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Abstract: We classify and investigate locally conformally Kdhler structures on four-dimensional solvable Lie
algebras up to linear equivalence. As an application we can produce many examples in higher dimension,
here including 1cK structures on Oeljeklaus-Toma manifolds, and we also give a geometric interpretation of
some of the 4-dimensional structures in our classification.
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Introduction

The aim of this note is to provide explicit examples of locally conformally K&hler structures on complex sur-
faces and higher dimensional manifolds, by classifying left-invariant 1cK structures on four-dimensional solv-
able Lie groups.

A locally conformally Kdhler (shortly, IcK) metric g on a complex manifold (X, J) is a Hermitian metric that
locally admits a conformal change exp (—f)g|y making it Kdhler. Equivalently, the associated (1, 1)-form Q :=
g(J_, ) satisfies dQ = 8 A Q where the Lee form 6 loc df is a closed 1-form. In other words, one gets a covering
endowed with a Kahler metric on which the deck transformations group acts by holomorphic homotheties.
One can refer to [9, 16, 28] and references therein for an open-ended account on 1cK geometry: just to cite
a few of the several contributions to 1cK geometry in the last twenty years, see [1, 8, 10, 13, 14, 18, 20, 22—
24, 26, 27, 29, 30, 34, 40]. With the only exception of some Inoue surfaces, every known compact complex
surface admits 1cK metrics by [10, 13], see also [34] for a survey on the Vaisman question.

Among compact complex surfaces, one can describe complex tori, hyperelliptic surfaces, Inoue surfaces
of type S°, primary Kodaira surfaces, secondary Kodaira surfaces, and Inoue surfaces of type S* as compact
quotients of solvable Lie groups endowed with left-invariant complex structures by [21, Theorem 1]. Complex
structures on four-dimensional Lie algebras are classified by [1, 31, 37, 38], see also [32]. On the other hand,
locally conformally Kéhler metrics underlie locally conformally symplectic (Ics) structures, which are similarly
defined. Extending Ovando’s results on four-dimensional symplectic Lie algebras [33], a classification of four-
dimensional locally conformally symplectic Lie algebras is given with structure results in [6].

Locally conformally Kahler structures on four-dimensional reductive Lie algebras are studied in [1, The-
orem 4.6]. In this note, we classify locally conformally Kdhler structures on four-dimensional solvable Lie
groups. (See [5] for a survey and results on invariant 1cK structures on solvmanifolds.) The classification is
up to linear equivalence, and complex automorphisms are specified. The results are summarized in Theorem
1.1 and Table 2. We use the classification of complex structures [32] and the classification of lcs structures
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[6] for four-dimensional solvable Lie algebras, and the computations have been performed with the help of
the mathematical open-source software system Sage [35] (the authors will be happy to share the code with
anyone who might be interested).

We are also interested in Vaisman structures on a 4-dimensional Lie algebra, that is, 1cK structures whose
Lee form is parallel with respect to the Levi-Civita connection of the Hermitian structure. Let us recall the
following characterization result from [2].

Lemma 0.1 ([2, Lemma 3.3]). Let g be a Lie algebra with an IcK structure (J, Q, 6) and let A € g be such that
A € (ker 6) with respect to the compatible metric given by (J, Q) and 6(A) = 1. Then (J, Q, ) is Vaisman if and
only if the adjoint operator ad is a skew-symmetric endomorphism of g.

Using this characterization, we determine, among all 1cK structures for each 4-dimensional Lie algebra, the
ones being Vaisman (see also [3] for a nice description of unimodular Lie algebras admitting Vaisman struc-
tures).

With the same aim as [32, page 56], hopefully the classification in Table 2 might be useful in the future to

provide specific examples and to solve open problems. In this direction we use our classification to exhibit
explicit examples of Lie algebras in dimension higher than four admitting an 1cK structure. More precisely,
we adapt some constructions in [6, 25] to the IcK case and, as an application, we can produce many examples
in higher dimension starting from dimension four, as well as we give a geometric interpretation of some of
the 4-dimensional structures in Table 2. In particular, the IcK extension discussed in Proposition 3.1 allows
to recover IcK structures on Oeljeklaus-Toma manifolds [24].
Notation. Structure equations for Lie algebras are written using the Salamon notation: e.g. th; = (0,0, -12, 0)
means that we fixa coframe (e!, e?, €3, e*) forthy such that de® = de* = de* = 0and de® = —e' Ae?. Complex
structures and tensors are usually expressed in terms of the above coframe. For example, complex structures
on g are defined in terms of theirdual J: g¥ — g" with the convention Ja = a(J 1), By Ics structure, we mean
a non-symplectic structure, namely, the Lee form is assumed to be non-exact (actually non-zero).

1 Classification of lcK structures on four-dimensional Lie algebras

In this section, we summarize the classification of locally conformally Kahler structures on 4-dimensional
Lie algebras up to linear equivalence. Here, by linear equivalent 1cK structures (J1, Q1, 61) and (J,, w», 6>) on
the Lie algebra g of dimension dimg g = 4 we mean that there is an automorphism A € gl(g) of the Lie algebra
suchthatJ, =A'oJ;0Aand Q; = A"Q, = Q,(A_, A ); by the injectivity of Q1 A _: Al g¥ — A%gY, we also
get 91 = A*ez.

1.1 LcK structures on four-dimensional solvable Lie algebras

Complex structures on 4-dimensional solvable Lie algebras up to linear equivalence are classified by G.
Ovando, see [32] and references therein. In Table 1, we summarize her results as in [32, Proposition 3.2] (note
just the correction of a typo in case J, for rtg’,y). Locally conformally symplectic structures on 4-dimensional
Lie algebras are classified in [6]. In the next Section 2, we will combine these classification results to get the
following.

Theorem 1.1. Non-Kdhler locally conformally Kéhler structures on 4-dimensional solvable Lie algebras are
classified up to linear equivalence in Table 2 in Appendix A.

Existence of lattices for solvable Lie groups is investigated in [12], and compact complex surfaces diffeomor-
phic to solvmanifolds are studied in [21]. Recall that:
e RR“is the Lie algebra associated to complex tori;
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Table 1: Complex non-Kéhler structures on solvable Lie algebras in dimension 4 up to linear equivalence, following [32]. ("c.s."
is for "completely-solvable", "n." is for "nilpotent", and Z denotes the center.)

Lie algebra c.s. n. | parameters structure equations complex structure Z(g)
ths v v (0,0,-12,0) Jel =e?,Je’ = e* (e3, e4)
A=0 0,-12,0,0) Jel =e?,Je3 = e*
3 ) viooox (es)
A=1 (0,-12,-13,0) Jel = e, Je? = -3
v=0 0,-13,12,0) Jel = e, Je? = &3
L3 x X Jiet =e*, Jie? =€’ (ea)
v>0 (0, -y12-13,12 -~13,0)
Jre! = e, J,e? =€
0ty v ox (0,-12,0,-34) Jet = e?,Je3 = e* 0
Jiel =3, Jie* = e
th x x (0,0,-13 +24,-14 - 23) -
]2e1=—ael+“b*1€2,]2e3=e" 0
withb #0
Ty v o ox|lu=1 (14,24 + 34,34, 0) Jel = e?, Je3 = -e* 0
-1<a<1l,a#0,8=1 (14,a24,34,0) Jel = €3, Je? = —e*
t‘hﬂ,ﬁ v X 0
“1<a=f<1,a+#0 (14, a24, a34,0) Jel = -e*, Je? = &3

, Jie' = —e*, Jie? = &
oo x x| v€ER,8>0 (14,724 + 634, -824 + 34, 0) 0
Jae! = -e*, Jre? = -¢?

Jie' =-e,Jie? = e
0y viooox (14,-24,-12,0) (e3)

Jre' =e? -, Jre? = -t

A=1 (14,0,-12 + 34,0) Jel = e, Je? = &3

1 2
Jiel =2, J1e® = -e*

A=1 (3 x14,1x24,-12+34,0) Jrel = —€2, ,e3 = —e*
042 v X 0
Jze! = -e, Jze? = -}e

Jiel = Ae, J1e? = €

A>3 a1 (A14,(1-2)24,-12 +34,0)
Jret =€, ) =(A-1)e’

Jael =e?, e = et
6=0 (24,-14,-12,0) (e3)
1 4

Jzet =e?, Jze% = -e
Jie' =-e’, J1e’ = —¢"
D/ X X
46 1_,2 3_ 4
5 5 Je =e, he’ =e
550 ($14+24,-14+$24,-12 + 634,0) 0
Jzel = e?, Jze3 = —e*
Jue' =-e*, J,e* = e
b VR (314 +24,124,-12 +34,0) Je! = 1é3, Je* = -¢* 0

e th;is the Lie algebra associated to primary Kodaira surfaces;
. ttg,o is the Lie algebra associated to hyperelliptic surfaces;

o with § > 0 is the Lie algebra associated to Inoue surfaces of type S°;

4,-1,6
° Dy isZ the Lie algebra associated to Inoue surfaces of type S*;

* 0 isthe Lie algebra associated to secondary Kodaira surfaces;

¢ and the Lie groups associated to the other algebras do not admit compact quotients.

See also [10, 34] and references therein as for the problem of existence of 1cK structures on compact complex

surfaces, known as the Vaisman question.
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1.2 LcK structures on four-dimensional reductive Lie algebras

Locally conformally Kahler structures on 4-dimensional reductive Lie algebras are studied in [1, Theorem 4.6].
More precisely, they show that the only 4-dimensional reductive Lie algebras admitting locally conformally
pseudo-Kadhler structures are gl, = sl @ R = (-23,-2 x 12, 2 x 13, 0) (see [1, Proposition 4.7] for complex
structures, see [6, Section 3.2] for lcs structures) and u, = su, @ R = (23, -13, 12, 0) (see [1, Proposition 4.4]
for complex structures, see [6, Section 3.1] for Ics structures). For the sake of completeness, we recall here the
IcK structures in [1, Theorem 4.9, Theorem 4.6].

1.2.1 gl,

Consider the Lie algebra
al, =sl, B R = (-23,-2x12,2x13,0),

where e, is a generator of R. Left-invariant complex structures are described in [1, Proposition 4.7]: they
belong to two families, both depending on one parameter y = y; + v-1p; € C\ v-1R, and they are defined
by

Jiyer = ex+es
Jiu€2 = -3ei- 2’%(92 -e3)+ }%194
Jipes = —%621+ 2}%(62—93)— ,%164
Jipes = —%(ez —e3)+ Hley

and
Joyer = -ex-es3
Joue2 = ze1- znyl(ez -e3)- %94
Joues = %921 + 2}%(@2 -e3)+ u%€4
Joues = %(ez -e3)+ bey

namely, with respect to the dual coframe, they are associated to the matrices

0o -1 -1 0
1 _J _1
2 2; 21 M1 v
=11 1 1" | €End(gly)
2 PAT 24y M1
0 Mt _u{iui K
2 2 M
and
0 1 1 0
_1 M2 _ M 1
2 21 2 v
]Z,y =1_1 _ W _1 | € End(g[z).
2 2 PAT i
0 _MHS  mhSs _mw
PATH 21 M

These two families are related by an automorphism of gl,, namely,

1 0 0 0
0 -1 0

Aut(gl,).
0 0 -1 o |SAuth)
00 0 1

1 0 0 0
0 0 -10

Aut(gly). 11
0 -1 o o |€Aule) )
o 0 0 1
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The generic Ics structure is

1 1
0= 9484, Q= 61)12612 + w13el3 - 0)2304614 + 0)23823 - i 0)1294624 + E 0)1394634,

with (w12w13 - w§3)94 # 0.
Assuming Q is ], ,-invariant we have two cases. Indeed, the condition reduces to the system

M1+ 04 —H1 -6y ) w1y 0
M2 —H2 —2(pi + p3) - 2164 wal=1°
M2 ) 2p; + 206, b 0
2,2 0, —(u2+u2) - u:0 2150 w23
(i +p3) + a6y —(ui +p3) - a6y 250, 0

We consider first when y, = 0 and 8, = —p1, when the rank of the above 4 x3 matrix is zero. In this case, Q
is always J, y-invariant. The J; ,,-positivity of the lcs structure forces w1, > 0, w13 > 0, and W w13 - w§3 > 0.
And the general Ick structure is

0=-pe*

12 13 14 23 1 24 1 34
Q=wpe+wize” +wypie” +wye” + 3 wpHe” - 3 wispe
with w1, > 0, w13 > 0, W1 W13 — W35 >0

Applying the only non-trivial automorphism we can assume that w1, = w;3 and w;3 = 0:

0= —}1164

12 13 14 23 1 24 1 34
Q=wpe +wse +wWyp1e twose + 5 wipp1e” — 5 Wispie s (1.2)
with w1 2 w13 > 0, wy3 2 0, W1 wW13 — W35 >0

see also [1, Theorem 4.9, item (ii)].

In the other case, when u, # 0 or 8, # —u1, the rank of the above 4 x 3 matrix is two. The compatibility
of the Ics with the complex structure J;,, forces wy3 = 0 and w1, = w13, with wy, > 0, z—‘l* < 0. Summarizing,
up to equivalence, the 1cK structure on (gl,, J1,,) is of the form, see [1, Theorem 4.9, item (i)],

6= 946’4
0= (U12€12 + w12e13 - %a)1294€24 + % (U1294€34 . (13)
with wq; > 0, % <0, u3+04+u1)*#0

And there is no further reduction since the non-trivial automorphism fixes the Ick structure.

Remark 1.2. Among the above IcK structures, the ones being Vaisman are specified in [1, Theorem 4.9]. More
precisely, IcK structures of type (1.2) are Vaisman if and only if w,3 = 0 and w1> = w13; and IcK structures of
type (1.3) are always Vaisman. In other words, Vaisman structures are

6= 9464
0= (,U12€12 + 6()12613 - %0)1294924 + % (1)1294934
with w1, > 0, % <0

1.2.2

Consider the Lie algebra
u; =su; @R =(23,-13,12,0),

where e, is a generator of R. Left-invariant complex structures are described in [1, Proposition 4.4]: they
depend on two-parameters a € R and b € R\ {0} and they are defined by

Ja,pes = be1 + aey, Ja,p€3 = €z,
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namely, with respect to the dual coframe, it is associated to the matrix

2
1
a 0 0 %4
0 0 1 0 V.
Jap = € End(uy ).
a,b 0 1 0 0 ( 2)
-b 0 0 -a
The automorphisms of (u5, J, ;) are of the form
1 0 0O O
0 a a 0
22 23 € Aut(uy)
0 —daz3 dp) 0
0 0 0o 1
with the condition a3, + a3; = 1.
The generic Ics structure is
6= 9464, 0= wlzelz + a)13€13 + 0)2394614 + w23€23 - w1394e24 + w1294e34

with (wi, + w}; + w3;3) 6, # 0.
By imposing the J, ,-invariance, we get the condition

b+ 94 a04 w12 ) 0
8,a -b+0)) \ws) \o)°
Assuming Q to be J, ,-positive we obtain w,3 < 0, %" > 0. In particular b # —0,, and therefore the J, }-
invariance implies that w1, = w13 = 0. Summarizing we reduce to the generic 1cK structure, see [1, Theorem
4.6, item (i)],
6= 9464
0= w2394e14 + (1)23623 , (1-4)
with 6, ¢ {0, -3}, w3 <0, e—b‘* >0

and no further reduction is possible since a possible automorphism fixs the 1cK structure.

Remark 1.3. Among the above IcK structures, the ones being Vaisman are specified in [1, Theorem 4.6]. More
precisely, all the IcK structures in (1.4) are of Vaisman type.

2 Proof of Theorem 1.1: lcK structures on four-dimensional solvable
Lie algebras

2.1 ths

Consider the Lie algebra thy = (0, 0, -12, 0), namely, (e, e?, e3, e*) is a coframe of 1-forms such that
de' =0, de’=0, de’=-e're’, de*-=0.
Equivalently, in terms of the dual frame (e;, e,, e3, e4) for th;, we have the structure equations
le1, e2l =3, [er,e3]=0, [er,es] =0,

[e2,e3]1=0, [ez,e4]=0, [e3,e4]=0.

According to [32], there is only one complex structure up to linear equivalence. In terms of the frame
for th;, it is given by specifying the (-v/-1)-eigenspace to be (e; + V-1 e,, e5 + V-1 e,); namely, Je; = ey,
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Je, = —ey, Jes = ey, Je, = —e3. On thy, we set the linear complex structure J € End(vh) by Ja := a(J1)).
Then, in terms of the coframe above, we have Je! = e?, Je? = —el, Je? = e*, Je* = —€3, that is, J is given by
the matrix

0O -1 0 O
1 0 O
- End(chy).
] 6 0 0 € End(rh3)
O O 1 O

Asin [6, Appendix 6.1 of the arXiv version, page 28], by requiring df = 0, dQ -6 A Q =0,and QA Q # 0,
we get that the generic (non-symplectic) Ics structure is of the form
0=0.e' +6,e? +0,e"
Q= (_ (uz491—aé2492+(u34) 612 _ (1}394491 e13 + w14el4 _ w394492 923 + w24e24 + w34e34

with 94 #0, W3y # 0

We impose now Q to be J-invariant, (namely, Jw := w(J_,J_) = w,) and J-positive, (namely, w(x, Jx) > 0

for any x € th; \ {0}). The J-invariance forces w4 = - “’39‘*491 and wqs4 = “’39“492 , namely, we get

0?+62-0 w340 w340 w340 w346
o= (102704 ) 12 @301,15 , 0340 10 03402 25 W3 pau 30
02 9, 9, 0, 0,

62+0

2
In our case, for the J-positivity, it suffices to check that w(eq, Je1) = (97{9“) w34 > 0 and w(es, Je3) =
4

2
w34 > 0 and %wz(el ,Jei, e3, jes) = —“é—i“ > 0.) We get that the generic 1cK structure is of the form

=0,e se e
0=0.e'+6,e>+0,e"

_ 9%*’9%_94 12 _ tl}3491 13 0)3492 14 _ w3492 23 _ 0}3491 24 34
0= (T W3ue "~ T €T * T € T 7o, € T Te, & Wk

with w34 > 0,60, <0

The generic complex automorphism of (thg , J) are given, with respect to the chosen coframe, by

apy  an ass ayy
—ai;; dan —a1y ais v
€ Aut(h3z)
0 0 a? +a? 0
0 0 0 a?, +a?,
with the condition
aiy +af, #0.

First, we apply the automorphism with parameters a;; = 0, a;; = 1, a;3 = %’ and a4 = —g—j. This
reduces the 1cK structure to 6 = 84e* and Q = —“é—i“elz + w34e>*, where w3, < 0and 8, < 0. Then we apply
the automorphism with parameters a;, = _9%’ the others zero, so to transform the generic 1cK form in (we

_w
seto = 9—3{)
0=—-e"
Q= cge'? + ge*
with o > 0

It is easy to see that such forms cannot be further reduced, since the generic automorphism trans-

forms 6 as —ajse! - ajze’ + (-a3; - ai,)e*, and correspondingly the coefficient of Q along e!? as
2 2 2 2

((aiy +ai, +ais +ai,)o).

Remark 2.1. We determine now which of these IcK structures on th are of Vaisman type. Let A = a;e1 +ase; +
ases + ase,. We determine a; such that 0(A) = 1 and A € (ker 6)*, that is, Q(A, Jx) = 0 for any x € ker 6. In
this case ker 0 is generated by {e1, e>, e3} and we obtain that A = —e, € Z(g) and ad, = O. Therefore, it follows
from Lemma 0.1 that all the IcK structures above are of Vaisman type.

Remark 2.2. We observe that the Morse-Novikov cohomology with respect to 6 = —e* vanishes in any degree.
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2.2 TTr3)0

Consider the Lie algebra tr3,9 = (0, -12, 0, 0) with the complex structure defined as

0 -1 0 0
10 0 0 y
- End
J=1 0 o o -1 |€Endlwo)
0 0 1 0

in terms of the chosen coframe.

According to [6, Appendix 6.3 of the arXiv version, pages 31-32], the generic Ics structures fall in two
different families.

We first consider the case when the generic closed 1-form 0 = 6;e' + 85¢> + 8,e* has 85 = 6, = 0. Then
the generic Ics structure with Lee form 0 is

0 =-e!
Q= wlzelz + w13e1
with w14w;3 — W13W4 # 0

3 4 23 24

+a)14e1 +wWy3e”" + W€

It is clear that such a form is never J-positive: indeed, with respect to the dual frame (e, e,, e3, e;), we have
w(es, Je3) = 0. Then, there is no 1cK structure in this case.

Consider now the case 9% + 02 # 0. The generic complex automorphisms (tt3 9, J) are given, with respect
to the chosen coframe, by

1 0 0 0
0 1 0 0 v . 2 2
€ Aut(rrs o), with a3; + a 0.
0 0 ay au (ve3,0) 33+a3, #
0 0 -as; as3
In particular, the complex automorphism
1 0 0 O
01 0 O v
€ Aut(re
00 0 1 (xv3,0)
0O 0 -1 0

transforms 6;e® + 03e> + 0,e” to O,e' + 0,e> — H5e*. So, without loss of generality, we can assume 93 # 0.
The generic Ics structure in this case reduces to

0= 9181 + 9363 + 0464

0= (_(91+913)w23) e!? 4 wizel + (w34919+3w1394) e+ wyze? + w293394 e + w33

with 93 #0, Wr3W3y # 0

_w340104
03+62

_ w340163
65+6;

The J-invariance requires w3 = and w,3 = . The J-positivity requires w34 > 0 and 6; > O.

Then the generic 1cK structure is

0=0.e' +065e3 +0,e*

_ [ w34(01+1)61 12 _w34616, 13
Q‘( 0wz )€ T\ T )€

a)349193 14 _w349193 23 _(1)349194 24 34
st et e (o) € (i) € v wnee
with 6, > 0,05 #0, w34 >0

Applying the complex automorphism

1 0 0 0

01 0 0 v

O O (113401 03 (113401 04 S Aut(tt3’0)
0407 0407

0 0 w3,6104  w346,03
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we reduce the Ick pair (Q, 60) to
0 =0,e' + w346 €>
_ 0,41 12 w3071\ 14 , (w301 23 w3071\ 34
0 (“’34919§+9,§)e +(e§+9§ € ) Tlee)€

with 6, > 0,03 #0, w34 >0

Now we apply the complex automorphism

1 O 0 0

0 1 0 0

o o % 0 € Aut(rey o)
w3,67

0 0 0 03+0;

w3,67

and we obtain the lck structure
6 = 6e' + %e’
Q=@e12+e14—623+5%e34 ,
withé >0,0>0

2 2
where we denoted o = % and § = 6. This Ick structure cannot be further reduced. Indeed, the generic
automorphism transforms the coefficient of 8 along e* to -as, §, whence we chose asy = 0. The coefficient of

Q along e'* is transformed to as3: we then choose as3; = 1, getting the identity.

Remark 2.3. We determine now which of these IcK structures on tvs o are of Vaisman type. Let A = a;e1+aze; +
ases + ase,. We determine a; such that 0(A) = 1 and A € (ker 6)*, that is, Q(A, Jx) = 0 for any x € ker 0. In
this case we obtain that A = geg € Z(g). Therefore, it follows from Lemma 0.1 that all the IcK structures above
are of Vaisman type.

2.3 vr3;

Consider the Lie algebra tr3,; = (0,-12, -13, 0). Consider the complex structure associated, in the chosen
coframe, to the matrix

0O 0 0 -1
0 0 1 0 y
= Aut .
] 0 -1 0 0 € (tr3,1)
1 0 0 O
The generic Ics structures are the following: either

0=-et
Q=wpne Ae? +wizet Aed +wisel Aet +wase’ e +wise’ Aet
with w1 w34 — W13wWo4 # 0
or
0=-2e!
Q=wpet re? +wiset e +wisel Aet +waze? e’
with wi4wy3 # 0

There is no IcK structure with Lee form 6 = —el. Indeed, the corresponding lcs structures are never J-
positive, since Q(e?, Je?) = 0.

We consider IcK structures with Lee form 6 = —2e!. The J-invariance of Q requires w;, = 0 and w13 = 0.
Therefore we are reduced to Q = wy4e'* + wy3e?>. The J-positivity requires w14 > 0 and w,3 < 0. Finally, the
generic IcK structure is

0=-2¢!
Q=wizet Aet +wize’ ned
with w4 > 0, w3 <0
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The generic automorphisms of (rr3,1, J) are associated to

1 0 0 O

0 .
@22 423 € Aut(cry 1), with a3, + a35 # 0.
0 —ajz3 an 0 ’
0 0 0o 1
For ay; = ﬁ and a,3 = 0, we apply the automorphism
1 0 0 0
0 o 0 o0 Aut(eeY )
€ Autltr
0 0 L_ o 31
—w23
0 0 0 1
to get the normal form
0=-2e!
Q=ce' re*-e?ne’
witho >0

There is no further reduction, since the generic linear complex automorphism transforms oe'* - e?3 into
oe'* - (a3, + a33) e*, fixing the coefficient along e**.

Remark 2.4. The Lie algebras vv3 1, w5, withy 2 0, %), t4,1, 4 o, p Witha and B as in Table 1, v, 5 withy € R

and § > 0, do not admit any Vaisman structure, thanks to [26, Structure Theorem], [29, Corollary 3.5], and to
the classification of 3-dimensional Sasaki Lie algebras, see [15, 19].

/
2.4 vrg,

Consider the Lie algebra ttl3’0 =(0,-13, 12, 0), endowed with the complex structure associated to the matrix

00 0 -1
0 0 -1

I=1 o 1 € Aut((rr5,0)").
10 0 0

The generic Ics structure is
6= 9161 + 9494
0= wlzelz + a)13€13 + a)14e14 + (

with (w3, + w}3)64 #0

_(w12601+w13)04 \ 24 _ (w13601-w12)04 \ 34
62+1 e+ 62+1 e

It is clear that Q is never J-positive: indeed w(e,, Je,) = 0. Then, there is no 1cK structure in this case.

2.5 tt;’,y with~ > 0

Consider the Lie algebra ttg,7 =(0,-v12-13,12-~13, 0). It admits two non-equivalent complex structures.
We first consider the complex structure J, associated to the matrix

0O 0 0 -1

0O 0 -1 IV
Ji= 01 0 € Aut((rr3 ,)")

1 0 O 0



DE GRUYTER IcK 4-dimensional Lie algebras = 11

According to [6, Appendix 6.4 of the arXiv version, pages 36-37], the generic Ics structures are the following:
either

0= —2761

Q=wpet e +wiset Aed +wiel Aet +wase? el

with Wi4Wo3 # 0, v # 0

or
6= 9191 + 9464

0 =wpe? +wize +wize + (
with (wi, + wi;)04 #0

_ (w12(y+61)+w13)04 o244 _(w13(y+61)-w12)84 o34
(y+61)2+1 (v+61)2+1

There is no IcK structure with Lee form 8 = 6,e! + 6%e,. Indeed, the corresponding lcs structures are
never J -positive, since 0(e?,Je*) = wy3 = 0.

We consider IcK structures with Lee form § = —2~e!. The J;-invariance of Q requires w1, = Oand w13 = 0.
Therefore we are reduced to Q = wy4e'* + w,3e?3. The J; -positivity requires w14 > 0 and w3 > 0. Finally, the
generic IcK structure is

0 =-2ve!
Q=wiser At +wyze’ e’
with wq4 > 0, wy3 > 0,7 #0

The generic automorphisms of (tt5 3, J1) are associated to

1 0 0 O
0 an an 01 aued)Y),  withad, +ad; #0.
0 -ax ax» O o
0 0 0 1
For a», = \/% and a3 = 0, we apply the automorphism
1 0 0 0
0 — 0 o0
o 823 1 o € Aut((ttlg’,y)v)
VW23
0 0 0 1
to get the 1cK form
0=-2ve!

Q=cel ne*+e?né’
witho >0,v#0
There is no further reduction, since the generic linear complex automorphism transforms oe'* + %3 into

oe'* + (a3, + a33) e*, fixing the coefficient along e**.
Next we consider the complex structure J, associated to the matrix

0O 0 0 -1

0O 0 1 Y
]2 = 0 -1 0 S Aut((tr:i,'y) )y

1 0 0 O

the only difference in this case is that Q(e,, Joe;) = ~w,3 > 0, then w»3 < 0. In the same way as above we get

the final 1cK form
0 =-2ve'
Q=ce' re*-e?ned
witha > 0,7 #0

Remark 2.5. This algebra does not admit any Vaisman structure, see Remark 2.4.
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2.6 1 %1%

Consider the Lie algebra t,t, = (0, -12, 0, —34) with the complex structure defined as

0O -1 0 O
1 0 0 y
= Aut
J 0 0 0 € Aut((tar2)")
O O 1 O

in terms of the chosen coframe. A generic automorphism for (x,ty , J) is associated to the identity matrix or to

0 0 1 O
0 0 0 1 y

Aut . 21
oo o | & Aut) @
01 0 O

As in [6, Appendix 6.5 of the arXiv version, pages 38-39], the generic Ics structures are either

0= 6363
Q= —“é—?elz +wisel + wie'™ + wase? + wyet
with w14(03 +1) = 0, wy3(w1463 — w34) # 0,65 #0

3

or
0= 9161
Q= wne'? +wize + wie' +wyze® + Yt
with w3(01 +1) = 0, wi4(w12 + 61w23) #0,01 #0
or
0= _el _ e3
Q= wize +wie' + wyze? + wye®
with w13w14 — W14w23 # 0
or

0= 9161 + 9363
Q= —1573010)23612 + (1)136‘13 + (1)14614 + w23e23 + 939:1(1)146
with 60,603 # 0,0, + 035 # -1, W14wW>3 # 0

34

First we consider the case 6 = 83¢>. The 1cK condition yields the generic form

0=-e3
Q=wpEe?-e+e?3)+wsyse
with w34 > w1 >0

1 34

The only complex automorphism fixing the Lee form is the identity. Whence the above form is the generic
1cK form up to linear equivalence.

Remark 2.6. We determine now which of these IcK structures on vyt with Lee form 0 = —e3 are of Vaisman
type.Let A = aje; + ae, + ases + ase,. We determine a; such that 6(A) = 1 and A € (ker 6). In this case we

i =— W34 5 _ W34
obtainthat A = ey + ;24 e; — e3 + 4. Therefore

0 0 0 0
- | 0 0
adA = W12
0 0 0 0
w

0 0 -@x g

From Lemma 0.1, it follows that none of the IcK structures above are of Vaisman type.
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We now assume 6 = 0, e’. Requiring Q to be J-positive and J-invariant, we obtain

0 =-el

- 14
Q=wpe' +ws(-et* +e
with W12 > W34 > 0

12 23 4 634)

In the same way as above there is no further reduction.

Remark 2.7. We determine now which of these IcK structures on v,t, with Lee form 6 = —e! are of Vaisman
type. Let A = ajeq + aze, + ase; + ase,. We determine a; such that 0(A) = 1 and A € (ker 8). In this case we
obtain that A = —e; — e3. Therefore

0O 0 0 O
ad, - 0 -1 0 O
0 0 0 O
0O 0 0 -1

From Lemma 0.1, it follows that none of the IcK structures above are of Vaisman type.

If 6 = —e! — e does not produce IcK forms since Q(e;, Je;) = 0, therefore Q is never J-positive.
Finally if 6 = 6, e! + 63€3, requiring the IcK conditions we obtain
0 = ge! + 7é’
_o(lta 12, 14 23 1,34
Q=u(=e " +et —e” + 2e’?)
With 0T #0,0+7 # -1, u # 0, KL 5 o uTtl) 5 g ov1el 5

il

where g = 01, T = 03, 4 = w14. Applying the automorphism (2.1) we can assume that o < 7.

Remark 2.8. We determine now which of these IcK structures ontot, with Lee form 0 = ge' +te’ are of Vaisman

type. Let A = ajeq + are, + ases + ase,. We determine a; such that 0(A) = 1 and A € (ker 8)*. In this case we
obtain that A = —12T_e, + ——L__e5. Therefore

O+20T+T 0+20T+T
0 0 0 0
ady = % 0 0
0 0 0 0
0 0 0 oo

From Lemma 0.1, it follows that none of the IcK structures above are of Vaisman type.

2.7 v}

Consider the Lie algebra t, = (0,0, =13 + 24, -14 - 23).
As in [6, Appendix 6.6 of the arXiv version, pages 43-45], the generic Ics structure is either
0=0,e! +6,e?

2
_ 12 13 W4(01+1)+w13 14 (053+1)w13+wr4(61+1) 23 24
0=wpe'? +wpseld+ (972 e+ | S grme ) €7+ waue®

with w}; + wi, #0,6, #-1,6, #0

or
6 =-2et
Q=wpe'? +wise + ) + wis(e™ - e23) + wye*
with w1w34 — w25 - w3, #0, w34 #0

or

0= 9161
Q= wlzelz - (91 + 1)(1)24613 + (91 + 1)61)23614 + 0)23623 + CU24€24
with (1)%3 + w%q #0, 91 #0
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According to [32] this Lie algebra admits several different complex structures given by

0O 0 -1 O -a -b 0 O
00 Ay @ g 0 Ry
= € Aut , = b € Aut
1 1 o D), I o o0 o - ((2)%)
0O 1 O 0 0 O 1 O

in terms of the chosen coframe.
We study first the complex structure J;. The only complex automorphisms of (v}, J;) are

1 0 0 O
0 #z1 0 O Ry

Aut ) 2.2
o 0o 1 o |€ ut((t3)") (2.2)
0 0 0 =1

If the Ics structure is as in the first case, then the generic 1cK form is

0=0.e! +6,e?

62—
Q=wi3 (613 + %(e14 +e?)+ 61(201+11)624)
Withw13 >0,0,#0,00+1<0

Applying the automorphism (2.2) we can assume 6, > 0.
We now consider the second case for the lcs form. Requiring Q to be J1-positive and J; -invariant we obtain
the IcK form
6=-2e!
Q= wi(e'? +e3*) + wis(e + )
with w3 > 0, w3; - w?, >0

Applying the automorphism (2.2) we can assume w1, > O.
In the last case, the generic IcK form is

0= 9161
Q = wyy (-(61 + 1e'? + %)
with wy4 > 0,0, +1 <0

There is no further reduction, since Q is fixed by a generic automorphism (2.2).
Now we consider the second complex structure J5.
The complex automorphisms of (¢}, J,) are

1 0 0 0
0 1 0 0
a3z —-dig aAzz —asy
aiy a3 dsyg  d4s3

€ Aut((r)"), (2.3)

with a3; + a3, # 0, and moreover, if (a, b) # (0, 1), then a;3 = 0, ay4 = 0.
By J,-positivity, we are reduced to only one possibility for the Ics structure, namely,

0=-2e!

Q= we* +wis(el® +e?) + wie™ - ) + ws,e
. 2 2

with W12W34 — W73 — W7y #0, W3y # 0

In the general case (a, b) # (0, 1), the conditions for J,-invariance and J,-positivity yield to the general
IcK form
0=-2¢!
Q= 0)12612 + w34e34
with bw1, > 0, w34 > 0
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Using the automorphism with ass; = \/%34 and a3, = 0, we get the normal form
6=-2e!
Q=wpel?+e3*

with bwi, >0

and no further reduction is possible.
In the particular case (a, b) = (0, 1), the generic 1cK structure is

0=-2el
Q=wpe? +wiseh +e*) + wiu(e'™ - ) + wyge’*
with w1 > 0, w34 > 0, W W34 — W5 - w3, >0

We use the automorphisms with a3 = ‘%f’ ay = %i’ ass = \/%, and a3, = 0 to get
0=-2e!
Q=ce? + w3t
witho >0

and no further reduction is possible.

Remark 2.9. This algebra does not admit any Vaisman structure, see Remark 2.4.

2.8 4,1

Consider the Lie algebra v, 1 = (14, 24 + 34, 34, 0) with the complex structure defined as

0 -1 0 0
10 0 0
= End(x)
=16 o o 1 |€Fndy
0 0 -1 0

in terms of the chosen coframe.
According to [6, Appendix 6.9 of the arXiv version, page 51] the generic Ics structure is

6= -2ey
Q= a)13e13 + a)14e14 + (1}23623 + (1)24924 + w34e3“
with w13wy4 — W14w23 # 0

It is clear that Q is never J-positive: indeed Q(eq, Je1) = 0. Then, there is no IcK structure for this Lie
algebra.

2.9 T4,a,1 with a #0,1

Consider the Lie algebra vy 4,1 = (14, 24, 34, 0) with the complex structure defined as

0O 0O -1 0
0O O 0 1
= End(t)
J 1 0 0 0 € kEn (tl;,a,l)
0O -1 0 O

in terms of the chosen coframe.
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According to [6, Appendix 6.10 of the arXiv version, page 54] the generic Ics structures are either

0=-(1+a)e,
Q= we™ + wise™ + wrze?® + wase? + wyet
with w1, W34 + W14wo3 # 0

only when a # -1, or
6= -2ey
0=wize’® +wie'™ + we?™ + wise
with W13Wyy # 0

34

In the first case 6 = —(1 + a)e,, we have that Q is never J-positive: indeed Q(eq, Je1) = 0. Then, there is
no IcK structure in this case. In the second case 8 = —2e,, the J-invariance of Q requires w4 = 0 and w34 = 0
and J-positive implies w13 > 0 and w,,4 < 0. Finally the generic IcK structure is

0= -2ey
Q= a)13el3 + a)24€24
with wq3 > 0, wy4 <0

The generic automorphisms of (t4,4,1, J) with a # 0, 1 are associated to

ain 0 ais 0
0 1 0 O
€ End(x) o 1) with a3, + a3 # 0.
a3 0 ay 0O (vi,a,1) 1 tas#
0 0O o0 1
Foraj; = \/%13 and a3 = 0, we apply the automorphism
1
T 0 0 0
0o 1 0 o0 y
€ End(v
0 0 ;} 0 ( 4,0(,1)
13
0 0 0 1
to get the 1cK form
6 =-2e"
Q=e'red+oe? net
with o < 0

3

There is no further reduction, since the generic linear complex automorphism transforms e'? + ge?* into

(ai; + ai;) e'? + 0e*, fixing the coefficient along e**.

Remark 2.10. This algebra does not admit any Vaisman structure, see Remark 2.4.

2.10 v, 44 Witha ¢ {0,1}

Consider the Lie algebras v 4,4 = (14, a24, a34,0) for a ¢ {0, 1} (the case & = -1 is sometimes also denoted
as t4,-1 = t4,q=-1,a=—1 = (14, -24,-34,0)), with the complex structure defined as

0O 0 0 1
0O 0 -1 0 v
= End
J 0 1 0 0 € kEn (t4,a,a)
-1 0 0 O

in terms of the chosen coframe.
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According to [6, Appendix 6.10 of the arXiv version, page 52, and Appendix 6.11 of the arXiv version, page
55] the generic lcs structure for both Lie algebras is

6 =-2ae,
Q= 61)14614 + a)23€23 + a)24e24 + w34e34
with wq4w73 # 0

Requiring J-positive we obtain Q(eq, Je1) = —~w14 > 0, Q(ey, Je;) = wy3 > 0. Assuming Q is J-positive, we
obtain w34 = w1, = 0 and w,4 = —w13 = 0. Therefore the generic IcK structure for these Lie algebras is

6=-2ae,
Q= (U14€14 + w23e23
with w14 <0, wy3 > 0

The generic complex automorphisms for these Lie algebras are associated to

1 0 0O O
0 axy a3 O v . 2 2
€ End(v with a3, + a 0
0 —ay any O (¥4, a,0) 2ta3#
0 0 0o 1
For ay; = \/%B and a,3 = 0, we apply the automorphism
1 0 0 0
0 — 0 o0 ¥
0 023 1 0 c El’ld(tz"a’a)
VW23
0 0 0 1
to get the 1cK form
0 =-2ae*
Q=cel re*+e? e’
witho <0

There is no further reduction, since the generic linear complex automorphism transforms oe'* + e?3 into
oe' + (a3, + a33) e*, fixing the coefficient along e'*.

Remark 2.11. This algebra does not admit any Vaisman structure, see Remark 2.4.

2.11 v/4. s With8 > 0

Consider the Lie algebra ', . 5 = (14, v24 + 634, -624 + 34, 0). According to [6, Appendix 6.12 of the arXiv
version, page 56] the generic Ics structure is

0= -2~ve,
Q=wie'™ + wres + wye? + wyet
with Wi4Wo3 # 0

only when ~ # 0.

According to [32] this Lie algebra admits two not equivalent complex structures. We consider first the
complex structure defined as

O 0O 0 1
O 0 -1 0
= € End((t} ., 5)V
J1 o1 0 o (.80 ")
-1 0 0 O
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We impose now Q to be J;-invariant and J; -positive and we reduce the generic Ics structure to

6= -2~vey
Q=we'™ +wse?
with wq4 < 0, w3 >0

only when ~ # 0. The generic automorphisms of (t/4’%5, J1) with a # 0, 1 are associated to

1 0 0 O

O .
0 _aaz; Zi o | € End((x), ., 5)") with a3, + a3 # 0. (2.4)
0 0 0 1
For a; = —— and a3 = 0, we apply the automorphism
1 0 0 0
0o 2 0 0
o o | eEnd,0"
w23
0 0 0o 1
to get the 1cK form
6 = -2~e*
Q=celrne*+e2ne’
witho < 0

only when ~ # 0.

There is no further reduction, since the generic linear complex automorphism transforms ge'* + e23 into
oe'* + (a3, + a33) e?, fixing the coefficient along e**.

Next we consider the second complex structure given by

€ End((¢}, 5)")

o

|

[
S O~ O
SO O O W

in terms of the chosen coframe. Requiring Q to be J,-positive we get w,3 < 0, this is the only difference with
the case J;. Also the complex automorphisms are the same. Taking the automorphism

1 0 0 0
0 L 0 0
=) / \%
o Yo' _1i_ o € End((t), , 5)")
w33
0 0 0 1

the generic IcK form for this Lie algebra reduces to

6 = -2~e*
Q=cge'ne*-e’ne’
witho <0

only when ~ # 0.
There is no further reduction: the generic automorphism trasforms oe'* - e into ge'* - (a3, + a3;)e*.

Remark 2.12. This algebra does not admit any Vaisman structure, see Remark 2.4.
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2.12 o,

Consider the Lie algebra v, = (14, -24,-12, 0). According to [6, Appendix 6.13 of the arXiv version, pages
56-57] the generic lcs structure are either

0= 9464
Q=wp(e'?2-0,e3") + wise™ + wye?
with 8, ¢ {-1,0,1}, w12 #0

or
0= ey
0=wpe? - +wise™ + wise?® + wye?
with w%z - W14W>3 #0

or

0= —€y
Q= wlz(elz + 934) + (1)136'13 + w14e14 + w24e24
with w%z + W13Wo4 # 0

According to [32] this Lie algebra admits two not equivalent complex structures defined as

0 0O 1 O 0 0 1 O
0 0O 0 1 1 0 0 1
= End(2)), = € End(d)).
J1 1 0 0 o |EEn i), Iz 1 0 o0 o (04)
0 -1 0 0 0 -1 -1 0

Let us start with J;. Requiring J; to be positive we obtain w3 < 0, in particular w13 # 0. Then the only
possibility for a compatible Ics structure is

9=—€4

Q= wlz(elz + 634) + 0)136’13 + w14e14 + Wy
with w?, + w13wy4 # 0

24

Assuming Q to be J;-invariant and J;-positive we obtain a generic IcK structure
6= —€y
0 =wpe?+e) +wisel® +wie
with w13 < 0, wy4 < 0, -wi, + W13W4 > 0

24

The generic automorphisms of (04, /1) in the chosen coframe are associated to

ail 0 0 —ajz3
0 1 0 0
0 azs3 dii 0
0 0 0 1

S End(DX) with ay #0.

A generic automorphisim transforms 6 = —e, into a,;e' — e* hence a,3 must be 0. Then for a;; = _10)13 , we
apply the automorphism

L 0O 0 o0

—wi3

0 1 0 0

€ End(d)/
0 0 _1 0 ( 4)
w13

0 0 0 1

to get the 1cK form
6 =-e

Q=pEeP?+e*)-el red +oe? net

withu? +0<0
Finally applying the automorphism a3 = 0 and a,; = -1 (if it is necessary) we can assume that u > 0. There
is no further reduction, since the generic linear complex automorphism fixes the coefficient along e?* and
the sign of the coefficient along to e'2.
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Remark 2.13. The generic A = a,e; + aze; + ases + ase, yields

ay 0 0 -aq
0 —dy 0 aj

—dj) ay 0 0

0 0O 0 O

adA =

Then ady is skew-symmetric if and only if A = azes. But then 6(A) = 0. Therefore, by Lemma 0.1, there is no
Vaisman structure among the above IcK structures.

Now we consider the complex structure J,. We impose now Q to be J,-positive. In the first and second case,
there is no IcK structure because we need w13 < 0. In the third case, we need w1, -w,4 > 0and —w1>-w»4 > O,
but J,-invariance for Q yields w4 = 0. Then, there is no IcK structure for J,.

2.13 04
Consider the Lie algebra 94,1 = (14, 0, —12 + 34, 0) with the complex structure
O 0 0O -1
0O 0 -1
= End(d)
J 0 1 0 € (04,1)
1 0 O 0

in terms of the chosen coframe.
According to [6, Appendix 6.14 of the arXiv version, pages 61-62] the generic Ics structures are either

0= 946’4
Q=wi(e? - (0, +1)e*) + wie™ + wase?*
with w1y # o, 94 # {—1, -2, O}

or
0=-2e"
Q=we? +e3) +wise + wie™ + wae®
with w%z - wW13Wo4 #0
or
0=-e*
Q=wpe'? +wie™ +wse? + wie?
with wW1i4W7o3 # 0
or

0= 9262 + 9464
Q — 0)126'12 + (04+1)(0é(2012—ﬂ)23)el4 + w23e23 + w24624 _ (94+012)(1}23 e34

2
with (94 + 1)0)23 # 0, 92 #0
In the cases 6 = 0,e” with 8, # —1, we have that Q is never J-positive: indeed Q(e,, Je;) = w»3 = 0. Then,
there is no IcK structure in this case. In the case 6 = —e*, the J-invariance of Q requires w1, = ~w34 = 0 and
w13 = Wy4 = 0 and J-positive implies w14 > 0 and w53 > 0. Finally the generic 1cK structure is
0= —€y
Q= 0)14614 + Wjr3e
with w14 >0,wr3 >0

23

The generic automorphisms of (24,1, J) are associated to

1 O 0O O
0 az) 0 0
0 0 ar

0O O 0 1

€ End(0) ;) with a3, # 0. (2.5)
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For ay; = ﬁ, we apply the automorphism
1 0 0 0
0o 2 0 O
w23 € End(o)/
o o L, (04,1)
w33
0 0 0 1
to get the 1cK form
6=-e*
Q=cetne*+e?ne’
with g > 0

There is no further reduction, since the generic linear complex automorphism transforms oe'* + %3 into
oel* + a3,e?3, fixing the coefficient along e'*.
Finally we consider the case

0= 9262 + 9464
Q=wpe+ W,#‘”B)e“ +wy3e23 + wyse

24 _ (05+Dwys e34
2 0,
with (6, + 1)w>3 #0,0, # 0

Assuming Q is J-invariant and J-positive, we reduced it to the 1cK form

0= 0262 + 9464

- (w23(99%4+1)) el2 4 (a/23049(§04+1)) e+ wye?d + (_ wzz((%aﬂ)) o34
with w3 >0,0,+1<0

We consider (2.5) with a,; = 9—12 and we get

6 =e+0,e"

Q=2 ((64+ 1)(e'? + 64 - e3%) + 23)
2

withw23 >O,94+1 <0

There is no further reduction because a generic automorphism applied to the Lee form 6 = e + 6,e* gives

a,e? + oe”, then the only possible automorphism between two IcK forms of this kind is the identity.

2.14 04,%

Consider the Lie algebra o 41 = ( % 14, %24, -12 + 34, 0). According to [6, Appendix 6.14 of the arXiv version,
pages 60-61] the generic lcs structures are either
_ 3,4
0=-3e
Q=w(e? + 1) + wize'® + wise + wyze?® + wye
with w%z - 2W13Wo4 + 2W14WH3 # 0
or
0= 9484
Q= 0112(612 - (94 + 1)634) + w14e1“ + w24e2“
with w1264 + 1) # 0,604 # =3, 04 # 0

According to [32] 0 41 admits three different complex structures associated to

0 -1 0 0 01 0 0
1 0 0 0 1.0 0 0

= € End(v, 1), = € End(®, 1),

=10 0 o0 1 ®43): T2 0 0 0 1 ®4,3)
0 0 -10 0 0 -1 0



22 —— Daniele Angella and Marcos Origlia DE GRUYTER

0 0O 0 1

0 0 2 0 Y
]3 = 0 _% 0 0 6End(04’%).

-1 0 0 O

We consider first the complex structure J;.If 6 = —%e“, then the associated lcs form Q is never J;-positive.
Indeed, Q(eq, J1e1) = w1 > 0and Q(es, J1€3) = ~w34 = —%wlz > 0, wich is a contradiction. Therefore the
only possibility is 8 = 8,e* with 6, # —%. Assuming Q is J; -invariant and ], -positive we reduce to

9=94€4
Q=1(e'? - (0+1)e*")
witht>0,0+1>0,60,#0

A generic automorphism for (0 415 J1) is given by

a1 ap 0 O
-a1p a;; 0 O \Y . 2 2
€ End(d with aj; + af, = 1. 2.6
oo @} y) with ad + al; 26)
0 0O 0 1

This automorphism fixes Q, therefore there is no further reduction in this case.
Now we focus on the complex structure J,.If 0 = —%e“, and we require Q to be J,-positive and J,-invariant
we obtain
6=-3e
Q=wpe?+1e3%) + wis(e + ) + wisle?
with w?, - 2wi; - 2w?, > 0, w12 < O

4 _ 623)

Suppose that w3 = w14 = 0, then the IcK form is

34
0=-3e
Q=o(e?+1e%
with o < 0.

There is no further reduction since a generic automorphism for (o 415 J») has the same form as in (2.6) fixing

W13

\/ (w};+w,) '

the coefficients of Q along to e, and esq. If w?; + w3, # 0O, then applying (2.6) with a;; =

———%14_ we obtain the 1cK form

ayn =
2 .2
(w33+wi,

_ 3 b
0=-3e
Q=o'+ 1) +1(e!? + )
witho <0, 7> 0.

In the same way as above, there is no further reduction in this case.

Finally we consider the complex structure J5. If 8 = 6,e* with 6, # —% then Q is not positive. Indeed,
Q(e,, J3e,) = 0. Therefore the only possibility for the Lee form is 6 = —%e‘*. Requiring Q to be J3-positive and
J3-invariant we get that wq, = 0 and 2w13 = w4 and it reduces to the IcK form

_ 3.4
0=-3e
Q= (1)13(613 + 2624) + (1)146‘14 + (1)23623
with w14 < 0, w23 < 0, W14W23 — 2W35 > 0

A generic automorphism for (d 415 J3) in the chosen coframe is

1 0 0 0
aip azp 0 0

0 0 a) 2 ain

0 0 0 1

S End(az’%) with a5, # 0.
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_1

Applying the automorphism with a;, = 0 and a,; = Ton

we get

3 4
0: _je
Q=pu(e®® +2e*) + gel* -e?®
witho < 0,0+2u? >0

where we denote y = \/% 0 = w14. There is no further reduction, since a generic automorphism applied to
the Lee form 6 = -3 e* gives 2a;,e> - 3 e*, then a1, must be 0. The only possible automorphisms between two
1cK forms of this kind transform the coefficient along e?> into a3,e??, then a,, = 1 and the automorphism is

the identity.

2.15 04 WithA > %,/\ #1

Consider the Lie algebra 9, = (A14, (1 - A)24,-12 + 34, 0) with A > % and A # 1. According to [6, Appendix
6.14 of the arXiv version, page 58] the generic Ics structures are either
6 =-(1+A)e"
Q= wir(e'? + 1) + wyse!
with Aw%z - W13Wo4 # 0

3 14 24

+ W4 " + Wyye )

only when A # -1, or

0=A-2)e"
0=wpE?-A-1)e3") + wie™ + wise?® + wae?
with (A - 1)(0%2 - wWi4wr3 #0

only when A # 2, or
0 =0e*, withf, #-(1+A),1-2
Q=wi(e'? - (0,4 +1)e3*) + wise™ + wyse
with w?,(04 +1) # 0,0, # 0

24

According to [32] v, 4 admits two different complex structures associated to

00 0 -% 0 0 -1 0
0 0 -1 0 v o 0 o0 -L v
= End(d, »), = 1-1 End(d, 5).
N 01 o o |€Ed@D. T 1 0o o o [|CEEnd@
A0 0 O 0 A-1 0 0

We consider first the complex structure J;. Requiring Q(e,, J1e,) = w,3 > 0, we get that the only possibility
for the Lee form is 6 = (A-2)e*. Assuming Q is J; -invariant and J; -positive we reduce to the following generic
1cK structure

0=(A-2)e"

Q= w14el4 + w23e23

with wq4 > 0, wo3 > 0,1 #2

A generic automorphism for (9, 5, J1) is given by

1 0 0O O

0 ap 0 Vi .
€ End(d itha 0.
0 0 ay O (040w 27
0O O 0o 1
We apply the automorphism with a,, = \/% and we reduce to 1cK form
0=QA-2)e"

Q=cge“+e?®
witho > 0,1 # 2
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where 0 = w14. And there is no further reduction since a generic automorphism fixes the coefficient along to
14
e,

Now we focus on the complex structure J,. If 0 # —(1 + Ae*, then associated 2-form Q is never positive.

Indeed, Q(e1, Je1) = w13 = 0. We consider the case 6 = —(1+A)e”. Assuming Q is J,-invariant and J,-positive
we obtain that wq, = wy4 = 0 and we reduce the IcK form to

0=-(1+A)e*
Q= wize’? + wye?” ,
with w3 >0, A - 1wy, >0

A generic automorphism for (v, 4, J>) is given by

a, O 0 0

o 1 o0 VAN
€ End(0, y)with a 0.
0 0 ay 0 (04,0 117
0O 0 o0 1
Taking a1 = \/% we get the 1cK form
6 =-(1+A)e"

Q=eB+0ge*
with(A-1)o >0
and there is no further reduction since a possible automorphism applied to Q fixes the coefficient along to
24
e,

Remark 2.14. Consider all the cases v, for A = % together. For the generic A = a,e1 + ae, + ases + ase,, we
get

}la4 0 0 —)la1
ad, = 0 (@a-MNaz; 0 A-1ay
—d) ag a, —das
0 0 0 0

Therefore, ad, is skew-symmetric if and only if A = 0. By Lemma 0.1, we get that there is no Vaisman structure
on v, for any possible value of the parameter A.

2.16 V45 With§ =0

Consider the Lie algebra?’,, 5 = (§14 +24,-14 + 224, —-12 + 634, 0) with 6 > 0. According to [6, Appendix
6.15 of the arXiv version, page 63] the generic Ics structures are
0= 9464
Q=wia(e'? - (6+80,)e*) + wise'™ + wose
with w?,(8 + 6;) # 0,6, # 0

24

According to [32] ', s with § = 0 admits two different complex structures associated to

0 -1 0 O 0O -1 0 O
1 0 0 O PRV 1 0 0 O FENY
- End(@ 5)"), J5 = End((} 5)").
Bl o o o o1 |€E@D =] oo ] | €End@p)Y)
0O 0 1 O 0O 0 -1 0

In the case § > O there are other two more non equivalent complex structures

0O 1 0 O 0O 1 0 O
-1 0 0 0 ,w -1 0 0 O PRV
= € End((d , = € End((d .
T4 6 0 0 -1 ((04.6)), T1 0o 0 o0 1 ((04.,6)")
0O O 1 O 0O 0 -1 0
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A generic automorphism for (o', 5, J) with J € {J1, ]2, J3,J4} is given by

a aqn 0 0
-a;p a;; 0 O 7 \WV . 2 2
€ End((d ith a1y + a1, = 1. 2.7
0 o 1 0 (( 4,5) )W 11 12 (2.7)
0 0O 0 1

Notice that for any choice of the complex structure the J-invariance condition implies that w,4 = 0 and w4 =
0. Therefore the generic lcs structure reduces to

6= 946’4
Q=wp(e?-(6+60)e*)
with w%z(ﬁ +0,4)#0,0,#0

and this lcs form is invariant by a generic automorphism given by (2.7).
We consider first the complex structure J,. Assuming Q is J,-invariant and J,-positive we get

6 = pe*
Q=o0(e'? - (6 +pe*) ,
witho >0, +pu<0,u#0

where y = 0, and 0 = w1,. As we mention above there is no further reduction.
If we consider the complex structure J3, in a very similar way we obtain

0 = pe*
Q=o0(e? - (6 +pe’*) ,
witho>0,6+u>0,u#0

where y = 0, and 0 = w1;,.
We now focus on the complex structure J, (case 6 > 0), and we have that the generic IcK structures are

6 = pe*
Q=o0(e'? - (6 +pe*) ,
witho <0, +u>0,u#0

where y =0, and 0 = w1;.
Finally, if ] = J; (case § > 0), then we obtain

0 = pe*
Q=o(e? - (6 +pe’*) ,
witho <0,6+u<0,u#0

where y =0, and 0 = w1;,.
Remark 2.15. In any of the above four cases, it follows from Lemma 0.1 that any IcK structure above is of

Vaisman type if and only if § = 0. Indeed, if A € 0’4 s such that 6(A) = 1 and A € (ker 0)*, then A = %el,.
Therefore

5 1
% E oo
19 90 o0
adA="25
0 0 5 O
0 0 0 O

is skew-symmetric if and only if § = 0. More precisely, all IcK structures on 0',, o are of Vaisman type, and any
[cK structure ond',, 5 with § > O is not of Vaisman type.
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2.17 b,

Consider the Lie algebra b, = (3 14+24, 124,-12+34, 0). According to [6, Appendix 6.16 of the arXiv version,
pages 64—65] the generic lcs structures are either

0= 9464
Q=w(e'? -0, +1)e*) + wise'™ + wase?”
with wi; #0,04 ¢ {-3,-1,0}
or
6=-3e
Q= wlz(elz + %634) + 64)146‘14 + (1)23623 + (1)24624
with w?, + 2w14w73 # 0

According to [32], b4 admits a complex structure associated to

O 0 -2 0
0 O 0o 1

= € End(b)).
0O -1 0 O

In both cases we obtain that Q is not J-positive, since Q(eq, Je1) = 0. Therefore there is no 1cK structure for
this Lie algebra.

3 Applications

In this section, we show some applications of our classification of 1cK structures in dimension 4. In particular,
we adapt some constructions of Ics structures in [25] and [6] to the 1cK case and, as an application, we can
produce many examples in higher dimension, including 1cK structures on Oeljeklaus-Toma manifolds, or give
a geometric interpretation of some of the 4-dimensional structures in Table 2.

3.1 LcK extensions

Let h be a Lie algebra equipped with an IcK structure (J, (-, -)), and let (w, 6) be the underlying Ics structure. Let
V be a vector space of dimension 2n with a Hermitian structure (J, (-, +)o) and denote by wq the fundamental
2-form induced by (Jo, (, -)o). We consider a representation

m:h — End(V),

given by n(X) = —%G(X) Id +p(X) such that p(X) € u(n) C sp(n,R) for all X € h. According to [25], the Lie
algebra g defined by g = h x V admits an lcs structure (o', §') given by o', = w, ’|y = wo, @'(X, Y) = 0 for
any X € b, Y € Vand the 1-form 6’ € g" by ¢'|, = 6 and 6’|, = 0.

We define the almost Hermitian structure (J', (-, -)’) on g given by

)= )y = (0
=1, Tlv=Jo G

It is easy to see that w’ is the fundamental 2-form associated to the almost Hermitian structure (J’, (-, -)') on
g. Moreover, J’ is integrable since 71(X) o Jo = Jo o m(X) for any X € b (see [7]). Therefore, we obtain that:

Proposition 3.1. Let h) be a Lie algebra equipped with an IcK structure (J, (-, -)) and let V be a vector space
endowed with a Hermitian structure (Jo, (-, -)o). Take the representation rt: b — End(V) givenby m = -161d +p
where p(X) € u(n) C sp(n, R). Then (J', (-, -)’) as in (3.1) is an IcK structure on g.
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Remark 3.2. Iftheinitial Lie algebra b is solvable, then p(b) is solvable. Since p(h) C u(n) and u(n) is a compact
Lie algebra, then we obtain that p(h) is Abelian, and therefore it is contained in a maximal Abelian subalgebra
of u(n). In particular p(h’) = 0, where by’ = [b, ] denotes the commutator ideal. Moreover, we may assume that
J € u(n) is in the same maximal Abelian subalgebra which contains p(h).

According to [25], we have that g is unimodular if and only if tr(ad?() = n6(X) for all X € h. Recall that given a
Lie algebra b, the map y : h — R defined by y(X) = tr(ady) is a Lie algebra homomorphism, and its kernel is
called the unimodular kernel of the Lie algebra §. We have then the following result:

Proposition 3.3. Let § be a Lie algebra with an IcK structure (w, 8), and let (i1, V) be a 2n-dimensional repre-
sentation such that n(X) = —%G(X) Id +p(X) with p(X) € u(n) for all X € b. Then the Lie algebra g = h x V with
the IcK structure (w', ') as above is unimodular if and only if the unimodular kernel of b is equal to ker 6 and
tr(ad?l) =n.

Note that in order to build unimodular examples we have to start with a non unimodular Lie algebra h. In
particular we need that tr(adg) =n = dimTV € N. This condition is enough when the commutator ideal
b’ = [h, h] = ker 6.

Using Lemma 0.1, it is easy to see that the 1cK structure constructed with Proposition 3.1 is not Vaisman.
Indeed, the endomorphism adj : g — g is

dj |
de = (2% ,
o ( | -31d+p(4) )

with p(A) skew-symmetric. Then adi cannot be skew-symmetric, and therefore, the 1cK structure is not Vais-
man. Moreover, we will prove next that these Lie algebras do not admit any Vaisman structure when n > 1:

Proposition 3.4. Let g = h x; V be the unimodular solvable Lie algebra built as above with dim V = 2n and
n > 1. Then g does not admit any Vaisman structure.

Proof. Suppose that g admits a Vaisman structure (w, 6). Then we know that the Morse-Novikov cohomology
vanishes in any degree, and therefore w = dyn = dn - 0 A i for some 1-form 1. Let @ the be restriction of w to
V x V, then we have that @ is a symplectic form on V. Moreover, @ = -0 A 1 since V is Abelian. If n > 1, then
@ is degenerate. O

3.2 Examples arising from 4-dimensional lcK Lie algebras

We summarize which Lie algebras in Table 2 are not unimodular, and therefore can be used to construct new
examples of unimodular Lie algebras of dimension higher or equal than six with an 1cK structure. They are:
T30, 13,1, T3, €282, V2, T4,a,15 Chasas Vi, 60 04,0 ANA D'y 5.

Taking into account the 1cK structures for each of these Lie algebras as exhibited in Table 2, it can be
shown, using Proposition 3.3, that the only IcK Lie algebras which admit a unimodular 1cK extension are the
following, where the complex structure is written in the frame {e4, e,, e3, e4}:

0 =a(e! +e3) .
oty ¢ w=y(%"e12+e“‘—e23+%le34) ]=( (1)
0#0,0>-1,uz0,49 59 °

1

coco|
mooo
oloo

0=-2ae" o o o 1
C4,a,a ¢ 14 23 ( 0 0 -1 o0
w=ce*+e J={ o 1 o o
a € {_1; O’ 1} -1 0 0 0

0<0



28 —— Daniele Angella and Marcos Origlia DE GRUYTER

. 6=-2e" SERCR
7 w=oc0e"+e = .
§>0,v#0 <0 J (3 o o 3)
9=9494 o -1 0o o
0, w=T(e (0 + D) (i e i)
1>0,0+1>0,0,#0 e e
N . 9=(/\—2)el‘ o 0o o A
AR w = cel* + %3 ]=<8 oy 3)
Ae e 1) 0>0,1#2 e
0/5' 0:]134 o -1 0 o0
4 . 12 34 1 0 0 0
’ w=o(e”-(6+pe =
s (e - (5 + we) (i)

0<0,6+u<0,u#0

Remark 3.5. Applying Proposition 3.1 to the Lie algebras t4 4,4 and ‘CZ, 60 We obtain Lie algebras of dimension
greater than or equal to six, which are almost-Abelian Lie algebras. Recall that a Lie algebra is called almost-
Abelian if it has an Abelian ideal of codimension one. Almost-Abelian Lie algebras admitting IcK structures were
studied in [4], where the second-named author and Adridn Andrada proved that the associated Lie groups admit
no lattices, whenever the dimension is greater than four.

Remark 3.6. If we extend the Lie algebras o, 1,044 and DZ’ s by Proposition 3.1, we obtain almost-nilpotent Lie
algebras of dimension greater than or equal to six with an IcK structure. We will explain in detail how to extend
one of these Lie algebras in Example 3.7. Recall that a Lie algebra is called almost-nilpotent if it has a nilpotent
ideal of codimension one. The existence of lattices in almost-nilpotent Lie groups was studied in [12].

We explain now how to extend one of the almost nilpotent cases:

Example 3.7. Let us start with the 4-dimensional Lie algebra ag’ s With 8 # 0 and structure constants (214 +
24,-14 + 224, -12 + 634, 0). Then the non-vanishing Lie brackets are given by

6 6
[64,el]=§el—ez, [e4,ez]=el+§ez, les, e3] = be3, [eq, ex] = e3.

We consider the IcK structure on v;, s given by

. 0 -1 0 0
0= pe 1 0 0 0
w=o?-+we) , J=| o O 4
0<0,0+u<0,u#0 0 0 -1 0

We show that, for any n € N, there is an IcK extension given by Proposition 3.1 of the Lie algebra Dz, sfora
suitable choice of § and p in order to obtain a (2n + 4)-dimensional unimodular IcK Lie algebra g = 9/, 5 x  R*"
for certain IcK representation m. It follows from Proposition 3.3 that g is unimodular if and only if 26 = np.

We define next the representation i : Dg’ s = 0l2n,R) by = —%9 Id +p for some representation p : Dg, 5
u(n). It follows from Remark 3.2 that such a representation satisfies p(e;) = p(e;) = p(e3) = 0. Setting p(e,) in

the orthonormal basis {u1,v1, ..., Un, Vn} Of R?" given by
0 ay
—-a 0
ples) =
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we obtain that the only non-zero new Lie brackets are
6 6
le4, u;] = — Ui~ @i, les, vi]l = aju; - o Vis

fori=1,...,n. The complex structure on g is given by J(e1) = e», J(e3) = —e, and J(u;) = v;fori=1,...,n.
It is easy to verify that

/26,4
o' =e

b 1 (26 3ay =i i
w' =o(e e )+;u AV
-
with 0<0,6<0
is an IcK structure on the (2n + 4)-dimensional Lie algebra g for any n € N. Note that we can write g = Re,, x
(h3 x R?™), therefore g is an almost-nilpotent Lie algebra.

3.3 OT Lie algebras as lcK extensions

Oeljeklaus-Toma manifolds (OT manifolds) are compact complex non-Kdher manifolds which arise from cer-
tain number fields, and they can be considered as generalizations of the Inoue sufaces of type S°. It was
proved in [24] that certain OT manifolds (those of type (s, 1)) admit IcK metrics. According to [22], the OT man-
ifolds are solvmanifolds. Moreover, it can be seen that the complex structure is induced by a left-invariant one
on the corresponding simply connected solvable Lie group. These manifolds provided a counterexample to
a conjecture made by Vaisman according to which the first Betti number of a compact 1cK manifold is odd
(see [24]). We show in this subsection that the Lie algebras associated to these OT solvmanifolds of type (s, 1)
endowed with its 1cK structure can be obtained using our construction given in Proposition 3.1.

We recall the definition of the Lie algebra associated to the (2n + 2)-dimensional Oeljeklaus-Toma solv-
manifold of type (s, 1) (see [22]), which we denote by gor. The Lie brackets on gor are given by

1 1
X, vil =yi,  [xi,z1] = ~5Z1+ GiZa, [xi, z5] = —ciz1 - 5725 (3.2)

in the basis {x1,...,Xn,¥1,-..,¥n, 21, 22} for some c; € R. The complex structure on gor is Jx; = y; and
Jz1 = z,. The IcK structure on gor is given by

o=>x o (3.3)

w=2 XAy Y X Ay 42 A2 ’
in the dual basis {x!, ..., x", y!,...,y", z%, 22}, where the associated Hermitian metric is defined by g(-, -) =
w(, J).

Next we show how to recover the 6-dimensional OT Lie algebra using Proposition 3.1 and Theorem 1.1.
Let us consider the 4-dimensional Lie algebra v,t, with structure constants given by (0, -12, 0, —34).

According to Table 2 this Lie algebra admits many non equivalent LCK structures up to Lie algebra com-
plex automorphisms. The one we are interested now is

0 = ge! + 7e3

w=1%"12 el e
withoT #0,0+7#-1,%2>0,21 >0,0<7

4 23+%€34

The complex structure is given by J(e!) = e? and J(e?) = e* in terms of the coframe {e?, 2, €3, e*}.
Taking into account Proposition 3.3 in order to obtain a 6-dimensional unimodular extension of this Lie
algebra, we can simplify the 1cK form to

f=el+e3
w=2e2+el%—e?3 +2e3
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Let g be the 6-dimensional vector space g = t,t, & R?. We define 71: t,t, — gl(2, R) by

n(e) = O,
n(es) = O,
_ _1 0 —C1 _ —% —-C1
n(e;) = iId+ <C1 o ) = <c1 _;>,
_ _1 0 ) _ —% —-C)
ni(es) = EId+ (Cz o ) = (Cz _%>,

in the orthonormal basis {es, es} of R? with Joes = e. It is easy to check that r satisfies conditions of Propo-
sition 3.1, and therefore
g =11 X7 R?

is a 6-dimensional unimodular Lie algebra admitting a 1cK structure (w, 6) given by

0 =el+é?
w' =2e'? + el — e + 234 4 €5

Clearly, (g, w’, 6') is isomorphic to the OT Lie algebra of dimension 6 with 1cK structure given by (3.3) with
n=2.

To generalize this case to higher dimensions we consider the non-unimodular 2n-dimensional Lie algebra

aff(R)" with structure equations given by [e;, f;] = f; fori =1, ..., nin the basis {ey, f1, ..., en, fn}. This Lie
algebra admits a complex structure Je; = f; and Jf; = —e; fori = 1,..., n. A 1cK structure on aff(R)" can be
defined by

0=> ¢
w=2Y e Nfl+Y et S

in the dual basis {e!, f1, ..., ", f*}, with Hermitian metric g(-, -) = w(:, J-). Let g be the (2n +2)-dimensional
vector space g = aff(R)" @ R2. We extend the complex structure J in aff(R)" to g by Ju; = u, where {uy, u,}
denotes an orthonormal basis of R?. We define 7 : aff(R)" — gl(2, R) by

‘__1 0 —C; N —C;
ni(e;) = 21d+<c,~ 0) (Ci _%>,

and 71(f;) =0fori=1,...,nand ¢; € R. Itis easy to check that 7 satisfies Proposition 3.1, and therefore the
unimodular Lie algebra

N[

g =11y X7 R,
admits a IcK structure, which we still denote by (w, 6), given by
{ o= ¢
w=2€enfl+Y e Aflrut AU
It is clear that g is isomorphic to the (2n + 2)-dimensional Oeljeklaus-Toma Lie algebra with Lie bracket

given by (3.2). Indeed, ¢: g — gor, P(e;) = xi, p(f;) =y;fori =1,...,nand ¢p(u;) = z; fori = 1,2 is a Lie
algebra isomorphism which commutes with the complex structures and it also preserves the 1cK forms.

3.4 From coKdhler to lcK

In [6], the first-named author and G. Bazzoni and M. Parton observed that every Ics structure on 4-dimensional
Lie algebras can be constructed either as a solution to the cotangent extension problem [6, Corollary 1.14], or
as a mapping torus over a contact 3-dimensional Lie algebra [6, Theorem 1.4], or with a similar construction
starting from a 3-dimensional cosymplectic Lie algebra [6, Proposition 1.8].
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We recall that, on a (2n — 1)-dimensional Lie algebra b, an almost-contact metric structure is given by
(n, ¢, @, g) where: n is a 1-form and ¢ a vector field such that

n) =1, (cK1)
@ < Endp(h) satisfies
@* = -id + neé, (cK2)
and g is a Riemannian metric such that
g(@x, @y) = g(x, y) - n()n(y) (cK3)
forany x,y € h.Set w :=g(_, @_).If
dn=dw =0, (cK4)

then in particular (n, w) is a cosymplectic structure. For a cosymplectic structure, we denote by R the Reeb
vector, determined by i(zw = 0 and g1 = 1; then one has the decomposition b = () & (R)°, where (R)°
denotes the annihilator of (R), that coincides with the kernel of the map w"™ A _. Recall also that (17, &, @)
is called normal when

Nijg +2dn ® & = 0. (cK5)

When (1, &, @, g) is both cosymplectic and normal, then it is called coKdhler. We refer to e.g. [11] for further
details.

Proposition 3.8. Let (h, 1, &, @, g) be a coKdhler Lie algebra of dimension 2n — 1, endowed with a derivation
D such that Dw = aw for some a # 0, Dn = D& = 0, and D@ = @D. Then g = h xp R admits a natural IcK
structure.

Proof. By[6, Proposition 1.8], we already know that g has a natural Ics structure. For the sake of completeness,
we briefly recall the construction. On g = h xp R, we define

0(X, a) := -aa, Q:=w+nA6.

Therefore one has 1
de=dbw+aD*w/\9=w/\9=9/\Q.

It suffices to show that Q is actually IcK, that is, there is a natural integrable complex structure J on g
such that JQ = Q. We set, see [36], see also [11, Section 6.1],
JX, a) := (OX - a&, n(X)) .

We recall that @¢ = 0 and n o @ = 0, see e.g. [11, Theorem 4.1], whence J? = —id.
We claim that Nij; = 0. Recall that Nij; := -[_, _|+[/_,J_1-JU_, _]1-J[_,J_]. Following the computations
in [11, Section 6.1], we compute

Nij]((X, 0), (Y, 0)) (Nijqj(X, Y) + n(X)D@Y - n(Y)DOX - n(X)®@DY + n(Y)PDX,
-n[@X, Y] - nlX, @Y] - n(X)n(DY) + n(¥)n(DX))
= (Nijp(X, Y), (dn)(@X, Y) + (dn)(X, DY) - n A Dn(X, Y))
= (0,-nADn(X,Y)) =0,
Nij;((X, 0),(0,a)) = (—aDX - al®?X, ] - an(X)D¢ - ad(D(DX)) + a®[X, &],
—an(D(®X)) - an([X, £]))
- (—aDX — a[®X, &] - a®*(DX) + ad[X, &,
—an o ®(DX) + a(dn)(X, &)
(-al®X, &1 - an(DX)§ + aP[X, &1,0) = 0,
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where we use that Nijg = 0.
We claim that JQ = Q. Indeed we compute

QUX, a),J(X, b))

(w +n A O)(PX - a§, n(X)), (PY - bg, n(Y)))

= w(@X-aé, @Y - b¢) - an(@X — aé)n(Y) + an(@Y - bé)n(X)

= w(PX, DY) - bw(PX, ¢) - aw(, @Y) +abw(¢, &)
—an(@X)n(Y) + aan(§)n(Y) + an(@Y)n(X) - ban(§)n(X)

= wX,Y)-nVNwX, &) - bw(®X, &) - aw(é, @Y) + abw(é, &)
—an(@X)n(Y) + aan(&)n(Y) + an(@Y)n(X) — ban(&)n(x)

= wX,Y) - an(@X)n(Y) + aan(¥) + an(@Y)n(X) - ban(X)

= w(X,Y)+aan(Y)-ban(X)

= Q(X,a), (Y, D)),

where we used that w(®X, @Y) = g(@X, D?Y) = g(PX, -Y+n(Y)&) = -g(®@X, Y)+n(Y)g(PX, &) = ~w(Y, X)+
nMw(¢, X) = wX,Y) -n(VwX, &) and w(é, 2) = ~w(Z, &) = -g(Z, Dé) = 0. O

Remark 3.9. The Lie algebra g is unimodular if and only if by is unimodular and Dn = —-a(n — 1)1 + { for some
¢ € (R)°. If b is unimodular then the IcK structure (Q, 9) on g is not exact.

Indeed, we recall the idea in [6]: unimodularity for g is equivalent to the generator of \"g" being non-exact,
that is equivalent to d A" g" = 0. Since A" 1g" = (W™ A ) ® AP2H" A 6, we compute

dS(w" An) = —% (a(n-1)+p) Wt AnAG, d%(en6)=d" o A6,
where @ € A*"2h", and we decomposed Dn = fn + { with { € (R)°. The statement follows.

Next we show an example of a Lie algebra admitting a IcK structure in Table 2 constructed from a 3-
dimensional coKdhler Lie algebra. Recall from [17] that coKahler Lie algebras in dimension 2n + 1 are in
one-to-one correspondence with 2n-dimensional Kéhler Lie algebras endowed with a skew-adjoint deriva-
tion B which commutes with its complex structure.

Let (R?, e! A e?) be a 2-dimensional Kihler Lie algebra, where Je! = e? in the orthonormal coframe
{el, e?}. Consider the derivation of R? given by B(e!) = e? and B(e?) = —e'. Then the Lie algebra h = R? xgR¢
admits a coKdhler structures (1, ¢, @, g) where g is the orthonormal extension of the Kdhler metric in R?, n
is the dual 1-form of é and @ = J in R? and @) =0.

Let us consider now the derivation D : h — h given by D(¢) = 0, D(e') = e? and D(e?) = —e'. Finally, the
Lie algebra g = h xp R admits a natural IcK structure according Proposition 3.8, and it is easy to see that this
Lie algebra is isomorphic to the 4-dimensional Lie algebra t} on Table 2.

Remark 3.10. Concerning the construction in [6] as a mapping torus over a contact 3-dimensional Lie algebra
[6, Theorem 1.4], we should mention that this construction, in the Hermitian case, corresponds to the known
relation between IcK and Sasakian structures, see [3]. In particular, the subclass of Vaisman Lie algebras can
be constructed in this way.
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A Table of lcK structures on four-dimensional Lie algebras

Table 2: Locally conformally Kéhler non-Kahler structures on 4-dimensional Lie algebras, up to complex automorphisms of the Lie algebra.

Lie algebra complex structure non-Kahler lcK structure Vaisman note
Lee form 6 positive form Q parameters
R* no lcK structure no torus
LR\ (0} —pret wpe'? +wize’® + wyspie! + wyze? + Jwpper - Fwispe? w2 w3 >0, w320, wnws - Wl >0 w3 =0, w12 = w13
al, Jip 04e" wipe? +wpe'® - Jwnbe? + L wipb,e 04 # —p1, w12 >0,% <0 always
HeC\(RUV-IR) | 6,¢* wipe'? + wpret - Jwin0,e + } w0,e% w12>0, £ <0
Jab a#0,b#0 04" w304 + wpze? 04 #0, w3 <0,% >0
uy - always
Jo.b b#0 04e" wy304e" + wyze? 04 ¢ {0,-3}, w23 <0, % >0
ths —e* oel'? + ge34 g>0 always primary Kodaira [10]
30 sel + %€’ Abdpl2 o4 — 23 4 L3 §>0,0>0 always
3y -2et el - e? 0>0 never
wh o no lcK structures no hyperelliptic [10]
, T —2~el et + e? 0>0
w3, v>0 never
J2 —2ve! gelt - 2 ag>0
-3 wiy(e'? - e + e?3) + w3 w34 > w12 >0
2158 -e! w12 + wyy(-e' + e + ) w12 > w34 >0 never
1 3 14012 | Gl4 _ 23 | 141 34 u(1+o) e 1
oe +te HEZe et - eP + Fre™) 0T #0,0+7#-1,u#0, K890 50, KD 5 g, &2l 5 o
3-6) %6, |6
61e' +6,¢? wi3(e + E(e! +eP)+ atnane’) w13> 0,01 #-1,0070,6,>0, gt > g
1 -2et wiz(e'? +e3) + wis(e?? + ) w13 > 0, w% -w} >0,w12>0
h 6ye! Wy4(—(0; + 1)e!3 + e2) Wy >0,0,+1<0 never
Jab (a,b) #(0,1) -2e! wpe'? + et bwiy >0
2
(a, b) = (0,1) -2et oe'? + wy,et 0>0
1 no lcK structure no
a1 a¢{0,1} -2¢* el3 4+ ge?t 0<0 never
g t4-1 @ {-1,0,1} —2ae" el + 2 0<0 never
, 1 no lcK structure
Yo.5 §>0 no
IS no lcK structure
, A —2+e* oel4 + e 0<0 o
s §>0,7#0 never 7 =-3:Inoue $°[10, 39]
I> —2~e* el - e? 0<0
1 —et —el3 4+ ge?* 0<0
%y never Inoue S* [10, 39]
I no lcK structure
—e* oe't + e 0>0
%1 e+ Oye (2200 12 4 (uletpliD) o1 w3 > 0, (126, - w23)(64+ 1) > O, never
+4eP ¢ (,wz‘;(e%@) e (1202 - 23 - W23(64 + 1)w23(64 +1) > 0
T 04" T(e'? - (0 +1)e’%) 7>0,0+1>0,0,#0
0,1 I -3e* a(e'? + 1) 0<0 never
Is et gelh _ 23 G<0
I A-2)e* oel4 + e 0>0,1#2
L Ag {31} never
I —(1+A)e* el3 + ge?t A-1)0>0
I ue o(e'? - ue’*) 0>0,u<0
%0 K always secondary kodaira [10]
I3 pet o(e!? - ue**) o>0,u>0
J1 pe' o(e!? - (6 + p)e’) 0<0,6+u<0,u#0
, I et o(e!? - (6 + p)e’) 0>0,6+u<0,u#0
[ §>0 . - m never
JE) e o(e'? - (6 +pe’t) 0>0,8+u>0,u#0
4 ue a(e'? - (6 +p)e 0<0,8+u>0,
J. “ (e - (5+ we®) 0,8 O,u#0
by no lcK structure no

d3LANYO 34
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