
Open Access. © 2019 Masaya Kawamura, published by De Gruyter. This work is licensed under the Creative Commons Attribu-
tion alone 4.0 License.

Complex Manifolds 2019; 6:366–376

Research Article Open Access

Masaya Kawamura*

On the Kähler-likeness on almost Hermitian
manifolds
https://doi.org/10.1515/coma-2019-0020
Received May 20, 2019; accepted September 3, 2019

Abstract:Wede�ne a Kähler-like almost Hermitianmetric.Wewill prove that on a compact Kähler-like almost
Hermitian manifold (M2n , J, g), if it admits a positive ∂∂̄-closed (n − 2, n − 2)-form, then g is a quasi-Kähler
metric.

Keywords: almost Hermitian manifolds, Kähler-like metrics, Chern connection, quasi-Kähler metrics

MSC: 53C15 (primary); 53C55 (secondary)

1 Introduction
The geometry of almost Hermitian manifolds has been studied extensively in last years such as in [3], [10],
[11] and [23]. In this paper, we will de�ne a Kähler-like almost Hermitian metric. The aim of this manuscript
is to investigate what conditions are needed for such metrics to be quasi-Kähler. In Hermitin case, Yang and
Zheng examined the Hermitian curvature tensors of Hermitian metrics, as the curvature tensors satis�es all
the symmetry conditions of the curvature tensor of a Kähler metric in [22]. They called these metrics Kähler-
like.Whenamanifold is compact, thesemetrics aremore special thanbalancedmetrics since suchmetrics are
always balanced, that is, d(ωn−1) = 0, where ω is the fundamental 2-form associated with a Hermitianmetric
and n is the complex dimension of themanifold. This fact has attracted attention in the reserch of non-Kähler
Calabi-Yau manifolds. Their de�nitions are as follows. Given a Hermitian manifold (Mn , J, g), there are two
canonical connections associated with g, the Chern connection∇ and the Levi-Civita connection D. Denote
R and RL the curvature tensor of these two connections respectively. Notice that in this whole paper, in the
almost Hermitian case M2n indicates that 2n = dimRM, in the Hermitian case Mn means that n = dimCM.

De�nition 1.1. (Kähler-like and G-Kähler-like [22]) AHermitianmetric gwill be called Kähler-like, if RXȲZW̄ =
RZȲXW̄ holds for any type (1, 0) tangent vectors X, Y, Z andW. Similarly, if RLXYZ̄W̄ = RLXYZW̄ = 0 for any type
(1, 0) tangent vectors X, Y, Z andW, we will say that g is Gray-Kähler-like, or G-Kähler-like for short.

The G-Kähler-like condition was �rstly introduced by Gray in [8]. Yang and Zheng showed that when R = RL,
then g is Kähler in [22, Theorem 1.1], and they also showed that when the Hermitian manifold is compact,
either condition, the Kähler-likeness or the G-Kähler-likeness, would imply that the metric is balanced.

Proposition 1.1. ([22, Theorem 1.3]) Let (Mn , J, g) be a compact Hermitian manifold. If it is either Kähler-like
or G-Kähler-like, then it must be balanced.

In this sence, the Kähler-likeness is more special than being balanced for compact Hermitianmanifolds. Note
that Vaisman has showed that any compact G-Kähler-like Hermitian surface is Kähler in [19].

Yang and Zheng have also shown that the folloing result in [22].
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Proposition 1.2. ([22, Theorem 3.1]) Let (Mn , J, g) be a Hermitian manifold that is Kähler-like. If Mn is com-
pact and admits a positive, ∂∂̄-closed (n − 2, n − 2)-form χ, then g is Kähler. In particular, if Mn is compact,
Kähler-like, and ∂∂̄(ωn−2) = 0, then g is Kähler. When n = 2, compactness implies that any Kähler-like metric
is Kähler.

In this paper, we generalize the result of Yang and Zheng in Proposition 1.2 from the category of Hermitian
manifolds to the category of almost Hermitian manifolds. We now extend their studies to almost Hermitian
geometry. Let (M, J) be an almost complex manifold and let g be an almost Hermitian metric on M. Let {Zr}
be an arbitrary local (1, 0)-frame around a �xed point p ∈ M and let {ζ r} be the associated coframe. Then
the associated real (1, 1)-form ω with respect to g takes the local expression ω =

√
−1grk̄ζ

r ∧ ζ k̄. We will also
refer to ω as to an almost Hermitian metric.

We de�ne a Kähler-like almost Hermitian metric in the following as in [22, De�nition (Kähler-like and
G-Kähler-like)].

De�nition 1.2. Let (M2n , J, g) be an almost Hermitian manifold and let R∇ be the curvature tensor with
respect to the Chern connection∇ associated with g. An almost Hermitianmetric g will be called Kähler-like,
if R∇

XȲZW̄ = R∇
ZȲXW̄ holds for any type (1, 0)-tangent vectors X, Y, Z andW. When the almost Hermitianmetric

g is Kähler-like, the triple (M2n , J, g) will be called a Kähler-like almost Hermitian manifold.

When g is Kähler-like, by taking complex conjugations, we see that R is also symmetric with respect to its
second and fourth positions, thus obeying all the symmetries of the curvature tensor of a Kähler metric.

A quasi-Kähler structure is an almost Hermitian structure whose real (1, 1)-form ω satis�es (dω)(1,2) =
∂̄ω = 0 (cf. [5], [8], [18]). It is important for us to study quasi-Kählermanifolds since they include the classes of
almost Kählermanifolds and nearly Kählermanifolds. An almost Kähler or quasi-Kählermanifoldwith J inte-
grable is a Kähler manifold. We get a result that a metric is actually quasi-Kähler under the same assumption
as in Proposition 1.2 on an almost Hermitian manifold.

Theorem 1.1. Let (M2n , J, g) be a compact Kähler-like almost Hermitian manifold with n ≥ 2. If M2n admits
a positive ∂∂̄-closed (n −2, n −2)-form χ, then g is quasi-Kähler. In particular, ifM2n is compact, Kähler-like,
and ∂∂̄(ωn−2) = 0, then g is quasi-Kähler. When n = 2, compactness implies that any Kähler-like metric is
almost Kähler.

Note that in dimension 4, every quasi-Kählermanifold is almost Kähler. In general, there are known examples
of quasi-Kähler manifolds which are not almost Kähler. In particular, if a compact real 6-dimensional almost
HermitianmanifoldM6 admits a Kähler-likemetric that is non-quasi-Kähler, thenM6 cannot have any almost
pluriclosed metric.

The question how the geometry of compact almost Kähler manifolds can force the integrability of an al-
most complex structure has been investigated by many reserchers such as [6], [12] , [13], [14] and [15]. A well-
known conjecture of Goldberg states that compact Einstein almost Kähler manifolds are necessarily Kähler.
This conjecture is still open, but there are some partial results. Sekigawa has proven that the Goldberg con-
jecture is true if the Riemannian scalar curvature is non-negative in [16]. Especially in dimension 4, some
other results have been shown under some conditions. Likewise, we would like to consider how the geome-
try of compact Kähler-like almost Hermitian 4-manifolds can force the integrability of of an almost complex
structure below.

In the following a few cases, on a 2n-dimensional almost Hermitian manifold with an almost Hermitian
structure (J, g), we de�ne the curvature and the Ricci tensor with respect to the Levi-Civita connection D in
the following way for tangent vectors X, Y , Z andW:

RL(X, Y)Z = [DX , DY ]Z − D[X,Y]Z, RL(X, Y , Z,W) = g(RL(X, Y)Z,W),

ρ(X, Y) = tr(Z 7→ RL(Z, X)Y).

An almost Hermitian manifold (M, J, g) satisfying that (cf. [8], [9])
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(1) RL(X, Y , Z,W) = RL(X, Y , JZ, JW) for all vector �elds X, Y , Z,W is called an AH1-manifold;
(2) RL(X, Y , Z,W) = RL(X, Y , JZ, JW) + RL(X, JY , Z, JW) + RL(JX, Y , Z, JW) for all vector �elds X, Y , Z,W is

called an AH2-manifold;
(3) RL(X, Y , Z,W) = RL(JX, JY , JZ, JW) for all vector �elds X, Y , Z,W is called an AH3-manifold (or RK-

manifold (cf. [14], [15]).
Then we have AH1 ⊂ AH2 ⊂ AH3. Note that if an AH1-manifold is almost Kähler, then it is Kähler (cf. [8,
Theorem5.1]),which tells us that by combiningwithTheorem1.1,weget that a4-dimensional compactKähler-
like AH1-manifold is Kähler. Actually, we can obtain a stronger result by using the following result states that
there are no compact examples of strictly almost Kähler 4-manifolds satisfying the curvature condition (3).

Proposition 1.3. (cf. [2, Theorem 2]) A 4-dimensional compact almost Kähler AH3-manifold is Kähler.

Combining Theorem 1.1 and Proposition 1.3, we get the following corollary.

Corollary 1.1. A 4-dimensional compact Kähler-like AH3-manifold is Kähler.

We introduce the following result.

Proposition 1.4. (cf. [21, Theorem 4.4]) Let (M, J, g) be an almost Kähler manifold with the fundamental
2-form ω(·, ·) = g(J·, ·). If (DJ)D = 0, then (g, J, ω) is a Kähler structure on M, where D is the Levi-Civita
connection with resprct to g.

By combining Theorem 1.1 and Proposition 1.4, we obtain the following corollary.

Corollary 1.2. Let (M4, J, g) be a 4-dimensional compact Kähler-like almost Hermitian manifold with the
fundamental 2-form ω(·, ·) = g(J·, ·). If (DJ)D = 0, then (J, g, ω) is a Kähler structure on M, where D is the
Levi-Civita connection with respect to g.

Notice that with the de�nition of static in [17, De�nition 9.1] and a corollary which states that 4-dimensional
compact static almost Kähler manifold is Kähler-Einstein [17, Corollary 9.5], we obtain the result that a 4-
dimensional compact static Kähler-like manifold is Kähler-Einstein. Here, we introduce the following results
for 4-dimentional almost Kähler manifolds in [6], [12].

Proposition 1.5. (cf. [6, Theorem 2]) A 4-dimensional compact almost Kähler manifold (M4, J, g) with J-
invariant and nonnegative de�nite Ricci tensor ρ is Kähler.

By applying Theorem 1.1 and Proposition 1.5, we then obtain the following corollary.

Corollary 1.3. A 4-dimensional compact Kähler-like almost Hermitian manifold (M4, J, g) with J-invariant
and nonnegative de�nite Ricci tensor ρ is Kähler.

For X ∈ T1,0M, the holomorphic sectional curvature is de�ned by

H(X) = R∇(X, X̄, X, X̄)
g(X, X̄)g(X, X̄)

,

where ∇ is the Chern connection associated to an almost Hermitian metric g and R∇ is the curvature with
respect to∇. The holomorphic sectional curvature is constant at a point p ∈ M if H(X) is a constant k(p) for
all X ∈ T1,0

p M. Note that if the constant k is the same at every point p ∈ M, we say that it is a globally constant,
and if H is constant at each point of M, we say it is pointwise constant.

Proposition 1.6. (cf. [12, Theorem 1.1]) A 4-dimensional closed almost Kähler manifold of globally constant
holomorphic sectional curvature k ≥ 0 is Kähler-Einstein.



On the Kähler-likeness on almost Hermitian manifolds | 369

By applying Theorem 1.1 and Proposition 1.6, we then get the following result.

Corollary 1.4. A 4-dimensional closed Kähler-like almost Hermitian manifold of globally constant holomor-
phic sectional curvature k ≥ 0 is Kähler-Einstein.

Notice that according to [12, Theorem 1.2], 4-dimensional closed Kähler-like almost Hermitian manifold of
pointwise constant holomorphic sectional curvature k < 0 with the J-invariant Ricci tensor ρ is Kähler-
Einstein.

We say that ametric g is an almost pluriclosedmetric if g is an almost Hermitianmetric whose associated
real (1, 1)-form ω satis�es ∂∂̄ω = 0 (cf. [10, De�nition 1.1]). From Theorem 1.1, we may say that if a compact
Kähler-like almost Hermitian manifold M6 admits an almost pluriclosed metric g, then g is actually a quasi-
Kähler metric and (M6, g) is a quasi-Kähler manifold.

It is well-known that if the complex structure is integrable, then the (2, 0)-part of the curvature tensor
for the Chern connection vanishes. Generally, the converse is not true, but if some curvature conditions are
assumed, then ChengJie has showed that the answer becomes a�rmative in [3]. The Ricci curvature is said to
be quasi-positive if it is nonnegative everywhere and strictly positive in any direction at (at least) one point.
Note that a compact Riemannian manifold of quasi-positive Ricci curvature admits metric of strictly positive
Ricci curvature (cf. [24]). In the following cases, we de�ne the curvature and the Ricci tensor with respect to
the Chern connection, see Section 2.2.

Proposition 1.7. (cf. [3, Theorem 1.2]) Let (M2n , J, g) be a compact quasi-Kählermanifold with quasi-positive
second Ricci curvature and parallel (2, 0)-part of the curvature tensor. Then, the manifold must be Kähler.

By combining Theorem 1.1 and Proposition 1.7, and that we have the �rst Ricci curvature coincide with the
second Ricci curvature under the assumption of the Kähler-likeness, we have the following corollary.

Corollary 1.5. Let (M2n , J, g) be a compact Kähler-like almostHermitianmanifoldwith quasi-positive second
Ricci curvature and parallel (2, 0)-part of the curvature tensor and n ≥ 2. If M2n admits a positive ∂∂̄-closed
(n − 2, n − 2)-form, then the manifold must be Kähler.

This paper is organized as follows: in section 2, we recall some basic de�nitions and computations. In the
last section, we prepare some lemmas for the torsion and the curvature, and then by applying these results,
we will prove the main theorem. Notice that we assume the Einstein convention omitting the symbol of sum
over repeated indexes in all this paper.

2 Preliminaries

2.1 The Nijenhuis tensor of the almost complex structure

LetM be a 2n-dimensional smooth di�erentiablemanifold. An almost complex structure onM is an endomor-
phism J of TM, J ∈ Γ(End(TM)), satisfying J2 = −IdTM. The pair (M, J) is called an almost complex manifold.
Let (M, J) be an almost complex manifold. We de�ne a bilinear map on C∞(M) for X, Y ∈ Γ(TM) by

4N(X, Y) := [JX, JY] − J[JX, Y] − J[X, JY] − [X, Y],

which is the Nijenhuis tensor of J. The Nijenhuis tensor N satis�es N(X, Y) = −N(Y , X), N(JX, Y) = −JN(X, Y),
N(X, JY) = −JN(X, Y), N(JX, JY) = −N(X, Y). For any (1, 0)-vector �elds W and V, N(V ,W) = −[V ,W](0,1),
N(V , W̄) = N(V̄ ,W) = 0 and N(V̄ , W̄) = −[V̄ , W̄](1,0) since we have 4N(V ,W) = −2([V ,W] +

√
−1J[V ,W]),

4N(V̄ , W̄) = −2([V̄ , W̄]−
√
−1J[V̄ , W̄]). An almost complex structure J is called integrable if N = 0 everywhere

on M. Giving a complex structure to a di�erentiable manifold M is equivalent to giving an integrable almost
complex structure to M. Let (M, J) be an almost complex manifold. A Riemannian metric g on M is called
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J-invariant if J is compatible with g, i.e., for any X, Y ∈ Γ(TM), g(X, Y) = g(JX, JY). In this case, the pair (J, g)
is called an almost Hermitian structure. The fundamental 2-form ω associated to a J-invariant Riemannian
metric g, i.e., an almost Hermitian metric, is determined by, for X, Y ∈ Γ(TM), ω(X, Y) = g(JX, Y). Indeed we
have, for any X, Y ∈ Γ(TM),

ω(Y , X) = g(JY , X) = g(J2Y , JX) = −g(JX, Y) = −ω(X, Y)

and ω ∈ Γ(
∧2 T*M). We will also refer to the associated real fundamental (1, 1)-form ω as an almost Her-

mitian metric. The form ω is related to the volume form dVg by n!dVg = ωn. Let a local (1, 0)-frame {Zr} on
(M, J) with an almost Hermitian metric g and let {ζ r} be a local associated coframe with respect to {Zr}, i.e.,
ζ i(Zj) = δij for i, j = 1, . . . , n. Since g is almostHermitian, its components satsfy gij = g ī j̄ = 0and gij̄ = g j̄i = ḡ īj.

With using these local frame {Zr} and coframe {ζ r}, we have

N(Z ī , Z j̄) = −[Z ī , Z j̄]
(1,0) =: Nkīj̄Zk , N(Zi , Zj) = −[Zi , Zj](0,1) = Nkīj̄Zk̄ ,

and
N = 1

2N
k
īj̄Zk̄ ⊗ (ζ i ∧ ζ j) + 1

2N
k
īj̄Zk ⊗ (ζ ī ∧ ζ j̄).

We write TRM for the real tangent space of M. Then its complexi�ed tangent space is given by TCM =
TRM ⊗R C. By extending J C-linearly and g, ω C-bilinearly to TCM, they are also de�ned on TCM and we
observe that the complexi�ed tangent space TCM can be decomposed as TCM = T1,0M ⊕ T0,1M, where
T1,0M, T0,1M are the eigenspaces of J corresponding to eigenvalues

√
−1 and −

√
−1, respectively:

T1,0M = {X −
√
−1JX

∣∣X ∈ TM}, T0,1M = {X +
√
−1JX

∣∣X ∈ TM}.
Let ΛrM =

⊕
p+q=r Λ

p,qM for 0 ≤ r ≤ 2n denote the decomposition of complex di�erential r-forms into
(p, q)-forms, where Λp,qM = Λp(Λ1,0M)⊗ Λq(Λ0,1M),

Λ1,0M = {α +
√
−1Jα

∣∣α ∈ Λ1M}, Λ0,1M = {α −
√
−1Jα

∣∣α ∈ Λ1M}

and Λ1M denotes the dual of TM.
Let (M2n , J, g) be an almostHermitianmanifold. An a�ne connectionD on TM is called almostHermitian

connection if Dg = DJ = 0. For the almost Hermitian connection, we have the following Lemma (cf. [4], [7],
[20], [23]).

Lemma 2.1. Let (M, J, g) be an almost Hermitian manifold with dimRM = 2n. Then for any given vector
valued (1, 1)-form Θ = (Θi)1≤i≤n, there exists a unique almost Hermitian connection D on (M, J, g) such that
the (1, 1)-part of the torsion is equal to the given Θ.

If the (1, 1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the connction
is called the second canonical connection or the Chern connection. We will refer the connection as the Chern
connection and denote it by∇.

Now let∇ be the Chern connection on M. We denote the structure coe�cients of Lie bracket by

[Zi , Zj] =: BrijZr + B r̄ijZ r̄ = BrijZr − N rīj̄Z r̄ , , [Zi , Z j̄] =: Brij̄Zr + B r̄i j̄Z r̄ ,

[Z ī , Z j̄] =: Brīj̄Zr + B r̄ī j̄Z r̄ = −N rīj̄Zr + B r̄ī j̄Z r̄ ,

where we used that [Zi , Zj](0,1) = −N rīj̄Z r̄, [Z ī , Z j̄]
(1,0) = −N rīj̄Zr and then B r̄ij = −N rīj̄, B

r
īj̄ = −N rīj̄. Also we here

note that for instance, [Zi , Z j̄] = [Zi , Z j̄]
(1,0) + [Zi , Z j̄]

(0,1), where

[Zi , Z j̄]
(1,0) = 1

2 ([Zi , Z j̄] −
√
−1J[Zi , Z j̄]), [Zi , Z j̄]

(0,1) = 1
2 ([Zi , Z j̄] +

√
−1J[Zi , Z j̄]).

Notice that J is integrable if and only if the B r̄ij’s vanish.
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Note that for any p-form ψ, there holds that

dψ(X1, . . . , Xp+1) =
p+1∑
i=1

(−1)i+1Xi(ψ(X1, . . . , X̂i , . . . , Xp+1))

+
∑
i<j

(−1)i+jψ([Xi , Xj], X1, . . . , X̂i , . . . , X̂j , . . . , Xp+1)

for any vector �elds X1, . . . , Xp+1 on M (cf. [23]). We directly compute that

dζ s = −1
2B

s
klζ

k ∧ ζ l − Bskl̄ζ
k ∧ ζ l̄ + 1

2N
s
k̄l̄ζ

k̄ ∧ ζ l̄ .

According to the direct computation above, we may split the exterior di�erential operator d : ΛpM ⊗R C →
Λp+1M ⊗R C, into four components

d = A + ∂ + ∂̄ + Ā

with
∂ : Λp,qM → Λp+1,qM, ∂̄ : Λp,qM → Λp,q+1M,

A : Λp,qM → Λp+2,q−1M, Ā : Λp,qM → Λp−1,q+2M.

In terms of these components, the condition d2 = 0 can be written as

A2 = 0, ∂A + A∂ = 0, ∂̄Ā + Ā∂̄ = 0, Ā2 = 0,

A∂̄ + ∂2 + ∂̄A = 0, AĀ + ∂∂̄ + ∂̄∂ + ĀA = 0, ∂Ā + ∂̄2 + Ā∂ = 0.

For any real (1, 1)-form η =
√
−1ηij̄ζ

i ∧ ζ j̄, we have

∂η =
√
−1
2

(
Zi(ηjk̄) − Zj(ηik̄) − Bsijηsk̄ − B

s̄
ik̄ηjs̄ + B s̄jk̄ηis̄

)
ζ i ∧ ζ j ∧ ζ k̄ ,

∂̄η =
√
−1
2

(
Z j̄(ηkī) − Z ī(ηkj̄) − B

s
kīηsj̄ + Bskj̄ηsī + B s̄ī j̄ηks̄

)
ζ k ∧ ζ ī ∧ ζ j̄ .

From these computations above, we have

∂ω =
√
−1
2

(
Zi(gjk̄) − Zj(gik̄) − Bsijgsk̄ − B

s̄
ik̄gjs̄ + B s̄jk̄gis̄

)
ζ i ∧ ζ j ∧ ζ k̄

and
∂̄ω =

√
−1
2

(
Z j̄(gkī) − Z ī(gkj̄) − B

s
kīgsj̄ + Bskj̄gsī + B s̄ī j̄gks̄

)
ζ k ∧ ζ ī ∧ ζ j̄ .

2.2 The torsion and the curvature on almost complex manifolds

Since the Chern connection∇ preserves J, we are able to de�ne the Christo�el symbols: for i, j, r = 1, . . . , n,

∇iZj = ∇ZiZj = Γ rijZr , ∇iZ j̄ = ∇ZiZ j̄ = Γ r̄i j̄Z r̄ ,

where
Γ rij = grs̄Zi(gjs̄) − grs̄gjl̄B

l̄
is̄ , Γpip = Zi(log det g) − B s̄is̄ .

The torsion T = (T i) of the Chern connection∇ is de�ned by

T i := dζ i − ζ p ∧ γ ip , T ī := dζ ī − ζ p̄ ∧ γ īp̄ ,

where γ = (γ ij ) is the connection formde�nedby γ ij := Γ ikjζ
k+Γ ik̄jζ

k̄. Since the torsion T of theChern connection
∇ has no (1, 1)-part;

0 = T ikl̄ = T i(Zk , Z l̄) = −ζ i([Zk , Z l̄]) − (Γ ispζ p ∧ ζ s + Γ is̄pζ p ∧ ζ s̄)(Zk , Z l̄) = −Bikl̄ − Γ
i
l̄k
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0 = T īkl̄ = T ī(Zk , Z l̄) = −ζ ī([Zk , Z l̄]) − (Γ īsp̄ζ p̄ ∧ ζ s + Γ īs̄p̄ζ p̄ ∧ ζ s̄)(Zk , Z l̄) = −B īkl̄ + Γ īkl̄ ,

we have
Γ r̄i j̄ = B r̄i j̄ .

Here note that Bq̄jb̄, B
q
j̄b’s do not depend on g, which depend only on J since themixed derivatives∇jZb̄ do not

depend on g (cf. [20]).
The torsion T of∇ has no (1, 1)-part and the only non-vanishing components are as follows:

Tsij = Ts(Zi , Zj) = −ζ s([Zi , Zj]) − (Γ ispζ p ∧ ζ s + Γ is̄pζ p ∧ ζ s̄)(Zi , Zj) = −Bsij − Γsji + Γsij ,

T s̄ij = T s̄(Zi , Zj) = dζ s̄(Zi , Zj) = −ζ s̄([Zi , Zj]) = −B s̄ij

and on the other hand we have dζ s̄(Zi , Zj) = N s̄ij, hence we obtain that T s̄ij = N s̄ij = −B s̄ij. These computations
tell us that T splits in T = T′ + T′′, where T′ ∈ Γ(Λ2,0M ⊗ T1,0M), a section of Λ2,0M ⊗ T1,0M, and T′′ ∈
Γ(Λ2,0M ⊗ T0,1M). The torsion T = (T i) can be split into T = T(2,0) + T(1,1) + T(0,2) = T(2,0) + T(0,2) since
T(1,1) = 0, where T(2,0) =

(
1
2T

i
jkζ

j ∧ ζ k
)

1≤i≤n
, T(0,2) =

(
1
2N

i
j̄k̄ζ

j̄ ∧ ζ k̄
)

1≤i≤n
, which tells us that (0, 2)-part of

the Chern connection is uniquely determined by the Nijenhuis tensor (cf. [22]). Let (M, J, g) be an almost
Hermitian manifold. Let {Zr} be a local (1, 0)-frame with respect to g and let {ζ r} be the associated coframe.
Then the associated real (1, 1)-form ωwith respect to g takes the local expression ω =

√
−1ζ r∧ ζ r̄. With using

these notations, we may write

(\) dω =
√
−1(dζ r ∧ ζ r̄ − ζ r ∧ dζ r̄)

=
√
−1{(−γrp ∧ ζ p + Tr) ∧ ζ r̄ − ζ r ∧ (−γ r̄p̄ ∧ ζ p̄ + T r̄)}

=
√
−1(−γrp ∧ ζ p ∧ ζ r̄ + Tr ∧ ζ r̄ − ζ r ∧ γpr ∧ ζ p̄ − ζ r ∧ T r̄)

=
√
−1(Tr ∧ ζ r̄ − ζ r ∧ T r̄ − γrp ∧ ζ p ∧ ζ r̄ + γpr ∧ ζ r ∧ ζ p̄)

=
√
−1(Tr ∧ ζ r̄ − ζ r ∧ T r̄)

=
√
−1
2 (Nkīj̄ζ

k̄ ∧ ζ ī ∧ ζ j̄ − Nkīj̄ζ
k ∧ ζ i ∧ ζ j + Tkijζ k̄ ∧ ζ i ∧ ζ j + T k̄j̄ īζ

k ∧ ζ ī ∧ ζ j̄),

where we used the skew-Hermitian property γpr + γ r̄p̄ = 0, which can be obtained with using∇g = 0 (cf. [18]).
This expression (\) implies that we have

∂ω =
√
−1
2 Tkijζ i ∧ ζ j ∧ ζ k̄ =

√
−1(Tk)(2,0) ∧ ζ k̄

and
∂̄ω =

√
−1
2 T k̄j̄ īζ

k ∧ ζ ī ∧ ζ j̄ = −
√
−1(T k̄)(0,2) ∧ ζ k ,

where we put
(Tk)(2,0) := 1

2T
k
ijζ i ∧ ζ j , (T k̄)(0,2) := 1

2T
k̄
ī j̄ζ

ī ∧ ζ j̄ = (Tk)(2,0).

Note that T′′ depends only on J and it can be regarded as the Nijenhuis tensor of J, that is, J is integrable if
and only if T′′ vanishes.

We denote by Ω the curvature of the Chern connection ∇. We can regard Ω as a section of Λ2M ⊗ TM,
Ω ∈ Γ(Λ2M ⊗ TM) and Ω splits in

Ω = Ω(2,0) + Ω(1,1) + Ω(0,2) = H + R + H̄,

with
Ω(2,0) =

(1
2H

j
kli ζ

k ∧ ζ l
)
, Ω(1,1) =

(
R j
kl̄i ζ

k ∧ ζ l̄
)
, Ω(0,2) =

(1
2H

j
k̄l̄i ζ

k̄ ∧ ζ l̄
)
,

where R ∈ Γ(Λ1,1M⊗Λ1,1M), H ∈ Γ(Λ2,0M⊗Λ1,1M). The curvature form can bewritten byΩij = dγ ij +γ is∧γsj .
Then the Chern-Ricci form is (

√
−1Ωii) ∈ 2πc1(M, J) ∈ H2(M,R), where c1(M, J) is the �rst Chern class of

(M, J).
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In terms of Zr’s, we have

R r
ij̄k = Ωrk(Zi , Z j̄) = Zi(Γ rj̄k) − Z j̄(Γ

r
ik) + Γ risΓsj̄k − Γ

r
j̄sΓ

s
ik − B

s
ij̄Γ

r
sk + B s̄j̄iΓ

r
s̄k ,

H r
ijk = Ωrk(Zi , Zj) = Zi(Γ rjk) − Zj(Γ rik) + Γ risΓsjk − Γ

r
jsΓsik − B

s
ijΓ

r
sk − B

s̄
ijΓ

r
s̄k ,

H r
īj̄k = Ωrk(Z ī , Z j̄) = Z ī(Γ

r
j̄k) − Z j̄(Γ

r
īk) + Γ rīsΓ

s
j̄k − Γ

r
j̄sΓ

s
īk − B

s
īj̄Γ

r
sk − B

s̄
ī j̄Γ

r
s̄k ,

and we deduce that with using Γpkp = Zk(log det g) − Bp̄kp̄,

Pij̄ = R r
ij̄r = −(ZiZ j̄ − [Zi , Z j̄]

(0,1))(log det g) + Z j̄(B
r̄
ir̄) + Zi(Brj̄r) + Bsij̄B

r̄
sr̄ − B s̄ij̄B

r
s̄r

Rij = H r
ijr = [Zi , Zj](0,1)(log det g) − Zi(B r̄jr̄) + Zj(B r̄ir̄) + BsijB r̄sr̄ + Nsīj̄B

r
s̄r

and
R ī j̄ = H r

īj̄r = −[Z ī , Z j̄]
(1,0)(log det g) + Z ī(B

r
j̄r) − Z j̄(B

r
īr) − N

s
īj̄B

r̄
sr̄ − B s̄ī j̄B

r
s̄r .

Note that by computing with using a local g-unitary (1, 0)-frame {Zr}, we obtain the following formula (cf.
[11, Lemma 2.3]):

Rij̄kl̄ = g(∇i∇j̄Zk −∇j̄∇iZk −∇[Zi ,Z j̄ ]Zk , Z l̄).

The Chern-Ricci form Ric(ω) is de�ned by

Ric(ω) :=
√
−1
2 Rklζ k ∧ ζ l +

√
−1Pkl̄ζ

k ∧ ζ l̄ +
√
−1
2 Rk̄l̄ζ

k̄ ∧ ζ l̄ .

It is a closed real 2-form. If J is integrable, it is a closed real (1, 1)-form. If furthermore, J is integrable and
dω = 0, then the Chern-Ricci form coincides with the Ricci form de�ned by the Levi-Civita connection of ω.
Wedenote by S one of theRicci-type curvatures of the Chern curvature,which is called the �rst Ricci curvature
and with an arbitrary (1, 0)-frame {Zr} with respect to g, is locally given by Sij̄ = gkl̄Ωkl̄ij̄. The curvature P
is one of the Ricci-type curvatures of the Chern curvature, which is called the second Ricci curvature of the
almost Hermitian metric g, and is locally given by Pij̄ = gkl̄Ωij̄kl̄. In the Kähler-like case, since the curvature
tensor R then satis�es all the symmetries of the curvature tensor of a Kähler metric, the �rst and second Ricci
curvature coincides with each other; Sij̄ = Pij̄, and then we call it the Ricci curvature.

3 Proof of Theorem 1.1
Let (M2n , J, g) be an almost Hermitian manifold. Let {Zr} be a local unitary (1, 0)-frame with respect to g
around a �xed point p ∈ M and let {ζ r} be the associated coframe. Note that unitary frames always exist
locally since we can take any frame and apply the Gram-Schmidt process. Then with respect to such a frame,
we have gij̄ = δij, Zk(gij̄) = 0. By using a local g-unitary (1, 0)-frame, the Christo�el symbols satisfy Γkij =
−Γ j̄ik̄ = −B j̄ik̄ (cf. [10, Lemma 2.2]), and the components of the torsion can be written as Tkij = −B j̄ik̄ + B ījk̄ − B

k
ij

and the components of w can be written as wj = −Brjr − B r̄jr̄ + B j̄rr̄ .
In order to prove Theorem 1.1, we prepare the following lemmas. The �rst one below can be obtained

easily to see the expression of (\) in section 2.

Lemma 3.1. (cf. [18, Lemma 2.4]) An almost Hermitian manifold (M2n , J, g) is quasi-Kähler if and only if
Tkij = 0 for all i, j and k when a local unitary (1, 0)-frame is �xed.

We can have the following result as in [22, Lemma 5].

Lemma 3.2. Given an almost Hermitian manifold (M2n , J, g), g is Kähler-like if and only if Ω(1,1) ∧ ζ = 0.



374 | Masaya Kawamura

Proof. Assume that g is Kähler-like. Then since we have R j
kl̄i = R j

il̄k , we obtain

Ω(1,1) ∧ ζ = R j
kl̄i ζ

k ∧ ζ l̄ ∧ ζ i

= R j
il̄k ζ

k ∧ ζ l̄ ∧ ζ i

= −R j
il̄k ζ

i ∧ ζ l̄ ∧ ζ k

= −R j
kl̄i ζ

k ∧ ζ l̄ ∧ ζ i .

Hence we have Ω(1,1) ∧ ζ = 0. Conversely, if Ω(1,1) ∧ ζ = R j
kl̄i ζ

k ∧ ζ l̄ ∧ ζ i = 0, then we have

0 = R j
kl̄i ζ

k ∧ ζ l̄ ∧ ζ i

= 1
2 (R j

kl̄i − R
j

il̄k )ζ k ∧ ζ l̄ ∧ ζ i ,

which tells us that R j
kl̄i = R j

il̄k and g is Kähler-like.

Now we give a proof of Theorem 1.1.

Proof. (Theorem 1.1) Suppose that (M2n , J, g) be a compact Kähler-like almost Hermitianmanifoldwith n ≥ 2.
Let {Zr} be a local unitary (1, 0)-frame with respect to g and let {ζ r} be the associated coframe. Then the
associated real (1, 1)-formωwith respect to g takes the local expressionω =

√
−1ζ r∧ζ r̄. Aswe see in section 2,

we thenhave ∂ω =
√
−1(Tk)(2,0)∧ζ k̄,where (Tk)(2,0) = 1

2T
k
ijζ i∧ζ j.We compute byusing that dζ i = −γ ip∧ζ p+T i,

dγ ij = −γ is ∧ γsj + Ωij, then we have

dT i = −d(ζ p ∧ γ ip)
= −dζ p ∧ γ ip + ζ p ∧ dγ ip
= −(Tp − γps ∧ ζ s) ∧ γ ip + ζ p ∧ (Ωip − γ is ∧ γsp)
= −Tp ∧ γ ip + ζ p ∧ Ωip + γps ∧ ζ s ∧ γ ip − ζ p ∧ γ is ∧ γsp
= −Tp ∧ γ ip + ζ p ∧ Ωip ,

where at the �fth line, we used that

γps ∧ ζ s ∧ γ ip − ζ p ∧ γ is ∧ γsp = γps ∧ ζ s ∧ γ ip − ζ s ∧ γ ip ∧ γps = γps ∧ ζ s ∧ γ ip − γps ∧ ζ s ∧ γ ip = 0.

Then a direct calculation shows that since we have dTk = −Tp ∧ γkp + ζ p ∧ Ωkp, we obtain

d∂ω = d(
√
−1(Tk)(2,0) ∧ ζ k̄)

=
√
−1dTk ∧ ζ k̄ +

√
−1(Tk)(2,0) ∧ dζ k̄

=
√
−1(−Tp ∧ γkp + ζ p ∧ Ωkp) ∧ ζ k̄ +

√
−1(Tk)(2,0) ∧ (T k̄ − γ k̄s̄ ∧ ζ s̄)

=
√
−1ζ p ∧ Ωkp ∧ ζ k̄ +

√
−1(Tk)(2,0) ∧ T k̄ −

√
−1Tp ∧ γkp ∧ ζ k̄ −

√
−1(Tk)(2,0) ∧ γ k̄s̄ ∧ ζ s̄

=
√
−1Ωkp ∧ ζ p ∧ ζ k̄ +

√
−1(Tk)(2,0) ∧ T k̄ −

√
−1Tp ∧ γkp ∧ ζ k̄ +

√
−1(Tk)(2,0) ∧ γsk ∧ ζ

s̄ ,

where we used the skew-Hermitian property γpk + γ k̄p̄ = 0 at the �fth line. From the Kähler-likeness, as in the
proof of Lemma 3.2, we have

(Ωkp ∧ ζ p ∧ ζ k̄)(2,2) = R k
ij̄p ζ i ∧ ζ j̄ ∧ ζ p ∧ ζ k̄ = 0.

We also have that

−
√
−1(Tp ∧ γkp ∧ ζ k̄)(2,2) +

√
−1((Tk)(2,0) ∧ γsk ∧ ζ

s̄)(2,2)

=
√
−1
2 (−TpijΓ

k
s̄pζ i ∧ ζ j ∧ ζ s̄ ∧ ζ k̄ + TkijΓsr̄kζ

i ∧ ζ j ∧ ζ r̄ ∧ ζ s̄) = 0.
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By combining these, we then obtain that
√
−1(d∂ω)(2,2) = −((Tk)(2,0) ∧ T k̄)(2,2) = −(Tk)(2,0) ∧ (T k̄)(0,2) = −(Tk)(2,0) ∧ (Tk)(2,0).

Here, note that the exterior di�erential operator d is splitted into four components; d = A + ∂ + ∂̄ + Ā.
We have that ∂ω ∧ Aχ = 0, ∂ω ∧ Āχ = 0 and ∂ω ∧ ∂χ = 0. Hence we have ∂ω ∧ dχ = ∂ω ∧ ∂̄χ. Also we have
A(ω∧ ∂̄χ) = 0, Ā(ω∧ ∂̄χ) = 0 and ∂̄(ω∧ ∂̄χ) = 0, which tells us that d(ω∧ ∂̄χ) = ∂(ω∧ ∂̄χ). SinceM is supposed
to be compact, by integrating over M and applying the Stokes Theorem, we have

0 =
∫
M

d(∂ω ∧ χ) =
∫
M

(d∂ω)(2,2) ∧ χ −
∫
M

∂ω ∧ dχ =
∫
M

(d∂ω)(2,2) ∧ χ −
∫
M

∂ω ∧ ∂̄χ,

0 =
∫
M

d(ω ∧ ∂̄χ) =
∫
M

∂(ω ∧ ∂̄χ) =
∫
M

∂ω ∧ ∂̄χ +
∫
M

ω ∧ ∂∂̄χ,

where note that d∂ω ∧ χ = (d∂ω)(2,2) ∧ χ since χ is (n − 2, n − 2)-form. Hence we have∫
M

√
−1(d∂ω)(2,2) ∧ χ =

∫
M

√
−1∂ω ∧ ∂̄χ = −

∫
M

√
−1ω ∧ ∂∂̄χ.

By combining these with the assumption that χ is a positive ∂∂̄-closed (n − 2, n − 2)-form, we obtain that∫
M

(Tk)(2,0) ∧ (Tk)(2,0) ∧ χ =
∫
M

√
−1ω ∧ ∂∂̄χ = 0,

where note that (Tk)(2,0)∧(Tk)(2,0) is a global, nonnegative torsion (2, 2)-formonM. Therefore,wehave Tkij = 0
for all i, j and k, which implies that g is quasi-Kähler from Lemma 3.1.
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