if it has a nilpotent
ideal of codimension one. The existence of lattices in almost-nilpotent Lie groups was studied in [12].

We explain now how to extend one of the almost nilpotent cases:

Example 3.7. Let us start with the 4-dimensional Lie algebra d′4,δ with δ ≠ 0 and structure constants ( δ214 +
24, −14 + δ

224, −12 + δ34, 0). Then the non-vanishing Lie brackets are given by

[e4, e1] =
δ
2 e1 − e2, [e4, e2] = e1 +

δ
2 e2, [e4, e3] = δe3, [e1, e2] = e3.

We consider the lcK structure on d′4,δ given by
θ = µe4
ω = σ(e12 − (δ + µ)e34)
σ < 0, δ + µ < 0, µ ≠ 0

, J =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 .

We show that, for any n ∈ N, there is an lcK extension given by Proposition 3.1 of the Lie algebra d′4,δ for a
suitable choice of δ and µ in order to obtain a (2n +4)-dimensional unimodular lcK Lie algebra g = d′4,δ nπ R2n

for certain lcK representation π. It follows from Proposition 3.3 that g is unimodular if and only if 2δ = nµ.
We de�ne next the representation π : d′4,δ → gl(2n,R) by π = −12 θ Id +ρ for some representation ρ : d′4,δ →

u(n). It follows from Remark 3.2 that such a representation satis�es ρ(e1) = ρ(e2) = ρ(e3) = 0. Setting ρ(e4) in
the orthonormal basis {u1, v1, . . . , un , vn} of R2n given by

ρ(e4) =


0 a1
−a1 0

. . .
0 an
−an 0


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we obtain that the only non-zero new Lie brackets are

[e4, ui] = −
δ
n ui − aivi , [e4, vi] = aiui −

δ
n vi ,

for i = 1, . . . , n. The complex structure on g is given by J(e1) = e2, J(e3) = −e4 and J(ui) = vi for i = 1, . . . , n.
It is easy to verify that 

θ′ = 2δ
n e

4

ω′ = σ(e12 − (n + 2)δ
n e34) +

n∑
i=1

ui ∧ vi

with σ < 0, δ < 0

is an lcK structure on the (2n + 4)-dimensional Lie algebra g for any n ∈ N. Note that we can write g = Re4 n
(h3 ×R2n), therefore g is an almost-nilpotent Lie algebra.

3.3 OT Lie algebras as lcK extensions

Oeljeklaus-Toma manifolds (OT manifolds) are compact complex non-Käher manifolds which arise from cer-
tain number �elds, and they can be considered as generalizations of the Inoue sufaces of type S0. It was
proved in [24] that certain OTmanifolds (those of type (s, 1)) admit lcKmetrics. According to [22], the OTman-
ifolds are solvmanifolds.Moreover, it can be seen that the complex structure is induced by a left-invariant one
on the corresponding simply connected solvable Lie group. These manifolds provided a counterexample to
a conjecture made by Vaisman according to which the �rst Betti number of a compact lcK manifold is odd
(see [24]). We show in this subsection that the Lie algebras associated to these OT solvmanifolds of type (s, 1)
endowed with its lcK structure can be obtained using our construction given in Proposition 3.1.

We recall the de�nition of the Lie algebra associated to the (2n + 2)-dimensional Oeljeklaus-Toma solv-
manifold of type (s, 1) (see [22]), which we denote by gOT. The Lie brackets on gOT are given by

[xi , yi] = yi , [xi , z1] = −
1
2 z1 + ciz2, [xi , z2] = −ciz1 −

1
2 z2, (3.2)

in the basis {x1, . . . , xn , y1, . . . , yn , z1, z2} for some ci ∈ R. The complex structure on gOT is Jxi = yi and
Jz1 = z2. The lcK structure on gOT is given by{

θ =∑ xi

ω = 2∑ xi ∧ yi +∑i≠j x
i ∧ yj + z1 ∧ z2 (3.3)

in the dual basis {x1, . . . , xn , y1, . . . , yn , z1, z2}, where the associatedHermitianmetric is de�ned by g(·, ·) =
ω(·, J·).

Next we show how to recover the 6-dimensional OT Lie algebra using Proposition 3.1 and Theorem 1.1.
Let us consider the 4-dimensional Lie algebra r2r2 with structure constants given by (0, −12, 0, −34).

According to Table 2 this Lie algebra admits many non equivalent LCK structures up to Lie algebra com-
plex automorphisms. The one we are interested now is

θ = σe1 + τe3
ω = 1+σ

τ e
12 + e14 − e23 + τ+1

σ e
34

with στ ≠ 0, σ + τ ≠ −1, 1+στ > 0, τ+1σ > 0, σ ≤ τ
.

The complex structure is given by J(e1) = e2 and J(e3) = e4 in terms of the coframe {e1, e2, e3, e4}.
Taking into account Proposition 3.3 in order to obtain a 6-dimensional unimodular extension of this Lie

algebra, we can simplify the lcK form to{
θ = e1 + e3
ω = 2e12 + e14 − e23 + 2e34 .
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Let g be the 6-dimensional vector space g = r2r2 ⊕R2. We de�ne π : r2r2 → gl(2,R) by

π(e2) = 0,
π(e4) = 0,

π(e1) = −12 Id +
(
0 −c1
c1 0

)
=
(
−12 −c1
c1 −12

)
,

π(e3) = −12 Id +
(
0 −c2
c2 0

)
=
(
−12 −c2
c2 −12

)
,

in the orthonormal basis {e5, e6} ofR2 with J0e5 = e6. It is easy to check that π satis�es conditions of Propo-
sition 3.1, and therefore

g = r2r2 nπ R2

is a 6-dimensional unimodular Lie algebra admitting a lcK structure (ω, θ) given by{
θ′ = e1 + e3
ω′ = 2e12 + e14 − e23 + 2e34 + e56 .

Clearly, (g, ω′, θ′) is isomorphic to the OT Lie algebra of dimension 6 with lcK structure given by (3.3) with
n = 2.

Togeneralize this case tohigher dimensionsweconsider thenon-unimodular 2n-dimensional Lie algebra
aff(R)n with structure equations given by [ei , fi] = fi for i = 1, . . . , n in the basis {e1, f1, . . . , en , fn}. This Lie
algebra admits a complex structure Jei = fi and Jfi = −ei for i = 1, . . . , n. A lcK structure on aff(R)n can be
de�ned by {

θ =∑ ei

ω = 2∑ ei ∧ f i +∑i≠j e
i ∧ f j

in the dual basis {e1, f 1, . . . , en , f n}, with Hermitianmetric g(·, ·) = ω(·, J·). Let g be the (2n+2)-dimensional
vector space g = aff(R)n ⊕ R2. We extend the complex structure J in aff(R)n to g by Ju1 = u2 where {u1, u2}
denotes an orthonormal basis of R2. We de�ne π : aff(R)n → gl(2,R) by

π(ei) = −
1
2 Id +

(
0 −ci
ci 0

)
=
(
−12 −ci
ci −12

)
,

and π(fi) = 0 for i = 1, . . . , n and ci ∈ R. It is easy to check that π satis�es Proposition 3.1, and therefore the
unimodular Lie algebra

g = r2r2 nπ R2n ,

admits a lcK structure, which we still denote by (ω, θ), given by{
θ =∑ ei

ω = 2∑ ei ∧ f i +∑i≠j e
i ∧ f j + u1 ∧ u2 .

It is clear that g is isomorphic to the (2n + 2)-dimensional Oeljeklaus-Toma Lie algebra with Lie bracket
given by (3.2). Indeed, ϕ : g → gOT, ϕ(ei) = xi, ϕ(fi) = yi for i = 1, . . . , n and ϕ(ui) = zi for i = 1, 2 is a Lie
algebra isomorphism which commutes with the complex structures and it also preserves the lcK forms.

3.4 From coKähler to lcK

In [6], the �rst-namedauthor andG. Bazzoni andM.Partonobserved that every lcs structure on4-dimensional
Lie algebras can be constructed either as a solution to the cotangent extension problem [6, Corollary 1.14], or
as a mapping torus over a contact 3-dimensional Lie algebra [6, Theorem 1.4], or with a similar construction
starting from a 3-dimensional cosymplectic Lie algebra [6, Proposition 1.8].
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We recall that, on a (2n − 1)-dimensional Lie algebra h, an almost-contact metric structure is given by
(η, ξ ,Φ, g) where: η is a 1-form and ξ a vector �eld such that

η(ξ ) = 1, (cK1)

Φ ∈ EndR(h) satis�es
Φ2 = −id + η ⊗ ξ , (cK2)

and g is a Riemannian metric such that

g(Φx,Φy) = g(x, y) − η(x)η(y) (cK3)

for any x, y ∈ h. Set ω := g(_,Φ_). If
dη = dω = 0, (cK4)

then in particular (η, ω) is a cosymplectic structure. For a cosymplectic structure, we denote by R the Reeb
vector, determined by ιRω = 0 and ιRη = 1; then one has the decomposition h* = 〈η〉 ⊕ 〈R〉◦, where 〈R〉◦
denotes the annihilator of 〈R〉, that coincides with the kernel of the map ωn−1 ∧ _. Recall also that (η, ξ ,Φ)
is called normal when

NijΦ + 2dη ⊗ ξ = 0. (cK5)

When (η, ξ ,Φ, g) is both cosymplectic and normal, then it is called coKähler. We refer to e.g. [11] for further
details.

Proposition 3.8. Let (h, η, ξ ,Φ, g) be a coKähler Lie algebra of dimension 2n − 1, endowed with a derivation
D such that Dω = αω for some α ≠ 0, Dη = Dξ = 0 , and DΦ = ΦD. Then g = h oD R admits a natural lcK
structure.

Proof. By [6, Proposition 1.8],we alreadyknow that ghas anatural lcs structure. For the sake of completeness,
we brie�y recall the construction. On g = hoD R, we de�ne

θ(X, a) := −αa, Ω := ω + η ∧ θ.

Therefore one has
dgΩ = dhω + 1

α D
*ω ∧ θ = ω ∧ θ = θ ∧ Ω.

It su�ces to show that Ω is actually lcK, that is, there is a natural integrable complex structure J on g

such that JΩ = Ω. We set, see [36], see also [11, Section 6.1],

J(X, a) :=
(
ΦX − aξ , η(X)

)
.

We recall that Φξ = 0 and η ◦ Φ = 0, see e.g. [11, Theorem 4.1], whence J2 = −id.
We claim that NijJ = 0. Recall that NijJ := −[_, _] + [J_, J_] − J[J_, _] − J[_, J_]. Following the computations

in [11, Section 6.1], we compute

NijJ((X, 0), (Y , 0)) =
(
NijΦ(X, Y) + η(X)DΦY − η(Y)DΦX − η(X)ΦDY + η(Y)ΦDX,
−η[ΦX, Y] − η[X,ΦY] − η(X)η(DY) + η(Y)η(DX)

)
=

(
NijΦ(X, Y), (dη)(ΦX, Y) + (dη)(X,ΦY) − η ∧ Dη(X, Y)

)
= (0, −η ∧ Dη(X, Y)) = 0,

NijJ((X, 0), (0, a)) =
(
−aDX − a[ΦX, ξ ] − aη(X)Dξ − aΦ(D(ΦX)) + aΦ[X, ξ ],
−aη(D(ΦX)) − aη([X, ξ ])

)
=

(
−aDX − a[ΦX, ξ ] − aΦ2(DX) + aΦ[X, ξ ],

−aη ◦ Φ(DX) + a(dη)(X, ξ )
)

= (−a[ΦX, ξ ] − aη(DX)ξ + aΦ[X, ξ ], 0) = 0,
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where we use that NijΦ = 0.
We claim that JΩ = Ω. Indeed we compute

Ω(J(X, a), J(X, b)) = (ω + η ∧ θ)((ΦX − aξ , η(X)), (ΦY − bξ , η(Y)))
= ω(ΦX − aξ ,ΦY − bξ ) − αη(ΦX − aξ )η(Y) + αη(ΦY − bξ )η(X)
= ω(ΦX,ΦY) − bω(ΦX, ξ ) − aω(ξ ,ΦY) + abω(ξ , ξ )

−αη(ΦX)η(Y) + aαη(ξ )η(Y) + αη(ΦY)η(X) − bαη(ξ )η(X)
= ω(X, Y) − η(Y)ω(X, ξ ) − bω(ΦX, ξ ) − aω(ξ ,ΦY) + abω(ξ , ξ )

−αη(ΦX)η(Y) + aαη(ξ )η(Y) + αη(ΦY)η(X) − bαη(ξ )η(X)
= ω(X, Y) − αη(ΦX)η(Y) + aαη(Y) + αη(ΦY)η(X) − bαη(X)
= ω(X, Y) + aαη(Y) − bαη(X)
= Ω((X, a), (Y , b)),

wherewe used thatω(ΦX,ΦY) = g(ΦX,Φ2Y) = g(ΦX, −Y+η(Y)ξ ) = −g(ΦX, Y)+η(Y)g(ΦX, ξ ) = −ω(Y , X)+
η(Y)ω(ξ , X) = ω(X, Y) − η(Y)ω(X, ξ ) and ω(ξ , Z) = −ω(Z, ξ ) = −g(Z,Φξ ) = 0.

Remark 3.9. The Lie algebra g is unimodular if and only if h is unimodular and Dη = −α(n − 1)η + ζ for some
ζ ∈ 〈R〉◦. If h is unimodular then the lcK structure (Ω, ϑ) on g is not exact.

Indeed, we recall the idea in [6]: unimodularity for g is equivalent to the generator of ∧ng* being non-exact,
that is equivalent to d ∧n−1 g* = 0. Since ∧n−1g* = 〈ωn−1 ∧ η〉 ⊕ ∧2n−2h* ∧ θ, we compute

dg(ωn−1 ∧ η) = −1α
(
α(n − 1) + β

)
ωn−1 ∧ η ∧ θ, dg(φ ∧ θ) = dhφ ∧ θ,

where φ ∈ ∧2n−2h*, and we decomposed Dη = βη + ζ with ζ ∈ 〈R〉◦. The statement follows.

Next we show an example of a Lie algebra admitting a lcK structure in Table 2 constructed from a 3-
dimensional coKähler Lie algebra. Recall from [17] that coKähler Lie algebras in dimension 2n + 1 are in
one-to-one correspondence with 2n-dimensional Kähler Lie algebras endowed with a skew-adjoint deriva-
tion B which commutes with its complex structure.

Let (R2, e1 ∧ e2) be a 2-dimensional Kähler Lie algebra, where Je1 = e2 in the orthonormal coframe
{e1, e2}. Consider the derivation ofR2 givenby B(e1) = e2 and B(e2) = −e1. Then the Lie algebra h = R2oBRξ
admits a coKähler structures (η, ξ ,Φ, g) where g is the orthonormal extension of the Kähler metric in R2, η
is the dual 1-form of ξ and Φ = J in R2 and Φ(ξ ) = 0.

Let us consider now the derivation D : h→ h given by D(ξ ) = 0, D(e1) = e2 and D(e2) = −e1. Finally, the
Lie algebra g = hoD R admits a natural lcK structure according Proposition 3.8, and it is easy to see that this
Lie algebra is isomorphic to the 4-dimensional Lie algebra r′2 on Table 2.

Remark 3.10. Concerning the construction in [6] as a mapping torus over a contact 3-dimensional Lie algebra
[6, Theorem 1.4], we should mention that this construction, in the Hermitian case, corresponds to the known
relation between lcK and Sasakian structures, see [3]. In particular, the subclass of Vaisman Lie algebras can
be constructed in this way.
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A Table of lcK structures on four-dimensional Lie algebras
Table 2: Locally conformally Kähler non-Kähler structures on 4-dimensional Lie algebras, up to complex automorphisms of the Lie algebra.

Lie algebra complex structure non-Kähler lcK structure Vaisman note

Lee form θ positive form Ω parameters

R4 no lcK structure no torus

gl2 J1,µ
µ ∈ R \ {0}

−µ1e4 ω12e12 + ω13e13 + ω23µ1e14 + ω23e23 + 1
2 ω12µ1e24 − 1

2 ω13µ1e34 ω12 ≥ ω13 > 0, ω23 ≥ 0, ω12ω13 − ω2
23 > 0 ω23 = 0, ω12 = ω13

θ4e4 ω12e12 + ω12e13 − 1
2 ω12θ4e24 + 1

2 ω12θ4e34 θ4 ≠ −µ1, ω12 > 0, θ4µ1 < 0
always

µ ∈ C \ (R ∪
√
−1R) θ4e4 ω12e12 + ω12e13 − 1

2 ω12θ4e24 + 1
2 ω12θ4e34 ω12 > 0, θ4µ1 < 0

u2
Ja,b a ≠ 0, b ≠ 0 θ4e4 ω23θ4e14 + ω23e23 θ4 ≠ 0, ω23 < 0, θ4b > 0

always
J0,b b ≠ 0 θ4e4 ω23θ4e14 + ω23e23 θ4 ∈ ̸ {0, − 1

b }, ω23 < 0, θ4b > 0

rh3 −e4 σe12 + σe34 σ > 0 always primary Kodaira [10]

rr3,0 δe1 + σ
δ e

3 δ(δ+1)
σ e12 + e14 − e23 + σ

δ2 e
34 δ > 0, σ > 0 always

rr3,1 −2e1 σe14 − e23 σ > 0 never

rr′3,0 no lcK structures no hyperelliptic [10]

rr′3,γ γ > 0
J1 −2γe1 σe14 + e23 σ > 0

never
J2 −2γe1 σe14 − e23 σ > 0

r2r2

−e3 ω12(e12 − e14 + e23) + ω34e34 ω34 > ω12 > 0
never−e1 ω12e12 + ω34(−e14 + e23 + e34) ω12 > ω34 > 0

σe1 + τe3 µ(1+στ e12 + e14 − e23 + τ+1
σ e

34) στ ≠ 0, σ + τ ≠ −1, µ ≠ 0, µ(1+σ)τ > 0, µ(1+τ)σ > 0, σ+τ+1στ > 0

r′2

J1

θ1e1 + θ2e2 ω13(e13 + θ2
θ1 (e

14 + e23) + θ22−θ1
θ1(θ1+1) e

24) ω13 > 0, θ1 ≠ −1, θ1 ≠ 0, θ2 > 0, θ22−θ1
θ1(θ1+1) >

θ22
θ21

never

−2e1 ω12(e12 + e34) + ω13(e13 + e24) ω13 > 0, ω2
13 − ω2

12 > 0, ω12 > 0

θ1e1 ω24(−(θ1 + 1)e13 + e24) ω24 > 0, θ1 + 1 < 0

Ja,b2
(a, b) ≠ (0, 1) −2e1 ω12e12 + e34 bω12 > 0

(a, b) = (0, 1) −2e1 σe12 + ω34e34 σ > 0

r4,1 no lcK structure no

r4,α,1 α ∈ ̸ {0, 1} −2e4 e13 + σe24 σ < 0 never

r4,α,α, r̂4,−1 α ∈ ̸ {−1, 0, 1} −2αe4 σe14 + e23 σ < 0 never

r′4,0,δ δ > 0
J1 no lcK structure

no
J2 no lcK structure

r′4,γ,δ δ > 0, γ ≠ 0
J1 −2γe4 σe14 + e23 σ < 0

never γ = −12 : Inoue S0 [10, 39]
J2 −2γe4 σe14 − e23 σ < 0

d4
J1 −e4 −e13 + σe24 σ < 0

never Inoue S+ [10, 39]
J2 no lcK structure

d4,1

−e4 σe14 + e23 σ > 0
nevere2 + θ4e4

(
ω23(θ4+1)

θ22

)
e12 +

(
(ω12θ2−ω23)(θ4+1)

θ22

)
e14 ω23 > 0, (ω12θ2 − ω23)(θ4 + 1) > 0,

+ω23
θ22
e23 +

(
−ω23(θ4+1)

θ22

)
e34 (ω12θ2 − ω23 − ω23(θ4 + 1))ω23(θ4 + 1) > 0

d4, 12

J1 θ4e4 τ(e12 − (σ + 1)e34)) τ > 0, σ + 1 > 0, θ4 ≠ 0
neverJ2 −32 e4 σ(e12 + 1

2 e
34)) σ < 0

J3 −32 e4 σe14 − e23 σ < 0

d4,λ λ ∉ {12 , 1}
J1 (λ − 2)e4 σe14 + e23 σ > 0, λ ≠ 2

never
J2 −(1 + λ)e4 e13 + σe24 (λ − 1)σ > 0

d′4,0
J2 µe4 σ(e12 − µe34) σ > 0, µ < 0

always secondary kodaira [10]
J3 µe4 σ(e12 − µe34) σ > 0, µ > 0

d′4,δ δ > 0

J1 µe4 σ(e12 − (δ + µ)e34) σ < 0, δ + µ < 0, µ ≠ 0

never
J2 µe4 σ(e12 − (δ + µ)e34) σ > 0, δ + µ < 0, µ ≠ 0

J3 µe4 σ(e12 − (δ + µ)e34) σ > 0, δ + µ > 0, µ ≠ 0

J4 µe4 σ(e12 − (δ + µ)e34) σ < 0, δ + µ > 0, µ ≠ 0

h4 no lcK structure no
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