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Abstract: Let g = a + b be a Lie algebra with a direct sum decomposition such that a and b are Lie subalgebras.
Then, we can construct an integrable complex structure J on h=r( gc) from the decomposition, where g ( gc)
is a real Lie algebra obtained from g* by the scalar restriction. Conversely, let J be an integrable complex
structure on h = g(g®). Then, we have a direct sum decomposition g = a + b such that a and b are Lie
subalgebras. We also investigate relations between the decomposition g = a + b and dim H g;t(hc).
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1 Introduction

S. Salamon [6] classified real 6-dimensional nilpotent Lie algebras for which the corresponding Lie group
has a left-invariant complex structure, and estimated the dimensions of moduli spaces of such structures.
The classification of complex structures on nilpotent Lie algebras provides the classification of invariant
complex structures on nilmanifolds. Invariant complex structures on 6-dimensional nilmanifolds have been
classified ([1, 2, 8]). Nakamura [4] has computed Hodge numbers of small deformations on compact complex
parallelizable solvmanifolds to investigate rigidities of small deformations. However, for higher dimensional
cases, the situation looks far from the completely understanding.

Let g be areal Lie algebra and g(c the complexification of g. In previous papers [10, 12], we considered the
case where g has a direct sum decomposition g = a + b such that a and b are Lie subalgebras of g. Then, we
can construct an integrable complex structure J on b = g ( g°) from the decomposition, where g gc) is areal
Lie algebra obtained from g* by the scalar restriction. We also studied relations between the decomposition
and dim Hg'_t(hc) for investigating the complex structure J (see e.g. [10, Theorems 3.2, 3.3]), and constructed
direct sum (liecompositions n = a + b on a nilpotent Lie algebra n such that a and b are subalgebras by using
root systems and T-root systems ([11, Section.4],[12]).

In this paper, we consider integrable complex structures on a real Lie algebra h = (g°) and relations
between the decomposition g = a + b and dim H;;[(hc). We use the notation H3‘(g;) instead of H;;‘(hc) to

emphasize g and J. We mainly prove the following:

Theorem 1.1. There exists one-to-one correspondence between the direct sum decompositions g = a + b such
that a and b are subalgebras and the integrable complex structures on by = R(QC).
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Theorem 1.2.
Hy'(g5) = H'(95)

foreach s, t.

By this theorem, we have that if dim H g’t( g7) is expressed by data of a and b, then we may change the roles of

aand b (see Section 4 for the detail). Let N be a simply connected real nilpotent Lie group and I" a lattice in N.

If a left-invariant complex structure J on N is I'-rational, then Hg’t(F\N ) Hg’t(nc) for each s, t ([3]). Thus,
7 7

results on H g’t (n%) of the nilpotent Lie algebra with rational complex structures yield results on H S’t(F\N )

of a compact nilmanifold with invariant rational complex structures.

2 Preliminaries

In this section, we recall integrability conditions of an almost left-invariant complex structure on a Lie group.
Let H be a real Lie group and | its Lie algebra. A left-invariant almost complex structure on H can be
identified with a linear mapping J : h — b such that J> = —id. We denote by the vector spaces of the /-1
eigenvectors of the almost complex structure J, respectively. We denote by H ;}* (b(c) the cohomology ring of
the differential bigraded algebra A** (h©)*, associated to h© with respect to the operator d; in the canonical
decomposition d = d; + 0; on A**(§)* for an integrable complex structure J.
The almost complex structure J is said to be integrable if

Ny(X,Y) = [X,Y]+J[JX, Y] +J[X,]JY] - [JX,JY] =0

for all X, Y € h. We shall refer to a pair (b, J) consisting of a Lie algebra and an integrable almost complex
structure simply as a Lie algebra with a complex structure. The equation Nj(X,Y) = O holds forall X, Y € §
if and only if d(A;°) ¢ A7 ® A" (cf. [6, pp.313-pp.314]). On the other hand, the following equivalent
condition is also well known (see e.g. [7, Section.1], [5, Proposition.1]):

Proposition 2.1. A real Lie group H has an integrable left-invariant complex structure if and only if h* admits
a direct sum decomposition
UC =q®Tq,

where q is a complex subalgebra of h©, and r is the complex conjugation.
In fact, let q be a subalgebra of h© which satisfies the condition in the proposition. Then, J = —/-1 idg ®

vV —1id4 is an integrable complex structure. Conversely, for a given integrable left-invariant complex struc-
ture J, let q be the subspace of h© defined by

q={X+V-1JX|X ep}.
Then, q is a subalgebra satisfying h* = q ® 4.
Proposition 2.2. Let ] be an Ad-invariant complex structure on . Assume that there exist subalgebras ¢ and

m of b such that
h=t+m,tnm={0},J(t) ct,J(m)cm.

Put
q=spanc{X -V-1JX,Y +V~-1JY|X e, Y em}.

Then, q is a subalgebra of h° satisfying b° = q @ rq, and J = —/-1id, ® /-1 id-q is an integrable complex
structure.

Proof. Since ad(X) oJ = J o ad(X), q is a subalgebra of h°. O
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In the proposition, note that
X-V-UX=X+V-1X, Y +V-1Y =Y +V-1JY

forXet,Yem.

3 Decompositions and Complex structures

In this section, we consider the case of fj is a real Lie algebra obtained from the scalar restriction of the
complexification of a real Lie algebra.

Let g be a real Lie algebra and g© the complexification of g. We can consider the complex Lie algebra g©
as a real Lie algebra r (g©) with the Ad-invariant complex structure J, where  (g*) is the scalar restriction of
gt. Puth = r( gC). We will denote the extension of J to a C-linear transformation of h* by the same letter J.
Then, we have a direct sum decomposition

% =6y +b;, Th =by.

Note that f : g — hi; X — %(X - V/-1JX) is an isomorphism between complex Lie algebras, and h; = b;.
Indeed, let {X1, ..., Xn} be a basis of g. Assume that [X;, X;] = > c{ijk for each i, j, where cf} € R. Then, we
see

[Xi _ \/__1]Xi1Xj - \/—_1]X]] = 2([Xi,Xj] - \/__1][XUX]])
= 424}%(}(}( - \/—_1]Xk)
k

Let g = a+ b be a direct sum decomposition such that a and b are Lie subalgebras. We define another complex
structure J on h by

. {-1 on g(a®)
J= C
J on g(b-).

Then, J is integrable by Proposition 2.2 (cf. [11, 12]). Indeed, put
q = span-{X - V-1JX, Y + VTl]Y\X € R(ac), Ye R(bc)}.
Then, q is a complex subalgebera of h*, and J satisfies
J=-V-1idg ® V-1id-q.

We shall call that J is the complex structure corresponding to the decomposition g = a + b. Note that f(a) and
f(b) are real subalgebras of h; , respectively.

Conversely, let J be another integrable complex structure on h. Then, we have another direct sum
decomposition

b =b] +b;, Thi =b;.
Since J is integrable, b}' and hj‘ are subalgebras. Then, we have
by = by nb°
= by 0 (b7 +b;)
= (b nby) +(by nby).

Notice that h; n b; and by N h}’ are complex subalgebras. Put

v =f(g) n(by nby) cb; nf(a),
w = f(g) N (by nb7) cbj nf(g).
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Then, we have that v and w are real subalgebras which satisfy that
v+ =f(g),vnw={0},

and o o
" =f(g)" n (b nb;) =by by cby,

w = f(g)" N (b nbi) =bf nbi by

Puta=f"*(v), b =f"" (). Then, a and b are subalgebras of g which satisfy that
a+b=g,anb={0},

and the complex structure on h corresponding to the decomposition g = a + b is ] because v c by, wc h}“ and
dim¢ h;’ = dimg v + dimg 1o.
Thus, we have the following:

Theorem 3.1. Let g be a real Lie algbera. There exists one-to-one correspondence between the direct sum
decompositions g = a+ b such that a and b are subalgebras and the integrable complex structures on ) = R(QC).

Remarks 3.2. (i) In the paper [11], we consider the case of g = (t = £) x b’, where t is abelian, € is an ideal of
tx &, and b’ is an ideal of g. This is a special case of a direct sum decomposition of the above formg = a+b
because a = t and b = t x b’ are subalgebras.

(ii) In the papers [11, 12], we construct direct sum decompositions n = a + b on a nilpotent Lie algebras n such
that a and b are subalgebras by using root systems and T-root systems. For example, we can construct the
following left-invariant complex structures on a real 6-dimensional nilpotent Lie group from the viewpoint
of the root system of type A;:

12z z3 12z z3
012z Z,‘E(C , 012z Z,'E(C s
001 001
12123 12123
0122 ZiE(C y 0122 Z,'E(C
001 001

4 Hodge numbers

In this section, we consider relations between the decomposition g = a + b and dim H' g't( 97)-
Let g be a real Lie algebra with a direct decomposition

g=a+b,
where a and b are Lie subalgebras of g. Take a basis of the Lie subalgebras a and b:

a= spanR{U%, e U,l,},
b= spanR{V%, cees V;}.
Consider the complexification g° of g. Since g© = g + v/—1g, the scalar restriction r(g*) has the following

basis:
(Ui, ..., Uy, Vi,..., Vg, Ui,..., Us, Vi,..., Vo),

where U7 = /=1U}, Vi = V=1V}. Let

1 1 51 1 2 2 52 2
{ala---yapaﬁly---’ﬁqyaly---yapxﬁly---’ﬁq}
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be the dual basis of
(Ui, ..., Uy, Vi,...,V, Ui,..., Us, Vi,..., Vo).

Let J be the complex structure on h = ( gc) defined by
Jut = U JUf = -U}), JV} = Vi V] = -V})

for each i, j. Put

A=ai +V-1af, pi= B+ V=18

for each i, j. We can assume that

dAi == Ci Ak AAn = . Digh A pisy dpj = = > Bl s A e = ST FL Ak A pis
k,h s,t k,s

k,s

for each i, j, where Ci, Di, E., Fﬁ( . € R. Note that (z(g“),J) is a complex Lie algebra.
We consider another complex structure J on b = g( gC), which appeared in the previous section, defined
by
jUil = —U,~2 (jUzz = Uil)’ 7Vj1 = ij (7Vi2 = _Vil)

for each i, j. Put

& =ai —V-1af, nj = B +V-15
for each i, j. Then, &, 7; € /\71’0, and
¢ = = Disi A ils, O = — 3 Fy &k A s, 4]
k,s k,s
0% ==Y Cinéi A &n, Ol = — Y ELyils Afie.
k,h s,t
We can consider a complex structure —J instead of J, which corresponds to changing the roles of a and b.

Then, we have the following:

Theorem 4.1.
H3(g7) = Hy'(9.5)
foreach s, t.

Proof. Note that & = A, 75 = pj € /\71'0, and &f = \i, nf = fij € /\1’70. Since Ci, Dis, E.,, !

s are real numbers, we
have

d&i = dj\l = - Z C;(hj\k N 5\}, - ZD;(SS‘I( A l]/s
ioh ks
== > Cinék Nén— Y Diséi A s,
k,h k,s
dnj = dpj = = 3 Egns Ane = 3 Figic A is,
s,t k,s
d§{ =d) = - Z C}chﬁll( A f}ll - ZD;(S&/( A 77_,5’
k,h k,s
dnj = djij = = 37 Eqyjis A fit = 3 Fy M A fis
s,t k,s
== > E.minni— > Fi & Ans.
s,t k,s

Thus, {¢;, 7;} and {¢], )} satisfy the same structure equations. Hence, Hg’t(gj) = Hg"(g#) foreachs,t. O

By this theorem, we see that if dim H g’[( g;) is expressed by data of a and b, then we may change the roles of
aand b as the following theorems. We denote dim H3(g;) by h™'(g;)-
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Let ga, gp be real Lie algebras such that g = span{s3, ..., up, 5, ..., vy} and g; = span{ui, ..., fip,
i, ..., v} have the structure equations
dﬂ?:_ZD;(sﬂg/\ng deO: ZEtVs /\Vt’ (2)
k,s
1 i 1 1 1
dpi == Cinptic A s dvj = ZstNk Avs, 3
ioh

respectively. Since 0° = 0 on /\}*’*(hc)*, we have that d* = 0 on A' g} and A’ g}, which imply that g4, g are
Lie algebras. Put
Zl(;(ga)|u = Zl(;(gu) n /\*(,U’(l)’ e 5”2 ))

k *
Z5(g0)le = Zi(ge) "\ (vas g ),

where Z’l}( ga) and Z§ (g ) are the set of d-closed k-forms on g, and gs, respectively.
Let F be the homomorphism

F-B(D /\(h )’ )—>EB/\((9axga) )")

r  S+t=r

induced by the linear isomorphism (h%)* — ((ga x g5)*)* defined by

gi'_)/j/il’ ﬁiHle, Ei’_)lff?’ ﬁ]"_’yjo (l: 1"-"p’j:11""q)'
From the equations of (1), (2), (3), we have that F is an isomorphism of differential graded algebras. Thus, we

have the following theorems and proposition:

Theorem 4.2 ([9]). Foreacht,
h%'(g;) = dim H'(a x b).

Indeed, by the isomorphism F of differential graded algebras, we see
t

F(/t\<€1,---,€p,ﬁ1,---,ﬁq))=/\<ui---,u$,1/?,---’l/q /\((axb) )"

Theorem 4.3 ([12]). Foreachr,
> h*(g7) = dim H' (ga x go)-

S+t=r

In particular, if b is an abelian ideal, then

> R = Y P (gy).

S+t=r S+t=r
Proof. If b is an abelian ideal, then D};S = E’ = 0foreachi,j, k, s, t. Then, we have g, ~ R%™? and g gt
by = by . Since

S .
h*'(g7) = dime A (b})* - dime H'(b}) = dimz H*(R™™®) - dimg H'(gs),
we have
> B e = X (g

S+t=r S+t=r

for eachr. 0

For corollaries of the theorems, see [9-11].

Proposition 4.4. For each s,

R(g) = Y. dimZ3 (ga)la - dim Z7 (go)lo.

S1+S2=5
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In particular, if b is an ideal, then
s,0 S p . s—k
w0 - 3 (1) - dimzi @)l
where p = dim a.

Proof. If b is an ideal, then D}, = O for each i, k, s, which implies that dy{ = 0 for each i. Thus, we see that
Zg(8a)la = ZG(RP). O

5 Examples

In this section, we see examples of Theorems 4.2, 4.3 and Proposition 4.4.

Example 5.1. Let Hr(n) be a (2n + 1)-dimensional real Heisenberg group and hr(n) its Lie algebra. Then,
br(n) has a basis X1, ..., Xn, Y1, ..., Yn, Z with the structure equations [X;, Y;] = Z (i = 1,...,n). Consider
the following Lie subalgebras of hr(n):

ay = span{X1, ..., Xy}

bk = span{Xk+1, e ,Xn, Yl, ey Yn, Z}
for each O < k < n. Then, ay and by are subalgebras which satisfy hr(n) = ay + by and ay n by = {0}. Note that

by is an ideal of hr(n). We have a complex structure J;, corresponding to the decomposition hr(n) = ay + by.
Then, gq, and gy, have the following structure equations:

duf =0, dy =0(i=1,...,kj=1,...,2n-k),
0 LS
dVZn—k+1:_ZVj A Vnyjs
j=1
dupi =0,dvi =0 (i=1,...,kj=1,...,2n-k),

k
dyzln—k+1 =- Z N}'l A Vrll—k+j-
j=1
Thus, we have
o, = hr(n - k) x R?, gy, = hr(k) x RZ"9,

We also see

. 2n-k
anite - ()

for k > 2 (See [9, p.200]). Thus, for k > 2,
5.0 = (k) [(2n-k

Since
g x by = hr(n - k) x R”, ga, x g, = br(k) x hr(n - k) x R*",

we have
RO (hr(n);,) = dim H (b (n - k) x R™),

> B (bs(n)y) = 30 k' (ba(n);, ,)-

S+t=r S+t=r
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Example 5.2. Let X;; = E;; e M(4,R) (1 <i<j<4), where Ej; is a matrix unit. Let n(3) = spang {Xjj }1<i<j<a-
Consider the following Lie subalgebras of n(3):

a = span{Xi3, X23}, b = span{X12, X14, Xa4, X34 }.

Then, a and b are subalgebras such that n(3) = a+ b and an b = {0}. Thus, we have the following nilpotent Lie
group with a complex structure:

1 z12 Z13 Z14
0 1 223 224
00 1 Z34
00 O 1

(®(N(3)%),J) =

ZUE(C

In general, we can construct complex structures on g (n(n)®), where n(n) = spang { Ejj }1<i<j<n+1, by using root
systems (see [12] for details).
Then, we have
axbzhp(1) xR’, ga =gy 2 h(1,2) xR,

where h(1, 2) is a 5-dimensional generalized Heisenberg Lie algebra, that is,
h(1,2) = spang{X1, X2, Y, Z1, Z, } with the structure equations [X;, Y] = Z; (i = 1, 2). Thus, we have

R (n(3);) = dimH' (hr(1) x R%), > h>'(n(3);) = dim H'(h(1, 2) x h(1,2) x R?).

S+t=r

By a straightforward computation, we see

dim Z4(ga)|a = dim Z3(ga)a = 1,
dim Z(ge ) = 2, dim Z3 (g6 )6 = dim Z}(ge) o = 3, dim Zg(ge) o = 1.

Thus, we have
h°(n(3);) =3, h*°((3);) =6, h°(n(3);)=8,

h*°(m(3);) =7, K°(n(3);) =4, h*°(n(3);) = 1.

Acknowledgement: The author would like to express his deep appreciation to Professor Yusuke Sakane for
valuable advice and encouragement during his preparation of the paper. This work was supported by JSPS
KAKENHI Grant number JP16K05131.

References

[1] Andrada, A., Barberis, M.L., Dotti, I.: Classification of abelian complex structures on 6-dimensional Lie algebras, ). Lond.
Math. Soc. 83 (2011), 232-255

[2] Ceballos, M., Otal, A., Ugarte, L., Villacampa, R.: Invariant complex structures on 6-nilmanifolds: classification, Frolicher
spectral sequence and special Hermitian metrics, ). Geom. Anal. 26 (2016), 252-286

[3] Console, S. and Fino, A.: Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001), 111-124

[4] Nakamura, I.: Complex parallelisable manifolds and their small deformations, ). Differential Geom. 10 (1975), 85-112

[5] Ovando, G.: Invariant complex structures on solvable Lie groups, Manuscripta Math. 103 (2000), 19-30

[6] Salamon, S.M.: Complex structures on nilpotent Lie algebras, ). Pure. Appl. Algebra 157 (2001), 311-333

[71 Snow, D.: Invariant complex structures on reductive Lie groups, ). Reine Angew. Math. 371 (1986), 191-215

[8] Ugarte, L.: Hermitian structures on six-dimensional nilmanifolds, Transform. Groups 12 (2007), 175-202

[9]1 Yamada, T.: Hodge numbers and invariant complex structures of compact nilmanifolds, Complex manifolds 3 (2016), 193—
206

[10] Yamada, T.: Remarks on Hodge numbers and invariant complex structures of compact nilmanifolds, Complex manifolds 3
(2016), 271-281

[11] Yamada, T.: Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds, Complex
manifolds 4 (2017), 73-83

[12] Yamada, T.: Invariant complex structures on compact nilmanifolds, preprint



	Complex structures on the complexification of a real Lie algebra
	1 Introduction
	2 Preliminaries
	3 Decompositions and Complex structures
	4 Hodge numbers
	5 Examples


