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Abstract: Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties
of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of
probability measures onM. In particular, we prove convexity results for such map when G is Abelian and we
investigate how to extend them to the non-Abelian case.
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1 Introduction
Let (Z, J, ω) be a compact connected Kähler manifold and let U be a compact connected Lie group with
Lie algebra u. Assume that U acts on Z by holomorphic isometries and in a Hamiltonian fashion with
momentum mapping µ : Z → u*. It is well-known that the U-action extends to a holomorphic action of the
complexi�cation UC of U. Moreover, the latter gives rise to a continuous action of UC on the space of Borel
probability measures on Z endowed with the weak* topology. We denote such space by P(Z).

Recently, the �rst author and Ghigi [5] studied the properties of the UC-action on P(Z) using momentum
mapping techniques. Although it is still not clear whether any reasonable symplectic structure on P(Z) may
exist (but see [16] for something similar on the Euclidean space), in this setting it is possible to de�ne an
analogue of the momentummapping, namely

F : P(Z) → u*, F(ν) =
∫
Z

µ(z)dν(z).

F is called gradient map. Using it, the usual concepts of stability appearing in Kähler geometry [17, 20–23, 30,
32, 35, 37, 38] can be de�ned for probability measures, too.

In [5], the authors were interested in determining the conditions for which the UC-orbit of a given
probability measure ν ∈ P(Z) has non-empty intersection with F−1(0), whenever 0 belongs to the convex
hull of µ(Z). This problem is motivated by an application to upper bounds for the �rst eigenvalue of the
Laplacian acting on functions (see also [1, 3, 4, 11, 29]). Furthermore, they obtained various stability criteria
for measures.

Stability theory for the action of a compatible subgroup G of UC was analyzed by the �rst author and
Zedda in [9].
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Recall that a closed subgroup G of UC is called compatible if the Cartan decomposition UC = Uexp(iu)
induces a Cartan decomposition G = Kexp(p), where K := G ∩ U and p := g ∩ iu is a K-stable linear subspace
of iu.

Identify u* with u by means of an Ad(U)-invariant scalar product on u. For each z ∈ Z, let µp(z) denote −i
times the component of µ(z) in the direction of ip ⊂ u. This de�nes a K-equivariant map µp : Z −→ p, which
is called G-gradient map associated with µ [24, 26, 27]. Since UC acts holomorphically on Z, the fundamental
vector �eld βZ ∈ X(Z) of any β ∈ p is the gradient of the function µβp(·) := 〈µp(·), β〉 with respect to the
Riemannian metric ω(·, J·), 〈·, ·〉 being an Ad(K)-invariant scalar product on p.

If M is a compact G-stable real submanifold of Z, we can restrict µp to M. Moreover, the G-action on M
extends in a natural way to a continuous action on P(M), and the map

Fp : P(M) → p, Fp(ν) =
∫
M

µp(x)dν(x),

is the analogue of the G-gradient map in this setting. It is not hard to prove that its image coincides with the
convex hull of µp(M) in p (cf. Lemma 3.4).

Fix a probability measure ν ∈ P(M). Having in mind the classical convexity results for the momentum
mapping [2, 19, 31] and for the G-gradient map [24, 28], in this paper we are interested in studying the
behaviour of Fp on the orbit G · ν.

Let a ⊂ p be an Abelian subalgebra of g. The Abelian Lie group A := exp(a) is compatible and the
corresponding A-gradient map is given by µa := πa ◦ µp, where πa is the orthogonal projection onto a. In
Section 4, we prove a result which can be regarded as the analogue of a theorem by Atiyah [2] in our setting
(see also [28]):

Theorem. The image of themapFa : A·ν → a is an open convex subset of an a�ne subspace of awith direction
a⊥ν . Moreover, Fa(A · ν) is the convex hull of Fa(A · ν ∩ P(M)A), where P(M)A is the set of A-�xed measures.

As an immediate consequence of this theorem, we get that Fa(A · ν) is a convex subset of a whenever the Lie
algebra of the isotropy group Aν is trivial (Corollary 4.4). The image of the map Fa is contained in the convex
hull of µa(M). Hence, when P := µa(M) is a polytope, it is natural to investigate under which conditions
Fa(A · ν) coincides with int(P). We point out that the convexity of P is not known for a generic A-invariant
closed submanifold M of Z. It holds if G = UC and M is a complex connected submanifold by the Atiyah-
Guillemin-Sternberg convexity theorem [2, 19], or, more in general, if Z is a Hodge manifold and M is an
irreducible semi-algebraic subset of Z with irreducible real algebraic Zariski closure [7, 24]. In the recent
paper [10], the authors gave a short proof of this property when M is an A-invariant compact connected real
analytic submanifold of Pn(C). The key point is that for any β ∈ a the Morse-Bott function µβp has a unique
local maximum. Under this assumption, in Theorem 4.7 we show that if Aν is trivial and for any β ∈ a the
unstable manifold corresponding to the unique maximum of µβp has full measure, then Fa(A · ν) coincides
with int(P). It is worth underlining here that a further result shown in [10] allows to obtain an alternative
proof of the convexity properties of the map Fa along the A-orbits. Nevertheless, in our proof the image of
Fa along the orbits is better understood. Moreover, it is completely determined for a large class of probability
measures in Theorem 4.7.

In Section 5, we focus our attention on the non-Abelian case. Let Ω(µp) denote the interior of the convex
hull of µp(M) in p. In Theorem 5.2, we prove that, under a mild regularity assumption on the measure ν,
Fp(G · ν) = Ω(µp) and that the map

Fν : G → Ω(µp), Fν(g) := Fp(g · ν),

is a smooth �bration. Notice that the assumptions in Theorem 4.7 are weaker than those of Theorem 5.2.
Finally, if ν is a K-invariant smoothmeasure onM, we show that themap Fν descends to amap on G/Kwhich
is a di�emorphism onto Ω(µp). (Corollary 5.3). These results may be regarded as a generalization of those
obtained in [5] when G = UC andM = Z is a Kähler manifold. However, our proofs are slightly di�erent, since
the real case is more involved than the complex one and a new technical result is needed (cf. Appendix A).
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Moreover, Corollary 5.3 suggests that whenM is an adjoint orbit and ν is a K-invariant smooth measure, then
a potential compacti�cation of G/K is given by the convex hull of M. This is an analogue of a classical result
due to Korányi [34].

The present paper is organized as follows. In Section 2, we review the main properties of compatible
groups and of the G-gradient map. In Section 3, we recall some useful results on measures and we introduce
the gradient map. The convexity properties of the gradient map in the Abelian and in the non-Abelian case
are investigated in Section 4 and in Section 5, respectively. Finally, in Appendix A, we prove a technical result
which is of interest in Section 5.

2 Preliminaries

2.1 Cartan decomposition and compatible subgroups

Let U be a compact connected Lie group, denote by u its Lie algebra and by UC its complexi�cation. It is well-
known (see for instance [33]) that UC is a complex reductive Lie group with Lie algebra uC = u ⊕ iu and that
it is di�eomorphic to U × iu via the real analytic map

U × iu → UC, (u, iξ ) 7→ u exp(iξ ).

The resulting decomposition UC = Uexp(iu) is called Cartan decomposition of UC.
A closed connected subgroup G ⊆ UC with Lie algebra g is said to be compatible with the Cartan

decomposition of UC if G = K exp(p), where K := G ∩ U and p := g ∩ iu is a K-stable linear subspace of iu
(cf. [26, 27]). In such a case, K is a maximal compact subgroup of G. The Lie algebra of G splits as g = k ⊕ p,
where k := Lie(K), and the following inclusions hold

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

On the Lie algebra uC = u ⊕ iu there exists a nondegenerate, Ad(UC)-invariant, symmetric R-bilinear form
B : uC ×uC → Rwhich is positive de�nite on iu, negative de�nite on u and such that the decomposition u⊕ iu
is B-orthogonal (see e.g. [6, p. 585]). In what follows, we let 〈·, ·〉 := B|iu×iu.

WheneverG = K exp(p) is a compatible subgroupofUC, the restrictionofB to g is Ad(K)-invariant, positive
de�nite on p, negative de�nite on k, and ful�ls B(k, p) = 0.

2.2 The G-gradient map

Let U andUC be as in §2.1. Consider a compact Kählermanifold (Z, J, ω), assume that UC acts holomorphically
on it and that aHamiltonian action ofUon Z is de�ned. Then, theKähler formω is U-invariant and there exists
amomentum mapping µ : Z → u*. By de�nition, µ is U-equivariant and for each ξ ∈ u

dµξ = ιξZω,

where µξ ∈ C∞(Z) is de�ned by µξ (z) = µ(z)(ξ ), for every point z ∈ Z, and ξZ ∈ X(Z) is the fundamental vector
�eld of ξ induced by the U-action, namely the vector �eld on Z whose value at z ∈ Z is

ξZ(z) =
d
dt

∣∣∣∣
t=0

exp(tξ ) · z.

Since U is compact, we can identify u* with u by means of an Ad(U)-invariant scalar product on u. Conse-
quently, we can regard µ as a u-valued map.

Let G = K exp(p) be a compatible subgroup of UC. The composition of µ with the orthogonal projection of
u onto ip ⊂ u de�nes a K-equivariant map µip : Z → ip, which represents the analogue of µ for the G-action.
Following [24, 26, 27], in place of µip we consider

µp : Z → p, µp(z) := −i µip(z).
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As the UC-action on Z is holomorphic, for every β ∈ p the fundamental vector �eld βZ ∈ X(Z) induced by the
G-action is the gradient of the function

µβp : Z → R, µβp(z) := 〈µp(z), β〉,

with respect to the Riemannian metric ω(·, J·). This motivates the following.

De�nition 2.1. µp is called G-gradient map associated with µ.

Let M be a G-stable submanifold of Z. We use the symbol µp to denote the G-gradient map restricted to M,
too. Then, for any β ∈ p the fundamental vector �eld βM ∈ X(M) is the gradient of µβp : M → R with respect
to the induced Riemannian metric on M. Moreover, if M is compact, µβp is a Morse-Bott function (see e.g. [6,
Cor. 2.3]). Thus, denoted by c1 < · · · < cr the critical values of µβp, M decomposes as

M =
r⊔
j=1

Wj , (1)

where for each j = 1, . . . , r, Wj is the unstable manifold of the critical component (µβp)−1(cj) for the gradient
�ow of µβp (see for instance [25, 26] for more details).

3 Measures
In the �rst part of this sectionwe recall some known results aboutmeasures. The readermay refer for instance
to [13, 15] for more details.

Let M be a compact manifold and let M(M) denote the vector space of �nite signed Borel measures on
M. By [15, Thm. 7.8], such measures are Radon. Then, by the Riesz Representation Theorem [15, Thm. 7.17],
M(M) is the topological dual of the Banach space (C(M), ‖·‖∞), namely the space of real valued continuous
functions on M endowed with the sup-norm. As a consequence, M(M) is endowed with the weak* topology
[15, p. 169].

The set of Borel probability measures on M is the compact convex subset P(M) ⊂ M(M) given by the
intersection of the cone of positive measures onM and the a�ne hyperplane {ν ∈M(M) | ν(M) = 1}. Observe
that the weak* topology on P(M) is metrizable, since C(M) is separable [13, p. 426].

Given a measurable map f : M → N between measurable spaces and a measure ν on M, the image
measure f*ν of ν is the measure on N de�ned by f*ν(A) := ν(f −1(A)) for every measurable set A ⊆ N . f*ν
satis�es the following change of variables formula∫

N

h(y)d(f*ν)(y) =
∫
M

h(f (x))dν(x). (2)

When a Lie group G acts continuously on a compact manifold M, it is possible to de�ne an action of G on
P(M) as follows:

G × P(M) → P(M), (g, ν) 7→ g*ν := (Ag)*ν, (3)

where for each g ∈ G
Ag : M → M, Ag(x) = g · x,

is the homeomorphism induced by the G-action on M. By [5, Lemma 5.5], the action (3) is continuous with
respect to the weak* topology on P(M). In what follows, we denote this action by a dot, i.e., g · ν := g*ν
whenever g ∈ G and ν ∈ P(M).

The next lemma is an immediate consequence of [5, Lemma 5.8].

Lemma 3.1. Let M be a compact manifold endowed with a smooth action of a Lie group G. Consider ν ∈M(M),
ξ ∈ g, and suppose that ξM vanishes ν-almost everywhere. Then, exp(Rξ ) is contained in the isotropy group Gν
of ν.
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Proof. Since ξM vanishes ν-almost everywhere, its �ow

φt : M → M, φt(x) = exp(tξ ) · x,

satis�es φt*ν = ν for any t ∈ R by [5, Lemma 5.8].

Let us focus on the setting (M, G, K, µp) introduced at the end of §2.2. From now on, we assume that the G-
stable submanifold M ⊂ Z is compact. By the above results, the group G = Kexp(p) acts continuously on
P(M). Moreover, albeit a reasonable symplectic structure on P(M) does not seem to exist, it is possible to
de�ne a map which can be regarded as the analogue of the G-gradient map µp for the action of G on P(M).

De�nition 3.2. The gradient map associated with the action of G on P(M) is

F : P(M) → p, F(ν) =
∫
M

µp(x)dν(x).

Remark 3.3. By [9, Prop. 45], F is precisely the gradient map of a Kempf-Ness function for (P(M), G, K). Thus,
it is continuous and K-equivariant (cf. [9, Sect. 3]).

Using F, the usual concepts of stability [17, 20–23, 30, 32, 35, 37, 38] can be de�ned for probability measures,
too (see also [5, 9]). For instance, a measure ν ∈ P(M) is said to be stable if

G · ν ∩ F−1(0) ≠ ∅

and gν := Lie(Gν) is conjugate to a subalgebra of k. In such a case, Gν is compact [5, Cor. 3.5].
In the light of previous considerations, it is natural to ask whether established results for the G-gradient

map [2, 12, 19, 24, 28] can be proved also for the gradient map F. Here, we focus our attention on convexity
properties of F. We begin with the following observation.

Lemma 3.4. The image of the gradient map F : P(M) → p coincides with the convex hull E(µp) of µp(M) in p.

Proof. Consider ν ∈ P(M). Observe that F(ν) is the barycenter of the measure µp*ν ∈ P(µp(M)), since by the
change of variables formula (2) we have

F(ν) =
∫
M

µp(x)dν(x) =
∫
p

β d(µp*ν)(β).

Thus, F(ν) lies in E(µp). Conversely, for any γ ∈ E(µp), we can write

γ =
m∑
j=1

λjγj ,

for a suitable m, where
∑m

j=1 λj = 1, λj ≥ 0 and γj ∈ µp(M). For each j = 1, . . . ,m, let xj ∈ M be a point in the
preimage of γj and let δxj denote the Dirac measure supported at xj. Then, γ = F(ν̃), where

ν̃ :=
m∑
j=1

λjδxj .

Due to the previous result, in the next sections we shall study the behaviour of F on the orbits of the G-action.

4 Convexity properties of F: Abelian case
Let a ⊂ p be a Lie subalgebra of g. Since [p, p] ⊂ k and g = k⊕ p, a is Abelian. The corresponding Abelian Lie
group A := exp(a) ⊂ G is compatible with the Cartan decomposition of UC and an A-gradient map µa : M → a
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is given by µa := πa ◦µp, where πa is the orthogonal projection onto a. Therefore, the gradientmap associated
with the A-action on P(M) is

Fa : P(M) → a, Fa(ν) =
∫
M

µa(x)dν(x).

Fix a probability measure ν ∈ P(M). We want to study the behaviour of Fa on the orbit A · ν. First of all, we
show that Aν is always compatible.

Lemma 4.1. The isotropy group Aν of ν is compatible, namely Aν = exp(aν).

Proof. Let α := Fa(ν) ∈ a. Since a is Abelian, µ̃a := µa − α is still an A-gradient map and the corresponding
gradient map F̃a : P(M) → a satis�es

F̃a(ν) =
∫
M

µ̃a(x)dν(x) = Fa(ν) − α ν(M) = 0.

Then, Aν is compatible by [9, Prop. 20].

Consider the decomposition
a = aν ⊕ a⊥ν ,

where a⊥ν is the orthogonal complement of aν in a with respect to B|a×a. We denote by π : a → a⊥ν the
orthogonal projection onto a⊥ν and we let Â := exp(a⊥ν ). Since exp : a → A is an isomorphism of Abelian
Lie groups, we have A = ÂAν and A · ν = Â · ν.

We are now ready to state the main result of this section.

Theorem 4.2. The image Fa(A · ν) of the orbit A · ν is an open convex subset of an a�ne subspace of a with
direction a⊥ν .

Before proving Theorem 4.2, we show a preliminary lemma.

Lemma 4.3. The projection of Fa(Â · ν) onto a⊥ν is convex.

Proof. By [9, Thm. 39], there exists a Kempf-Ness function Ψ : M × A → R for (M, A, {e}), where e ∈ A is the
identity element. Recall that for each point x ∈ M the functionΨ(x, ·) is smooth on A, and that for every γ ∈ a

d2
dt2Ψ(x, exp(tγ)) ≥ 0, (4)

and it vanishes identically if and only if exp(Rγ) ⊂ Ax. Moreover, for every a, b ∈ A, the following condition
is satis�ed

Ψ(x, ab) = Ψ(x, b) + Ψ(b · x, a). (5)

Ψ is related to the A-gradient map µa by

d
dt

∣∣∣∣
t=0
Ψ(x, exp(tγ)) = 〈µa(x), γ〉. (6)

We de�ne a function f : a⊥ν → R as follows

f (α) :=
∫
M

Ψ(x, exp(α))dν(x).

We claim that f is strictly convex. By (4) and (5), for every α, β ∈ a⊥ν

d2
dt2 f (tβ + α) =

∫
M

d2
dt2Ψ(exp(α) · x, exp(tβ))dν(x) ≥ 0.
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If it was identically zero, then d2
dt2Ψ(exp(α)·x, exp(tβ)) would vanish ν-almost everywhere. As a consequence,

for every point x outside a set of ν-measure zero we would have exp(Rβ) ⊂ Aexp(α)·x = Ax, which implies that
βM(x) = 0. Therefore, exp(Rβ) ⊂ Aν by Lemma 3.1, which is a contradiction. By a standard result in convex
analysis (see for instance [18, p. 122]), the pushforward df : a⊥ν → (a⊥ν )* is a di�eomorphism onto an open
convex subset of (a⊥ν )*. Now, using (2), (5), (6), for each α, β ∈ a⊥ν we have

df (α)(β) = d
dt

∣∣∣∣
t=0
f (tβ + α)

=
∫
M

d
dt

∣∣∣∣
t=0
Ψ(exp(α) · x, exp(tβ))dν(x)

= 〈
∫
M

µa(exp(α) · x)dν(x), β〉

= 〈
∫
M

µa(y)d(exp(α) · ν)(y), β〉

= 〈Fa(exp(α) · ν), β〉
= 〈π(Fa(exp(α) · ν)), β〉,

from which the assertion follows.

Corollary 4.4. If aν = {0}, then Fa(A · ν) is convex in a and the map

FAν : A → a, FAν (a) := Fa(a · ν),

is a di�eomorphism onto Fa(A · ν).

Proof of Theorem 4.2. Since Aν is compatible, it follows from the proof of [9, Prop. 52] that ν is supported on

Maν := {x ∈ M | ξM(x) = 0 ∀ ξ ∈ aν}.

By [25, 26], there exists a decomposition

Maν = M1 t · · · tMn ,

where each Mj is an A-stable connected submanifold of M. Consequently,

ν =
n∑
j=1

λjνj ,

where for j = 1, . . . , n, νj is a probability measure on Mj, λj ≥ 0 and
∑n

j=1 λj = 1. By [27], for every x ∈ Mj the
image µa(A · x) of A · x is contained in an a�ne subspace αj + a⊥ν of a. Then, since Mj is A-stable, there is a
map µ̃j : Mj → a⊥ν such that µa(a · x) = αj + µ̃j(a · x), for every a ∈ A. Now, we have

Fa(a · ν) =
∫
M

µa(x)d(a · ν)(x)

=
∫
M

µa(a · x)dν(x)

=
n∑
j=1

λj
∫
Mj

µa(a · x)dνj(x)

=
n∑
j=1

λjαj +
n∑
j=1

λj
∫
Mj

µ̃j(a · x)dνj(x).

Hence, Fa(A · ν) ⊆ α + a⊥ν , where α :=
∑n

j=1 λjαj. Using Lemma 4.3, we can conclude that Fa(A · ν) is an open
convex subset of the a�ne subspace α + a⊥ν of a.
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From theprevious result and the compactness ofP(M), it follows thatFa(A · ν) = Fa(A · ν) is a compact convex
subset of a. Moreover, if we denote by

P(M)A := {ν ∈ P(M) | A · ν = ν}

the set of A-�xed measures, then we have the

Proposition 4.5. Fa

(
A · ν

)
is the convex envelope of Fa(A · ν ∩ P(M)A).

Proof. By [36, Cor. 1.4.5], it is su�cient to show that every extremal point β ∈ Fa

(
A · ν

)
is the image of an A-

�xedmeasure. Consider ν̃ ∈ A · ν such that Fa(ν̃) = β. By Theorem 4.2, Fa(A· ν̃) is an open convex subset of an
a�ne subspace α +a⊥ν̃ ⊂ a. Since β is an extremal point, we have necessarily a⊥ν̃ = {0}. Thus, ν̃ ∈ P(M)A.

Let P := µa(M). It was proved in [24, Sect. 5] that P is a �nite union of polytopes, while in [8] the authors
showed that its convex hull is closely related to E(µp). Moreover, even if P is not necessarily convex, there
exist suitable hypothesis guaranteeing that it is a polytope. This happens for instance if for each β ∈ a any
local maximum of the Morse-Bott function µβp is a global maximum [10]. Classes of manifolds satisfying this
property include real �ag manifolds [6], and real analytic submanifolds of the complex projective space [10].

In the sequel, we always assume that for each β ∈ a the function µβp has a unique local maximum.
As a consequence, P is a polytope, and the Morse-Bott decomposition (1) of M with respect to µβp has a
unique unstable manifold which is open and dense, namely Wr, while the remaining unstable manifolds
are submanifolds of positive codimension.

De�nition 4.6. LetW(M, A) denote the set of probability measures on M for which the open unstable manifold
Wr has full measure for every β ∈ a.

A typical example of probability measures belonging to W(M, A) is given by smooth ones, namely those
having a smooth positive density in any chart of the manifold with respect to the Lebesgue measure of the
chart (cf. [15, Sect. 11.4]).

In a similar way as in [5, Prop. 6.8], we can prove the following

Theorem 4.7. Let ν ∈W(M, A) and assume that Aν = {e}. Then, Fa(A · ν) coincides with int(P).

Proof. For simplicity of notation, let O := Fa(A · ν) ⊂ a. We already know that O ⊆ int(P). Suppose by
contradiction that O is strictly contained in int(P). Then, O ⊂ P, since O and P are both convex. Consider
α0 ∈ P−O, α1 ∈ O and the line segment σ(t) := (1− t) α0 + t α1. Let t := inf{t ∈ [0, 1] | σ(t) ∈ O} and α := σ(t).
As O is closed, α ∈ O and t ∈ (0, 1). We claim that α ∈ ∂O ∩ int(P). Indeed, it is clear that α ∈ ∂O, while
α ∈ int(P) follows from α1 ∈ O ⊂ int(P) and t > 0. By [36], every boundary point of a compact convex set lies
on an exposed face, that is, it admits a support hyperplane. Therefore, there exists β ∈ a such that

〈α, β〉 = max
α∈O

〈α, β〉 = sup
α∈O

〈α, β〉 = sup
γ∈a
〈Fa(exp(γ) · ν), β〉.

Since ν ∈W(M, A) and µβp = µ
β
a for every β ∈ a, it follows from [9, Cor. 54] and from the proof of [9, Thm. 53]

that
max
M

µβa = lim
t→+∞

∫
M

µβa(exp(tβ) · x)dν(x) = lim
t→+∞
〈Fa(exp(tβ) · ν), β〉.

Consequently,
〈α, β〉 = sup

γ∈a
〈Fa(exp(γ) · ν), β〉 ≥ max

M
µβa = max

ρ∈P
〈ρ, β〉.

That being so, the linear function α 7→ 〈α, β〉 attains it maximum on P at α ∈ int(P). Since P is convex, βmust
be zero, which is a contradiction.
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5 Convexity properties of F: general case
The goal of this section is to prove a result similar to Theorem 4.7 when the group acting on P(M) is non-
Abelian.

Let G = K exp(p) be a compatible subgroup of UC and �x ν ∈ P(M). To our purpose, it is useful to consider
the map [4, 5, 11, 29]

Fν : G → p, Fν(g) := F(g · ν),

where F : P(M) → p is the gradient map associated with the action of G on P(M). In [5, Thm. 6.4], the
authors showed that Fν is a smooth submersion when G = UC and Gν is compact. This is true for a compatible
subgroup of UC, too.

Proposition 5.1. If Gν is compact, then Fν is a smooth submersion.

Proof. We have to prove that the pushforward dFν(g) : TgG → p of Fν is surjective for every g ∈ G. Let us
consider the curve σ(t) := exp(tβ) · g in G, where β ∈ p. Using the change of variables formula (2), we can
write

Fν(σ(t)) =
∫
M

µp(exp(tβ) · x)dν̃(x),

where ν̃ := g · ν ∈ P(M). Suppose that dFν(g)(σ̇(0)) = 0. Then, denoted by ‖·‖ the Riemannian norm on M,
we have

0 = 〈dFν(σ̇(0)), β〉 =
∫
M

d
dt

∣∣∣∣
t=0
µβp(exp(tβ) · x) dν̃(x) =

∫
M

‖βM‖2 (x) dν̃(x),

since grad(µβp) = βM . Therefore, βM vanishes ν̃-almost everywhere. By Lemma 3.1, exp(Rβ) is contained in
Gν̃ = gGνg−1, which is compact. Thus, β = 0. We can conclude that dFν(g) is injective on the subspace
dRg(e)(p) of TgG, Rg being the right translation on G. By dimension reasons, dFν(g) is surjective.

As in the previous section, whenever a ⊂ p is a maximal Abelian subalgebra of gwith corresponding Abelian
Lie group A := exp(a), we assume that the Morse-Bott function µβp has a unique local maximum for every
β ∈ a. In the non-Abelian case, we can exploit the so-called KAK decomposition of G (cf. [33, Thm. 7.39]) to
show the following.

Theorem 5.2. Let ν ∈ P(M) be a probability measure which is absolutely continuous with respect to a K-
invariant smooth probability measure ν0 ∈ P(M) and assume that 0 belongs to the interior Ω(µp) of E(µp) in p.
Then, F(G · ν) = Ω(µp) and Fν : G → Ω(µp) is a smooth �bration with compact connected �bres di�eomorphic
to K.

Before proving the theorem, we make some remarks on its content. First, we observe that the hypothesis on
ν is satis�ed by smooth probability measures, which constitute a dense subset of P(M) (see for instance [13]).
Moreover, it guarantees that whenever {kn} is a sequence in K converging to some k ∈ K, then the sequence
{kn · ν} ⊂ P(M) converges to k · ν in the norm

‖ν‖ := sup


∫
M

hdν | h ∈ C(M), sup
M
|h| ≤ 1

 ,

by [5, Lemma 6.11]. Finally, we underline that the assumption 0 ∈ Ω(µp) is not restrictive, as such condition
is always satis�ed up to replace G with a compatible group G′ = K′ exp(p′) such that µp′ (M) = µp(M) and up
to shift µp′ . We will show this assertion in Proposition A.1 of Appendix A, since most of its proof is rather
technical.

Proof of Theorem 5.2. First of all, notice that ν ∈ W(M, A) for any a ⊂ p, since it is absolutely continuous
with respect to the smooth probability measure ν0. As 0 ∈ Ω(µp), for every β ∈ p the function µβp has a strictly
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positive maximum. This implies that ν is stable (cf. [9, Cor. 56]). Thus, Gν is compact. Now, by Proposition
5.1, Fν : G → p is a smooth submersion. In particular, its image is an open subset of p contained in E(µp).
Therefore, Fν(G) ⊆ Ω(µp) and we can regard Fν as a map Fν : G → Ω(µp). We claim that such map is proper.
Let {gn} be a sequence in G such that {Fν(gn)} converges to a point ofΩ(µp).We need to show that there exists
a convergent subsequence of {gn}. Let a ⊂ p be amaximal Abelian subalgebra of g and set A := exp(a). By the
KAK-decomposition of G, every gn ∈ G can be written as kn exp(αn) l−1n , where kn , ln ∈ K and αn ∈ a. Passing
to subsequences, we have that kn → k and ln → l, for some k, l ∈ K. Since Fν is K-equivariant, it follows that
the sequence {Fν(exp(αn) l−1n )} is convergent in Ω(µp). A computation similar to [5, p. 1139] gives∣∣∣Fν(exp(αn) l−1n ) − Fν(exp(αn) l−1)

∣∣∣ ≤ sup
M
|µp|

∥∥∥l−1n · ν − l−1 · ν∥∥∥ .
Then, by the hypothesis on ν, we get Fν(exp(αn) l−1n ) − Fν(exp(αn) l−1) → 0. Therefore, the sequence
{Fν(exp(αn) l−1)} is convergent in Ω(µp), too. Consequently, {Fν(l exp(αn) l−1)} converges to some point of
Ω(µp), being Fν(l exp(αn) l−1) = Ad(l)Fν(exp(αn) l−1). The points l exp(αn) l−1 belong to the Abelian group
A′ := lAl−1, which is compatible. The A′-gradient map is πa′ ◦ µp, where πa′ : p → a′ is the orthogonal
projection onto the Lie algebra a′ of A′. Denote by P := µa′ (M) the image of µa′ . P = πa′ (µp(M)) is a polytope
and πa′ (Ω(µp)) ⊂ int(P). Observe that 0 ∈ int(P). This implies that ν is stablewith respect to A′. Thus, a′ν = {0}
by [9, Lemma 21]. Hence, by the results of §4, Fa′ (A′ · ν) = int(P) and the map FA

′

ν : A′ → a′, FA
′

ν (a) = Fa′ (a · ν),
is a di�eomorphism onto int(P). Since {l exp(αn) l−1} ⊂ A′ and {πa′ (Fν(l exp(αn)l−1)) = FA

′

ν (l exp(αn) l−1)}
converges to some point of int(P), the sequences {l exp(αn)l−1} ⊂ A′ and {exp(αn)} ⊂ A admit convergent
subsequences. The claim is then proved. As a consequence, Fν : G → Ω(µp) is a closed map. Since it is also
open, it is surjective. In particular, it is a locally trivial �bration by Ehresmann theorem [14]. As the baseΩ(µp)
is contractible, G is di�eomorphic to Ω(µp) × F, where F denotes the �bre. Hence, F is connected. Moreover,
F−1ν (0) is a K-orbit, since 0 ∈ Ω(µp) and Fν is K-equivariant. Therefore, F is di�eomorphic to K.

Corollary 5.3. If ν ∈ P(M) is a K-invariant smooth probability measure on M and 0 ∈ Ω(µp), then Fν descends
to a di�eomorphism Fν : G/K → Ω(µp).

Proof. Since ν is K-invariant, for every g ∈ G and k ∈ K we have Fν(gk) = F(gk · ν) = F(g · ν) = Fν(g). Thus, Fν
descends to a map Fν : G/K → Ω(µp). By Theorem 5.2, Fν is a proper map and a local di�eomorphism. Thus,
it is a covering map. As Ω(µp) is contractible, Fν : G/K → Ω(µp) is a di�eomorphism.

Remark 5.4. The above corollary may be regarded as an analogue of a classical result by Korányi [34].
Indeed, it suggests that when M is an adjoint orbit and ν is a K-invariant probability measure, then a potential
compacti�cation of G/K is given by the convex hull of M.

A
Let U be a compact connected Lie group acting in a Hamiltonian fashion on a compact Kähler manifold
(Z, J, ω) with momentum mapping µ : Z → u, and assume that the action of UC on Z is holomorphic. As
mentioned in §5, we are going to show the following result.

Proposition A.1. Let G = Kexp(p) be a compatible subgroup of UC. Consider a G-stable submanifold M of Z
and let µp : M → p be the G-gradient map associated with µ. Then
i) there exists a subgroup G′ = K′ exp(p′) ⊂ G compatible with UC such that the interior of µp′ (M) is nonempty

in p′ and µp′ (M) = µp(M);
ii) up to shift µp′ , 0 ∈ Ω(µp′ ).

For the sake of clarity, we �rst prove some lemmatawhichwill be useful in the proof of the above proposition.
Let u′ := k⊕ ip. It is immediate to check that u′ is a subalgebra of u.
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Lemma A.2. Let β0 ∈ p be a K-�xed point. Then, [β0, g] = 0 and [iβ0, u′] = 0.

Proof. First, observe that [β0, k] = 0, since β0 a K-�xed point. Moreover, [β0, p] ⊂ k and B(k, [β0, p]) =
−B([β0, k], p) = 0, as B is Ad(UC)-invariant. Thus, [β0, p] = 0 and, consequently, [β0, g] = 0. Finally, from
the de�nition of u′, it follows that [iβ0, u′] = 0.

Consider U′′ := exp(u′) ⊆ U. U′′ is a compact subgroup of U and G is a compatible subgroup of (U′′)C, too.
Denote by u′′ the Lie algebra of U′′. The momentummapping for the U′′-action on (Z, J, ω) is given by πu′′ ◦ µ,
where πu′′ : u → u′′ is the projection. Moreover, a result similar to Lemma A.2 also holds for u′′.

Lemma A.3. Let β0 ∈ p be a K-�xed point. Then, [iβ0, u′′] = 0.

Proof. Let s ∈ U′′ and let {ξn} be a sequence in u′ such that exp(ξn) → s. By Lemma A.2, we have that
exp(itβ0) exp(ξn) = exp(ξn) exp(itβ0), for every t ∈ R. Therefore, exp(itβ0) s = s exp(itβ0), that is, exp(itβ0) ∈
Z(U′′).

In the light of the previous observations, up to replace U with U′′, we can assume that G = K exp(p) is a
compatible subgroup of UC with Lie algebra g = k ⊕ p, and that for every K-�xed point β0 ∈ p we have
[β0, g] = 0 and [iβ0, u] = 0.

Let us focus on the convex hull E := E(µp) of µp(M) in p. E is a K-invariant convex body. Let Aff(E) denote
the a�ne hull of E. Then, Aff(E) = β0 + p′, where p′ ⊆ p is a linear subspace. Pick β0 ∈ E such that ‖β0‖ =
minE ‖β‖. Observe that such β0 is �xed by the K-action. Therefore, p′ is K-invariant. Hence, up to shift µ by
−iβ0, we may assume that E ⊆ p′ and that the interior of E in p′ is nonempty. Summarizing, we have proved
the following

Lemma A.4. Up to shift the momentum mapping µ, there exists a K-invariant subspace p′ ⊆ p such that E(µp)
is contained in p′ and its interior in p′ is nonempty.

Proof of Proposition A.1.

i) Consider the subspace p′ of p obtained in Lemma A.4. Since p′ is K-invariant, [p′, p′] is an ideal of k. Let
h := [p′, p′]⊕ p′. The Lie algebra g decomposes as g = h⊕ h⊥, where h⊥ is the orthogonal complement of
h in gwith respect to B. By [8, Prop. 1.3], h and h⊥ are compatible K-invariant commuting ideals of g. Set
K1 := exp([p′, p′]) and H = K1 exp(p′). Then, the group G′ := H = K1 exp(p′) is a compatible subgroup of
UC and the G′-gradient map µp′ : M → p′ associated with µ satis�es µp′ (M) = µp(M).

ii) Let ν be a K-invariant measure on p′ such that ν(E(µp′ )) = 1. De�ne θ :=
∫
E(µp′ )

βdν(β). θ is a K-�xed point
of E(µp′ ). In particular, [iθ, u] = 0. We claim that θ ∈ Ω(µp′ ). Indeed, otherwise there would exist ξ ∈ p′

such that 〈θ, ξ〉 = c, while 〈β, ξ〉 < c for every β ∈ Ω(µp′ ). From this follows that

〈θ, ξ〉 =
∫

E(µp′ )

〈β, ξ〉dν(β) =
∫

Ω(µp′ )

〈β, ξ〉dν(β) < c,

which is a contradiction. Therefore, up to shift µ by −iθ, we have that 0 ∈ Ω(µp′ ).
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