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Abstract: Given a Kdhler manifold (Z, J, w) and a compact real submanifold M C Z, we study the properties
of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of
probability measures on M. In particular, we prove convexity results for such map when G is Abelian and we
investigate how to extend them to the non-Abelian case.
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1 Introduction

Let (Z, ], w) be a compact connected Kihler manifold and let U be a compact connected Lie group with
Lie algebra u. Assume that U acts on Z by holomorphic isometries and in a Hamiltonian fashion with
momentum mapping u : Z - u’. It is well-known that the U-action extends to a holomorphic action of the
complexification U® of U. Moreover, the latter gives rise to a continuous action of U on the space of Borel
probability measures on Z endowed with the weak* topology. We denote such space by P(Z).

Recently, the first author and Ghigi [5] studied the properties of the U-action on P(Z) using momentum
mapping techniques. Although it is still not clear whether any reasonable symplectic structure on P(Z) may
exist (but see [16] for something similar on the Euclidean space), in this setting it is possible to define an
analogue of the momentum mapping, namely

5D >, FO) - / H@dv(2).

Z

3§ is called gradient map. Using it, the usual concepts of stability appearing in Kdahler geometry [17, 20-23, 30,
32, 35, 37, 38] can be defined for probability measures, too.

In [5], the authors were interested in determining the conditions for which the U®-orbit of a given
probability measure v € P(Z) has non-empty intersection with §*(0), whenever 0 belongs to the convex
hull of u(Z). This problem is motivated by an application to upper bounds for the first eigenvalue of the
Laplacian acting on functions (see also [1, 3, 4, 11, 29]). Furthermore, they obtained various stability criteria
for measures.

Stability theory for the action of a compatible subgroup G of U was analyzed by the first author and
Zedda in [9].
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Recall that a closed subgroup G of UC is called compatible if the Cartan decomposition U® = U exp(iu)
induces a Cartan decomposition G = Kexp(p), where K := G N U and p := g N iu is a K-stable linear subspace
of iu.

Identify u” with u by means of an Ad(U)-invariant scalar product on u. For each z € Z, let p,(z) denote —i
times the component of u(z) in the direction of ip C u. This defines a K-equivariant map y, : Z —> p, which
is called G-gradient map associated with u [24, 26, 27]. Since U® acts holomorphically on Z, the fundamental
vector field B; € X(Z) of any B € p is the gradient of the function yﬁ(-) := (Up(+), B) with respect to the
Riemannian metric w(:, J+), (-, -) being an Ad(K)-invariant scalar product on p.

If M is a compact G-stable real submanifold of Z, we can restrict p, to M. Moreover, the G-action on M
extends in a natural way to a continuous action on P(M), and the map

5o PN S p, FolV) = / 1 (OAV(),
M

is the analogue of the G-gradient map in this setting. It is not hard to prove that its image coincides with the
convex hull of pp (M) in p (cf. Lemma 3.4).

Fix a probability measure v € P(M). Having in mind the classical convexity results for the momentum
mapping [2, 19, 31] and for the G-gradient map [24, 28], in this paper we are interested in studying the
behaviour of §, on the orbit G - v.

Let a C p be an Abelian subalgebra of g. The Abelian Lie group A := exp(a) is compatible and the
corresponding A-gradient map is given by pa = 74 o pp, where 71, is the orthogonal projection onto a. In
Section 4, we prove a result which can be regarded as the analogue of a theorem by Atiyah [2] in our setting
(see also [28]):

Theorem. Theimage of the map §. : A-v - ais an open convex subset of an affine subspace of a with direction
ai-. Moreover, 5o(A - v) is the convex hull of o (A - v N P(M)™), where P(M)™ is the set of A-fixed measures.

As an immediate consequence of this theorem, we get that F4(A - v) is a convex subset of a whenever the Lie
algebra of the isotropy group A, is trivial (Corollary 4.4). The image of the map §, is contained in the convex
hull of u,(M). Hence, when P := uq(M) is a polytope, it is natural to investigate under which conditions
Fa(A - v) coincides with int(P). We point out that the convexity of P is not known for a generic A-invariant
closed submanifold M of Z. It holds if G = U® and M is a complex connected submanifold by the Atiyah-
Guillemin-Sternberg convexity theorem [2, 19], or, more in general, if Z is a Hodge manifold and M is an
irreducible semi-algebraic subset of Z with irreducible real algebraic Zariski closure [7, 24]. In the recent
paper [10], the authors gave a short proof of this property when M is an A-invariant compact connected real
analytic submanifold of P"(C). The key point is that for any 8 € a the Morse-Bott function yg has a unique
local maximum. Under this assumption, in Theorem 4.7 we show that if A, is trivial and for any 8 € a the
unstable manifold corresponding to the unique maximum of yﬁ has full measure, then F.(4 - v) coincides
with int(P). It is worth underlining here that a further result shown in [10] allows to obtain an alternative
proof of the convexity properties of the map §, along the A-orbits. Nevertheless, in our proof the image of
S« along the orbits is better understood. Moreover, it is completely determined for a large class of probability
measures in Theorem 4.7.

In Section 5, we focus our attention on the non-Abelian case. Let Q(u;) denote the interior of the convex
hull of yy(M) in p. In Theorem 5.2, we prove that, under a mild regularity assumption on the measure v,
Fp(G - v) = Q(up) and that the map

Fy:G> Qup), Fu(g) =Fp(g-v),

is a smooth fibration. Notice that the assumptions in Theorem 4.7 are weaker than those of Theorem 5.2.
Finally, if v is a K-invariant smooth measure on M, we show that the map F, descends to a map on G/K which
is a diffemorphism onto Q(u;). (Corollary 5.3). These results may be regarded as a generalization of those
obtained in [5] when G = U® and M = Z is a Kihler manifold. However, our proofs are slightly different, since
the real case is more involved than the complex one and a new technical result is needed (cf. Appendix A).
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Moreover, Corollary 5.3 suggests that when M is an adjoint orbit and v is a K-invariant smooth measure, then
a potential compactification of G/K is given by the convex hull of M. This is an analogue of a classical result
due to Koranyi [34].

The present paper is organized as follows. In Section 2, we review the main properties of compatible
groups and of the G-gradient map. In Section 3, we recall some useful results on measures and we introduce
the gradient map. The convexity properties of the gradient map in the Abelian and in the non-Abelian case
are investigated in Section 4 and in Section 5, respectively. Finally, in Appendix A, we prove a technical result
which is of interest in Section 5.

2 Preliminaries

2.1 Cartan decomposition and compatible subgroups

Let U be a compact connected Lie group, denote by u its Lie algebra and by U® its complexification. It is well-
known (see for instance [33]) that U® is a complex reductive Lie group with Lie algebra u® = u & iu and that
it is diffeomorphic to U x iu via the real analytic map

Uxiu->US,  (u,ié) » uexp(ié).

The resulting decomposition U® = U exp(iu) is called Cartan decomposition of U,

A closed connected subgroup G C U® with Lie algebra g is said to be compatible with the Cartan
decomposition of U® if G = K exp(p), where K := GN U and p := g N iuis a K-stable linear subspace of iu
(cf. [26, 27]). In such a case, K is a maximal compact subgroup of G. The Lie algebra of G splitsas g = £ @ p,
where £ := Lie(K), and the following inclusions hold

e,elce, [e,plcp, [p,plcCt.

On the Lie algebra uC€ = u @ iu there exists a nondegenerate, Ad(U®)-invariant, symmetric R-bilinear form
B : u®xu® > R which is positive definite on iu, negative definite on u and such that the decomposition u & iu
is B-orthogonal (see e.g. [6, p. 585]). In what follows, we let (-, -) == Bl;uxiu-

Whenever G = K exp(p) is a compatible subgroup of U®, the restriction of B to g is Ad(K)-invariant, positive
definite on p, negative definite on ¢, and fulfils B(¢, p) = 0.

2.2 The G-gradient map

Let Uand U® be asin §2.1. Consider a compact Kéhler manifold (Z, J, w), assume that U® acts holomorphically
onitand that a Hamiltonian action of U on Z is defined. Then, the Kdhler form w is U-invariant and there exists
a momentum mapping u : Z > u". By definition, y is U-equivariant and for each & € u

d}ﬁ =W,

where ¢ € €=(2) is defined by u*(2) = u(z)(¢), for every point z € Z, and &, € X(Z) is the fundamental vector
field of ¢ induced by the U-action, namely the vector field on Z whose value at z € Z is

&(2) = % exp(té) - z.

Since U is compact, we can identify v with u by means of an Ad(U)-invariant scalar product on u. Conse-
quently, we can regard y as a u-valued map.

Let G = K exp(p) be a compatible subgroup of U®. The composition of u with the orthogonal projection of
uonto ip C udefines a K-equivariant map u;, : Z - ip, which represents the analogue of y for the G-action.
Following [24, 26, 27], in place of y;, we consider

Hp:Z>p, Mp(2) = —1pp(2).
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As the UC-action on Z is holomorphic, for every f € p the fundamental vector field 8, € X(Z) induced by the
G-action is the gradient of the function

We:Z5R, W2 = (up(2), B),

with respect to the Riemannian metric w(-, J-). This motivates the following.
Definition 2.1. y, is called G-gradient map associated with p.

Let M be a G-stable submanifold of Z. We use the symbol p, to denote the G-gradient map restricted to M,
too. Then, for any B € p the fundamental vector field 8y, € X(M) is the gradient of yﬁ : M > R with respect
to the induced Riemannian metric on M. Moreover, if M is compact, yﬁ is a Morse-Bott function (see e.g. [6,
Cor. 2.3]). Thus, denoted by c; < -- - < ¢, the critical values of yﬁ, M decomposes as

M= |w;, 1)

j=1

where foreach j = 1, ..., r, W is the unstable manifold of the critical component (yﬁ )1 (c;) for the gradient
flow of yﬁ (see for instance [25, 26] for more details).

3 Measures

In the first part of this section we recall some known results about measures. The reader may refer for instance
to [13, 15] for more details.

Let M be a compact manifold and let M(M) denote the vector space of finite signed Borel measures on
M. By [15, Thm. 7.8], such measures are Radon. Then, by the Riesz Representation Theorem [15, Thm. 7.17],
M(M) is the topological dual of the Banach space (C(M), ||-||..), namely the space of real valued continuous
functions on M endowed with the sup-norm. As a consequence, M(M) is endowed with the weak” topology
[15, p. 169].

The set of Borel probability measures on M is the compact convex subset P(M) c M(M) given by the
intersection of the cone of positive measures on M and the affine hyperplane {v € M(M) | v(M) = 1}. Observe
that the weak” topology on P(M) is metrizable, since C(M) is separable [13, p. 426].

Given a measurable map f : M > N between measurable spaces and a measure v on M, the image
measure f+v of v is the measure on N defined by fiv(4) := v(f~(A)) for every measurable set A C N. fiv
satisfies the following change of variables formula

/ h@)AFE)) = / h(F ) dv(x). @
N M

When a Lie group G acts continuously on a compact manifold M, it is possible to define an action of G on
P(M) as follows:
GxP(M) > P(M), (g,v) > gwv = (Agv, 3)

where foreach g € G
Ag:M> M, Agx)=g-x,

is the homeomorphism induced by the G-action on M. By [5, Lemma 5.5], the action (3) is continuous with
respect to the weak” topology on P(M). In what follows, we denote this action by a dot, i.e., g - v = g«v
whenever g € Gand v € P(M).

The next lemma is an immediate consequence of [5, Lemma 5.8].

Lemma 3.1. Let M be a compact manifold endowed with a smooth action of a Lie group G. Consider v € M(M),
¢ € g, and suppose that &y vanishes v-almost everywhere. Then, exp(R¢) is contained in the isotropy group G,
of v.
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Proof. Since &), vanishes v-almost everywhere, its flow
@ M>M, @(x)=exp(té)-x,

satisfies ¢;,v = v for any t € R by [5, Lemma 5.8]. O

Let us focus on the setting (M, G, K, p,) introduced at the end of §2.2. From now on, we assume that the G-
stable submanifold M C Z is compact. By the above results, the group G = Kexp(p) acts continuously on
P(M). Moreover, albeit a reasonable symplectic structure on P(M) does not seem to exist, it is possible to
define a map which can be regarded as the analogue of the G-gradient map y,, for the action of G on P(M).

Definition 3.2. The gradient map associated with the action of G on P(M) is

5P >p, FO) = / 1o (V0.

M

Remark 3.3. By [9, Prop. 45], § is precisely the gradient map of a Kempf-Ness function for (P(M), G, K). Thus,
it is continuous and K-equivariant (cf. [9, Sect. 3]).

Using §, the usual concepts of stability [17, 20-23, 30, 32, 35, 37, 38] can be defined for probability measures,
too (see also [5, 9]). For instance, a measure v € P(M) is said to be stable if

G-vnFL0)#0

and g, := Lie(G,) is conjugate to a subalgebra of £. In such a case, G, is compact [5, Cor. 3.5].

In the light of previous considerations, it is natural to ask whether established results for the G-gradient
map [2, 12, 19, 24, 28] can be proved also for the gradient map §. Here, we focus our attention on convexity
properties of §. We begin with the following observation.

Lemma 3.4. The image of the gradient map § : P(M) - p coincides with the convex hull E(u,) of u,(M) in p.

Proof. Consider v € P(M). Observe that §(v) is the barycenter of the measure pp.v € P(u,(M)), since by the
change of variables formula (2) we have

W) = | ppdvix) = | Bd(up.v)(B).
i

Thus, §(v) lies in E(u,). Conversely, for any y € E(u,), we can write
m
y=> Ay
j=1

for a suitable m, where erzl Aj=1,A420andy; € Up(M).Foreachj=1,...,m,let Xj € M be a point in the
preimage of y; and let 6y, denote the Dirac measure supported at x;. Then, y = §(v), where

m
Vi= > Aiby. O
j=1

Due to the previous result, in the next sections we shall study the behaviour of § on the orbits of the G-action.

4 Convexity properties of §: Abelian case

Let a C p be a Lie subalgebra of g. Since [p, p] C tand g = ¢ ® p, a is Abelian. The corresponding Abelian Lie
group A := exp(a) C G is compatible with the Cartan decomposition of U and an A-gradient map pq : M > a
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is given by pq = 74 o 4y, where 714 is the orthogonal projection onto a. Therefore, the gradient map associated
with the A-action on P(M) is

Fo: POD) S a, &m=/mmwm.
M

Fix a probability measure v € P(M). We want to study the behaviour of §, on the orbit A - v. First of all, we
show that A, is always compatible.

Lemma 4.1. The isotropy group A, of v is compatible, namely A, = exp(ay).

Proof. Let a := Fa(v) € a. Since a is Abelian, Jiq = uq — a is still an A-gradient map and the corresponding
gradient map §q : P(M) - a satisfies

&m=/mmwm:&M—MWFa
M

Then, A, is compatible by [9, Prop. 20]. O
Consider the decomposition

1
a=ayday,

where a;- is the orthogonal complement of a, in a with respect to B|axa. We denote by m : a > a;- the
orthogonal projection onto a;- and we let A := exp(a;i-). Since exp : a > A is an isomorphism of Abelian
Lie groups, we have A = AA,andA-v=A-v.

We are now ready to state the main result of this section.

Theorem 4.2. The image F.(A - v) of the orbit A - v is an open convex subset of an affine subspace of a with
direction a;-.

Before proving Theorem 4.2, we show a preliminary lemma.
Lemma 4.3. The projection of §a (A - v) onto a;- is convex.

Proof. By [9, Thm. 39], there exists a Kempf-Ness function ¥ : M x A > R for (M, A, {e}), where e € A is the
identity element. Recall that for each point x € M the function ¥(x, -) is smooth on A, and that for every y € a

dZ
Tl ¥(x, exp(ty)) = 0, (4)

and it vanishes identically if and only if exp(Ry) C Ax. Moreover, for every a, b € A, the following condition
is satisfied
Y(x,ab) = ¥(x,b) + ¥(b - x, a). (5)

¥ is related to the A-gradient map u, by

d

3 Y(x, exp(ty)) = (Ha(x), y). ()

t=0

We define a function f : a;- > R as follows

f(a) :=/‘P(x,exp(a))dv(x).
M

We claim that f is strictly convex. By (4) and (5), for every a, f € a;-
2

C;d—tzzf(tﬁ +a) = ;tz ¥(exp(a) - x, exp(tf))dv(x) = 0.

M
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If it was identically zero, then f—; Y(exp(a)-x, exp(tB)) would vanish v-almost everywhere. As a consequence,
for every point x outside a set of v-measure zero we would have exp(Rf) C Agxp(a)-x = Ax, which implies that
Bu(x) = 0. Therefore, exp(RB) C A, by Lemma 3.1, which is a contradiction. By a standard result in convex
analysis (see for instance [18, p. 122]), the pushforward df : a;- > (a;-)" is a diffeomorphism onto an open

convex subset of (a;-)". Now, using (2), (5), (6), for each a, Be ai- we have

d
df(@)(B) = == (tB +a)
f(a)(B a t:Of B+a
- / L1 wexp(a) - x, exp(tB)dvn)
i t=0
= ( / Ma(exp(a) - X)dv(x), B)
M
- ([ madexp(@) 1)), B
M
= (Falexp(a) - v), B)
= (n(Fa(exp(a) - v)), B),
from which the assertion follows. O

Corollary 4.4. If a, = {0}, then Fa(A - V) is convex in a and the map
Fi:A>a, Fia):=Fala-v),
is a diffeomorphism onto F4(A - v).
Proof of Theorem 4.2. Since A, is compatible, it follows from the proof of [9, Prop. 52] that v is supported on
MY ={xeM|éux)=0V¢& € a}.
By [25, 26], there exists a decomposition
MY =MyU---U My,

where each M; is an A-stable connected submanifold of M. Consequently,
n
V= Z /‘jV}',
j=1

where forj = 1,..., n, v; is a probability measure on Mj, A; = 0 and >, A; = 1. By [27], for every x € M; the
image ua(A - x) of A - x is contained in an affine subspace a; + ai- of a. Then, since M; is A-stable, there is a
map y; : M; > a;- such that pa(a - x) = a; + pj(a - x), for every a € A. Now, we have

Fala-v) = | pal0)d(a-v)(x)
/

= /yu(a - x)dv(x)
M

- Z/\j /ya(a - X)dvj(x)

j=1 M}.
n n

= Z/\jaj+ZAj/ﬁ;(a-x)dvi(X)-
j=1 S

Hence, 3a(A-Vv) C a + a;-, where a := 2111 Aja;. Using Lemma 4.3, we can conclude that F4(A - v) is an open
convex subset of the affine subspace a + a;- of a. O
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From the previous result and the compactness of P(M), it follows that Fq(A - v) = Fa(A - v)is a compact convex
subset of a. Moreover, if we denote by

PM)* = {ve P(M) |A-v=v}
the set of A-fixed measures, then we have the

Proposition 4.5. 3, (A . v) is the convex envelope of Fo(A - v N P(M)A).

Proof. By [36, Cor. 1.4.5], it is sufficient to show that every extremal point 8 € Fa (A . v) is the image of an A-

fixed measure. Consider v € A - v such that §.(v) = B. By Theorem 4.2, §(A-V) is an open convex subset of an
affine subspace a + aé‘ C a. Since f is an extremal point, we have necessarily a%- ={0}. Thus,v e P(M)A. O

Let P = uq(M). It was proved in [24, Sect. 5] that P is a finite union of polytopes, while in [8] the authors
showed that its convex hull is closely related to E(u,). Moreover, even if P is not necessarily convex, there
exist suitable hypothesis guaranteeing that it is a polytope. This happens for instance if for each 8 € a any
local maximum of the Morse-Bott function y’; is a global maximum [10]. Classes of manifolds satisfying this
property include real flag manifolds [6], and real analytic submanifolds of the complex projective space [10].

In the sequel, we always assume that for each § € a the function yﬁ has a unique local maximum.
As a consequence, P is a polytope, and the Morse-Bott decomposition (1) of M with respect to yﬁ has a
unique unstable manifold which is open and dense, namely W,, while the remaining unstable manifolds
are submanifolds of positive codimension.

Definition 4.6. Let W(M, A) denote the set of probability measures on M for which the open unstable manifold
W, has full measure for every € a.

A typical example of probability measures belonging to W(M, A) is given by smooth ones, namely those
having a smooth positive density in any chart of the manifold with respect to the Lebesgue measure of the
chart (cf. [15, Sect. 11.4]).

In a similar way as in [5, Prop. 6.8], we can prove the following

Theorem 4.7. Letv ¢ W(M, A) and assume that A, = {e}. Then, F.(A - v) coincides with int(P).

Proof. For simplicity of notation, let O = Fq(A - v) C a. We already know that O C int(P). Suppose by
contradiction that O is strictly contained in int(P). Then, © c P, since O and P are both convex. Consider
@ € P-0, a; € O and the line segment o(t) := (1 -t) ao +t a;. Let t := inf{t € [0, 1] | o(t) € O} and @ := o (?).
As Ois closed, @ € O and f € (0, 1). We claim that @ € 00 N int(P). Indeed, it is clear that @ € 90, while
« < int(P) follows from a; € O C int(P) and ¢ > 0. By [36], every boundary point of a compact convex set lies
on an exposed face, that is, it admits a support hyperplane. Therefore, there exists 8 € a such that

(@, B) = max(a, B) = sup(a, B) = sup(Fa(exp(y) - v), B).
acO ac® y€a

Since v e W(M, A) and p, = yﬁ for every B € a, it follows from [9, Cor. 54] and from the proof of [9, Thm. 53]
that

mﬁx yﬁ = tljﬂ/pﬁ(exp(tﬁ) - x)dv(x) = E%Sa(ex?ﬁﬁ) -v), B).
M

Consequently,

(@ B) = sup(alexp() - ). f) > max u = max(p, B).

That being so, the linear function a = (a, B) attains it maximum on P at & € int(P). Since P is convex, 8 must
be zero, which is a contradiction. O
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5 Convexity properties of §: general case

The goal of this section is to prove a result similar to Theorem 4.7 when the group acting on P(M) is non-
Abelian.
Let G = K exp(p) be a compatible subgroup of U and fix v € P(M). To our purpose, it is useful to consider
the map [4, 5, 11, 29]
F,:G>p, Fu(g)=35(g-v),

where § : P(M) > p is the gradient map associated with the action of G on P(M). In [5, Thm. 6.4], the
authors showed that F,, is a smooth submersion when G = U® and G, is compact. This is true for a compatible
subgroup of U%, too.

Proposition 5.1. If G, is compact, then F, is a smooth submersion.

Proof. We have to prove that the pushforward dF.,(g) : T¢G - p of F, is surjective for every g € G. Let us
consider the curve o(t) := exp(tf) - g in G, where B € p. Using the change of variables formula (2), we can
write
Fu0) - [ mlexp(tp) - 0,
M
where Vv := g - v € P(M). Suppose that dF,(g)(5(0)) = 0. Then, denoted by ||| the Riemannian norm on M,
we have

. d
0= (@F, (0O, B) = | &
|

1B (exp(t) - x) dv(x) = / 1Bul2 00 o),
M

t=0

since grad(yﬁ) = Bu. Therefore, By vanishes v-almost everywhere. By Lemma 3.1, exp(Rp) is contained in
Gy = gGyg!, which is compact. Thus, B = 0. We can conclude that dF,(g) is injective on the subspace
dRg(e)(p) of TG, R being the right translation on G. By dimension reasons, dF,(g) is surjective. O

As in the previous section, whenever a C p is a maximal Abelian subalgebra of g with corresponding Abelian
Lie group A := exp(a), we assume that the Morse-Bott function yﬁ has a unique local maximum for every
B € a. In the non-Abelian case, we can exploit the so-called KAK decomposition of G (cf. [33, Thm. 7.39]) to
show the following.

Theorem 5.2. Let v € P(M) be a probability measure which is absolutely continuous with respect to a K-
invariant smooth probability measure vo € P(M) and assume that 0 belongs to the interior Q(u,) of E(u,) in p.
Then, §(G - v) = Q(up) and F, : G > Q(u,) is a smooth fibration with compact connected fibres diffeomorphic
to K.

Before proving the theorem, we make some remarks on its content. First, we observe that the hypothesis on
v is satisfied by smooth probability measures, which constitute a dense subset of P(M) (see for instance [13]).
Moreover, it guarantees that whenever {k,} is a sequence in K converging to some k € K, then the sequence
{kn - v} C P(M) converges to k - v in the norm

V|| := sup /hdv |he M), suplh|<1,,
M
M

by [5, Lemma 6.11]. Finally, we underline that the assumption 0 € Q(u,) is not restrictive, as such condition
is always satisfied up to replace G with a compatible group G' = K exp(p’) such that My (M) = pp(M) and up
to shift p,,. We will show this assertion in Proposition A.1 of Appendix A, since most of its proof is rather
technical.

Proof of Theorem 5.2. First of all, notice that v € W(M, A) for any a C p, since it is absolutely continuous
with respect to the smooth probability measure vo. As 0 € Q(u,), for every B € p the function y’é has a strictly
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positive maximum. This implies that v is stable (cf. [9, Cor. 56]). Thus, G, is compact. Now, by Proposition
5.1, F, : G > p is a smooth submersion. In particular, its image is an open subset of p contained in E(uy).
Therefore, F,(G) C Q(u,) and we can regard F, asamap F, : G > Q(u,). We claim that such map is proper.
Let {gn} be asequence in G such that {F,(gx)} converges to a point of Q(u;). We need to show that there exists
a convergent subsequence of {gn}. Let a C p be a maximal Abelian subalgebra of g and set A := exp(a). By the
KAK-decomposition of G, every g € G can be written as k, exp(an) I;}, where kn, I, € Kand ay, € a. Passing
to subsequences, we have that k, > kand I, > [, for some k, | € K. Since F, is K-equivariant, it follows that
the sequence {F,(exp(ax) I,})} is convergent in Q(u,). A computation similar to [5, p. 1139] gives

Fy(exp(an) I,") - Fy(exp(an) 1)

< sup |up| Hl;1 cv-T1t VH .
M

Then, by the hypothesis on v, we get Fy(exp(an) ') — Fy(exp(an)I™?) > 0. Therefore, the sequence
{Fy(exp(an) I'!)} is convergent in Q(u,), too. Consequently, {F,(lexp(an) ")} converges to some point of
Q(uy), being Fy(lexp(an) ') = Ad()F,(exp(an) I'!). The points lexp(an) I"! belong to the Abelian group
A’ := IAI', which is compatible. The A’-gradient map is 7, o up, where 1, : p > o is the orthogonal
projection onto the Lie algebra a’ of A". Denote by P := u, (M) the image of . P = m, (u,(M)) is a polytope
and 71,/ (Q(up)) C int(P). Observe that O e int(P). This implies that v is stable with respect to A". Thus, a;, = {0}
by [9, Lemma 21]. Hence, by the results of §4, §,(A" - v) = int(P) and the map FY A > d, Fh(a) = Fola-v),
is a diffeomorphism onto int(P). Since {lexp(an) ™'} c A" and {m, (F,(lexp(a)l'!)) = F2 (lexp(an) ')}
converges to some point of int(P), the sequences {lexp(a,)I"*} ¢ A and {exp(a,)} C A admit convergent
subsequences. The claim is then proved. As a consequence, F, : G > Q(u,) is a closed map. Since it is also
open, it is surjective. In particular, it is a locally trivial fibration by Ehresmann theorem [14]. As the base Q(u,)
is contractible, G is diffeomorphic to Q(u,) x F, where F denotes the fibre. Hence, F is connected. Moreover,
F,(0) is a K-orhit, since 0 € Q(u,) and F, is K-equivariant. Therefore, F is diffeomorphic to K. O

Corollary 5.3. Ifv € P(M) is a K-invariant smooth probability measure on M and O € Q(u,), then F, descends
to a diffeomorphism F, : G/K > Q(uy).

Proof. Since v is K-invariant, for every g € G and k € K we have F,(gk) = §(gk-v) = §(g - v) = Fy(g). Thus, F,
descends to a map Fy : G/K > Q(u,). By Theorem 5.2, F, is a proper map and a local diffeomorphism. Thus,
it is a covering map. As Q(y,) is contractible, Fy : G/K > Q(u,) is a diffeomorphism. O

Remark 5.4. The above corollary may be regarded as an analogue of a classical result by Kordnyi [34].
Indeed, it suggests that when M is an adjoint orbit and v is a K-invariant probability measure, then a potential
compactification of G/K is given by the convex hull of M.

A

Let U be a compact connected Lie group acting in a Hamiltonian fashion on a compact Kdhler manifold
(Z,], w) with momentum mapping y : Z - u, and assume that the action of U on Zis holomorphic. As
mentioned in §5, we are going to show the following result.

Proposition A.1. Let G = Kexp(p) be a compatible subgroup of UC. Consider a G-stable submanifold M of Z
and let uy : M - p be the G-gradient map associated with p. Then
i) there exists a subgroup G' = K exp(p’) C G compatible with U such that the interior of u,, (M) is nonempty
inp and p, (M) = pp(M);
ii) up toshift p,y, 0 € Qu,).

For the sake of clarity, we first prove some lemmata which will be useful in the proof of the above proposition.
Letu := ¢ & ip. It is immediate to check that u is a subalgebra of .
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Lemma A.2. Let 8y € p be a K-fixed point. Then, [Bo, g] = 0 and [ifo,u’] = 0.

Proof. First, observe that [8o, €] = 0, since By a K-fixed point. Moreover, [Bo,p] C € and B(t, [Bo, p]) =
-B([Bo, €], p) = 0, as B is Ad(U®)-invariant. Thus, [Bo, p] = 0 and, consequently, [Bo, g] = 0. Finally, from
the definition of v/, it follows that [iBo, u] = 0. O

Consider U” := exp(u’) C U. U” is a compact subgroup of U and G is a compatible subgroup of (U")®, too.
Denote by u” the Lie algebra of U”. The momentum mapping for the U”-action on (Z, J, w) is given by 1, o i,
where - : u-> u” is the projection. Moreover, a result similar to Lemma A.2 also holds for u”.

Lemma A.3. Let 8y € p be a K-fixed point. Then, [ifo,u’] = 0.

Proof. Let s € U” and let {&,} be a sequence in u’ such that exp(¢;) > s. By Lemma A.2, we have that
exp(itBo) exp(&n) = exp(&n) exp(itBo), for every t € R. Therefore, exp(itfo) s = s exp(itBo), thatis, exp(itfo) €
Z(U"). O

In the light of the previous observations, up to replace U with U”, we can assume that G = Kexp(p) is a
compatible subgroup of U® with Lie algebra g = ¢ @ p, and that for every K-fixed point o € p we have
[Bo, 8] = 0 and [iBo, u] = 0.

Let us focus on the convex hull E := E(u;) of up (M) in p. E is a K-invariant convex body. Let Aff(E) denote
the affine hull of E. Then, Aff(E) = Bo + p’, where p’ C p is a linear subspace. Pick 8, € E such that ||o]| =
ming ||B]|. Observe that such By is fixed by the K-action. Therefore, p’ is K-invariant. Hence, up to shift u by
-ifo, we may assume that E C p/ and that the interior of E in p' is nonempty. Summarizing, we have proved
the following

Lemma A.4. Up to shift the momentum mapping u, there exists a K-invariant subspace p’ C p such that E(u,)
is contained in p’ and its interior in p’ is nonempty.

Proof of Proposition A.1.

i) Consider the subspace p of p obtained in Lemma A.4. Since p’ is K-invariant, [p’, p] is an ideal of ¢. Let
h:=[p,p]a@p. The Lie algebra g decomposes as g = b & h*, where h is the orthogonal complement of
h in g with respect to B. By [8, Prop. 1.3], h and h* are compatible K-invariant commuting ideals of g. Set
K; := exp([p, p']) and H = K; exp(p). Then, the group G := H = K; exp(p’) is a compatible subgroup of
U® and the G'-gradient map p, : M - p’ associated with y satisfies p, (M) = pp(M).

ii) Letv be a K-invariant measure on p’ such that v(E(u p)) = 1. Define 0 := /, Ew, ) Bdv(B). 6 is a K-fixed point

of E(u,). In particular, [if), u] = 0. We claim that 6 € Q(u,/). Indeed, otherwise there would exist § ¢ p
such that (0, &) = ¢, while (8, &) < c for every B € Q(u, ). From this follows that

6,8) = /(ﬁ,§>dV(ﬂ)= /(ﬁ,€>dV(ﬁ)<c,

E(u,) Qu,)

which is a contradiction. Therefore, up to shift u by —if), we have that 0 € Q(u,). O
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