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1 Introduction

Let X be a compact connected Riemann surface and E a holomorphic vector bundle on X . It is a natural question to
ask for a criterion that would ensure that E admits a holomorphic connection. Note that a holomorphic connection
on E is same as a flat connection on E such that the locally defined flat sections are holomorphic. Answering the
question, a well-known theorem of Atiyah and Weil says that E admits a holomorphic connection if and only if the
degree of every indecomposable component of E is zero [16], [2]. One can ask the same question in broader set-ups.
We give some such examples.

Let 0 D E0 � E1 � � � � � Ek�1 � Ek D E be a filtration of E by holomorphic sub-bundles. One can
pose the following questions:

1. What is a criterion for E to admit a holomorphic connection D such that each sub-bundle Ei is preserved by D?
2. What is a criterion for E to admit a holomorphic connection D such that D.Ei / � EiC1 ˝ KX for all
1 � i � k � 1? (The holomorphic cotangent bundle of X is denoted by KX .)

If E admits a holomorphic connection D such that each sub-bundle Ei is preserved by D, then D induces a
holomorphic connection on each Ei=Ei�1, 1 � i � k. A standard guess is that this necessary condition is
also sufficient. However there are examples showing that this necessary condition is not sufficient (see [7]).

If the vector bundle E is semi-stable of degree zero, then from the criterion of Atiyah and Weil it follows that
E admits a holomorphic connection. A theorem of Simpson gives a much finer statement: The vector bundle E has
a canonical holomorphic connection [15, p. 36, Lemma 3.5]. One of the properties of this canonical connection is
that if each Ei is of degree zero, then the filtration of E is preserved by the connection.

IfE admits a holomorphic connection D such that D.Ei / � EiC1˝KX for all 1 � i � k�1, then consider
the associated graded vector bundle eE WD kM

iD1

Ei=Ei�1 �! X :
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The second fundamental form of D for the filtration of E produces OX–linear homomorphisms

�i W Ei=Ei�1 �! .EiC1=Ei /˝KX ; 1 � i � k � 1 :

Hence � WD
Lk�1
iD1 �i is a Higgs field on eE. This Higgs field � takes the i -th graded piece Ei=Ei�1 � eE to

.EiC1=Ei /˝KX .
A natural guess for the second question is the following: The filtered vector bundle E admits a holomorphic

connection D such that D.Ei / � EiC1 ˝ KX for all 1 � i � k � 1 if and only if eE admits a Higgs field �
satisfying the following two conditions:
– .eE; �/ is semi-stable, and
– �.Ei=Ei�1/ � .EiC1=Ei /˝KX for all 1 � i � k � 1.

A holomorphic vector bundle of rank r is a special case of a holomorphic principal bundle where the structure group
is GL.r;C/. All the above questions generalize to the more general context of holomorphic principal bundles on X .

In another direction, the holomorphic connections generalize to logarithmic connections. So the general set-up
is logarithmic connections on holomorphic principal bundles over X . Our aim is to describe the questions in this
general set-up and explain some results on these questions.

2 Atiyah bundle and holomorphic connection

Let X be a compact connected Riemann surface. The holomorphic cotangent bundle of X will be denoted by KX .
Fix a finite subset

D WD fx1; � � � ; xng � X :

The reduced effective divisor x1C : : :Cxn will also be denoted byD. We allow n to be zero, soD may be the zero
divisor.

The holomorphic tangent bundle of a complex manifold Y will be denoted by TY .
Let H be a connected affine algebraic group defined over C. The Lie algebra of H will be denoted by h. Let

p W EH �! X (1)

be a holomorphic principal H–bundle on X . This means that EH is a complex manifold equipped with a
holomorphic action

p0 W EH �H �! EH

of H , and p is a holomorphic surjective submersion, such that
– p ı p0 D p ı pE , where pE W EH �H �! EH is the natural projection, and
– the map pE �p0 W EH �H �! EH �X EH is an isomorphism; note that the first condition ensures that the

image of pE � p0 is contained in EH �X EH .

Let
dp W TEH �! p�TX (2)

be the differential of the map p in (1). This homomorphism dp is surjective because p is a submersion. The kernel
of dp is identified with the trivial vector bundle EH � h using the action of H on EH . Consider the action of H on
TEH given by the action of H on EH . It preserves the sub-bundle kernel.dp/. Define the quotient

ad.EH / WD kernel.dp/=H �! X :

This ad.EH / is a holomorphic vector bundle over X . In fact, it is identified with the vector bundle EH �H h

associated toEH for the adjoint action ofH on h; this identification is given by the above identification of kernel.dp/
with EH � h. This vector bundle ad.EH / is known as the adjoint vector bundle for EH . Since the adjoint action of



Criterion for connections on principal bundles over a pointed Riemann surface 157

H on h preserves its Lie algebra structure, for any x 2 X , the fiber ad.EH /x is a Lie algebra isomorphic to h. In
fact, ad.EH /x is identified with h uniquely up to a conjugation.

The direct image p�TEH is equipped with an action ofH given by the action ofH on TEH . Note that p�TEH
is a locally free quasi-coherent sheaf on X . Its H–invariant part

.p�TEH /H � p�TEH

is a locally free coherent sheaf on X . The corresponding holomorphic vector bundle is denoted by At.EH /; it is
known as the Atiyah bundle for EH [2]. It is straight-forward check that the quotient

.TEH /=H �! X

is identified with At.EH /. Consider the short exact sequence of holomorphic vector bundles on EH

0 �! kernel.dp/ �! TEH
dp
�! p�TX �! 0 : (3)

Taking its quotient by H , we get the following short exact sequence of vector bundles on X

0 �! ad.EH / �! At.EH /
d0p
�! TX �! 0 ; (4)

where d0p is constructed from dp; this is known as the Atiyah exact sequence for EH .
A holomorphic connection on EH is a holomorphic homomorphism

� W TX �! At.EH /

such that d0p ı � D IdTX , where d0p is the homomorphism in (4). Giving such a homomorphism � is equivalent to
giving a homomorphism $ W At.EH / �! ad.EH / such that the composition

ad.EH / ,! At.EH /
$
�! ad.EH /

is the identity map of ad.EH /.
Consider the smooth divisor bD WD p�1.D/ � EH . We have the logarithmic tangent bundle

TEH .� log bD/ � TEH ;

whose derivation action on the structure sheaf OEH preserves OEH .�bD/ � OEH . The action of H on TEH
clearly preserves the sub-sheaf TEH .� log bD/. Now define

At.EH ; D/ WD TEH .� log bD/=H �! X

We note that At.EH ; D/ coincides with the H–invariant direct image

p�.TEH .� log bD//H � p�.TEH .� log bD// :
The inclusion of TEH .� log bD/ in TEH produces an inclusion of At.EH ; D/ in At.EH /. Let

� W At.EH ; D/ �! TX

be the restriction of the homomorphism d0p in (4). It is straight-forward to check that the image of � coincides with
the logarithmic tangent bundle

TX.�D/ WD TX ˝OX .�D/ � TX :

We note that TX.�D/ coincides with the sub-sheaf of TX whose derivation action on the structure sheaf OX
preserves OX .�D/ � OX . Therefore, from (4) we get a short exact sequence of vector bundles on X

0 �! ad.EH /
i0
�! At.EH ; D/

�
�! TX.�D/ �! 0 I (5)

this is called the logarithmic Atiyah exact sequence for EH .
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From (3) we have the short exact sequence

0 �! kernel.dp/ �! TEH .� log bD/ dp
�! p�.TX.�D// �! 0 :

Its quotient by H coincides with the above logarithmic Atiyah exact sequence for EH . Indeed, this follows
immediately from the fact that

At.EH ; D/ D .d0p/�1.TX.�D// ;

where d0p is the projection in (4).
A logarithmic connection on EH singular over D is a holomorphic homomorphism

� W TX.�D/ �! At.EH ; D/ (6)

such that � ı � D IdTX.�D/, where � is the homomorphism in (5). Note that giving such a homomorphism � is
equivalent to giving a homomorphism $ W At.EH ; D/ �! ad.EH / such that $ ı i0 D Idad.EH /, where i0 is
the injective homomorphism in (5).

So, when D is the zero divisor, a logarithmic connection on EH is a holomorphic connection on EH .

2.1 The special case of vector bundles

Set H D GL.r;C/. Given a holomorphic principal GL.r;C/–bundle EGL.r;C/ on X , let

E WD EGL.r;C/ �
GL.r;C/ Cr �! X

be the holomorphic vector bundle associated to the standard action of GL.r;C/ on Cr . Let Diffi .E; E/ be the
holomorphic vector bundle on X whose holomorphic sections over any open subset U � X are the holomorphic
differential operators EjU �! EjU of order at most i . So we have a short exact sequence of holomorphic vector
bundles

0 �! End.E/ D Diff0.E; E/ �! Diff1.E; E/
�0
�! End.E/˝ TX �! 0 :

where �0 is the symbol homomorphism. The vector bundle End.E/ is the adjoint bundle ad.EGL.r;C//. Now define
the sub-sheaf

At.E/.� logD/ WD ��10 .IdE ˝C TX.�D// � Diff1.E; E/ :

It coincides with the vector bundle At.EGL.r;C/; D/ constructed earlier.
Therefore, a logarithmic connection on EGL.r;C/ singular over D is a first order holomorphic differential

operator
D W E �! KX ˝OX .D/

satisfying the Leibniz identity which says that

D.f s/ D f D.s/C s ˝ .df / ; (7)

where s is any locally defined holomorphic section of E and f is any locally defined holomorphic function
on X [10].

2.2 Residue

First we define residue for logarithmic connections on vector bundle considered in Section 2.1.
Take any point x 2 D. Take a holomorphic coordinate z on an open subset U � X containing x with

z.x/ D 0. Assume that U \ D D fxg. Then dz
z

is a nowhere vanishing holomorphic section of KX ˝ OX .D/
overU . Let ex 2 .KX˝OX .D//x be the evaluation of this holomorphic section at the point x. It is straight-forward
to check that this nonzero element ex is independent of the choice of .U; z/. Therefore, the fiber .KX ˝OX .D//x
is identified with C by sending any c 2 C to c � ex 2 .KX ˝OX .D//x (see [12, p. 146]).
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Let D be a logarithmic connection singular overD on a holomorphic vector bundleE. Consider the composition

E
D
�! E ˝KX ˝OX .D/ �! Ex ˝ .KX ˝OX .D//x D Ex :

The Leibniz identity in (7) implies that this composition is OX–linear; hence it defines an element of End.Ex/ D
End.E/x . This element of End.Ex/, which we will denote by Res.D; x/, is called the residue of D at x [10, p. 53].

Now we return to the more general case holomorphic principal bundles on X .
From (4) and (5) we have the commutative diagram of homomorphisms

0 �! ad.EH /
i0
�! At.EH ; D/

�
�! TX.�D/ �! 0

k

??yj ??y�
0 �! ad.EH /

i
�! At.EH /

d0p
�! TX �! 0

(8)

on X . From the commutativity of the diagram it follows that for any point x 2 X , we have

d0p.x/ ı j.x/ D �.x/ ı �.x/ W At.EH ; D/x �! .TX/x D TxX :

Note that �.x/ D 0 if x 2 D, therefore d0p.x/ ı j.x/ D 0 for all x 2 D. Consequently, for every x 2 D there
is a homomorphism

Rx W At.EH ; D/x �! ad.EH /x (9)

uniquely defined by the identity i.x/ ıRx.v/ D j.x/.v/ for all v 2 At.EH ; D/x . Note that

Rx ı i0.x/ D Idad.EH /x ;

where i0 is the homomorphism in (8), which follows from the commutativity of (8). Therefore, from (5) we have

At.EH ; D/x D ad.EH /x ˚ kernel.Rx/ D ad.EH /x ˚ TX.�D/x I (10)

note that the composition kernel.Rx/ ,! At.EH ; D/x
�.x/
�! TX.�D/x is an isomorphism.

We saw that for any x 2 D the fiber TX.�D/x is identified with C. Therefore, from (10) we have

At.EH ; D/x D ad.EH /x ˚ C (11)

for all x 2 D.
To give an alternative description of Rx and the decomposition in (11), consider the commutative diagram

0 �! .ad.EH /˝OX .�D//x
c0
�! .At.EH /˝OX .�D//x �! .TX.�D//x �! 0??ya ??yb k

0 �! ad.EH /x �! At.EH ; D/x �! .TX.�D//x �! 0

where a is the zero homomorphism because x 2 D; the top exact sequence is the restriction to x of the exact
sequence in (4) tensored with OX .�D/, while the bottom one is the restriction of the exact sequence in (5) to x.
Now from the snake lemma (see [14, p. 158, Lemma 9.1]) it follows that the kernel of the homomorphism b coincides
with the image of c0. Hence the image of the fiber .At.EH / ˝ OX .�D//x in At.EH ; D/x is identified with the
quotient line TX.�D/x D C of .At.EH / ˝ OX .�D//x . Now the image of the fiber .At.EH / ˝ OX .�D//x
in At.EH ; D/x and the image of ad.EH /x in At.EH ; D/x together give a decomposition of At.EH ; D/x . This
decomposition coincides with the one in (11).

For a logarithmic connection � W TX.�D/ �! At.EH ; D/ as in (6), and any x 2 D, define

Res.�; x/ WD Rx.�.1// 2 ad.EH /x ; (12)

where Rx is the homomorphism constructed in (9); in the above definition 1 is considered as an element of
TX.�D/x using the identification of C with TX.�D/x mentioned earlier.

The element Res.�; x/ in (12) is called the residue, at x, of the logarithmic connection � .
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2.3 Homomorphisms of group

Let M be a complex affine algebraic group and

� W H �! M

a holomorphic homomorphism. As before, EH is a holomorphic principal H–bundle on X . Let

EM WD EH �
� M �! X

be the holomorphic principal M–bundle on X obtained by extending the structure group of EH using the above
homomorphism �. So EM is the quotient of EH �M obtained by identifying .y; m/ and .yh�1; �.h/m/, where
y, m and h run over EH , M and H respectively. Therefore, we have a morphism

b� W EH �! EM ; y 7�! C.y; eM / ;

where C.y; eM / is the equivalence class of .y; eM / with eM being the identity element of the group M . The
homomorphism of Lie algebras

d� W h �! m WD Lie.M/

associated to � produces a homomorphism of vector bundles

˛ W ad.EH / �! ad.EM / : (13)

This ˛ sends the equivalence class of .z; v/ 2 EH � h to the equivalence class of .b�; d�.v//. The maps b� and d�
together produce a homomorphism of vector bundles

eA W At.EH / �! At.EM / ;

because b� is H–equivariant for the action of H on EM given by the action ofM on EM and the homomorphism �.
This map eA produces a homomorphism

A W At.EH ; D/ �! At.EM ; D/ ; (14)

which fits in the following commutative diagram of homomorphisms

0 �! ad.EH /
i0
�! At.EH ; D/

�
�! TX.�D/ �! 0??y˛ ??yA k

0 �! ad.EM / �! At.EM ; D/ �! TX.�D/ �! 0

(15)

where the top exact sequence is the one in (5) and the bottom one is the corresponding sequence for EM .
If � W TX.�D/ �! At.EH ; D/ is a logarithmic connection on EH as in (6), then

A ı � W TX.�D/ �! At.EM ; D/ (16)

is a logarithmic connection on EM singular over D. From the definition of residue in (12) it follows immediately
that

˛.Res.�; x// D Res.A ı �; x/ (17)

for all x 2 D, where ˛ is the homomorphism in (13). This proves the following:

Lemma 2.1 ([8]). With the above notation, if EH admits a logarithmic connection � singular over D with residue
wx 2 ad.EH /x at each x 2 D, then EM admits a logarithmic connection � 0 D A ı � singular over D with
residue ˛.wx/ at each x 2 D.
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3 Criterion for a holomorphic connection

Let G be a connected reductive affine algebraic group defined over the field of complex numbers. A Zariski closed
connected subgroup P � G is called a parabolic subgroup of G if G=P is a projective variety [9, 11.2], [13]. In
particular, G itself is a parabolic subgroup of G. The unipotent radical of a parabolic subgroup P � G will be
denoted by Ru.P /; it is the unique maximal normal unipotent subgroup of P . The quotient group P=Ru.P / is
called the Levi quotient of P . A Levi factor of P is a Zariski closed connected subgroup L � P such that the
composition L ,! P �! P=Ru.P / is an isomorphism [13, p. 184]. We note that P admits Levi factors, and any
two Levi factors of P are conjugate by an element of Ru.P / [13, § 30.2, p. 185, Theorem]. A subgroup L0 � P

is a Levi factor of P if and only if L0 contains a maximal torus of P with L0 being a maximal reductive subgroup
of P .

Given a holomorphic principal G–bundle EG over X and a complex Lie subgroup H � G, a holomorphic
reduction of structure group of EG to H is given by a holomorphic section of the holomorphic fiber bundle EG=H
over X . Let

qH W EG �! EG=H

be the quotient map. If � W X �! EG=H is a holomorphic section of the fiber bundleEG=H overX , then note that
q�1
H
.�.X// � EG is a holomorphic principal H–bundle on X . If EH is a holomorphic principal H–bundle on X ,

and � is a holomorphic character of H , then the associated holomorphic line bundle EH .�/ D .EH � C/=H �!
X is the quotient of EH � C, where two points .z1; c1/; .z2; c2/ 2 EH � C are identified if there is an element
h 2 H such that
– z2 D z1h, and
– c2 D

c1
�.h/

.

The following theorem is proved in [3] (see [3, Theorem 4.1]).

Theorem 3.1 ([3]). A holomorphic principal G–bundle EG over X admits a holomorphic connection if and only if
for every triple of the form .H; EH ; �/, where

1. H is a Levi factor of some parabolic subgroup of G,
2. EH � EG is a holomorphic reduction of structure group to H , and
3. � is a holomorphic character of H ,

the degree of the associated line bundle EH .�/ D .EH � C/=H over X is zero.

Note that setting G D GL.r;C/ in Theorem 3.1 we get back the theorem of Atiyah and Weil which says that a
holomorphic vector bundle E of rank r on X admits a holomorphic connection if and only if the degree of every
direct summand of E is zero.

We will now describe a sketch of the proof of Theorem 3.1.
Let p W EG �! X be a holomorphic G–bundle over X equipped with a holomorphic connection D. Take any

triple .H; EH ; �/ as in Theorem 3.1. We will first show that the connection D produces a holomorphic connection
on the holomorphic principal H–bundle EH .

Let g and h denote the Lie algebras of G and H respectively. The group H has adjoint actions on both h and g.
The natural inclusion

�0 W h ,! g :

is a homomorphism of H–modules. Since the group H is reductive, any exact sequence of H–modules splits. In
particular, there is a homomorphism of H–modules

 W g �! h

such that the composition

h
�0
�! g

 
�! h

is the identity map of h.
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Since a holomorphic connection on EG is a given by a holomorphic splitting of the Atiyah exact sequence
for EG , a holomorphic connection on EG produces a g–valued holomorphic 1–form ! on the total space of EG
satisfying the following two conditions:
– ! is G–equivariant (G acts on g by inner automorphism), and
– the restriction of ! to any fiber of EG gives the isomorphism of kernel.dp/ with the trivial vector bundle with

fiber g.

Conversely, any g–valued holomorphic 1–form on the total space of EG satisfying the above two conditions defines
a holomorphic connection on EG .

Let ! be the g–valued holomorphic 1–form on EG associated to the given connection D. Using the chosen
splitting homomorphism

 W g �! h ;

the connection form ! on EG defines a h–valued holomorphic one–form !0 WD  ı! on EG . The restriction of !0

to the complex sub-manifold EH � EG satisfies the two conditions needed for a holomorphic h–valued 1–form
on EH to define a holomorphic connection on EH .

Therefore, EH admits a holomorphic connection. A holomorphic connection on EH induces a holomorphic
connection on the associated line bundle EH .�/. Any line bundle admitting a holomorphic connection must be of
degree zero [2]. Consequently, we conclude that if EG admits a holomorphic connection then the degree of EH .�/
is zero.

To prove the converse statement, let EG be a holomorphic principal G–bundle over X such that

degree.EH .�// D 0 (18)

for all triples .H; EH ; �/ of the above type in the statement of Theorem 3.1. We need to show that the Atiyah exact
sequence for EG splits holomorphically.

As the first step, in [3] the following is proved: To prove that the Atiyah exact sequence for EG splits
holomorphically, it is enough to prove that the Atiyah exact sequence for EG splits holomorphically under the
assumption that EG does not admit any holomorphic reduction of structure group to a Levi factor of some proper
parabolic subgroup of G. In view of this result, we assume that EG does not admit any holomorphic reduction of
structure group to a Levi factor of some proper parabolic subgroup of G.

The G–module g is self–dual, because g admits a G–invariant non-degenerate symmetric bilinear form.
Consequently, we have

ad.EG/ D ad.EG/� : (19)

As before, let KX denote the holomorphic cotangent bundle of X . The obstruction for splitting of the Atiyah exact
sequence for EG is an element

�.EG/ 2 H
1.X; KX ˝ ad.EG//

(see (4)). In view of (19), by Serre duality, we have

H1.X; KX ˝ ad.EG// D H0.X; ad.EG//� :

This implies that
�.EG/ 2 H

0.X; ad.EG//� : (20)

Any homomorphic section f of ad.EG/ has a Jordan decomposition

f D fs C fn ;

where fs is point-wise semi-simple and fn is point-wise nilpotent. From the assumption that EG does not admit
any holomorphic reduction of structure group to a Levi factor of some proper parabolic subgroup of G, it follows
that the semi-simple section fs is given by some element of the center of g. Using this, from the assumption (18) on
EG it can be deduced that

�.EG/.fs/ D 0 ;
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where �.EG/ is the element in (20).
The nilpotent section fn of ad.EG/ gives a holomorphic reduction of structure group EP � EG of EG to a

proper parabolic subgroup P of G. This reduction EP has the property that fn lies in the image

H0.X; Rn.EP // ,! H0.X; ad.EG// ;

where Rn.EP / � ad.EP / is the nilpotent radical bundle of the adjoint vector bundle ad.EP / of EP . Using this
reduction it can be shown that �.EG/.fn/ D 0.

Hence �.EG/.f / D 0 for all f 2 H0.X; ad.EG//, which implies that �.EG/ D 0. Therefore, the Atiyah
exact sequence for EG splits holomorphically, which means that EG admits a holomorphic connection.

Note that the assumption that the group G is reductive played a crucial role in the above proof. Therefore, it is
reasonable to ask the following question:

Question 3.2. Let EH be the holomorphic principal H–bundle on X , where H is a connected complex affine
algebraic group. What is a criterion for EH to admit a holomorphic connection? (The most interesting case is when
P is a parabolic subgroup of a reductive group.)

4 Connections preserving a section

As before, EG is a holomorphic principal G–bundle over X , where G is a complex reductive group. We recall that
for any point x 2 X , the fiber ad.EG/x is identified with g uniquely up to a conjugation. Therefore, there is a
natural map

� W ad.EG/ �! g=G ; (21)

where G=g is the space of all conjugacy classes of elements of g.
Note that a connection on EG induces a connection of the adjoint bundle ad.EG/.

Lemma 4.1. Take a holomorphic connection D on EG , and let ˇ 2 H0.X; ad.EG// be a flat section with respect
to D. Then the element � ı ˇ.x/ 2 g=G, where x 2 X , is independent of x.

Proof. Using D, we may holomorphically trivialize EG on any connected simply connected open subset ofX . With
respect to such a trivialization, the section ˇ is a constant one because it is flat with respect to D. This immediately
implies that � ı ˇ.x/ 2 g=G is independent of x 2 X .

A nilpotent element v of the Lie algebra of a complex semi-simple group H is called regular nilpotent if the
dimension of the centralizer of v in H coincides with the rank of H [13, p. 53].

Proposition 4.2. Take any ˇ 2 H0.X; ad.EG//. Assume that
– EG admits a holomorphic connection,
– the element � ı ˇ.x/ 2 g=G, x 2 X , is independent of x, where � is defined in (21), and
– for every adjoint type simple quotient H of G, the section of the adjoint bundle ad.EH / given by ˇ, where

EH WD EG �
G H is the holomorphic principal H–bundle over X associated to EG , has the property that it

is either zero or it is regular nilpotent at some point of X .
Then the principal G–bundle EG admits a holomorphic connection for which the section ˇ is flat.

(From Theorem 3.1 we know when EG admits a holomorphic connection.)

Proof. Let Z WD G=ŒG ;G� be the abelian quotient of G. It is a product of copies of the multiplicative group
C� D C n f0g. There are quotients H1; � � � ; H` of G such that

1. each Hi is simple of adjoint type (the center is trivial), and
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2. the natural homomorphism

' W G �! Z �
Ỳ
iD1

Hi (22)

is surjective, and the kernel of ' is a finite group.

In fact,
Q`
iD1Hi D G=ZG , where ZG is the center of G; note that the center of the semi-simple group G=ZG is

trivial, and hence it is a product of simple groups of adjoint type. Let

EZ WD EG �
G Z and EHi WD EG �

G Hi ; i 2 Œ1 ; `� ;

be the holomorphic principal Z–bundle and principal Hi–bundle associated to EG for the quotient Z and Hi
respectively. Let ad.EZ/ and ad.EHi / be the adjoint vector bundles for EZ and EHi respectively. Since the
homomorphism ' in (22) induces an isomorphism of Lie algebras, we have

ad.EG/ D ad.EZ/˚ .
M̀
iD1

ad.EHi // : (23)

Let ˇZ (respectively, ˇi ) be the holomorphic section of ad.EZ/ (respectively, ad.EHi /) given by ˇ using the
decomposition in (23), so

ˇ D ˇZ C
X

i D 1`ˇi :

Since the conjugacy class of ˇ.x/ is independent of x 2 X (it is the second condition in the proposition), we
conclude that the conjugacy class of ˇi .x/ is also independent of x 2 X for each i .

A holomorphic connection on EG induces a holomorphic connection on EZ . Since Z is abelian, the vector
bundle ad.EZ/ is the trivial holomorphic vector bundle X � Lie.Z/. Given any connection on the principal Z–
bundle EZ , the induced connection on ad.EZ/ coincides with the trivial connection on the trivial vector bundle
X � Lie.Z/. In particular, the section ˇZ is a constant one, and it is is flat with respect to the any connection on
ad.EZ/ induced by a connection on the principal Z–bundle EZ .

Now take any i 2 Œ1 ; `�. A holomorphic connection on EG induces a holomorphic connection on EHi . If the
section ˇi is zero at some point, then ˇi is identically zero because the conjugacy class of ˇi .x/ is independent of
x. Hence, in that case ˇi is flat with respect to any connection on ad.EHi /. Therefore, assume that ˇi is not zero at
all points of X .

By the third assumption in the proposition, the section ˇi is regularly nilpotent over some point of X . Since the
conjugacy class of ˇi .x/, x 2 X , is independent of x, we conclude that ˇi is regular nilpotent over every point
of X . We will show that the holomorphic principal Hi–bundle EHi is semi-stable.

For each point x 2 X , from the fact that ˇi .x/ is regular nilpotent we conclude that there is a unique Borel
sub-algebra ebx of ad.EHi /x such that ˇi .x/ 2 ebx [13, p. 187, Theorem 30.4(b)]. Let

eb � ad.EHi /

be the Borel sub-algebra bundle such that for every point x 2 X , the fiber .eb/x is ebx . Fix a Borel subgroup
B � Hi . Using the above Borel sub-algebra bundleeb, we will construct a holomorphic reduction of structure group
of EHi to the subgroup B � Hi .

Let b be the Lie algebra of B . The Lie algebra of Hi will be denoted by hi . We recall that ad.EHi / is the
quotient of EHi � hi where two points .z1 ; v1/ and .z2 ; v2/ of EHi � hi are identified if there is an element
h 2 Hi such that z2 D z1h and v2 D Ad.h/.v1/, where Ad.h/ is the automorphism of hi corresponding to the
automorphism y 7�! h�1yh of Hi . For any point x 2 X , let EB;x � .EHi /x be the subset consisting of all
z 2 .EHi /x such that for all v 2 b, the image of .z ; v/ in ad.EHi /x lies in the subspace ebx . Since any two Borel
sub-algebras of hi are conjugate, it follows immediately thatEB;x is nonempty. The normalizer of b inHi coincides
with B . From this it follows that
– EB;x is preserved by the action of B on .EHi /x , and
– the action of B on EB;x is transitive.
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It is now evident that EB;x is a complex sub-manifold of .EHi /x .
Let

EB � EHi

be the complex sub-manifold such that EB
T
.EHi /x D EB;x for every x 2 X . That EB is a complex sub-

manifold follows from that facts that
– EB;x is a complex sub-manifold of .EHi /x for all x 2 X , and
– the section ˇi is holomorphic.

From the above properties of EB;x it follows immediately that EB is a holomorphic reduction of structure group of
the principal Hi–bundle EHi to the subgroup B .

Now consider the adjoint action of B on b1 WD b=Œb ; b�. Let

EB.b1/ WD EB �
B b1 �! X

be the holomorphic vector bundle associated to EB for the B–module b1. Since ˇi is everywhere regular nilpotent,
it follows that the vector bundle EB.b1/ is trivial. Consequently, for any character � of B which is a nonnegative
integral combination of simple roots, the line bundle EB.�/ �! X associated to EB for the character � is trivial
[1, p. 708, Theorem 5]. Therefore, for any character � of B , the line bundle EB.�/ associated to EB for � is trivial.

Let d be the complex dimension of hi . Consider the adjoint action on B on hi . Note that ad.EHi / is identified
with the vector bundle associated to the principal B–bundle EB for this B–module hi . Since B is solvable, there is
a filtration of B–modules

0 D V0 � V1 � � � � � Vd�1 � Vd D hi (24)

such that dimVj D j for all j 2 Œ1 ; d �. Let

EB.Vj / WD EB �
B Vj �! X

be the vector bundle associated to EB for the B–module Vj . Since (24) is a filtration of B–submodules of hi , we
have a filtration of sub-bundles

0 D EB.V0/ � EB.V1/ � � � � � EB.Vd�1/ � EB.Vd / D EB.hi / D ad.EHi / : (25)

For every j 2 Œ1; d �, the quotient bundle EB.Vj /=EB.Vj�1/ is identified with the vector bundle

EB.Vj =Vj�1/ WD EB �
B .Vj =Vj�1/ �! X

associated to EB for the B–module Vj =Vj�1.
We noted above that the line bundles associated to EB for the characters of B are trivial. Therefore, each

EB.Vj =Vj�1/ is a trivial line bundle. Consequently, (25) is filtration of holomorphic sub-bundles of ad.EHi / such
that each successive quotient is a trivial line bundle. This immediately implies that the vector bundle ad.EHi / is
semi-stable. Hence the holomorphic principal Hi–bundle EHi is semi-stable [1, p. 698, Lemma 3].

Since Hi is simple, and the principal Hi–bundle EHi is semi-stable, there is a natural holomorphic connection
on EHi [5, p. 20, Theorem 1.1] (set the Higgs field in [5, Theorem 1.1] to be zero). Let DHi denote this connection.
The vector bundle ad.EHi / being semi-stable of degree zero has a natural holomorphic connection [15, p. 36,
Lemma 3.5]. See also [5, p. 20, Theorem 1.1]. (In both [15, Lemma 3.5] and [5, Theorem 1.1] set the Higgs field
to be zero.) Let Dad denote this holomorphic connection on ad.EHi /. This connection Dad coincides with the one
induced by DHi (see the construction of the connection in [5]).

Any holomorphic section of ad.EHi / is flat with respect to Dad. To see this, let

�i W OX �! ad.EHi /

be the homomorphism given by a nonzero holomorphic section of ad.EHi /. Since image.�i / is a semi-stable sub-
bundle of ad.EHi / of degree zero,
– the connection Dad preserves image.�i /, and
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– the restriction of Dad to image.�i / coincides with the canonical connection of image.�i / [15, p. 36, Lemma
3.5].

The canonical connection on the trivial holomorphic line bundle image.�i / is the trivial connection (the monodromy
is trivial).

In particular, the connection on ad.EHi / induced by DHi has the property that the section ˇi is flat with respect
to it.

Since the homomorphism of Lie algebras corresponding to ' (in (22)) is an isomorphism, if we have
holomorphic connections on EZ and EHi , Œ1 ; `�, then we get a holomorphic connection on EG . Indeed, simply
pullback the connection form using the map

EG �! EZ �X EH1 �X � � � �X EH` :

The connection on EG given by the connections on EZ and EHi , Œ1 ; `�, constructed above satisfies the condition
that ˇ is flat with respect to it. This completes the proof of the proposition.

Lemma 4.3. Take any semi-simple section ˇs 2 H0.X; ad.EG//. Then ˇs produces a holomorphic reduction of
structure group of EG to a Levi factor of a parabolic subgroup of G.

Proof. We will first show that the conjugacy class of � ı ˇs.x/ 2 g=G, x 2 X , is independent of x, where � is
defined in (21).

Take any complex G–module V . Let EV WD EG �
G V be the holomorphic vector bundle over X associated

to EG for the G–module V . The section ˇs produces a holomorphic section

ˇV 2 H
0.X; End.EV // :

The X is compact and connected, the coefficients of the characteristic polynomial of ˇV .x/ are constants over X .
This implies that the eigenvalues of ˇV .x/, along with their multiplicities, are independent of x. Since ˇs is semi-
simple, from this it follows that the conjugacy class of � ı ˇs.x/ 2 g=G, x 2 X , is independent of x.

Fix an element
v0 2 g

such that the image of v0 in g=G coincides with � ı ˇs.x/. Let L � G be the centralizer of v0. It is known that L
is a Levi subgroup of some parabolic subgroup of G [11, p. 26, Proposition 1.22] (note that L is the centralizer of
the torus in G generated by v0). In particular, L is connected and reductive.

For any point x 2 X , let Fx � .EG/x be the complex sub-manifold consisting of all points z such that the
image of .z ; v0/ in ad.EG/x coincides with ˇs.x/. (Recall that ad.EG/ is a quotient of EG � g.) Let

FL � EG

be the complex sub-manifold such that FL
T
.EG/x D Fx for all x 2 X . It is straightforward to check that FL is

a holomorphic reduction of structure group of the principal G–bundle EG to the subgroup L.

From the Jordan decomposition of a complex reductive Lie algebra we know that for any holomorphic section � of
ad.EG/, there is a naturally associated semi-simple (respectively, nilpotent) section �s (respectively, �n) such that
� D �s C �n.

Take any ˇ 2 H0.X; ad.EG//. Let
ˇ D ˇs C ˇn

be the Jordan decomposition. Assume that the element � ı ˇ.x/ 2 g=G, x 2 X , is independent of x, where � is
defined in (21). This implies that � ı ˇs.x/ 2 g=G, x 2 X , is also independent of x. Let .L ; FL/ be the principal
bundle constructed in Lemma 4.3 from ˇs . Let H be an adjoint type simple quotient of L. Let

EH WD FL �
L H �! X

be the holomorphic principal H–bundle associated to FL.
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Since Œˇs ; ˇn� D 0, from the construction of FL it follows that

ˇn 2 H
0.X; ad.FL// � H0.X; ad.EG// :

Therefore, using the natural projection ad.FL/ �! ad.EH /, given by the projection Lie.L/ �! Lie.H/, the
above section ˇn produces a holomorphic section of ad.EH /. Letě

n 2 H
0.X; ad.EH // (26)

be the section constructed from ˇn.

Theorem 4.4. Take any ˇ 2 H0.X; ad.EG//. Let ˇ D ˇs C ˇn be the Jordan decomposition. Assume that
– EG admits a holomorphic connection,
– the element � ı ˇ.x/ 2 g=G, x 2 X , is independent of x, where � is defined in (21), and
– for every adjoint type simple quotient H of L, the section ě

n in (26) of has the property that it is either zero or
it is regular nilpotent at some point of X .

Then the principal G–bundle EG admits a holomorphic connection for which ˇ is flat.

Proof. Note that
ˇs 2 H

0.X; ad.FL// � H0.X; ad.EG// :

In fact, for each point x 2 X , the element ˇs.x/ 2 ad.FL//x is in the center of ad.FL//x . Consider the abelian
quotient

ZL D L=ŒL ;L� :

Let FZL be the holomorphic principal ZL–bundle over X obtained by extending the structure group of FL using the
quotient map L �! ZL. The adjoint bundle ad.FZL/ is a direct summand of ad.FL/. In fact, for each x 2 X , the
subspace ad.FZL/x � ad.FL/x is the center of the Lie algebra ad.FL/x .

A holomorphic connection on FL induces a holomorphic connection on EG . We can now apply Proposition 4.2
to FL to complete the proof of the theorem. But for that we need to show that FL admits a holomorphic connection.

Let l be the Lie algebra of L. Consider the inclusion of L–modules l ,! g given by the inclusion of L in G.
Since L is reductive, there is a sub L–module S � g such that the natural homomorphism

l˚ S �! g

is an isomorphism (so S is a complement of l). Let

p W g �! l (27)

be the projection given by the above decomposition of g.
LetD be a holomorphic connection onEG . SoD is a holomorphic 1–form on the total space ofEG with values

in the Lie algebra g. Let D0 be the restriction of this 1–form to the complex sub-manifold FL � EG . Consider the
l–valued 1–form p ıD0 on EL, where p is the projection in (27). This l–valued 1–form on FL defines a holomorphic
connection of the principal L–bundle FL. Now Proposition 4.2 completes the proof of the theorem.

5 Logarithmic connections with prescribed singularity

This section is an exposition of [8].
Fix a holomorphic principal H–bundle EH on X , and fix elements

wx 2 ad.EH /x

for all x 2 D. Consider the decomposition of At.EH ; D/x in (11). For any x 2 D, let

`x WD C � .wx ; 1/ � ad.EH /x ˚ C D At.EH ; D/x
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be the line in the fiber At.EH ; D/x . Let
A � At.EH ; D/

be the sub-sheaf that fits in the short exact sequence

0 �! A �! At.EH ; D/ �!
M
x2D

At.EH ; D/x=`x �! 0 : (28)

Note that the composition

ad.EH /x
i0.x/
�! At.EH ; D/x �!At.EH ; D/x=`x

is injective, hence it is an isomorphism, where i0 is the homomorphism in (15); this composition will be denoted by
�x . Therefore, from (5) and (28) we have a commutative diagram

0 0 0??y ??y ??y
0 �! ad.EH /˝OX .�D/ �! A

�1
�! TX.�D/ �! 0??y ??y� ??yid

0 �! ad.EH /
i0
�! At.EH ; D/

�
�! TX.�D/ �! 0??y ??y ??y

0 �!
L
x2D

ad.EH /x

L
x2D

�x

�!
L
x2D

At.EH ; D/x=`x �! 0 �! 0??y ??y ??y
0 0 0

(29)

where all the rows and columns are exact; the restriction of � to the sub-sheaf A is denoted by �1.

Lemma 5.1 ([8]). Consider the space of all logarithmic connections on EH singular over D such that the residue
over every x 2 D is wx . It is in bijection with the space of all holomorphic splittings of the short exact sequence of
vector bundles

0 �! ad.EH /˝OX .�D/ �! A
�1
�! TX.�D/ �! 0

on X in (29).

5.1 T –rigid elements of adjoint bundle

As before, H is a complex affine algebraic group and p W EH �! X a holomorphic principal H–bundle on X .
An automorphism of EH is a holomorphic map F W EH �! EH such that
– p ı F D p, and
– F.zh/ D F.z/h for all z 2 EH and h 2 H .

Let Aut.EH / be the group of all automorphisms of EH . We will show that Aut.EH / is a complex affine algebraic
group.

First consider the case of H D GL.r;C/. For a holomorphic principal GL.r;C/–bundle EGL on X , let E WD
EGL �

GL.r;C/ Cr be the holomorphic vector bundle of rank r on X associated to EGL for the standard action of
GL.r;C/ on Cr . Then Aut.EGL/ is identified with the group of all holomorphic automorphisms Aut.E/ of the
vector bundle E over the identity map of X . Note that Aut.E/ is the Zariski open subset of the complex affine
space H0.X; End.E// consisting of all global endomorphisms f of E such that det.f .x0// 6D 0 for a fixed point
x0 2 X ; since x 7�! det.f .x// is a holomorphic function on X , it is in fact a constant function. Therefore,
Aut.EGL/ is an affine algebraic variety over C.
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For a general H , fix an algebraic embedding � W H ,! GL.r;C/ for some r . For a holomorphic principal H–
bundle EH on X , let EGL WD EH �

� GL.r;C/ be the holomorphic principal GL.r;C/–bundle on X obtained by
extending the structure group of EH using �. The injective homomorphism � produces an injective homomorphism

�0 W Aut.EH / �! Aut.EGL/ :

The image of �0 is Zariski closed in the algebraic group Aut.EGL/. Hence �0 produces the structure of a complex
affine algebraic group on Aut.EH /. This structure of a complex algebraic group is independent of the choices of
r , �. Therefore, Aut.EH / is an affine algebraic group. Note that Aut.EH / need not be connected, although the
automorphism group of a holomorphic vector bundle is always connected (as it is a Zariski open subset of a complex
affine space).

The Lie algebra of Aut.EH / is H0.X; ad.EH //. The group Aut.EH / acts on any fiber bundle associated
to EH . In particular, Aut.EH / acts on the adjoint vector bundle ad.EH /. This action evidently preserves the Lie
algebra structure on the fibers of ad.EH /.

Let Aut.EH /0 � Aut.EH / be the connected component containing the identity element. Fix a maximal torus

T � Aut.EH /0 :

An element w 2 ad.EH /x , where x 2 X , will be called T –rigid if the action of T on ad.EH /x fixes w.
Consider the adjoint action of H on itself. Let

Ad.EH / WD EH �
H H �! X (30)

be the associated holomorphic fiber bundle. Since this adjoint action preserves the group structure of H , the fibers
of Ad.EH / are complex algebraic groups isomorphic toH . More precisely, each fiber of Ad.EH / is identified with
H uniquely up to an inner automorphism of H . The corresponding Lie algebra bundle on X is ad.EH /.

The group Aut.EH / is the space of all holomorphic sections of Ad.EH /. For any x 2 X , the action of
Aut.EH / on the fiber ad.EH /x coincides with the one obtained via the composition

Aut.EH /
evx
�! Ad.EH /x

ad
�! Aut.ad.EH /x/ ;

where evx is the evaluation map that sends a section of Ad.EH / to its evaluation at x, and ad is the adjoint action
of the group Ad.EH /x on its Lie algebra ad.EH /x .

Therefore, an element w 2 ad.EH /x is T –rigid if and only if the adjoint action of evx.T / � Ad.EH /x on
ad.EH /x fixes w.

5.2 Logarithmic connections with T –rigid residue

As before, G is a connected reductive affine algebraic group defined over C. Let EG be a holomorphic principal
G–bundle over X . Fix a maximal torus

T � Aut.EG/0 ;

where Aut.EG/0 as before is the connected component containing the identity element of the group of automor-
phisms of EG .

We now recall some results from [4], [6].
As in (30), define the adjoint bundle Ad.EG/ D EG �

G G. For any point y 2 X , consider the evaluation
homomorphism

'y W T �! Ad.EG/y ; s 7�! s.y/ :

Then 'y is injective and its image is a torus inG [4, p. 230, Section 3]. SinceG is identified with Ad.EG/y uniquely
up to an inner automorphism, the image 'y.T / determines a conjugacy class of tori in G; this conjugacy class is
independent of the choice of y [4, p. 230, Section 3], [6, p. 63, Theorem 4.1]. Fix a torus

TG � G (31)
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in this conjugacy class of tori. The centralizer

H WD CG.TG/ � G (32)

of TG inG is a Levi factor of a parabolic subgroup ofG [4, p. 230, Section 3], [6, p. 63, Theorem 4.1]. The principal
G–bundle EG admits a holomorphic reduction of structure group

EH � EG (33)

to the above subgroupH [4, p. 230, Theorem 3.2], [6, p. 63, Theorem 4.1]. Since TG is in the center ofH , the action
of TG on EH commutes with the action of H , so TG � Aut0.EH /. The image of TG in Aut0.EH / coincides
with T . This reduction EH is minimal in the sense that there is no Levi factor L of some parabolic subgroup of G
such that
– L ¨ H , and
– EG admits a holomorphic reduction of structure group to L.

(See [4, p. 230, Theorem 3.2].)
The above reduction EH is unique in the following sense. Let L be a Levi factor of a parabolic subgroup of G

andEL � EG a holomorphic reduction of structure group toL satisfying the condition thatEG does not admit any
holomorphic reduction of structure group to a Levi factor L0 of some parabolic subgroup of G such that L0 ¨ L.
Then there is an automorphism ' 2 Aut.EG/0 such that EL D '.EH / [6, p. 63, Theorem 4.1]. In particular, the
subgroup L � G is conjugate to H .

The Lie algebras of G and H will be denoted by g and h respectively. The inclusion of h in g and the reduction
in (33) together produce an inclusion ad.EH / ,! ad.EG/. This sub-bundle ad.EH / of ad.EG/ coincides with the
invariant sub-bundle ad.EG/T for the action of T on ad.EG/ [4, p. 230, Theorem 3.2], [6, p. 61, Proposition 3.3],
in other words,

ad.EH / D ad.EG/T � ad.EG/ : (34)

For every x 2 D fix a T –rigid element
wx 2 ad.EG/x (35)

Since each wx is T –rigid, from (34) we conclude that

wx 2 ad.EH /x 8 x 2 D : (36)

So wx determines a conjugacy class in h. For any character � of H , the corresponding homomorphism of Lie
algebras d� W h �! C factors through the conjugacy classes in h, because C is abelian. Therefore, we have
d�.wx/ 2 C.

Theorem 5.2 ([8]). There is a logarithmic connection on EG singular over D, and with T –rigid residue wx at
every x 2 D (see (35)), if and only if

degree.EH .�//C
X
x2D

d�.wx/ D 0 (37)

for every character � of H , where EH .�/ is the holomorphic line bundle on X associated to EH for �, and d� is
the homomorphism of Lie algebras corresponding to �.

5.3 T –invariant logarithmic connections with given residue

The automorphism group Aut.EG/ has a natural action on the space of all logarithmic connections on EG singular
over D. Given a maximal torus T � Aut.EG/0, by a T –invariant logarithmic connection we mean a logarithmic
connection on EG singular over D which is fixed by the action of T .
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Theorem 5.3 ([8]). LetEG be a holomorphic principalG–bundle onX , whereG is reductive. Fix wx 2 ad.EG/x
for each x 2 D. Fix a maximal torus T � Aut.EG/0. The following two are equivalent:

1. There is a T –invariant logarithmic connection on EG singular over D with residue wx at every x 2 D.
2. The element wx is T –rigid for each x 2 D, and (37) holds for every character � of H .
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