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1 Introduction

Let X be a compact connected Riemann surface and £ a holomorphic vector bundle on X. It is a natural question to
ask for a criterion that would ensure that £ admits a holomorphic connection. Note that a holomorphic connection
on E is same as a flat connection on E such that the locally defined flat sections are holomorphic. Answering the
question, a well-known theorem of Atiyah and Weil says that £ admits a holomorphic connection if and only if the
degree of every indecomposable component of E is zero [16], [2]. One can ask the same question in broader set-ups.
We give some such examples.

Let0 = Eo C E1 C --- C Ex—1 C Ex = E be afiltration of E by holomorphic sub-bundles. One can
pose the following questions:

1. What s a criterion for £ to admit a holomorphic connection D such that each sub-bundle E; is preserved by D?
2. What is a criterion for E to admit a holomorphic connection D such that D(E;) C E;4+; ® Kx for all
1 <i < k — 17 (The holomorphic cotangent bundle of X is denoted by Kx.)

If E admits a holomorphic connection D such that each sub-bundle E; is preserved by D, then D induces a
holomorphic connection on each E;/E;—1, 1 < i < k. A standard guess is that this necessary condition is
also sufficient. However there are examples showing that this necessary condition is not sufficient (see [7]).

If the vector bundle E is semi-stable of degree zero, then from the criterion of Atiyah and Weil it follows that
E admits a holomorphic connection. A theorem of Simpson gives a much finer statement: The vector bundle E has
a canonical holomorphic connection [15, p. 36, Lemma 3.5]. One of the properties of this canonical connection is
that if each E; is of degree zero, then the filtration of E is preserved by the connection.

If E admits a holomorphic connection D such that D(E;) C E; 41 ® Kx foralll < i < k—1, then consider
the associated graded vector bundle

k
E:=@Ei/Ei-1 — X.

i=1
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The second fundamental form of D for the filtration of E produces Ox —linear homomorphisms
Ot Ei/Ei—1 — (Eit+1/E))®Kx, 1 <i <k-—1.

Hence 6 := @F_!6; is a Higgs field on E. This Higgs field 6 takes the i-th graded piece E;/E;_; C E to
(Ei+1/Ei) ® Kx.

A natural guess for the second question is the following: The filtered vector bundle £ admits a holomorphic
connection D such that D(E;) C E;j4y; ® Kx foralll < i < k —1if and only if E admits a Higgs field 6
satisfying the following two conditions:

- (E, 0) is semi-stable, and
- O(E;/Ei—1) C (Eit1/Ei))®Kx foralll <i < k-1

A holomorphic vector bundle of rank r is a special case of a holomorphic principal bundle where the structure group
is GL(r, C). All the above questions generalize to the more general context of holomorphic principal bundles on X .

In another direction, the holomorphic connections generalize to logarithmic connections. So the general set-up
is logarithmic connections on holomorphic principal bundles over X. Our aim is to describe the questions in this
general set-up and explain some results on these questions.

2 Atiyah bundle and holomorphic connection

Let X be a compact connected Riemann surface. The holomorphic cotangent bundle of X will be denoted by Kx .
Fix a finite subset
D = {xy,--,xp} C X.

The reduced effective divisor x1 + . .. + x,; will also be denoted by D. We allow 7 to be zero, so D may be the zero
divisor.

The holomorphic tangent bundle of a complex manifold ¥ will be denoted by TY .

Let H be a connected affine algebraic group defined over C. The Lie algebra of H will be denoted by b. Let

p:Eg — X ()

be a holomorphic principal H-bundle on X. This means that Ex is a complex manifold equipped with a
holomorphic action
p i EgxH — Eg

of H, and p is a holomorphic surjective submersion, such that

— pop = popg,where pg : Eg x H —> Ep is the natural projection, and

— themap pg x p’ : Eg x H — Ep Xx Ep is an isomorphism; note that the first condition ensures that the
image of pg x p’is contained in Efy xx Ep.

Let
dp : TEg — p*TX 2)

be the differential of the map p in (1). This homomorphism dp is surjective because p is a submersion. The kernel
of dp is identified with the trivial vector bundle E g x b using the action of H on E g . Consider the action of H on
TE g given by the action of H on E . It preserves the sub-bundle kernel(d p). Define the quotient

ad(Epy) := kernel(dp)/H — X .
This ad(Ez7) is a holomorphic vector bundle over X. In fact, it is identified with the vector bundle Ezz x*
associated to Ez7 for the adjoint action of H on b; this identification is given by the above identification of kernel(d p)
with E gy x b. This vector bundle ad(E g7 ) is known as the adjoint vector bundle for E ;. Since the adjoint action of
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H on b preserves its Lie algebra structure, for any x € X, the fiber ad(E ) is a Lie algebra isomorphic to h. In
fact, ad(E 7 ) x is identified with b uniquely up to a conjugation.

The direct image p«TE g is equipped with an action of H given by the action of H on TE g . Note that p.TE gy
is a locally free quasi-coherent sheaf on X. Its H—invariant part

(p«TEx)? C p«TEy

is a locally free coherent sheaf on X. The corresponding holomorphic vector bundle is denoted by At(Eg); it is
known as the Atiyah bundle for Ezr [2]. It is straight-forward check that the quotient

(TEp)/H — X

is identified with At(E g ). Consider the short exact sequence of holomorphic vector bundles on E g
0 —> kemel(dp) — TEgy ~2 p*TX — 0. 3)

Taking its quotient by H, we get the following short exact sequence of vector bundles on X

0 — ad(En) — AWEg) <5 TX — 0. @)

where d’ p is constructed from d p; this is known as the Atiyah exact sequence for Ez .
A holomorphic connection on Ez is a holomorphic homomorphism

0 :TX — AUEn)

suchthatd’p o § = Idrx, where d’ p is the homomorphism in (4). Giving such a homomorphism 6 is equivalent to
giving a homomorphism @ : At(Eg) —> ad(Eg) such that the composition

ad(Ep) — AWEn) — ad(Ep)

is the identity map of ad(E ).
Consider the smooth divisor D := p~ (D) C Ep.We have the logarithmic tangent bundle

TEx(—logD) C TEx .

whose derivation action on the structure sheaf Og,, preserves Og, (—13) C OEgy. The action of H on TEgH
clearly preserves the sub-sheaf TEz7 (—log D). Now define

AW(Eg, D) := TEg(—logD)/H — X
We note that At(E g, D) coincides with the H—invariant direct image
p+(TEp(~log D)™ C pu(TEp (~logD)).
The inclusion of TE g7 (— log 5) in TE g produces an inclusion of At(Ez, D) in At(Ep ). Let
o:A(Eg, D) — TX

be the restriction of the homomorphism d’ p in (4). It is straight-forward to check that the image of o coincides with
the logarithmic tangent bundle
TX(—D) :=TX®Ox(—D) C TX.

We note that TX(—D) coincides with the sub-sheaf of TX whose derivation action on the structure sheaf Oy
preserves Ox (—D) C Ox. Therefore, from (4) we get a short exact sequence of vector bundles on X

0 — ad(Ep) —> AWEp, D) — TX(=D) —> 0; 5)

this is called the logarithmic Atiyah exact sequence for Epy.
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From (3) we have the short exact sequence
0 —> kernel(dp) —> TEg (—log D) 22, p*(TX(—-D)) — 0.

Its quotient by H coincides with the above logarithmic Atiyah exact sequence for Ef . Indeed, this follows
immediately from the fact that
AYEy. D) = (d'p)~H(TX(=D)).

where d’ p is the projection in (4).
A logarithmic connection on E g singular over D is a holomorphic homomorphism

0 : TX(-D) — AWEg, D) (6)

such that 0 0 = Idyx(—p), where o is the homomorphism in (5). Note that giving such a homomorphism 6 is
equivalent to giving a homomorphism @w : At(Eg, D) —> ad(Eg) such that @w o ig = Idu(£,,). Where ig is
the injective homomorphism in (5).

So, when D is the zero divisor, a logarithmic connection on E g is a holomorphic connection on E g .

2.1 The special case of vector bundles

Set H = GL(r, C). Given a holomorphic principal GL(r, C)-bundle Egp.c) on X, let

GL(r.C) Cr

E = EGL(r,(C) X — X

be the holomorphic vector bundle associated to the standard action of GL(r,C) on C’. Let Diff' (E, E) be the
holomorphic vector bundle on X whose holomorphic sections over any open subset U C X are the holomorphic
differential operators E|yy —> E|y of order at most i. So we have a short exact sequence of holomorphic vector
bundles

0 —s End(E) = Diff°(E, E) —> Diff'(E, E) =% End(E) ® TX —> 0.

where o0 is the symbol homomorphism. The vector bundle End(E) is the adjoint bundle ad(Eg (- c)). Now define
the sub-sheaf
AH(E)(—log D) := oy '(ldg ®c TX(-D)) C Diff' (E, E).

It coincides with the vector bundle At(Egy(,.c). D) constructed earlier.
Therefore, a logarithmic connection on Egp (- c) singular over D is a first order holomorphic differential
operator
D:E — Ky ®Ox(D)

satisfying the Leibniz identity which says that

D(fs) = fD(s) +s®(df), )

where s is any locally defined holomorphic section of £ and f is any locally defined holomorphic function
on X [10].

2.2 Residue

First we define residue for logarithmic connections on vector bundle considered in Section 2.1.

Take any point x € D. Take a holomorphic coordinate z on an open subset U C X containing x with
z(x) = 0. Assume that U N D = {x}. Then % is a nowhere vanishing holomorphic section of Kx ® Ox (D)
overU.Leteyx € (Ky ®Ox (D)) be the evaluation of this holomorphic section at the point x. It is straight-forward
to check that this nonzero element e, is independent of the choice of (U, z). Therefore, the fiber (Kx ® Ox (D))
is identified with C by sendingany ¢ € Ctoc-ex € (Kx ® Ox (D)) (see [12, p. 146])).
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Let D be a logarithmic connection singular over D on a holomorphic vector bundle E. Consider the composition
D
E— EQKx®0x(D) — ExQ®(Kx ® Ox(D))x = Ex.

The Leibniz identity in (7) implies that this composition is Ox —linear; hence it defines an element of End(Ey) =
End(E),. This element of End(E ), which we will denote by Res(D, x), is called the residue of D at x [10, p. 53].
Now we return to the more general case holomorphic principal bundles on X .
From (4) and (5) we have the commutative diagram of homomorphisms

0 —> ad(Epr) - A(Ep, D) 2> TX(=D) — 0
|| % I ®)
0— ad(Ep) - AWEy) <5 TX —0
on X . From the commutativity of the diagram it follows that for any point x € X, we have

dp(x)oj(x) = t(x)oa(x) : AEg, D)x — (TX)x = Ty X.

Note that ¢((x) = 0if x € D, therefore d’ p(x) o j(x) = O0forall x € D. Consequently, for every x € D there
is a homomorphism
Rx : A(Eg, D)y — ad(Eq)x )

uniquely defined by the identity i (x) o Rx(v) = j(x)(v) forallv € At(Eg, D). Note that
Ry oio(x) = ldw(ey),
where ig is the homomorphism in (8), which follows from the commutativity of (8). Therefore, from (5) we have

At(Eg, D)x = ad(Eg)x @ kemnel(Ry) = ad(Ex)x @ TX(—D)y ; (10)

note that the composition kernel(Ry) — At(Exy, D)x U(—XQ TX(—D)y is an isomorphism.

We saw that for any x € D the fiber TX(— D) is identified with C. Therefore, from (10) we have
At(Eg, D)x = ad(Eg)x @ C (11)

forallx € D.
To give an alternative description of Ry and the decomposition in (11), consider the commutative diagram

0 — (@d(Exr) ® Ox (=D))x —> (AEx) ® Ox (=D))x —> (TX(=D))x —> 0
la I I
0— ad(Eq)x — AWEg. D)y — (TX(=D))xy — 0

where a is the zero homomorphism because x € D; the top exact sequence is the restriction to x of the exact
sequence in (4) tensored with Oy (—D), while the bottom one is the restriction of the exact sequence in (5) to x.
Now from the snake lemma (see [14, p. 158, Lemma 9.1]) it follows that the kernel of the homomorphism b coincides
with the image of co. Hence the image of the fiber (At(Er) ® Ox (—D))y in At(Eg, D)y is identified with the
quotient line TX(—D)y = C of (At(En) ® Ox(—D)),. Now the image of the fiber (At(Exy) ® Ox(—D))x
in At(Ef, D) and the image of ad(E g )x in At(Ef, D)y together give a decomposition of At(E g, D). This
decomposition coincides with the one in (11).
For a logarithmic connection § : TX(—D) — At(Ey, D) asin (6), and any x € D, define

Res(0, x) := R,(0(1)) € ad(Eg)x , (12)

where Ry is the homomorphism constructed in (9); in the above definition 1 is considered as an element of
TX(—D)x using the identification of C with TX(—D) mentioned earlier.
The element Res(6, x) in (12) is called the residue, at x, of the logarithmic connection 6.
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2.3 Homomorphisms of group

Let M be a complex affine algebraic group and
p: H— M
a holomorphic homomorphism. As before, E g is a holomorphic principal H-bundle on X . Let
Ey = EgxPM — X

be the holomorphic principal M -bundle on X obtained by extending the structure group of Ez using the above
homomorphism p. So Ejz is the quotient of £z x M obtained by identifying (y, m) and (yh~Y, p(h)m), where
vy, m and h run over Eg, M and H respectively. Therefore, we have a morphism

0:Eg — Ep, yr— (y,epm),

where (v, epr) is the equivalence class of (y, epr) with eps being the identity element of the group M. The
homomorphism of Lie algebras
dp : h — m := Lie(M)

associated to p produces a homomorphism of vector bundles
a:ad(Ey) — ad(Epy). (13)

This « sends the equivalence class of (z, v) € Epg X b to the equivalence class of (p, dp(v)). The maps p and dp
together produce a homomorphism of vector bundles

A AUEg) — AUEwm).

because p is H—equivariant for the action of H on Eas given by the action of M on Es and the homomorphism p.
This map A produces a homomorphism

A A(Eyg, D) — AW(Epy, D), (14)
which fits in the following commutative diagram of homomorphisms

0 — ad(Eg) -> A(Ey, D) -2 TX(=D) — 0

| 14 I (15)

0 —> ad(Ep;) —> At(Epg. D) —> TX(=D) — 0

where the top exact sequence is the one in (5) and the bottom one is the corresponding sequence for Epys.
If0 : TX(—D) — At(Ep, D) is alogarithmic connection on E g as in (6), then

Aof : TX(—=D) —> At(Enr, D) (16)

is a logarithmic connection on Ejs singular over D. From the definition of residue in (12) it follows immediately
that
a(Res(f, x)) = Res(406, x) (17)

for all x € D, where « is the homomorphism in (13). This proves the following:
Lemma 2.1 ([8]). With the above notation, if Epy admits a logarithmic connection 6 singular over D with residue

wx € ad(Eg)x at each x € D, then Epy admits a logarithmic connection ' = A o 0 singular over D with
residue a(wy) at each x € D.
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3 Criterion for a holomorphic connection

Let G be a connected reductive affine algebraic group defined over the field of complex numbers. A Zariski closed
connected subgroup P C G is called a parabolic subgroup of G if G/ P is a projective variety [9, 11.2], [13]. In
particular, G itself is a parabolic subgroup of G. The unipotent radical of a parabolic subgroup P C G will be
denoted by Ry (P); it is the unique maximal normal unipotent subgroup of P. The quotient group P/R,(P) is
called the Levi quotient of P. A Levi factor of P is a Zariski closed connected subgroup L C P such that the
composition L < P —> P /R, (P) is an isomorphism [13, p. 184]. We note that P admits Levi factors, and any
two Levi factors of P are conjugate by an element of Ry, (P) [13, § 30.2, p. 185, Theorem]. A subgroup L’ C P
is a Levi factor of P if and only if L’ contains a maximal torus of P with L’ being a maximal reductive subgroup
of P.

Given a holomorphic principal G-bundle Eg over X and a complex Lie subgroup H C G, a holomorphic
reduction of structure group of Eg to H is given by a holomorphic section of the holomorphic fiber bundle EG /H
over X. Let

g : E6 — Eg/H

be the quotient map. If v : X — Eg/H is a holomorphic section of the fiber bundle E /H over X, then note that
q;,l (v(X)) C Eg is a holomorphic principal H-bundle on X. If Eg is a holomorphic principal H-bundle on X,
and y is a holomorphic character of H, then the associated holomorphic line bundle Ezy (A) = (Eyg xC)/H —
X is the quotient of Eg x C, where two points (21, ¢1), (z2, ¢c2) € Ep x C are identified if there is an element
h € H such that

— zp = z1h,and
_ c
— Cyr = )"

The following theorem is proved in [3] (see [3, Theorem 4.1]).

Theorem 3.1 ([3]). A holomorphic principal G—-bundle Eg over X admits a holomorphic connection if and only if
for every triple of the form (H, Epy, 1), where

1. H is a Levi factor of some parabolic subgroup of G,

2. Eg C Eg is a holomorphic reduction of structure group to H, and

3. A is a holomorphic character of H,
the degree of the associated line bundle Ery (A) = (Eg x C)/H over X is zero.

Note that setting G = GL(r,C) in Theorem 3.1 we get back the theorem of Atiyah and Weil which says that a
holomorphic vector bundle E of rank r on X admits a holomorphic connection if and only if the degree of every
direct summand of E is zero.

We will now describe a sketch of the proof of Theorem 3.1.

Let p : EG —> X be a holomorphic G-bundle over X equipped with a holomorphic connection D. Take any
triple (H, Eg, A) as in Theorem 3.1. We will first show that the connection D produces a holomorphic connection
on the holomorphic principal H-bundle Eg; .

Let g and b denote the Lie algebras of G and H respectively. The group H has adjoint actions on both b and g.
The natural inclusion

o:h—g.

is a homomorphism of H-modules. Since the group H is reductive, any exact sequence of H—modules splits. In
particular, there is a homomorphism of H-modules

¥v:ig—9

such that the composition

h-% g -5 p

is the identity map of b.
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Since a holomorphic connection on E¢ is a given by a holomorphic splitting of the Atiyah exact sequence
for Eg, a holomorphic connection on Eg produces a g—valued holomorphic 1-form @ on the total space of Eg
satisfying the following two conditions:

— w is G—equivariant (G acts on g by inner automorphism), and
— the restriction of w to any fiber of Eg gives the isomorphism of kernel(dp) with the trivial vector bundle with
fiber g.

Conversely, any g—valued holomorphic 1-form on the total space of E¢ satisfying the above two conditions defines
a holomorphic connection on Eg.
Let w be the g—valued holomorphic 1-form on E¢ associated to the given connection D. Using the chosen
splitting homomorphism
¥vig—b,

the connection form w on E¢ defines a h—valued holomorphic one—form @’ := ¥ ow on E¢. The restriction of o’
to the complex sub-manifold Eyy C Eg satisfies the two conditions needed for a holomorphic h—valued 1-form
on E gy to define a holomorphic connection on Eg .

Therefore, £y admits a holomorphic connection. A holomorphic connection on E g induces a holomorphic
connection on the associated line bundle Ez7 (1). Any line bundle admitting a holomorphic connection must be of
degree zero [2]. Consequently, we conclude that if £ admits a holomorphic connection then the degree of E g (1)
is zero.

To prove the converse statement, let £ be a holomorphic principal G-bundle over X such that

degree(Eg (L)) = 0 (18)

for all triples (H, Eq, A) of the above type in the statement of Theorem 3.1. We need to show that the Atiyah exact
sequence for E splits holomorphically.

As the first step, in [3] the following is proved: To prove that the Atiyah exact sequence for Eg splits
holomorphically, it is enough to prove that the Atiyah exact sequence for Eg splits holomorphically under the
assumption that £ does not admit any holomorphic reduction of structure group to a Levi factor of some proper
parabolic subgroup of G. In view of this result, we assume that EG does not admit any holomorphic reduction of
structure group to a Levi factor of some proper parabolic subgroup of G.

The G-module g is self—dual, because g admits a G-invariant non-degenerate symmetric bilinear form.
Consequently, we have

ad(Eg) = ad(Eg)™. (19)

As before, let Ky denote the holomorphic cotangent bundle of X . The obstruction for splitting of the Atiyah exact
sequence for E¢ is an element
1(Eg) € H'(X. Kx ® ad(Eg))

(see (4)). In view of (19), by Serre duality, we have
H' (X, Kx ® ad(Eg)) = H°(X, ad(Eg))" .

This implies that
1(Eg) € HO(X, ad(Eg))*. (20)

Any homomorphic section f of ad(E¢ ) has a Jordan decomposition

f=rfs+ fu.

where f; is point-wise semi-simple and f;, is point-wise nilpotent. From the assumption that EG does not admit
any holomorphic reduction of structure group to a Levi factor of some proper parabolic subgroup of G, it follows
that the semi-simple section f is given by some element of the center of g. Using this, from the assumption (18) on
E it can be deduced that

©(Ec)(fs) =0,
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where 7(Eg) is the element in (20).
The nilpotent section f; of ad(Eg) gives a holomorphic reduction of structure group Ep C Eg of Eg to a
proper parabolic subgroup P of G. This reduction E p has the property that f;, lies in the image

HO(X, Ry(Ep)) — H°(X, ad(Eg)),

where R,,(Ep) C ad(Ep) is the nilpotent radical bundle of the adjoint vector bundle ad(Ep) of Ep. Using this
reduction it can be shown that 7(Eg)(f,) = 0.

Hence 1(Eg)(f) = Oforall f € HO(X, ad(Eg)), which implies that t(Eg) = 0. Therefore, the Atiyah
exact sequence for Eg splits holomorphically, which means that £ admits a holomorphic connection.

Note that the assumption that the group G is reductive played a crucial role in the above proof. Therefore, it is
reasonable to ask the following question:

Question 3.2. Let Ey be the holomorphic principal H—bundle on X, where H is a connected complex affine
algebraic group. What is a criterion for E gy to admit a holomorphic connection? (The most interesting case is when
P is a parabolic subgroup of a reductive group.)

4 Connections preserving a section

As before, E¢ is a holomorphic principal G-bundle over X, where G is a complex reductive group. We recall that
for any point x € X, the fiber ad(E¢ )y is identified with g uniquely up to a conjugation. Therefore, there is a
natural map

¢ :ad(Eg) — 9/G, (21)

where G/g is the space of all conjugacy classes of elements of g.
Note that a connection on E¢ induces a connection of the adjoint bundle ad(Eg ).

Lemma 4.1. Take a holomorphic connection ® on Eg, and let B € H®(X, ad(Eg)) be a flat section with respect
to ®. Then the element ¢ o B(x) € g/G, where x € X, is independent of x.

Proof. Using ©, we may holomorphically trivialize EG on any connected simply connected open subset of X . With
respect to such a trivialization, the section B is a constant one because it is flat with respect to ©. This immediately
implies that ¢ o B(x) € g/G isindependentof x € X. O

A nilpotent element v of the Lie algebra of a complex semi-simple group H is called regular nilpotent if the
dimension of the centralizer of v in H coincides with the rank of H [13, p. 53].

Proposition 4.2. Take any B € HO(X, ad(Eg)). Assume that

—  Eg admits a holomorphic connection,

— the element ¢ o B(x) € g/G, x € X, is independent of x, where ¢ is defined in (21), and

—  for every adjoint type simple quotient H of G, the section of the adjoint bundle ad(E ) given by B, where
En = Eg x9 H is the holomorphic principal H-bundle over X associated to Eg, has the property that it
is either zero or it is regular nilpotent at some point of X .

Then the principal G—-bundle E g admits a holomorphic connection for which the section f is flat.

(From Theorem 3.1 we know when E¢g admits a holomorphic connection.)

Proof. Let Z := G/[G,G] be the abelian quotient of G. It is a product of copies of the multiplicative group
C* = C\ {0}. There are quotients Hy, ---, Hy of G such that

1. each H; is simple of adjoint type (the center is trivial), and
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2. the natural homomorphism
£

(p:G—)le_[Hl- (22)
i=1

is surjective, and the kernel of ¢ is a finite group.

In fact, ]_[le H; = G/Zg, where Z¢ is the center of G; note that the center of the semi-simple group G/Z¢ is
trivial, and hence it is a product of simple groups of adjoint type. Let

Ez = EGx% Z and Ep, := Eg x® H;, i € [1,4],

be the holomorphic principal Z—bundle and principal H;—bundle associated to EG for the quotient Z and H;
respectively. Let ad(Ez) and ad(Ex,) be the adjoint vector bundles for £z and Ep; respectively. Since the
homomorphism ¢ in (22) induces an isomorphism of Lie algebras, we have

4
ad(Eg) = ad(Ez) ® (P ad(En,)). (23)
i=1
Let Bz (respectively, B;) be the holomorphic section of ad(Ez) (respectively, ad(Ep;)) given by B using the
decomposition in (23), so
B=pBz+)y i=1.

Since the conjugacy class of B(x) is independent of x € X (it is the second condition in the proposition), we
conclude that the conjugacy class of B; (x) is also independent of x € X for eachi.

A holomorphic connection on Eg induces a holomorphic connection on Ez. Since Z is abelian, the vector
bundle ad(Ez) is the trivial holomorphic vector bundle X x Lie(Z). Given any connection on the principal Z—
bundle Ez, the induced connection on ad(E~) coincides with the trivial connection on the trivial vector bundle
X x Lie(Z). In particular, the section 7 is a constant one, and it is is flat with respect to the any connection on
ad(E z) induced by a connection on the principal Z-bundle E .

Now take any i € [1,{]. A holomorphic connection on E induces a holomorphic connection on E g, . If the
section §; is zero at some point, then f; is identically zero because the conjugacy class of f; (x) is independent of
x. Hence, in that case B; is flat with respect to any connection on ad(E g, ). Therefore, assume that 8; is not zero at
all points of X.

By the third assumption in the proposition, the section ; is regularly nilpotent over some point of X . Since the
conjugacy class of 8;(x), x € X, is independent of x, we conclude that §; is regular nilpotent over every point
of X. We will show that the holomorphic principal H;-bundle Ez; is semi-stable.

For each point x € X, from the fact that 8; (x) is regular nilpotent we conclude that there is a unique Borel
sub—algebraEx of ad(Ex; ) x such that 8; (x) € Fx [13, p. 187, Theorem 30.4(b)]. Let

b C ad(Ey,)

be the Borel sub-algebra bundle such that for every point x € X, the fiber (’E) « is by. Fix a Borel subgroup
B C H;. Using the above Borel sub-algebra bundle b, we will construct a holomorphic reduction of structure group
of E g, to the subgroup B C H;.

Let b be the Lie algebra of B. The Lie algebra of H; will be denoted by ;. We recall that ad(E ;) is the
quotient of Ep; x h; where two points (z1,v1) and (z2,v2) of Epy; x b; are identified if there is an element
h € H; suchthat zo = zih and vo = Ad(h)(v1), where Ad(h) is the automorphism of ; corresponding to the
automorphism y > h~!yh of H;. For any point x € X,let Eg x C (Epm,)x be the subset consisting of all
z € (EmH;)x such that forall v € b, the image of (z,v) in ad(E g, )« lies in the subspace bx. Since any two Borel
sub-algebras of h; are conjugate, it follows immediately that E gy is nonempty. The normalizer of b in H; coincides
with B. From this it follows that
—  Ep x is preserved by the action of B on (Eg;)x, and
— the action of B on Ep  is transitive.
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It is now evident that Ep x is a complex sub-manifold of (Ez, ).
Let
Ep C Ey;

be the complex sub-manifold such that Ep (\(Eq,;)x = Ep.x forevery x € X. That Ep is a complex sub-
manifold follows from that facts that

—  Ep x is a complex sub-manifold of (E ;) forall x € X, and

—  the section B; is holomorphic.

From the above properties of E gy it follows immediately that £ is a holomorphic reduction of structure group of
the principal H;-bundle E g, to the subgroup B.
Now consider the adjoint action of B on by := b/[b, b]. Let

Eg(by) := Eg xBb, — X

be the holomorphic vector bundle associated to E g for the B—module by. Since §; is everywhere regular nilpotent,
it follows that the vector bundle Ep(by) is trivial. Consequently, for any character y of B which is a nonnegative
integral combination of simple roots, the line bundle Ep(y) —> X associated to Ep for the character y is trivial
[1, p. 708, Theorem 5]. Therefore, for any character y of B, the line bundle E g ()) associated to E g for y is trivial.
Let d be the complex dimension of b;. Consider the adjoint action on B on h;. Note that ad(E g, ) is identified
with the vector bundle associated to the principal B—bundle Ep for this B—module h;. Since B is solvable, there is

a filtration of B—modules
O0=VycCcViC:---CVygq CVg = 24)

such thatdim V; = j forall j € [1,d]. Let
Eg(V;) := EgxBVv, — X

be the vector bundle associated to Ep for the B—module V;. Since (24) is a filtration of B—submodules of h;, we
have a filtration of sub-bundles

0= Ep(Vo) C Eg(V1) C +-- C Ep(Va—1) C Ep(Va) = Eg(hi) = ad(Eq,). (25)
For every j € [, d], the quotient bundle E(V;)/Ep(V;—1) is identified with the vector bundle
Ep(V;/Vi—1) = Epx® (Vi/Vi—1) — X

associated to E g for the B—-module V; /V;_.

We noted above that the line bundles associated to Epg for the characters of B are trivial. Therefore, each
Ep(V;/V;_1)is atrivial line bundle. Consequently, (25) is filtration of holomorphic sub-bundles of ad(E ;) such
that each successive quotient is a trivial line bundle. This immediately implies that the vector bundle ad(Eg;) is
semi-stable. Hence the holomorphic principal H;—bundle Ez; is semi-stable [1, p. 698, Lemma 3].

Since H; is simple, and the principal H;-bundle £, is semi-stable, there is a natural holomorphic connection
on Ep; [5,p. 20, Theorem 1.1] (set the Higgs field in [5, Theorem 1.1] to be zero). Let DHi denote this connection.
The vector bundle ad(Ex;) being semi-stable of degree zero has a natural holomorphic connection [15, p. 36,
Lemma 3.5]. See also [5, p. 20, Theorem 1.1]. (In both [15, Lemma 3.5] and [5, Theorem 1.1] set the Higgs field
to be zero.) Let D denote this holomorphic connection on ad(E g, ). This connection D! coincides with the one
induced by © H; (see the construction of the connection in [5]).

Any holomorphic section of ad(E g7, ) is flat with respect to D!, To see this, let

¢i 1 Ox — ad(En;)

be the homomorphism given by a nonzero holomorphic section of ad(Ez;, ). Since image(¢; ) is a semi-stable sub-
bundle of ad(E ;) of degree zero,
—  the connection D preserves image(¢; ), and
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—  the restriction of ©* to image(¢;) coincides with the canonical connection of image(¢;) [15, p. 36, Lemma
3.5].

The canonical connection on the trivial holomorphic line bundle image(¢; ) is the trivial connection (the monodromy
is trivial).

In particular, the connection on ad(E g, ) induced by ©Hi has the property that the section f; is flat with respect
to it.

Since the homomorphism of Lie algebras corresponding to ¢ (in (22)) is an isomorphism, if we have
holomorphic connections on £z and Eg;, [1,£], then we get a holomorphic connection on E¢. Indeed, simply
pullback the connection form using the map

EG —> EZ Xx EH1 Xy *++ Xy EH[~

The connection on Eg given by the connections on Ez and Eg;,, [1, £], constructed above satisfies the condition
that § is flat with respect to it. This completes the proof of the proposition. O

Lemma 4.3. Take any semi-simple section Bs € HO(X, ad(Eg)). Then Bs produces a holomorphic reduction of
structure group of Eg to a Levi factor of a parabolic subgroup of G.

Proof. We will first show that the conjugacy class of ¢ o Bs(x) € g/G, x € X, is independent of x, where ¢ is
defined in (21).

Take any complex G—module V. Let Ey := Eg x¢ V be the holomorphic vector bundle over X associated
to Eg for the G—module V. The section B produces a holomorphic section

By € H°(X, End(Ey)).

The X is compact and connected, the coefficients of the characteristic polynomial of 8y (x) are constants over X.
This implies that the eigenvalues of 8y (x), along with their multiplicities, are independent of x. Since B is semi-
simple, from this it follows that the conjugacy class of ¢ o Bs(x) € g/G, x € X, is independent of x.

Fix an element

Vo €9

such that the image of vg in g/ G coincides with ¢ o 85(x). Let . C G be the centralizer of vg. It is known that IL
is a Levi subgroup of some parabolic subgroup of G [11, p. 26, Proposition 1.22] (note that L is the centralizer of
the torus in G generated by vg). In particular, L is connected and reductive.

For any point x € X, let Fx C (Eg)x be the complex sub-manifold consisting of all points z such that the
image of (2, vp) in ad(Eg)x coincides with B(x). (Recall that ad(E¢ ) is a quotient of EG X g.) Let

F[LCEG

be the complex sub-manifold such that F, [ ((Eg)x = Fx forall x € X.Itis straightforward to check that Fy, is
a holomorphic reduction of structure group of the principal G-bundle E¢ to the subgroup L. O

From the Jordan decomposition of a complex reductive Lie algebra we know that for any holomorphic section 6 of
ad(Eg), there is a naturally associated semi-simple (respectively, nilpotent) section 6 (respectively, 8,,) such that
0 = 605 + 6.
Take any B € H°(X, ad(Eg)). Let
B = Bs+Bn

be the Jordan decomposition. Assume that the element ¢ o (x) € g/G, x € X, is independent of x, where ¢ is
defined in (21). This implies that ¢ o B5(x) € g/G, x € X, is also independent of x. Let (I, F1) be the principal
bundle constructed in Lemma 4.3 from f;. Let H be an adjoint type simple quotient of L. Let

Ey = FLx*H — X

be the holomorphic principal H-bundle associated to Fi..
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Since [Bs . Bn] = O, from the construction of Fr, it follows that
Bn € HO(X. ad(Fp)) C HO(X. ad(EG)).

Therefore, using the natural projection ad(F) —> ad(Ep), given by the projection Lie(L) —> Lie(H), the
above section f; produces a holomorphic section of ad(E g7 ). Let

Bn € HO(X, ad(Epy)) (26)

be the section constructed from ;.

Theorem 4.4. Take any B € HO(X, ad(Eg)). Let B = Bs + Bn be the Jordan decomposition. Assume that

—  Eg admits a holomorphic connection,

— the element ¢ o B(x) € g/G, x € X, is independent of x, where ¢ is defined in (21), and

—  for every adjoint type simple quotient H of L, the section En in (26) of has the property that it is either zero or
it is regular nilpotent at some point of X.

Then the principal G—-bundle E g admits a holomorphic connection for which f is flat.

Proof. Note that
Bs € HO(X. ad(FL)) C HO(X, ad(Eg)).

In fact, for each point x € X, the element 85(x) € ad(FL))x is in the center of ad(F7))x. Consider the abelian
quotient
Zy, = L/[L,L].

Let Fz, be the holomorphic principal Zj—bundle over X obtained by extending the structure group of Fy, using the
quotient map . —> Zy.. The adjoint bundle ad(Fz, ) is a direct summand of ad(Fy,). In fact, for each x € X, the
subspace ad(Fz, )x C ad(FL)x is the center of the Lie algebra ad(Fr)x.
A holomorphic connection on Fj, induces a holomorphic connection on EG. We can now apply Proposition 4.2
to Fr, to complete the proof of the theorem. But for that we need to show that Fy, admits a holomorphic connection.
Let [ be the Lie algebra of L. Consider the inclusion of L-modules | < g given by the inclusion of L in G.
Since LL is reductive, there is a sub L-module S C g such that the natural homomorphism

(&S — g
is an isomorphism (so S is a complement of [). Let
prg—1 (27

be the projection given by the above decomposition of g.

Let D be a holomorphic connection on E. So D is a holomorphic 1-form on the total space of E with values
in the Lie algebra g. Let D’ be the restriction of this 1-form to the complex sub-manifold Fj, C E¢. Consider the
[-valued 1-form p o D’ on Ep,, where p is the projection in (27). This [~valued 1-form on Fy, defines a holomorphic
connection of the principal L-bundle F,. Now Proposition 4.2 completes the proof of the theorem. O

5 Logarithmic connections with prescribed singularity

This section is an exposition of [8].
Fix a holomorphic principal H-bundle Ez on X, and fix elements

wx € ad(Eg)x
for all x € D. Consider the decomposition of At(Eg, D)y in (11). Forany x € D, let

£y ;= C-(wx, 1) CadlEg)x ®C = A(Eg, D)x
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be the line in the fiber At(Eg, D). Let
A C At(Eg, D)

be the sub-sheaf that fits in the short exact sequence
0 — A — AW(Ey, D) — @ At(Eg, D)x/lxy — 0. (28)
xebD

Note that the composition
io(x)

ad(EH)X —_— At(EH, D)x —>At(EH, D)x/ﬁx

is injective, hence it is an isomorphism, where i is the homomorphism in (15); this composition will be denoted by
¢ . Therefore, from (5) and (28) we have a commutative diagram

0 0 0
1 [
0 — ad(Ep) ® Ox(—D) —> A L TX(-D) — 0

v I

0—> ad(Epr) o, AWEg, D) -5 TX(=D) — 0 29)
® o
0— @ adlEx)y = @ A(Eg.D)y/lx— 0 —0
xeD xeD Jv l
0 0 0

where all the rows and columns are exact; the restriction of o to the sub-sheaf A is denoted by o7.

Lemma 5.1 ([8]). Consider the space of all logarithmic connections on Eg singular over D such that the residue
over every x € D is wy. It is in bijection with the space of all holomorphic splittings of the short exact sequence of
vector bundles

0 — ad(Ex) ® Ox(=D) — A 25 TX(=D) — 0

on X in (29).

5.1 T-rigid elements of adjoint bundle

As before, H is a complex affine algebraic group and p : Eyg —> X a holomorphic principal H—-bundle on X.
An automorphism of E g is a holomorphic map F : Eg — E g such that

— poF = p,and

— F(zh) = F(z)hforallz € Eg andh € H.

Let Aut(E g7 ) be the group of all automorphisms of E 7. We will show that Aut(E g ) is a complex affine algebraic
group.

First consider the case of H = GL(r, C). For a holomorphic principal GL(r, C)-bundle Eg;, on X, let £ :=
EgL xCL0-0) €7 pe the holomorphic vector bundle of rank r on X associated to Egy. for the standard action of
GL(r,C) on C". Then Aut(EgL) is identified with the group of all holomorphic automorphisms Aut(E) of the
vector bundle E over the identity map of X. Note that Aut(E) is the Zariski open subset of the complex affine
space H%(X, End(E)) consisting of all global endomorphisms f of E such that det( f(xg)) # O for a fixed point
xo € X, since x —> det(f(x)) is a holomorphic function on X, it is in fact a constant function. Therefore,
Aut(Egy) is an affine algebraic variety over C.
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For a general H, fix an algebraic embedding p : H < GL(r, C) for some r. For a holomorphic principal H-
bundle Ef on X, let Eg. := Eg x* GL(r, C) be the holomorphic principal GL(r, C)-bundle on X obtained by
extending the structure group of E g using p. The injective homomorphism p produces an injective homomorphism

o Aut(Eg) — Aut(Egp).

The image of p’ is Zariski closed in the algebraic group Aut(Eg). Hence p’ produces the structure of a complex
affine algebraic group on Aut(Ezr). This structure of a complex algebraic group is independent of the choices of
r, p. Therefore, Aut(E g ) is an affine algebraic group. Note that Aut(E ) need not be connected, although the
automorphism group of a holomorphic vector bundle is always connected (as it is a Zariski open subset of a complex
affine space).

The Lie algebra of Aut(Eg) is HO(X, ad(Ex)). The group Aut(Ez7) acts on any fiber bundle associated
to Eg. In particular, Aut(E ) acts on the adjoint vector bundle ad(E z7). This action evidently preserves the Lie
algebra structure on the fibers of ad(E g7 ).

Let Aut(E)® C Aut(Eg) be the connected component containing the identity element. Fix a maximal torus

T C Aut(Eg)°.

Anelement w € ad(Ep )y, where x € X, will be called T—rigid if the action of T on ad(E g ) x fixes w.
Consider the adjoint action of H on itself. Let

Ad(Eg) = Egx"? H — X (30)

be the associated holomorphic fiber bundle. Since this adjoint action preserves the group structure of H, the fibers
of Ad(E f7) are complex algebraic groups isomorphic to H. More precisely, each fiber of Ad(E z) is identified with
H uniquely up to an inner automorphism of H. The corresponding Lie algebra bundle on X is ad(Ez).

The group Aut(Efr) is the space of all holomorphic sections of Ad(Ef). For any x € X, the action of
Aut(E gr) on the fiber ad(E 7 ) x coincides with the one obtained via the composition

AW(Eg) 25 Ad(Ep)y -5 Aut(ad(Eg)y)

where evy is the evaluation map that sends a section of Ad(E gr) to its evaluation at x, and ad is the adjoint action
of the group Ad(Ef7), onits Lie algebra ad(Efr ) .

Therefore, an element w € ad(E g )y is T—-rigid if and only if the adjoint action of evy(7T) C Ad(Eg)x on
ad(E g )y fixes w.

5.2 Logarithmic connections with 7 —rigid residue

As before, G is a connected reductive affine algebraic group defined over C. Let Eg be a holomorphic principal
G-bundle over X. Fix a maximal torus
T C Aut(Eg)°,

where Aut(Eg)° as before is the connected component containing the identity element of the group of automor-
phisms of Eg.
We now recall some results from [4], [6].
As in (30), define the adjoint bundle Ad(Eg) = Eg x% G. For any point y € X, consider the evaluation
homomorphism
oy : T — Ad(Eg)y, s —> s(»).

Then ¢y, is injective and its image is a torus in G [4, p. 230, Section 3]. Since G is identified with Ad(E ¢ ), uniquely
up to an inner automorphism, the image ¢, (7) determines a conjugacy class of tori in G; this conjugacy class is
independent of the choice of y [4, p. 230, Section 3], [6, p. 63, Theorem 4.1]. Fix a torus

Tc C G (€29
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in this conjugacy class of tori. The centralizer
H = Cg(Tg) C G (32)

of TG in G is a Levi factor of a parabolic subgroup of G [4, p. 230, Section 3], [6, p. 63, Theorem 4.1]. The principal
G-bundle Eg admits a holomorphic reduction of structure group

Eg C Eg (33)

to the above subgroup H [4, p. 230, Theorem 3.2], [6, p. 63, Theorem 4.1]. Since T is in the center of H, the action
of Tg on Ep commutes with the action of H, so Tg C AutO(E 7). The image of Tg in AutO(E 77) coincides
with 7. This reduction Ez is minimal in the sense that there is no Levi factor L of some parabolic subgroup of G
such that

- L ¢ H,and

—  E admits a holomorphic reduction of structure group to L.

(See [4, p. 230, Theorem 3.2].)

The above reduction E g is unique in the following sense. Let L be a Levi factor of a parabolic subgroup of G
and £;, C E¢ aholomorphic reduction of structure group to L satisfying the condition that £ does not admit any
holomorphic reduction of structure group to a Levi factor L’ of some parabolic subgroup of G such that L’ < L.
Then there is an automorphism ¢ € Aut(EG)O such that £;, = @(Epm) [6, p. 63, Theorem 4.1]. In particular, the
subgroup L C G is conjugate to H.

The Lie algebras of G and H will be denoted by g and b respectively. The inclusion of § in g and the reduction
in (33) together produce an inclusion ad(Eg) < ad(Eg). This sub-bundle ad(E g) of ad(E ) coincides with the
invariant sub-bundle ad(EG)T for the action of T on ad(E¢) [4, p. 230, Theorem 3.2], [6, p. 61, Proposition 3.3],
in other words,

ad(Eg) = ad(Eg)T C ad(Eg). (34)

For every x € D fix a T-rigid element
wy € ad(Eg)x (35)

Since each wy is T-rigid, from (34) we conclude that
wy € ad(Eg)x Vx € D. (36)

So wy determines a conjugacy class in . For any character y of H, the corresponding homomorphism of Lie
algebras dy : h —> C factors through the conjugacy classes in b, because C is abelian. Therefore, we have
dy(wy) € C.

Theorem 5.2 ([8]). There is a logarithmic connection on Eg singular over D, and with T-rigid residue wy at
every x € D (see (35)), if and only if

degree(Er (1)) + Y, dx(wyx) = 0 (37)
xeD

for every character y of H, where E g (y) is the holomorphic line bundle on X associated to Ey for y, and dy is
the homomorphism of Lie algebras corresponding to .

5.3 T-invariant logarithmic connections with given residue

The automorphism group Aut(E£ ) has a natural action on the space of all logarithmic connections on E¢ singular
over D. Given a maximal torus T C Aut(Eg)?, by a T—invariant logarithmic connection we mean a logarithmic
connection on Eg singular over D which is fixed by the action of 7'.
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Theorem 5.3 ([8]). Let Eg be a holomorphic principal G-bundle on X, where G is reductive. Fix wy € ad(Eg)x

foreach x € D. Fix a maximal torus T C Aut(Eg)°. The following two are equivalent:

1. There is a T—invariant logarithmic connection on Eg singular over D with residue wy at every x € D.
2. The element wy is T—rigid for each x € D, and (37) holds for every character y of H.
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