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1 Introduction

The geometry of almost Hermitian manifolds has been studied extensively in last years such as in [3], [10],
[11] and [23]. In this paper, we will define a K&hler-like almost Hermitian metric. The aim of this manuscript
is to investigate what conditions are needed for such metrics to be quasi-Kdhler. In Hermitin case, Yang and
Zheng examined the Hermitian curvature tensors of Hermitian metrics, as the curvature tensors satisfies all
the symmetry conditions of the curvature tensor of a Kdhler metric in [22]. They called these metrics Kdhler-
like. When a manifold is compact, these metrics are more special than balanced metrics since such metrics are
always balanced, that is, d (w™ 1) = 0, where w is the fundamental 2-form associated with a Hermitian metric
and n is the complex dimension of the manifold. This fact has attracted attention in the reserch of non-Kéhler
Calabi-Yau manifolds. Their definitions are as follows. Given a Hermitian manifold (M", J, g), there are two
canonical connections associated with g, the Chern connection V and the Levi-Civita connection D. Denote
R and R” the curvature tensor of these two connections respectively. Notice that in this whole paper, in the
almost Hermitian case M?" indicates that 2n = dimg M, in the Hermitian case M" means that n = dim¢ M.

Definition 1.1. (Kdhler-like and G-K&hler-like [22]) A Hermitian metric g will be called Kahler-like, if Ryy i =
Ryyxw holds for any type (1, 0) tangent vectors X, Y, Z and W. Similarly, if R%,, = Rk, = 0 for any type
(1, 0) tangent vectors X, Y, Z and W, we will say that g is Gray-Kahler-like, or G-Kahler-like for short.

The G-Kihler-like condition was firstly introduced by Gray in [8]. Yang and Zheng showed that when R = RE,
then g is Kdhler in [22, Theorem 1.1], and they also showed that when the Hermitian manifold is compact,
either condition, the Kahler-likeness or the G-Kahler-likeness, would imply that the metric is balanced.

Proposition 1.1. ([22, Theorem 1.3]) Let (M", ], g) be a compact Hermitian manifold. If it is either K&dhler-like
or G-Kéhler-like, then it must be balanced.

In this sence, the Kdhler-likeness is more special than being balanced for compact Hermitian manifolds. Note
that Vaisman has showed that any compact G-Kahler-like Hermitian surface is Kédhler in [19].
Yang and Zheng have also shown that the folloing result in [22].
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Proposition 1.2. ([22, Theorem 3.1]) Let (M", J, g) be a Hermitian manifold that is Kahler-like. If M" is com-
pact and admits a positive, d0-closed (n - 2, n — 2)-form X, then g is Kdhler. In particular, if M" is compact,
Kahler-like, and 09(w"2) = 0, then g is Kdhler. When n = 2, compactness implies that any Kahler-like metric
is Kahler.

In this paper, we generalize the result of Yang and Zheng in Proposition 1.2 from the category of Hermitian
manifolds to the category of almost Hermitian manifolds. We now extend their studies to almost Hermitian
geometry. Let (M, J) be an almost complex manifold and let g be an almost Hermitian metric on M. Let {Z;}
be an arbitrary local (1, 0)-frame around a fixed point p € M and let {{"} be the associated coframe. Then
the associated real (1, 1)-form w with respect to g takes the local expression w = v~1g,;{" A ¢¥. We will also
refer to w as to an almost Hermitian metric.

We define a Kihler-like almost Hermitian metric in the following as in [22, Definition (Kihler-like and
G-Kéhler-like)].

Definition 1.2. Let (M?", ], g) be an almost Hermitian manifold and let RY be the curvature tensor with
respect to the Chern connection V associated with g. An almost Hermitian metric g will be called Kahler-like,
if Ry, = Ryyyw holds for any type (1, 0)-tangent vectors X, Y, Z and W. When the almost Hermitian metric
g is Kahler-like, the triple (M?", J, g) will be called a Kihler-like almost Hermitian manifold.

When g is Kdhler-like, by taking complex conjugations, we see that R is also symmetric with respect to its
second and fourth positions, thus obeying all the symmetries of the curvature tensor of a Kdhler metric.

A quasi-Kahler structure is an almost Hermitian structure whose real (1, 1)-form w satisfies (dw)? =
ow = 0(cf. [5], [8], [18]). It is important for us to study quasi-Kdhler manifolds since they include the classes of
almost Kdahler manifolds and nearly Kahler manifolds. An almost Kahler or quasi-Kahler manifold with J inte-
grable is a Kdhler manifold. We get a result that a metric is actually quasi-Kahler under the same assumption
as in Proposition 1.2 on an almost Hermitian manifold.

Theorem 1.1. Let (M?", ], g) be a compact Kihler-like almost Hermitian manifold with n > 2. If M?" admits
a positive 00-closed (n - 2, n - 2)-form y, then g is quasi-Kahler. In particular, if M?" is compact, Kahler-like,
and 00(w™?) = 0, then g is quasi-Kihler. When n = 2, compactness implies that any Kihler-like metric is
almost Kahler.

Note that in dimension 4, every quasi-Kahler manifold is almost Kadhler. In general, there are known examples
of quasi-Kdhler manifolds which are not almost Kahler. In particular, if a compact real 6-dimensional almost
Hermitian manifold M® admits a Kihler-like metric that is non-quasi-Kahler, then M 6 cannot have any almost
pluriclosed metric.

The question how the geometry of compact almost Kdhler manifolds can force the integrability of an al-
most complex structure has been investigated by many reserchers such as [6], [12] , [13], [14] and [15]. A well-
known conjecture of Goldberg states that compact Einstein almost Kdhler manifolds are necessarily Kahler.
This conjecture is still open, but there are some partial results. Sekigawa has proven that the Goldberg con-
jecture is true if the Riemannian scalar curvature is non-negative in [16]. Especially in dimension 4, some
other results have been shown under some conditions. Likewise, we would like to consider how the geome-
try of compact Kahler-like almost Hermitian 4-manifolds can force the integrability of of an almost complex
structure below.

In the following a few cases, on a 2n-dimensional almost Hermitian manifold with an almost Hermitian
structure (J, g), we define the curvature and the Ricci tensor with respect to the Levi-Civita connection D in
the following way for tangent vectors X, Y, Z and W:

RYX,Y)Z =Dx, DylZ- Dy yyZ, R"(X,Y,Z,W)=g(R"(X,Y)Z, W),

p(X,Y) = tr(Z — RL(Z, X)Y).
An almost Hermitian manifold (M, J, g) satisfying that (cf. [8], [9])
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(1) RMX,Y,Z,W)=RNX,Y,JZ,JW) for all vector fields X, Y, Z, W is called an AH;-manifold;

2 RLX,Y,Z,W)=RLX,Y,]JZ,JW)+RL(X,]JY,Z,JW) +RL(X, Y, Z, JW) for all vector fields X, Y, Z, W is
called an AH,-manifold;

(3) R:(X,Y,Z, W) = RL(X,JY,]Z, JW) for all vector fields X, Y, Z, W is called an AH3-manifold (or RK-
manifold (cf. [14], [15]).

Then we have AH; C AH, C AH3. Note that if an AH;-manifold is almost Kahler, then it is Kéhler (cf. [8,

Theorem 5.1]), which tells us that by combining with Theorem 1.1, we get that a 4-dimensional compact Kdhler-

like AH-manifold is Kahler. Actually, we can obtain a stronger result by using the following result states that

there are no compact examples of strictly almost Kahler 4-manifolds satisfying the curvature condition (3).

Proposition 1.3. (cf. [2, Theorem 2]) A 4-dimensional compact almost Kihler AH5-manifold is Kihler.
Combining Theorem 1.1 and Proposition 1.3, we get the following corollary.

Corollary 1.1. A 4-dimensional compact Kihler-like AH5-manifold is Kahler.

We introduce the following result.

Proposition 1.4. (cf. [21, Theorem 4.4]) Let (M, J, g) be an almost Kihler manifold with the fundamental
2-form w(-,-) = g(J-,-). If (DJ)D = 0, then (g, ], w) is a Kéhler structure on M, where D is the Levi-Civita
connection with resprct to g.

By combining Theorem 1.1 and Proposition 1.4, we obtain the following corollary.

Corollary 1.2. Let (M4, ], g) be a 4-dimensional compact Kihler-like almost Hermitian manifold with the
fundamental 2-form w(-,-) = g(J-,-). If (DJ)D = 0, then (J, g, w) is a Kdhler structure on M, where D is the
Levi-Civita connection with respect to g.

Notice that with the definition of static in [17, Definition 9.1] and a corollary which states that 4-dimensional
compact static almost Kdhler manifold is Kdhler-Einstein [17, Corollary 9.5], we obtain the result that a 4-
dimensional compact static Kdhler-like manifold is Kahler-Einstein. Here, we introduce the following results
for 4-dimentional almost Kihler manifolds in [6], [12].

Proposition 1.5. (cf. [6, Theorem 2]) A 4-dimensional compact almost Kahler manifold (M*, J, g) with J-
invariant and nonnegative definite Ricci tensor p is Kahler.

By applying Theorem 1.1 and Proposition 1.5, we then obtain the following corollary.

Corollary 1.3. A 4-dimensional compact Kdhler-like almost Hermitian manifold (M*, J, g) with J-invariant
and nonnegative definite Ricci tensor p is Kahler.

For X € T1°M, the holomorphic sectional curvature is defined by

RV(X,X,X,X)

HOO = o, 0gx, 1)

where V is the Chern connection associated to an almost Hermitian metric g and RV is the curvature with
respect to V. The holomorphic sectional curvature is constant at a point p € M if H(X) is a constant k(p) for
allX e T},’OM . Note that if the constant k is the same at every point p € M, we say that it is a globally constant,
and if H is constant at each point of M, we say it is pointwise constant.

Proposition 1.6. (cf. [12, Theorem 1.1]) A 4-dimensional closed almost Kdhler manifold of globally constant
holomorphic sectional curvature k = 0 is Kdhler-Einstein.
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By applying Theorem 1.1 and Proposition 1.6, we then get the following result.

Corollary 1.4. A 4-dimensional closed Kdhler-like almost Hermitian manifold of globally constant holomor-
phic sectional curvature k = 0 is Kdhler-Einstein.

Notice that according to [12, Theorem 1.2], 4-dimensional closed Kihler-like almost Hermitian manifold of
pointwise constant holomorphic sectional curvature k < 0 with the J-invariant Ricci tensor p is Kdhler-
Einstein.

We say that a metric g is an almost pluriclosed metric if g is an almost Hermitian metric whose associated
real (1, 1)-form w satisfies 90w = O (cf. [10, Definition 1.1]). From Theorem 1.1, we may say that if a compact
Kahler-like almost Hermitian manifold M® admits an almost pluriclosed metric g, then g is actually a quasi-
Kihler metric and (M®, g) is a quasi-Kihler manifold.

It is well-known that if the complex structure is integrable, then the (2, 0)-part of the curvature tensor
for the Chern connection vanishes. Generally, the converse is not true, but if some curvature conditions are
assumed, then ChengJie has showed that the answer becomes affirmative in [3]. The Ricci curvature is said to
be quasi-positive if it is nonnegative everywhere and strictly positive in any direction at (at least) one point.
Note that a compact Riemannian manifold of quasi-positive Ricci curvature admits metric of strictly positive
Ricci curvature (cf. [24]). In the following cases, we define the curvature and the Ricci tensor with respect to
the Chern connection, see Section 2.2.

Proposition 1.7. (cf. [3, Theorem 1.2]) Let (M?", ], g) be a compact quasi-Kédhler manifold with quasi-positive
second Ricci curvature and parallel (2, 0)-part of the curvature tensor. Then, the manifold must be Kéihler.

By combining Theorem 1.1 and Proposition 1.7, and that we have the first Ricci curvature coincide with the
second Ricci curvature under the assumption of the Kahler-likeness, we have the following corollary.

Corollary 1.5. Let (M?", ], g) be a compact Kihler-like almost Hermitian manifold with quasi-positive second
Ricci curvature and parallel (2, 0)-part of the curvature tensor and n = 2. If M?" admits a positive 09-closed
(n -2, n - 2)-form, then the manifold must be Kihler.

This paper is organized as follows: in section 2, we recall some basic definitions and computations. In the
last section, we prepare some lemmas for the torsion and the curvature, and then by applying these results,
we will prove the main theorem. Notice that we assume the Einstein convention omitting the symbol of sum
over repeated indexes in all this paper.

2 Preliminaries

2.1 The Nijenhuis tensor of the almost complex structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure on M is an endomor-
phism J of TM, J € I'(End(TM)), satisfying J?> = —Id ). The pair (M, J) is called an almost complex manifold.
Let (M, J) be an almost complex manifold. We define a bilinear map on C*°(M) for X, Y € I'(TM) by

4N(X, Y) := UX,JY] - JUX, Y] - JIX,]Y] - [X, Y],

which is the Nijenhuis tensor of /. The Nijenhuis tensor N satisfies N(X, Y) = -N(Y, X), NJX, Y) = -JN(X, Y),
N(X,JY) = -JN(X, Y), NUX,JY) = -N(X, Y). For any (1, 0)-vector fields W and V, N(V, W) = -[V, W],
N(V, W) = N(V, W) = 0 and N(V, W) = -[V, W]&9 since we have 4N(V, W) = =2([V, W] + V=1J[V, W]),
4N(V, W) = -2([V, W]-+/~1J[V, W]). An almost complex structure ] is called integrable if N = 0 everywhere
on M. Giving a complex structure to a differentiable manifold M is equivalent to giving an integrable almost
complex structure to M. Let (M, J) be an almost complex manifold. A Riemannian metric g on M is called
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J-invariant if J is compatible with g, i.e., forany X, Y ¢ I'(TM), g(X, Y) = g(JX, JY). In this case, the pair (J, g)
is called an almost Hermitian structure. The fundamental 2-form w associated to a J-invariant Riemannian
metric g, i.e., an almost Hermitian metric, is determined by, for X, Y € I'(TM), w(X, Y) = gJX, Y). Indeed we
have, for any X, Y € I'(TM),

w(Y,X) =g(Y,X) = gU*Y,JX) = -g(UX, ¥) = ~w(X, Y)

andw €T (/\2 T*M). We will also refer to the associated real fundamental (1, 1)-form w as an almost Her-

mitian metric. The form w is related to the volume form dV, by n!ldV,; = w". Let a local (1, 0)-frame {Z;} on

(M, J) with an almost Hermitian metric g and let {¢"} be a local associated coframe with respect to {Z;}, i.e.,

¢ i(Z]-) = 6;: fori,j=1,...,n.Sincegisalmost Hermitian, its components satsfy g;; = g5 = Oand g;; = gj; = &j;-
With using these local frame {Z,} and coframe {{"}, we have

N(Z;, Z;) = -1Z;, Z;](l’o) =: N;k;Zk, N(z;, Zj) = -1Z;, Zj](o’l) = F%Zp,
and 1— 1 L
N= SN Zz o (§' A E) + SNGZi@ (T A D)),

We write T®M for the real tangent space of M. Then its complexified tangent space is given by T°M =
TR®M ®g C. By extending J C-linearly and g, w C-bilinearly to T®M, they are also defined on T*M and we
observe that the complexified tangent space T°M can be decomposed as T°M = TY°M @ T®'M, where
T1-OM, T%1 M are the eigenspaces of J corresponding to eigenvalues v/~1 and —v/—1, respectively:

TYM = {X-V-1JX|X € TM}, T>'M={X+vV-1JX|X € TM}.

Let A"M = @p+q:rAP’qM for 0 < r < 2n denote the decomposition of complex differential r-forms into
(p, g)-forms, where AP*9M = AP(AV°M) © A9(A%1 M),

AYM = {a+V-1Jala e A'M}, A*'M={a-V-1ja|a c A*'M}

and A'M denotes the dual of TM.

Let(M?", ], g) be an almost Hermitian manifold. An affine connection D on TM is called almost Hermitian
connection if Dg = DJ = 0. For the almost Hermitian connection, we have the following Lemma (cf. [4], [7],
[20], [23).

Lemma 2.1. Let (M, ], g) be an almost Hermitian manifold with dimg M = 2n. Then for any given vector
valued (1, 1)-form © = (0!),.;.p,, there exists a unique almost Hermitian connection D on (M, J, g) such that
the (1, 1)-part of the torsion is equal to the given 6.

If the (1, 1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the connction
is called the second canonical connection or the Chern connection. We will refer the connection as the Chern
connection and denote it by V.

Now let V be the Chern connection on M. We denote the structure coefficients of Lie bracket by

(Zi, Z)) =: ByjZ; + BjjZs = BjZr - NZv, . |Zi, Zj) =2 ByZy + BysZs,

(Z:, Z;] =: ByZy + B§Z; = -Ni:Zy + B5Zs,
where we used that [Z;, Zj](o’l) = —F%Z;, (Z;, Z]-](l’o) = -N%:Zy and then B,r] = —F%, B = —N%. Also we here
note that for instance, [Z;, Z;] = [Z;, Z;](l’o) +[Z;, Z;](O’l), where

2, )0 = 2021, 21 - V=112, Z), (2, 210 = 22, )+ V=112, Z).

Notice that J is integrable if and only if the ij’s vanish.
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Note that for any p-form i, there holds that

p+1

dlp(Xli"'aXerl) = Z(_l)i+1xi(w(xly"")/(\i""fprrl))
i=1

+Z(_1)i+jll)([xi! X}]9 Xls e ’Xi’ oo y)/(\j, e ’Xp+1)

i<j
for any vector fields X1, ..., X,+1 on M (cf. [23]). We directly compute that

1

s _
d(—z

k . Al koA, 1 koA

According to the direct computation above, we may split the exterior differential operator d : APM @ C —
AP*IM @p C, into four components
d=A+0+0+A

with
0 : APIM — APYLIM, 5 APIM — AP T,

A APIM = APP2IIM, A APIM s APTHI2 Y,
In terms of these components, the condition d? = 0 can be written as
A*=0, 0A+Ad=0,0A+Ad=0, A’=0,
Ad+0°+0A=0, AA+00+00+AA=0, O0A+0d’+Ad=0.
For any real (1, 1)-form 5 = ﬁqﬁ(" A (’1, we have

on=-5- (Zi(’?nz) = Zi(ngx) - Bing — Bins + Bfmis) NN

A /_1 _ < <
5= (%) - Zing) - Bang + Bignai + Bmis )" 1 ¢ 1 6.
From these computations above, we have

0w = == (Zilsy) - Zi(gw) - Bijge - Bixsys + Bysis )¢ 1 ¢ 1 ¢k

on =

and
V-1

ow = 5 (Zj(gki) - Z}(gkj) - Bi{gsj + Bijgsi + B%gk§>(k A (i A (j-

2.2 The torsion and the curvature on almost complex manifolds

Since the Chern connection V preserves J, we are able to define the Christoffel symbols: fori,j,r=1,...,n,
NiZj=VzZ; =TiZy, ViZ=VyZ;=T5Zs,

where . o <
Iy = g"Zi(gjs) - g’sgﬁBﬁs, Iy = Zi(logdetg) - B;.

The torsion T = (T?) of the Chern connection V is defined by
T :=dg' - P Anp,  THi=d =P An,

wherey = (] is the connection form defined by ~} := I'};¢*+T ,‘q ¢ Since the torsion T of the Chern connection
V has no (1, 1)-part;

0=Ti =T (Zi, Z) = ~{'(Zi, Z1) - Tep¢P A+ TE,8P A )2y, Z) = —Biy - T,
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0 = Tyg = T(Zi Z) = ~¢'((Zk, Z3)) — (Tipg? A ¢+ Thp¢? £ §) (i, Z)) = ~Big + Ty,

we have
I‘lr] = Blr]
Here note that B;?E, B]?b’s do not depend on g, which depend only on J since the mixed derivatives V;Zj; do not

depend on g (cf. [20]).
The torsion T of V has no (1, 1)-part and the only non-vanishing components are as follows:

T§ = T°(Zi, Z)) = 0 (23, Zj)) = (T5p¢P A §° + Tp¢P A )23, Z)) = =B = T + T,

Tj = T°(2;, Z)) = 4§23, ) = ~¢°(123, Z))) = - By

and on the other hand we have d{*(Z;, Z;) = Nf], hence we obtain that Ts Nf] = —ij. These computations
tell us that T splitsin T = T + T”, where T € I'(A*°M  TV°M), a sectlon of A29M ® TVOM, and T” <
I(A%>°M @ T®'M). The torsion T = (T?) can be split into T = T@® + 7LD 4 702 - 720, T7(0.2) gjnce
7D = 0, where T®? = (1 T A (") , 702 - ( N‘ (’ A (") , which tells us that (0, 2)-part of
the Chern connection is uniquely determul';gd by the Nl]enhuls tensolr (cf. [22]). Let (M, J, g) be an almost
Hermitian manifold. Let {Z,} be a local (1, 0)-frame with respect to g and let {{"} be the associated coframe.
Then the associated real (1, 1)-form w with respect to g takes the local expression w = v/~-1{" A{ ’. With using
these notations, we may write

() dw VETCINGEI N I

= VI A+ TN = A AP+ T

= VA AP AT+ T AT = AE NP = AT
= V-UT' AL = AT = AP AL+ A AGP)
= VUT A - AT

= YW AN NE AL A TEE AL A TR AL A ),

where we used the skew-Hermitian property +¥ + 'y;, = 0, which can be obtained with using Vg = 0 (cf. [18]).
This expression (1) implies that we have

dw = gnﬁ-(" AP AR = VLT A ¢F

and

dw = £T"( ANEAY = —V/=1(TOD A K,

where we put

(TH*9 .= %T{;(" A, (THOD = %T%‘;(i A = (TR0,
Note that T” depends only on J and it can be regarded as the Nijenhuis tensor of J, that is, J is integrable if
and only if T” vanishes.

We denote by Q the curvature of the Chern connection V. We can regard Q as a section of A2M @ TM,
Q € I'(A’M ® TM) and Q splits in

Q=009 o0V, 0.2 _ H+R+H,

with
2,0 _ (1 jrk ool 1,1 _ jok o A 0,2) _ j
0 (), - (5, 504), 2 (1 6)
where R € T(AM ' M&AYIM), H € T(A>°M ® AV M). The curvature form can be written by Q; = d'y}+fy§/\7f.

Then the Chern-Ricci form is (\/—19;3) € 2nc1(M,]) € H*(M,R), where c;(M, J) is the first Chern class of
(M, )).
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In terms of Z,’s, we have

Ry " = Oi(Z;, Z5) = Zi(I}) - Z;(I) + T T5, - T T - BTy + B3I,

Hyy "= 04(Z;, Z)) = Zi(T}y) - Zj(Th) + TT - TjsT5 - BT — BT,

Hy " = Q4(Z;, Z5) = Z(T},) - Z;(T%) + i~ T T — BiTo - BTy

and we deduce that with using I ’k’p =Z;(logdetg) - B’zﬁ,

Py =Ry, "= ~(Z;Z; - 12;, Z))*")(og detg) + Z;(B}) + Zi(B},) + BBS; - BBy,

Ryj=Hy, " =2, Z]®V(log det g) - Z;(B};) + Z;(B};) + B BL; + F%Bgr

and
R = H-

- (1,0) 7 5
i Gir "= —[Z;, Zj] (lOg det g) + ZI(B]Zr) - Z;(B;rr) - N%B;; - B%Bg,
Note that by computing with using a local g-unitary (1, 0)-frame {Z;}, we obtain the following formula (cf.
[11, Lemma 2.3]):

Rijkf = g(ViV;Zk = V}V,’Zk = V[Zi,Z;]Zk’ Z]).
The Chern-Ricci form Ric(w) is defined by

Ric(w) := ngl(k A VPG A+ gR,—d(’_‘ NG

It is a closed real 2-form. If J is integrable, it is a closed real (1, 1)-form. If furthermore, J is integrable and
dw = 0, then the Chern-Ricci form coincides with the Ricci form defined by the Levi-Civita connection of w.
We denote by S one of the Ricci-type curvatures of the Chern curvature, which is called the first Ricci curvature
and with an arbitrary (1, 0)-frame {Z,} with respect to g, is locally given by Sij = g ka. The curvature P
is one of the Ricci-type curvatures of the Chern curvature,_which is called the second Ricci curvature of the
almost Hermitian metric g, and is locally given by P;; = gt Qj5)q- In the Kahler-like case, since the curvature
tensor R then satisfies all the symmetries of the curvature tensor of a Kdhler metric, the first and second Ricci

curvature coincides with each other; Si; = Pﬁ, and then we call it the Ricci curvature.

3 Proof of Theorem 1.1

Let (M?", ], g) be an almost Hermitian manifold. Let {Z;} be a local unitary (1, 0)-frame with respect to g
around a fixed point p € M and let {{"} be the associated coframe. Note that unitary frames always exist
locally since we can take any frame and apply the Gram-Schmidt process. Then with respect to such a frame,
we have g;; = 8, Z(g;;) = 0. By using a local g-unitary (1, 0)-frame, the Christoffel symbols satisfy I 1’; =

ik ~
and the components of w can be written as w; = -B], - B; + B..
In order to prove Theorem 1.1, we prepare the following lemmas. The first one below can be obtained
easily to see the expression of () in section 2.

-r. = —B’l:k (cf. [10, Lemma 2.2]), and the components of the torsion can be written as Tf‘j = —Bil.( + BER - B{-‘]-

Lemma 3.1. (cf. [18, Lemma 2.4]) An almost Hermitian manifold (M?", J, g) is quasi-Kahler if and only if
Tll‘j = 0 for all i, j and k when a local unitary (1, 0)-frame is fixed.

We can have the following result as in [22, Lemma 5].

Lemma 3.2. Given an almost Hermitian manifold (M?", J, g), g is Kdhler-like if and only if QWD A ¢=0.
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Proof. Assume that g is Kdhler-like. Then since we have R i J = Rﬁk J, we obtain

, j »k 1 i
OMVA¢ = RTINS NG
S T
= Ry AEAL

j i A rk

- Ry gngag

N T

= -R;C AN

Hence we have Q1 A ¢ = 0. Conversely, if Q1D A ¢ = R iek A ¢ A ¢ = 0, then we have

_ jrk 1 i
O-Rkh(/\(/\(
1

_ j_ INC NS
- Z(Rkh Ry WENEAL,

which tells us that R i J = Rﬁk Jand g is Kahler-like. O
Now we give a proof of Theorem 1.1.

Proof. (Theorem 1.1) Suppose that (M?", J, g) be a compact Kihler-like almost Hermitian manifold with n = 2.
Let {Z;} be a local unitary (1, 0)-frame with respect to g and let {{"} be the associated coframe. Then the
associated real (1, 1)-form w with respect to g takes the local expression w = V-1{"A{". Aswe see in section 2,
we then have 0w = v=1(T*)®% ¥, where (T¥)39) = 3Tk ¢ We compute by using that d¢* = ~j A{P+T",
dv} = =4 A+f + Ql, then we have

dT' = —d({P Aqh)

-d¢P A+ P A dAy

~(T? =2 N A +§P A Q=7 A )

“TP Ay + P AQp + 8 A Ay = P A A
~TP Ay + (P A Q)

where at the fifth line, we used that
BAC A =P AN =EANE A= ApAE =B AC Ay =B AL Aqp =0,
Then a direct calculation shows that since we have dT* = TP A 71’,5 +{P A Q’;,, we obtain
dow = d(vV=1(TH> A ¢

= V21T A R+ V(T @O A dgk

= VTP AE+ P A QN A K+ VT2 A (TF - 2K A )

= VAP AQEA K VTR A TE - VATP AR A K= V(T O AAE A

= V1K AP AR+ VTP A TR - VZITP AR A CF 4+ VT2 A5 A

where we used the skew-Hermitian property yf(’ + 7},_‘ = 0 at the fifth line. From the Kdhler-likeness, as in the
proof of Lemma 3.2, we have

QAP AP =R KT AP ATF=0.
We also have that

_\/Z(TP /\7}5/\ (12)(2,2) " /_1((Tk)(2,0) /\’Yli/\(g)(z’z)

= T(—Tf}rgp(l/\é‘]/\cs/\(k_i_ lej]—w;k(l/\(]/\(y/\(s):o.
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By combining these, we then obtain that
\/q(daw)(Z,Z) _ _((Tk)(Z,O) A TI_()(Z,Z) _ _(Tk)(Z,O) A (TI_()(O,Z) _ _(Tk)(Z,O) A (Tk)(Z,O).

Here, note that the exterior differential operator d is splitted into four components; d = A + 0 + 0 + A.
We have that 0w A Ay = 0, 0w A Ay = 0 and dw A dy = 0. Hence we have dw A dy = dw A J). Also we have
A(wA0y) =0, A(w Ady) = 0and o(w A dy) = 0, which tells us that d(w A dy) = d(w A dy). Since M is supposed
to be compact, by integrating over M and applying the Stokes Theorem, we have

0= /d(aw AY) = /(daa))(z’z) AX~ / ow Ady = /(daa))(z’z) /\)(—/aw A OY,
M M M M M

0=/d(w/\éx)=/a(a)/\5)()=/aw/\éx+/w/\aéx,
M M M

M

where note that ddw A y = (dow)>? A y since y is (n - 2, n - 2)-form. Hence we have

/v—l(daw)(z’z)/\X:/\/—law/\é)(=—/\/—lw/\65)(.
M M M

By combining these with the assumption that y is a positive 00-closed (n — 2, n - 2)-form, we obtain that

/(Tk)(z,o)Am/\){:/\ﬁlwAaéx=0,
M M

where note that (T%)29 A(T¥)2.0) js a global, nonnegative torsion (2, 2)-form on M. Therefore, we have Tll‘]- =0
for all i, j and k, which implies that g is quasi-Kahler from Lemma 3.1. O
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