
Open Access. © 2018 Yamada, published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Complex Manifolds 2018; 5: 150–157

Complex Manifolds

Research Article

Takumi Yamada*

Complex structures on the complexi�cation
of a real Lie algebra
https://doi.org/10.1515/coma-2018-0010
Received April 28, 2018; accepted July 18, 2018.

Abstract: Let g = a+b be a Lie algebra with a direct sum decomposition such that a and b are Lie subalgebras.
Then, we can construct an integrable complex structure J̃ on h = R(gC) from the decomposition, where R(gC)
is a real Lie algebra obtained from gC by the scalar restriction. Conversely, let J̃ be an integrable complex
structure on h = R(gC). Then, we have a direct sum decomposition g = a + b such that a and b are Lie
subalgebras. We also investigate relations between the decomposition g = a + b and dimHs,t

∂̄ J̃
(hC).
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1 Introduction
S. Salamon [6] classi�ed real 6-dimensional nilpotent Lie algebras for which the corresponding Lie group
has a left-invariant complex structure, and estimated the dimensions of moduli spaces of such structures.
The classi�cation of complex structures on nilpotent Lie algebras provides the classi�cation of invariant
complex structures on nilmanifolds. Invariant complex structures on 6-dimensional nilmanifolds have been
classi�ed ([1, 2, 8]). Nakamura [4] has computed Hodge numbers of small deformations on compact complex
parallelizable solvmanifolds to investigate rigidities of small deformations. However, for higher dimensional
cases, the situation looks far from the completely understanding.

Let g be a real Lie algebra and gC the complexi�cation of g. In previous papers [10, 12], we considered the
case where g has a direct sum decomposition g = a + b such that a and b are Lie subalgebras of g. Then, we
can construct an integrable complex structure J̃ on h = R(gC) from the decomposition, where R(gC) is a real
Lie algebra obtained from gC by the scalar restriction. We also studied relations between the decomposition
and dimHs,t

∂̄ J̃
(hC) for investigating the complex structure J̃ (see e.g. [10, Theorems 3.2, 3.3]), and constructed

direct sum decompositions n = a + b on a nilpotent Lie algebra n such that a and b are subalgebras by using
root systems and T-root systems ([11, Section.4],[12]).

In this paper, we consider integrable complex structures on a real Lie algebra h = R(gC) and relations
between the decomposition g = a + b and dimHs,t

∂̄ J̃
(hC). We use the notation Hs,t

∂̄ (gJ̃) instead of Hs,t
∂̄ J̃

(hC) to

emphasize g and J̃. We mainly prove the following:

Theorem 1.1. There exists one-to-one correspondence between the direct sum decompositions g = a + b such
that a and b are subalgebras and the integrable complex structures on h = R(gC).
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Theorem 1.2.
Hs,t
∂̄ (gJ̃) ≅ Hs,t

∂̄ (g−J̃)

for each s, t.

By this theorem, we have that if dimHs,t
∂̄ (gJ̃) is expressed by data of a and b, then wemay change the roles of

a and b (see Section 4 for the detail). Let N be a simply connected real nilpotent Lie group and Γ a lattice in N.
If a left-invariant complex structure J on N is Γ -rational, then Hs,t

∂̄J
(Γ /N) ≅ Hs,t

∂̄J
(nC) for each s, t ([3]). Thus,

results on Hs,t
∂̄ (nC) of the nilpotent Lie algebra with rational complex structures yield results on Hs,t

∂̄ (Γ /N)
of a compact nilmanifold with invariant rational complex structures.

2 Preliminaries
In this section, we recall integrability conditions of an almost left-invariant complex structure on a Lie group.

Let H be a real Lie group and h its Lie algebra. A left-invariant almost complex structure on H can be
identi�ed with a linear mapping J ∶ h Ð→ h such that J2 = −id. We denote h±J the vector spaces of the ±

√
−1

eigenvectors of the almost complex structure J, respectively. We denote by H∗,∗
∂̄J

(hC) the cohomology ring of
the di�erential bigraded algebra⋀∗,∗(hC)∗, associated to hC with respect to the operator ∂̄J in the canonical
decomposition d = ∂J + ∂̄J on⋀∗,∗(hC)∗ for an integrable complex structure J.

The almost complex structure J is said to be integrable if

NJ(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] − [JX, JY] = 0

for all X, Y ∈ h. We shall refer to a pair (h, J) consisting of a Lie algebra and an integrable almost complex
structure simply as a Lie algebra with a complex structure. The equation NJ(X, Y) = 0 holds for all X, Y ∈ h

if and only if d(⋀ 1,0
J ) ⊂ ⋀ 2,0

J ⊕ ⋀ 1,1
J (cf. [6, pp.313–pp.314]). On the other hand, the following equivalent

condition is also well known (see e.g. [7, Section.1], [5, Proposition.1]):

Proposition 2.1. A real Lie group H has an integrable left-invariant complex structure if and only if hC admits
a direct sum decomposition

h
C = q⊕ τq,

where q is a complex subalgebra of hC, and τ is the complex conjugation.

In fact, let q be a subalgebra of hC which satis�es the condition in the proposition. Then, J̃ = −
√
−1 idq ⊕√

−1 idτq is an integrable complex structure. Conversely, for a given integrable left-invariant complex struc-
ture J̃, let q be the subspace of hC de�ned by

q = {X +
√
−1J̃X X ∈ h}.

Then, q is a subalgebra satisfying hC = q⊕ τq.

Proposition 2.2. Let J be an Ad-invariant complex structure on h. Assume that there exist subalgebras k and
m of h such that

h = k +m, k ∩m = {0}, J(k) ⊂ k, J(m) ⊂ m.

Put
q = spanC{X −

√
−1JX, Y +

√
−1JY X ∈ k, Y ∈ m}.

Then, q is a subalgebra of hC satisfying hC = q ⊕ τq, and J̃ = −
√
−1 idq ⊕

√
−1 idτq is an integrable complex

structure.

Proof. Since ad(X) ○ J = J ○ ad(X), q is a subalgebra of hC.
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In the proposition, note that

X −
√
−1JX = X +

√
−1J̃X, Y +

√
−1JY = Y +

√
−1J̃Y

for X ∈ k, Y ∈ m.

3 Decompositions and Complex structures
In this section, we consider the case of h is a real Lie algebra obtained from the scalar restriction of the
complexi�cation of a real Lie algebra.

Let g be a real Lie algebra and gC the complexi�cation of g. We can consider the complex Lie algebra gC

as a real Lie algebra R(gC)with the Ad-invariant complex structure J, where R(gC) is the scalar restriction of
gC. Put h = R(gC). We will denote the extension of J to a C-linear transformation of hC by the same letter J.
Then, we have a direct sum decomposition

h
C = h

+
J + h

−
J , τh

+
J = h

−
J .

Note that f ∶ gC Ð→ h+J ;X ↦ 1
2(X −

√
−1JX) is an isomorphism between complex Lie algebras, and h+J ≅ h−J .

Indeed, let {X1, . . . , Xn} be a basis of g. Assume that [Xi , Xj] = ∑k ckijXk for each i, j, where ckij ∈ R. Then, we
see

[Xi −
√
−1JXi , Xj −

√
−1JXj] = 2([Xi , Xj] −

√
−1J[Xi , Xj])

= 4∑
k
ckij

1
2
(Xk −

√
−1JXk).

Let g = a+b be a direct sum decomposition such that a and b are Lie subalgebras. We de�ne another complex
structure J̃ on h by

J̃ =
⎧⎪⎪⎨⎪⎪⎩

−J on R(aC)
J on R(bC).

Then, J̃ is integrable by Proposition 2.2 (cf. [11, 12]). Indeed, put

q = spanC{X −
√
−1JX, Y +

√
−1JY X ∈ R(aC), Y ∈ R(bC)}.

Then, q is a complex subalgebera of hC, and J̃ satis�es

J̃ = −
√
−1 idq ⊕

√
−1 idτq.

We shall call that J̃ is the complex structure corresponding to the decomposition g = a+b. Note that f(a) and
f(b) are real subalgebras of h∓J̃ , respectively.

Conversely, let J̃ be another integrable complex structure on h. Then, we have another direct sum
decomposition

h
C = h

+
J̃ + h

−
J̃ , τh

+
J̃ = h

−
J̃ .

Since J̃ is integrable, h+J̃ and h−J̃ are subalgebras. Then, we have

h+J = h+J ∩ hC

= h+J ∩ (h+J̃ + h−J̃ )
= (h+J ∩ h−J̃ ) + (h+J ∩ h+J̃ ).

Notice that h+J ∩ h−J̃ and h+J ∩ h+J̃ are complex subalgebras. Put

v = f(g) ∩ (h+J ∩ h−J̃ ) ⊂ h−J̃ ∩ f(g),
w = f(g) ∩ (h+J ∩ h+J̃ ) ⊂ h+J̃ ∩ f(g).
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Then, we have that v andw are real subalgebras which satisfy that

v +w = f(g), v ∩w = {0},

and
v
C = f(g)C ∩ (h+J ∩ h

−
J̃ ) = h

+
J ∩ h

−
J̃ ⊂ h

−
J̃ ,

wC = f(g)C ∩ (h+J ∩ h+J̃ ) = h+J ∩ h+J̃ ⊂ h+J̃ .

Put a = f−1(v), b = f−1(w). Then, a and b are subalgebras of g which satisfy that

a + b = g, a ∩ b = {0},

and the complex structure on h corresponding to the decomposition g = a+ b is J̃ because v ⊂ h−J̃ ,w ⊂ h+J̃ and
dimC h

+
J̃ = dimR v + dimRw.

Thus, we have the following:

Theorem 3.1. Let g be a real Lie algbera. There exists one-to-one correspondence between the direct sum
decompositions g = a+b such that a and b are subalgebras and the integrable complex structures on h = R(gC).

Remarks 3.2. (i) In the paper [11], we consider the case of g = (t ⋉ k) ⋉ b′, where t is abelian, k is an ideal of
t⋉ k, and b′ is an ideal of g. This is a special case of a direct sum decomposition of the above form g = a+ b

because a = k and b = t ⋉ b′ are subalgebras.
(ii) In the papers [11, 12], we construct direct sum decompositions n = a + b on a nilpotent Lie algebras n such

that a and b are subalgebras by using root systems and T-root systems. For example, we can construct the
following left-invariant complex structures on a real 6-dimensional nilpotent Lie group from the viewpoint
of the root system of type A2:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 z1 z3

0 1 z2

0 0 1

⎞
⎟⎟
⎠

zi ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 z̄1 z3

0 1 z2

0 0 1

⎞
⎟⎟
⎠

zi ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 z1 z̄3

0 1 z̄2

0 0 1

⎞
⎟⎟
⎠

zi ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 z̄1 z̄3

0 1 z̄2

0 0 1

⎞
⎟⎟
⎠

zi ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

4 Hodge numbers
In this section, we consider relations between the decomposition g = a + b and dimHs,t

∂̄ (gJ̃).
Let g be a real Lie algebra with a direct decomposition

g = a + b,

where a and b are Lie subalgebras of g. Take a basis of the Lie subalgebras a and b:

a = spanR{U
1
1 , . . . , U1

p},
b = spanR{V

1
1 , . . . , V1

q}.

Consider the complexi�cation gC of g. Since gC = g +
√
−1g, the scalar restriction R(gC) has the following

basis:
{U1

1 , . . . , U1
p , V1

1 , . . . , V1
q , U2

1 , . . . , U2
p , V2

1 , . . . , V2
q},

where U2
i =

√
−1U1

i , V2
j =

√
−1V1

j . Let

{α1
1, . . . ,α1

p , β1
1 , . . . , β1

q ,α2
1, . . . ,α2

p , β2
1 , . . . , β2

q}
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be the dual basis of
{U1

1 , . . . , U1
p , V1

1 , . . . , V1
q , U2

1 , . . . , U2
p , V2

1 , . . . , V2
q}.

Let J be the complex structure on h = R(gC) de�ned by

JU1
i = U2

i (JU2
i = −U1

i ), JV1
j = V2

j (JV2
j = −V1

j )

for each i, j. Put
λi = α

1
i +

√
−1α2

i , µj = β
1
j +

√
−1β2

j

for each i, j. We can assume that

dλi = −∑
k,h

Ci
khλk ∧ λh −∑

k,s
Di
ksλk ∧ µs , dµj = −∑

s,t
Ejstµs ∧ µt −∑

k,s
F jksλk ∧ µs

for each i, j, where Ci
kh , D

i
ks , E

j
st , F

j
ks ∈ R. Note that (R(gC), J) is a complex Lie algebra.

We consider another complex structure J̃ on h = R(gC), which appeared in the previous section, de�ned
by

J̃U1
i = −U2

i (J̃U2
i = U1

i ), J̃V1
j = V2

j (J̃V2
j = −V1

j )

for each i, j. Put
ξi = α

1
i −

√
−1α2

i , ηj = β
1
j +

√
−1β2

j

for each i, j. Then, ξi , ηj ∈ ⋀1,0
J̃ , and

∂̄ξi = −∑
k,s

Di
ksξk ∧ η̄s , ∂̄ηj = −∑

k,s
F jks ξ̄k ∧ ηs , (1)

∂̄ξ̄i = −∑
k,h

Ci
kh ξ̄k ∧ ξ̄h , ∂̄η̄j = −∑

s,t
Ejstη̄s ∧ η̄t .

We can consider a complex structure −J̃ instead of J̃, which corresponds to changing the roles of a and b.
Then, we have the following:

Theorem 4.1.
Hs,t
∂̄ (gJ̃) ≅ Hs,t

∂̄ (g−J̃)

for each s, t.

Proof. Note that ξi = λ̄i , ηj = µj ∈ ⋀1,0
J̃ , and ξ′i = λi , η′j = µ̄j ∈ ⋀1,0

−J̃ . Since C
i
kh , D

i
ks , E

j
st , F

j
ks are real numbers, we

have
dξi = dλ̄i = −∑

k,h
Ci
khλ̄k ∧ λ̄h −∑

k,s
Di
ksλ̄k ∧ µ̄s

= −∑
k,h

Ci
khξk ∧ ξh −∑

k,s
Di
ksξk ∧ η̄s ,

dηj = dµj = −∑
s,t

Ejstηs ∧ ηt −∑
k,s

F jks ξ̄k ∧ ηs ,

dξ′i = dλi = −∑
k,h

Ci
khξ

′
k ∧ ξ

′
h −∑

k,s
Di
ksξ

′
k ∧ η̄′s ,

dη′j = dµ̄j = −∑
s,t

Ejstµ̄s ∧ µ̄t −∑
k,s

F jksλ̄k ∧ µ̄s

= −∑
s,t

Ejstη
′
s ∧ η

′
t −∑

k,s
F jks ξ̄′k ∧ η

′
s .

Thus, {ξi , ηj} and {ξ′i , η′j} satisfy the same structure equations. Hence, Hs,t
∂̄ (gJ̃) ≅ Hs,t

∂̄ (g−J̃) for each s, t.

By this theorem, we see that if dimHs,t
∂̄ (gJ̃) is expressed by data of a and b, then we may change the roles of

a and b as the following theorems. We denote dimHs,t
∂̄ (gJ̃) by hs,t(gJ̃).
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Let ga, gb be real Lie algebras such that g∗a = span{µ0
1, . . . , µ0

p, ν0
1 , . . . , ν0

q} and g∗b = span{µ1
1, . . . , µ1

p,
ν1

1 , . . . , ν1
q} have the structure equations

dµ0
i = −∑

k,s
Di
ksµ

0
k ∧ ν

0
s , dν0

j = −∑
s,t

Ejstν
0
s ∧ ν

0
t , (2)

dµ1
i = −∑

k,h
Ci
khµ

1
k ∧ µ

1
h , dν

1
j = −∑

k,s
F jksµ

1
k ∧ ν

1
s , (3)

respectively. Since ∂̄2 = 0 on⋀∗,∗J̃ (hC)∗, we have that d2 = 0 on⋀1 g∗a and⋀1 g∗b, which imply that ga, gb are
Lie algebras. Put

Zkd(ga)∣a = Zkd(ga) ∩⋀ ∗⟨µ0
1, . . . , µ0

p ⟩,

Zkd(gb)∣b = Zkd(gb) ∩⋀ ∗⟨ ν1
1 , . . . , ν1

q ⟩,

where Zkd(ga) and Zkd(gb) are the set of d-closed k-forms on ga and gb, respectively.
Let F be the homomorphism

F ∶ ⊕
r
( ⊕
s+t=r

s,t
⋀(hC)∗) Ð→⊕

r

r
⋀((ga × gb)C)∗)

induced by the linear isomorphism (hC)∗ Ð→ ((ga × gb)C)∗ de�ned by

ξ̄i ↦ µ
1
i , ηj ↦ ν

1
j , ξi ↦ µ

0
i , η̄j ↦ ν

0
j (i = 1, . . . , p, j = 1, . . . , q).

From the equations of (1), (2), (3), we have that F is an isomorphism of di�erential graded algebras. Thus, we
have the following theorems and proposition:

Theorem 4.2 ([9]). For each t,
h0,t(gJ̃) = dimH t(a × b).

Indeed, by the isomorphism F of di�erential graded algebras, we see

F(
t
⋀⟨ξ̄1, . . . , ξ̄p , η̄1, . . . , η̄q⟩) =

t
⋀⟨µ1

1, . . . , µ1
p , ν0

1 , . . . , ν0
q ⟩ ≅

t
⋀((a × b)C)∗.

Theorem 4.3 ([12]). For each r,
∑
s+t=r

hs,t(gJ̃) = dimHr(ga × gb).

In particular, if b is an abelian ideal, then

∑
s+t=r

hs,t(gJ̃) = ∑
s+t=r

hs,t(gJ).

Proof. If b is an abelian ideal, then Di
ks = Ejst = 0 for each i, j, k, s, t. Then, we have ga ≅ Rdimg and gCb ≅ gC ≅

h+J ≅ h−J . Since

hs,t(gJ) = dimC
s
⋀(h+J )∗ ⋅ dimC H t(h−J ) = dimR Hs(Rdimg) ⋅ dimR H t(gb),

we have
∑
s+t=r

hs,t(gJ̃) = ∑
s+t=r

hs,t(gJ)

for each r.

For corollaries of the theorems, see [9–11].

Proposition 4.4. For each s,

hs,0(gJ̃) = ∑
s1+s2=s

dim Zs1
d (ga)∣a ⋅ dim Zs2

d (gb)∣b.
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In particular, if b is an ideal, then

hs,0(gJ̃) =
s
∑
k=0

(p
k
) ⋅ dim Zs−kd (gb)∣b,

where p = dim a.

Proof. If b is an ideal, then Di
ks = 0 for each i, k, s, which implies that dµ0

i = 0 for each i. Thus, we see that
Zkd(ga)∣a ≅ Zkd(Rp).

5 Examples
In this section, we see examples of Theorems 4.2, 4.3 and Proposition 4.4.

Example 5.1. Let HR(n) be a (2n + 1)-dimensional real Heisenberg group and hR(n) its Lie algebra. Then,
hR(n) has a basis X1, . . . , Xn, Y1, . . . , Yn , Z with the structure equations [Xi , Yi] = Z (i = 1, . . . , n). Consider
the following Lie subalgebras of hR(n):

ak = span{X1, . . . , Xk}
bk = span{Xk+1, . . . , Xn , Y1, . . . , Yn , Z}

for each 0 ≤ k ≤ n. Then, ak and bk are subalgebras which satisfy hR(n) = ak + bk and ak ∩ bk = {0}. Note that
bk is an ideal of hR(n). We have a complex structure J̃k corresponding to the decomposition hR(n) = ak + bk.
Then, gak and gbk have the following structure equations:

dµ0
i = 0, dν0

j = 0 (i = 1, . . . , k; j = 1, . . . , 2n − k),

dν0
2n−k+1 = −

n−k
∑
j=1

ν
0
j ∧ ν

0
n+j ,

dµ1
i = 0, dν1

j = 0 (i = 1, . . . , k; j = 1, . . . , 2n − k),

dν1
2n−k+1 = −

k
∑
j=1

µ
1
j ∧ ν

1
n−k+j .

Thus, we have
gak ≅ hR(n − k) ×R2k , gbk ≅ hR(k) ×R2(n−k).

We also see

dim Zhd(gbk)∣bk = (2n − k
h

)

for k ≥ 2 (See [9, p.200]). Thus, for k ≥ 2,

hs,0(hR(n)J̃k) =
s
∑
h=0

(k
h
)(2n − k

s − h
) .

Since
ak × bk = hR(n − k) ×R2k , gak × gbk = hR(k) × hR(n − k) ×R2n ,

we have
h0,t(hR(n)J̃k) = dimH t(hR(n − k) ×R2k),

∑
s+t=r

hs,t(hR(n)J̃k) = ∑
s+t=r

hs,t(hR(n)J̃n−k).
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Example 5.2. Let Xij = Eij ∈ M(4,R) (1 ≤ i < j ≤ 4), where Eij is a matrix unit. Let n(3) = spanR{Xij}1≤i<j≤4.
Consider the following Lie subalgebras of n(3):

a = span{X13, X23}, b = span{X12, X14, X24, X34}.

Then, a and b are subalgebras such that n(3) = a+ b and a∩ b = {0}. Thus, we have the following nilpotent Lie
group with a complex structure:

(R(N(3)C), J̃) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

1 z12 z̄13 z14

0 1 z̄23 z24

0 0 1 z34

0 0 0 1

⎞
⎟⎟⎟⎟
⎠

zij ∈ C

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

In general, we can construct complex structures on R(n(n)C), where n(n) = spanR{Eij}1≤i<j≤n+1, by using root
systems (see [12] for details).

Then, we have
a × b ≅ hR(1) ×R3, ga ≅ gb ≅ h(1, 2) ×R1,

where h(1, 2) is a 5-dimensional generalized Heisenberg Lie algebra, that is,
h(1, 2) = spanR{X1, X2, Y , Z1, Z2} with the structure equations [Xi , Y] = Zi (i = 1, 2). Thus, we have

h0,t(n(3)J̃) = dimH t(hR(1) ×R3), ∑
s+t=r

hs,t(n(3)J̃) = dimHr(h(1, 2) × h(1, 2) ×R2).

By a straightforward computation, we see

dim Z1
d(ga)∣a = dim Z2

d(ga)∣a = 1,

dim Z1
d(gb)∣b = 2, dim Z2

d(gb)∣b = dim Z3
d(gb)∣b = 3, dim Z4

d(gb)∣b = 1.

Thus, we have
h1,0(n(3)J̃) = 3, h2,0(n(3)J̃) = 6, h3,0(n(3)J̃) = 8,

h4,0(n(3)J̃) = 7, h5,0(n(3)J̃) = 4, h6,0(n(3)J̃) = 1.
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