Research Article Open Access

Hisashi Kasuya*

An extention of Nomizu's Theorem –A user's guide–

DOI 10.1515/coma-2016-0011
Received June 19, 2016; accepted September 5, 2016

Abstract: For a simply connected solvable Lie group G with a lattice Γ , the author constructed an explicit finite-dimensional differential graded algebra A_{Γ}^{\star} which computes the complex valued de Rham cohomology $H^{\star}(\Gamma \backslash G, \mathbb{C})$ of the solvmanifold $\Gamma \backslash G$. In this note, we give a quick introduction to the construction of such A_{Γ}^{\star} including a simple proof of $H^{\star}(A_{\Gamma}^{\star}) \cong H^{\star}(\Gamma \backslash G, \mathbb{C})$.

Keywords: Solvmanifold, Cohomology

1 Introduction

In [11], Nomizu proved that the de Rham cohomology of nilmanifolds can be computed by the left-invariant differential forms. Nomizu's Theorem is the most important tool for studying the geometry of nilmanifolds. Nomizu's Theorem was extended to solvmanifolds of completely solvable type by Hattori in [5]. However, there exist solvmanifolds whose de Rham cohomology can not computed by left-invariant differential forms. This note is a self-contained quick reference for the following statement.

Theorem 1.1. Let G be a simply connected solvable Lie group. We assume that G contains a lattice Γ . Then, we can construct an explicit finite-dimensional sub-DGA (differential graded algebra) A_{Γ}^{\star} which computes the complex valued de Rham cohomology of the solvmanifold $\Gamma \backslash G$.

In fact, on author's studies of extensions of Nomizu's theorem, this statement is only the tip of the iceberg. In order to gain a deeper understanding, we should study relations to rational homotopy theory, local system cohomology, linear algebraic groups, group cohomology, etc., (see [7], [8], [9], [10] for details). However, without such details, by using Theorem 1.1, we may produce many results on solvmanifolds, like use of Nomizu's theorem in [11].

2 Constructions of A_r^*

2.1 Cartan subalgebras

Let $\mathfrak g$ be a Lie algebra over $\mathbb R$. A subalgebra $\mathfrak c\subset \mathfrak g$ is a *Cartan subalgebra* if:

- c is nilpotent and
- the normalizer of c in g is equal to c.

It is known that any g contains a Cartan subalgebra.

^{*}Corresponding Author: Hisashi Kasuya: Department of Mathematics, Tokyo Institute of Technology, 1-12-1, O-okayama, Meguro, Tokyo 152-8551, Japan, E-mail: kasuya@math.titech.ac.jp

Lemma 2.1. ([6, 15.4 Lemma A]) Let $\phi : \mathfrak{g} \to \mathfrak{g}'$ be a surjective homomorphism between Lie algebras. If $\mathfrak{c} \subset \mathfrak{g}$ is a Cartan subalgebra in \mathfrak{g} , then the image $\phi(\mathfrak{c})$ is a Cartan subalgebra in \mathfrak{g}' .

2.2 Semi-simple complements of solvable Lie algebras

Let $\mathfrak g$ be a solvable Lie algebra over $\mathbb R$. The *nilradical* $\mathfrak n$ of $\mathfrak g$ is the maximal nilpotent ideal in $\mathfrak g$. The nilradical $\mathfrak n$ is characterized by

$$\mathfrak{n} = \{X \in \mathfrak{g} : \mathrm{ad}_X \text{ is nilpotent}\}.$$

It is known that $\mathfrak{n}\supset [\mathfrak{g},\mathfrak{g}]$.

Lemma 2.2. *If* $\mathfrak{c} \subset \mathfrak{g}$ *is a Cartan subalgebra in* \mathfrak{g} *, then*

$$g = c + n$$

where the sum is not direct in general.

Proof. Consider the quotient $q: \mathfrak{g} \to \mathfrak{g}/\mathfrak{n}$. By Lemma 2.1, $q(\mathfrak{c})$ is a Cartan subalgebra in $\mathfrak{g}/\mathfrak{n}$. On the other hand, by $\mathfrak{n} \supset [\mathfrak{g}, \mathfrak{g}]$, $\mathfrak{g}/\mathfrak{n}$ is Abelian and so $q(\mathfrak{c}) = \mathfrak{g}/\mathfrak{n}$. Hence the lemma follows.

Definition 2.3. A *semi-simple complement* of \mathfrak{g} is a vector subspace (not necessarily Lie subalgebra) $\mathfrak{s} \subset \mathfrak{g}$ so that:

- $g = s \oplus n$ as a direct sum of vector spaces.
- − For any A, $B \in \mathfrak{s}$, $(ad_A)_s(B) = 0$ where $(ad_A)_s$ is the semi-simple part for the Jordan decomposition.

Lemma 2.4. ([3, Section III.1]) For a semi-simple complement s, the map

$$\psi: \mathfrak{g} = \mathfrak{s} \oplus \mathfrak{n} \ni A + X \mapsto (\mathrm{ad}_A)_{\mathfrak{s}} \in D(\mathfrak{g})$$

is a semi-simple representation where $D(\mathfrak{g})$ is the space of derivations on \mathfrak{g} .

Proposition 2.5. Any solvable Lie algebra g contains a semi-simple complement.

Proof. Take a Cartan subalgebra $\mathfrak{c} \subset \mathfrak{g}$. Then, by Lemma 2.2, we can take a subspace $\mathfrak{s} \subset \mathfrak{c}$ so that $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{n}$. Since \mathfrak{c} is nilpotent, the proposition follows.

2.3 Constructions of A_{Γ}^{\star}

Let G be a simply connected solvable real Lie group with the Lie algebra \mathfrak{g} . We assume that G contains a lattice Γ . Take a semi-simple complement \mathfrak{g} of \mathfrak{g} and the semi-simple representation $\psi:\mathfrak{g}\to D(\mathfrak{g})$ as in Lemma 2.4. Take the extension $\Psi:G\to \operatorname{Aut}(\mathfrak{g})$. Since Ψ is semi-simple, we take a basis X_1,\ldots,X_n of $\mathfrak{g}\otimes\mathbb{C}$ so that

$$\Psi = \operatorname{diag}(\alpha_1, \ldots, \alpha_n)$$

for complex characters $\alpha_1, \ldots, \alpha_n$ of G where $n = \dim \mathfrak{g}$. Take the dual basis x_1, \ldots, x_n of $\mathfrak{g}^* \otimes \mathbb{C}$. Considering x_1, \ldots, x_n as complex valued left-invariant differential forms on $\Gamma \setminus G$, we define the graded subspace $A_\Gamma^* \subset A_\Gamma^*(\Gamma \setminus G)$ so that

$$A_{\Gamma}^{p} = \operatorname{span}\langle \alpha_{I} x_{I} | I \subset \{1, \ldots, n\} \text{ with } |I| = p, \ \alpha_{I}|_{\Gamma} = 1\rangle$$

where for a multi-index $I = \{i_1, \ldots, i_p\}$ we write $\alpha_I = \alpha_{i_1} \cdots \alpha_{i_p}$ and $x_I = x_{i_1} \wedge \cdots \wedge x_{i_p}$ and for a character α of G whose restriction on Γ is trivial, α is considered as a function on $\Gamma \setminus G$.

Lemma 2.6. A_{Γ}^{\star} is a sub-DGA of the complex valued de Rham complex $A_{\mathbb{C}}^{\star}(\Gamma \backslash G)$ of $\Gamma \backslash G$.

Proof. Take the weight space decomposition

$$\bigwedge \mathfrak{g}^{\star} \otimes \mathbb{C} = \bigoplus_{\alpha} V_{\alpha}$$

for the dual representation of $\Psi: G \to \operatorname{Aut}(\mathfrak{g})$. We notice that $\bigwedge \mathfrak{s}^{\star} \otimes \mathbb{C} \subset V_1$ where \mathfrak{s} is a semi-simple complement. We have $V_{\alpha} \wedge V_{\beta} \subset V_{\alpha\beta}$ and $dV_{\alpha} \subset V_{\alpha}$ for any weight vector spaces V_{α} , V_{β} . In fact, we have

$$A_{\Gamma}^{\star} = \bigoplus_{\alpha|_{\Gamma}=1} \alpha^{-1} V_{\alpha}.$$

Hence, A_{Γ}^{\star} is closed under the wedge product. Since $\alpha^{-1}d\alpha \in V_1$ for any character α of G, we have

$$d(\alpha^{-1}V_{\alpha}) \subset \alpha d\alpha^{-1} \wedge \alpha^{-1}V_{\alpha} + \alpha^{-1}dV_{\alpha} \subset \alpha^{-1}V_{\alpha}$$

and so

$$dA_{\Gamma}^{\star} \subset A_{\Gamma}^{\star}$$
.

Hence the lemma follows.

Theorem 2.7. The inclusion $A_{\Gamma}^{\star} \subset A_{\mathbb{C}}^{\star}(\Gamma \backslash G)$ induces a cohomology isomorphism.

We will prove this theorem in Section 5. The proof in this paper is simpler than the one which was given previously.

3 Examples

Example 1. Let $G = \mathbb{R} \ltimes_{\phi} \mathbb{R}^2$ so that $\phi(t) = \begin{pmatrix} \cos 2\pi t & -\sin 2\pi t \\ \sin 2\pi t & \cos 2\pi t \end{pmatrix}$. Then G has a lattices $\Gamma = \mathbb{Z} \ltimes \mathbb{Z}^2$. We have

$$\mathfrak{g}\otimes\mathbb{C}=\operatorname{span}\left\langle \frac{\partial}{\partial t},e^{2\pi\sqrt{-1}t}\frac{\partial}{\partial z},e^{-2\pi\sqrt{-1}t}\frac{\partial}{\partial \bar{z}}\right\rangle$$

where $z = x + \sqrt{-1}y \in \mathbb{R}^2$. We take

$$\mathfrak{s} = \operatorname{span}\left\langle \frac{\partial}{\partial t} \right\rangle$$

as a semi-simple complement. Then the map Ψ is given by

$$\Psi = \text{diag}(1, e^{2\pi\sqrt{-1}t}, e^{-2\pi\sqrt{-1}t}).$$

For the dual basis dt, $e^{-2\pi\sqrt{-1}t}dz$, $e^{2\pi\sqrt{-1}t}d\bar{z}$, we have

$$A_{\Gamma}^{\star} = \bigwedge \operatorname{span}\langle dt, dz, d\bar{z}\rangle$$

since the characters $e^{-2\pi\sqrt{-1}t}$, $e^{2\pi\sqrt{-1}t}$ are restricted to the trivial character 1 on the lattice Γ .

In fact, we have an isomorphism $\Gamma \cong \mathbb{Z}^3$ and hence $\Gamma \backslash G$ is a 3-torus. By standard computations on tori, we can also see that the DGA $\bigwedge \operatorname{span} \langle dt, dz, d\bar{z} \rangle$ computes the complex valued de Rham cohomology.

Example 2. Let $G = \mathbb{C} \ltimes_{\phi} \mathbb{C}^2$ such that

$$\phi(x+\sqrt{-1}y)=\left(\begin{array}{cc}e^{x+\sqrt{-1}y}&0\\0&e^{-x-\sqrt{-1}y}\end{array}\right).$$

П

Then we have a lattice $\Gamma = (a\mathbb{Z} + 2\pi\sqrt{-1}) \ltimes \Gamma''$ for some $a \in \mathbb{R}^*$ and some lattice Γ'' in \mathbb{C}^2 . For example, $a = \log(2 + \sqrt{3})$. Considering g as a real 6-dimensional Lie algebra $\mathbb{C} \ltimes \mathbb{C}^2 = \mathbb{R}^2 \ltimes \mathbb{R}^4$, we have

$$\mathfrak{g}\otimes\mathbb{C}=\operatorname{span}\left\langle \frac{\partial}{\partial z_1},\frac{\partial}{\partial \bar{z}_1},e^{z_1}\frac{\partial}{\partial z_2},e^{\bar{z}_1}\frac{\partial}{\partial \bar{z}_2},e^{-z_1}\frac{\partial}{\partial z_3},e^{-\bar{z}_1}\frac{\partial}{\partial \bar{z}_3}\right\rangle.$$

We take

$$\mathfrak{s} = \operatorname{span} \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle$$

as a semi-simple complement where $z_1 = x + \sqrt{-1}y$. Then the map Ψ is given by

$$\Psi = \text{diag}(1, 1, e^{z_1}, e^{\bar{z}_1}, e^{-z_1}, e^{-\bar{z}_1}).$$

For the dual basis dz_1 , $d\bar{z}_1$, $e^{-z_1}dz_2$, $e^{-\bar{z}_1}d\bar{z}_2$, $e^{z_1}dz_3$, $e^{\bar{z}_1}d\bar{z}_3$, we can write A_{Γ}^{\star} . (Left as an exercise for the reader.) We remark that the character $e^{z_1-\bar{z}_1}=e^{2\pi\sqrt{-1}y}$ is restricted to 1 on the lattice Γ .

4 Some useful properties of A_{Γ}^{\star}

We use the same setting as in Section 2.3.

4.1 Completely solvable case

Proposition 4.1. If G is completely solvable (i.e. for any $g \in G$ all eigenvalues of Ad_g are real), then

$$A_{arGamma}^{\star}\subset \bigwedge \mathfrak{g}^{\star}\otimes \mathbb{C}.$$

Proof. In this case, the characters $\alpha_1, \ldots, \alpha_n$ are real valued. Hence, for any $I \subset \{1, \ldots, n\}$, if the restriction $(\alpha_I)|_{\Gamma}$ is trivial, then α_I is also trivial. Hence we have

$$A_{\Gamma}^{\star} = \operatorname{span}\langle x_I | I \subset \{1, \ldots, n\}, \ \alpha_I = 1 \rangle \subset \bigwedge \mathfrak{g}^{\star} \otimes \mathbb{C}.$$

This implies that if *G* is completely solvable, then every de Rham cohomology class of $\Gamma \setminus G$ is represented by a left-invariant differential form. This statement is Hattori's theorem [5].

4.2 Harmonic forms

Since the representation $\Psi: G \to \operatorname{Aut}(\mathfrak{g})$ is real valued, we can choose X_1, \ldots, X_n so that for some k, l with $k+2l=n, X_1, \ldots X_k$ are real and $X_{k+i}=\overline{X_{k+l+i}}$ for each $1 \le i \le l$. Consider the left-invariant Riemannian metric g on $\Gamma \setminus G$ so that

$$g = \sum_{i=1}^{k} x_i \cdot x_i + \sum_{i=1}^{l} x_{k+i} \cdot x_{k+l+i}.$$

Proposition 4.2. The space of the harmonic forms on $\Gamma \setminus G$ associated with the left-invariant Riemannian metric g is contained in the DGA A_{Γ}^* .

Proof. For any complex character α of G, if the restriction of α on Γ is trivial, then α is unitary since $\Gamma \setminus G$ is compact. Thus, for the anti-linear Hodge star operator $\bar{*}$, we have

$$\bar{\star}(\alpha_I x_I) = \bar{\alpha}_I x_{\hat{I}} = \alpha_I^{-1} x_{\hat{I}}$$

for $I \subset \{1, \ldots, n\}$ with $(\alpha_I)|_{\Gamma} = 1$ where $\hat{I} = \{1, \ldots, n\} - I$. It is known that any Lie group admitting a lattice is unimodular and so $\alpha_1 \cdots \alpha_n = 1$. Thus, $\alpha_I^{-1} = \alpha_{\hat{I}}$ for any $I \subset \{1, \ldots, n\}$. Thus $\bar{*}$ preserves A_{Γ}^* . By this, the proposition easily follows from Theorem 2.7.

4.3 Nilpotence

For the semi-simple representation $\psi : \mathfrak{g} \to D(\mathfrak{g})$ as in Lemma 2.4, we define the new bracket $[,]_{\mathfrak{u}} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ so that

$$[X, Y]_{11} = [X, Y] - \psi(X)Y + \psi(Y)X$$

for X, $Y \in \mathfrak{g}$. Then this is a Lie bracket and we denote by \mathfrak{u} the new Lie algebra. It is known that \mathfrak{u} is nilpotent and the Lie algebra structure on \mathfrak{u} is independent of the choice of a semi-simple complement (see [3, Section III.2, III.3]). We call \mathfrak{u} the *nilshadow* of \mathfrak{g} .

Proposition 4.3. A_{Γ}^{\star} is a sub-DGA of $\bigwedge \mathfrak{u}^{\star} \otimes \mathbb{C}$.

Proof. For the basis X_1, \ldots, X_n , the Lie bracket $[,]_{\mathfrak{u}}$ on the complexification is given by

$$[X_i, X_i]_{\mathfrak{u}} = [X_i, X_i] - \alpha_i^{-1} X_i(\alpha_i) X_i + \alpha_i^{-1} X_i(\alpha_i) X_i.$$

Consider the subspace

$$\bar{\mathfrak{g}} = \operatorname{span}\langle \alpha_1^{-1}X_1, \ldots, \alpha_n^{-1}X_n \rangle$$

of Lie algebra $\chi(G)\otimes\mathbb{C}$ of all complex valued vector fields on G. Then, we can say that $\bar{\mathfrak{g}}$ is a Lie subalgebra of $\chi(G)\otimes\mathbb{C}$. By the weight space decomposition $\mathfrak{g}\otimes\mathbb{C}=\bigoplus_{\alpha}\mathfrak{g}_{\alpha}$ for the representation $\Psi:G\to \operatorname{Aut}(\mathfrak{g})$, we can check this claim. In fact, we can easily check $[\alpha^{-1}\mathfrak{g}_{\alpha},\beta^{-1}\mathfrak{g}_{\beta}]\subset\alpha^{-1}\beta^{-1}\mathfrak{g}_{\alpha\beta}$ and hence $\bar{\mathfrak{g}}=\bigoplus_{\alpha}\alpha^{-1}\mathfrak{g}_{\alpha}$ is closed under the Lie bracket.

By computing

$$[\alpha_i^{-1}X_i, \alpha_j^{-1}X_j] = \alpha_i^{-1}\alpha_j^{-1} \left([X_i, X_j] - \alpha_j^{-1}X_i(\alpha_j)X_j + \alpha_i^{-1}X_j(\alpha_i)X_i \right),$$

the correspondence $\bar{\mathfrak{g}} \ni \alpha_i^{-1} X_i \mapsto X_i \in \mathfrak{u} \otimes \mathbb{C}$ gives an isomorphism $\bar{\mathfrak{g}} \cong \mathfrak{u} \otimes \mathbb{C}$ by the above formula on the bracket $[,]_{\mathfrak{u}}$. Define the subspace

$$A^* = \operatorname{span}\langle \alpha_I x_I | I \subset \{1, \ldots, n\}\rangle$$

of the complex valued de Rham complex $A^*(G)$ of the Lie group G. Then A^* is identified with the DGA $\bigwedge \bar{\mathfrak{g}}^*$ and so it is isomorphic to $\bigwedge \mathfrak{u}^* \otimes \mathbb{C}$. This implies the proposition.

4.4 Averaging

A Lie group containing a lattice is unimodular (see [12]). Since G is unimodular and $\Gamma \setminus G$ is compact, there exists a bi-invariant Haar measure dV so that $\int_{\Gamma \setminus G} dV = 1$.

Proposition 4.4. Define $\pi: A^*_{\mathbb{C}}(\Gamma \backslash G) \to A^*_{\Gamma}$ so that for $A^*_{\mathbb{C}}(\Gamma \backslash G) \ni \omega = \sum_I f_I x_I$,

$$\pi(\omega) = \sum_{\alpha_I|_{\Gamma}=1} \left(\int_{\Gamma \setminus G} \alpha_I^{-1} f_I dV \right) \alpha_I x_I.$$

Then, π *is a cochain complex homomorphism and for the natural inclusion* $\iota: A_{\Gamma}^{\star} \to A_{\mathbb{C}}^{\star}(\Gamma \backslash G)$, we have $\pi \circ \iota = \mathrm{id}$.

Proof. For a complex character α of G with $\alpha|_{\Gamma} = 1$, we have the sub-complex

$$\alpha \cdot \bigwedge \mathfrak{g}^{\star} \otimes \mathbb{C}$$

of $A^\star_{\mathbb{C}}(\Gamma \backslash G)$. Define the map $\tau_\alpha: A^\star_{\mathbb{C}}(\Gamma \backslash G) \to \alpha \cdot \bigwedge \mathfrak{g}^\star \otimes \mathbb{C}$ so that for $A^\star_{\mathbb{C}}(\Gamma \backslash G) \ni \omega = \sum_I f_I x_I$,

$$\tau_{\alpha}(\omega) = \sum_{I} \left(\int_{\Gamma \setminus G} \alpha^{-1} f_{I} dV \right) \alpha x_{I}.$$

Then, for the inclusion $\iota: \alpha \cdot \bigwedge \mathfrak{g}^* \otimes \mathbb{C} \to A_{\mathbb{C}}^*(\Gamma \backslash G)$, we have $\tau_\alpha \circ \iota = \mathrm{id}$. It is known that for any function f on $\Gamma \backslash G$ and any left-invariant vector field X, we have $\int_{\Gamma \backslash G} X(f) dV = 0$. (see [1]). By this formula, we can easily check that τ_α is a cochain complex homomorphism.

Let Ξ be the set of characters α_I for all multi-indices $I \subset \{1, \ldots, n\}$ satisfying $\alpha_I|_{\Gamma} = 1$. Then A_{Γ}^{\star} is a sub-complex of $\bigoplus_{\alpha \in \Xi} \alpha \cdot \bigwedge \mathfrak{g}^{\star} \otimes \mathbb{C}$. Moreover, we have

$$\bigoplus_{\alpha\in\Xi}\alpha\cdot\bigwedge\mathfrak{g}^{\star}\otimes\mathbb{C}=\operatorname{span}\langle\alpha x_{I}|I\subset\{1,\ldots,n\},\ \alpha\in\Xi\ \text{where}\ \alpha\neq\alpha_{I}\rangle\oplus A_{\Gamma}^{\star}$$

and this is a direct sum of cochain complexes. Thus the projection $p:\bigoplus_{\alpha\in\mathcal{Z}}\alpha\cdot\bigwedge\mathfrak{g}^\star\otimes\mathbb{C}\to A_{\Gamma}^\star$ is a cochain complex homomorphism. For the map $\tau=\bigoplus\tau_\alpha:A_\mathbb{C}^\star(\Gamma\backslash G)\to\bigoplus_{\alpha\in\mathcal{Z}}\alpha\cdot\bigwedge\mathfrak{g}^\star\otimes\mathbb{C}$, we have $\pi=p\circ\tau$ and so π is a cochain complex homomorphism so that $\pi\circ\iota$ = id.

5 Proof of Theorem 2.7

Let N be the connected normal subgroup of G which corresponds to the nilradical $\mathfrak n$. Then, it is known that the group $\Gamma_N = \Gamma \cap N$ is a lattice in N, $\Gamma N = N\Gamma$ is a closed subgroup in G and $\Gamma N \setminus G$ is a torus (see [12]). By this, the solvmanifold $\Gamma \setminus G$ is a fiber bundle over the torus $\Gamma N \setminus G$ with the nilmanifold fiber $\Gamma_N \setminus N$. We call this fiber bundle structure the *Mostow fibration*. By this fiber bundle structure, we have the spectral sequence $E_r^{p,q}$ so that

$$E_2^{p,q} \cong H^p(\Gamma N \backslash G, H^q(\Gamma_N \backslash N, \mathbb{C}))$$

and it converges to $H^{p+q}(\Gamma \backslash G, \mathbb{C})$.

For a semi-simple complement \mathfrak{s} of \mathfrak{g} , we define the filtration $F^p(\bigwedge \mathfrak{g}^* \otimes \mathbb{C})$ of $\bigwedge \mathfrak{g}^* \otimes \mathbb{C}$ so that

$$F^p(\bigwedge^r\mathfrak{g})=\bigoplus_{i\geq p}\bigwedge^i\mathfrak{s}\otimes\bigwedge^{r-i}\mathfrak{n}.$$

Then, for $A^{\star}_{\mathbb{C}}(\Gamma\backslash G)=\mathbb{C}^{\infty}(\Gamma\backslash G)\otimes\bigwedge\mathfrak{g}^{\star}\otimes\mathbb{C}$, the filtration $F^{p}(A^{\star}_{\mathbb{C}}(\Gamma\backslash G))=\mathbb{C}^{\infty}(\Gamma\backslash G)\otimes F^{p}(\bigwedge\mathfrak{g}^{\star})\otimes\mathbb{C}$ induces the spectral sequence $E^{p,q}_{r}$. We consider the filtration $F^{p}(A^{\star}_{\Gamma})$ of the sub-DGA A^{\star}_{Γ} of $A^{\star}_{\mathbb{C}}(\Gamma\backslash G)$ by the restriction of $F^{p}(A^{\star}_{\mathbb{C}}(\Gamma\backslash G))$. Then, we obtain the spectral sequence $\overline{E}^{p,q}_{r}$ which is induced by the filtration $F^{p}(A^{\star}_{\Gamma})$. By the standard fact on the spectral sequence, we can reduce Theorem 2.7 to proving the following statement.

Theorem 5.1. The inclusion $A_{\Gamma}^{\star} \subset A_{\mathbb{C}}^{\star}(\Gamma \backslash G)$ induces an isomorphism

$$\overline{E}_2^{p,q} \cong E_2^{p,q}$$
.

By the map $\pi: A_{\mathbb{C}}^{\star}(\Gamma \backslash G) \to A_{\Gamma}^{\star}$ as in Proposition 4.4, we can easily show that the induced map $\overline{E}_{2}^{p,q} \to E_{2}^{p,q}$ is injective. Hence, it is sufficient to show that there exists an isomorphism (not necessarily canonical)

$$H^p(\Gamma N \backslash G, H^q(\Gamma_N \backslash N, \mathbb{C})) \cong \overline{E}_2^{p,q}$$
.

We consider the sub-representation $\Psi_{\mathfrak{n}}:G\to \operatorname{Aut}(\mathfrak{n})$ of the representation $\Psi:G\to \operatorname{Aut}(\mathfrak{g})$. Take the weight space decomposition $\bigwedge^*\mathfrak{n}\otimes\mathbb{C}=\bigoplus W_\alpha$ for the dual of this representation. Then we have $W_\alpha\wedge W_\beta\subset W_{\alpha\beta}$ and $dW_\alpha\subset W_\alpha$ for any weight vector spaces W_α , W_β .

Lemma 5.2. There exists an isomorphism

$$H^p(\Gamma N \backslash G, H^q(\Gamma_N \backslash N, \mathbb{C})) \cong \bigoplus_{\alpha|_{\Gamma}=1} H^p(\mathfrak{g}/\mathfrak{n}, H^q(W_{\alpha}) \otimes E_{\alpha^{-1}})$$

where we regard the cohomology $H^q(W_\alpha)$ as $\mathfrak{g}/\mathfrak{n}$ -module induced by the adjoint representation and we denote by $E_{\alpha^{-1}}$ the complex 1-dimensional module induced by a character α^{-1} .

Proof. By Nomizu's Theorem in [11], we have an isomorphism

$$H^{\star}(\Gamma_N \backslash N, \mathbb{C}) \cong H^{\star}(\mathfrak{n} \otimes \mathbb{C}).$$

Hence, $H^p(\Gamma N \setminus G, H^q(\Gamma_N \setminus N, \mathbb{C}))$ is the cohomology of the torus $\Gamma N \setminus G$ with values in the local system associated with the action of $N \setminus G$ on $H^q(\mathfrak{n} \otimes \mathbb{C})$ via the adjoint representation. We can check that each $H^q(W_a)$ is the generalized α -eigenspace of the action of $N \setminus G$ on $H^q(\mathfrak{n} \otimes \mathbb{C})$. By this, the lemma follows from the following proposition.

Proposition 5.3. Let A be a simply connected Abelian Lie group with the Lie algebra $\mathfrak a$ and Λ be a lattice in A. Consider the torus $T = \Lambda \setminus A$. Let L be a complex local system over T. Then:

- If L contains no trivial local subsystem, then $H^*(T, L) = 0$ where we call a local system trivial if its monodromy representation is trivial.
- If L comes from the restriction of a complex unipotent representation $\rho: A \to GL(V)$, then we have an isomorphism $H^*(\mathfrak{a}, V) \cong H^*(T, L)$.

We can easily show this proposition by induction. We omit details.

Finally, the theorem follows from the following lemma.

Lemma 5.4. There exists an isomorphism

$$\overline{E}_2^{p,q}\cong igoplus_{lpha|_{arGamma}=1} H^p(\mathfrak{g}/\mathfrak{n},H^q(W_lpha)\otimes E_{lpha^{-1}}).$$

Proof. We can write $A_{\Gamma}^{\star} = \bigwedge \mathfrak{s}^{\star} \otimes (\bigoplus_{\alpha|_{\Gamma}=1} \alpha^{-1} W_{\alpha})$. Thus, we have

$$F^p(A_{\Gamma}^*) = \bigoplus_{i \geq p} \bigwedge_{\alpha}^i \mathfrak{s}^* \otimes (\bigoplus_{\alpha|_{\Gamma}=1} \alpha^{-1} W_{\alpha}).$$

The lemma follows from the straightforward computation of the second term of the spectral sequence.

6 Dolbeault cohomology of complex parallelizable solvmanifolds

We give an extension of Sakane's theorem in [13].

Let $\mathfrak g$ be a Lie algebra over $\mathbb C$. Then the arguments in Section 2.2 are extended for complex coefficients without any problem. We take a semi-simple complement $\mathfrak s$ and define the representation $\psi:\mathfrak g\to D(\mathfrak g)$ as in Lemma 2.4. Let G be a simply connected solvable complex Lie group with the complex Lie algebra $\mathfrak g$. We have the holomorphic representation $\Psi:G\to \operatorname{Aut}(\mathfrak g)$. Since Ψ is diagonalizable, we take a basis X_1,\ldots,X_n of $\mathfrak g$ so that

$$\Psi = diag(\alpha_1, \ldots, \alpha_n)$$

for holomorphic characters $\alpha_1, \ldots, \alpha_n$ of G. Take the dual basis x_1, \ldots, x_n of \mathfrak{g}^* .

We assume that G has a lattice Γ . Then we can consider \mathfrak{g}^* as the space of holomorphic 1-forms on the complex parallelizable solvmanifold $\Gamma \backslash G$. Let B^q_Γ be the subspace of (0,q)-forms $A^{0,q}(\Gamma \backslash G)$ on $\Gamma \backslash G$ defined as

$$B_{\Gamma}^{q} = \operatorname{span} \left\langle \frac{\bar{\alpha}_{I}}{\alpha_{I}} \bar{x}_{I} \middle| I \subset \{1, \ldots, n\} \text{ with } |I| = q, \left(\frac{\bar{\alpha}_{I}}{\alpha_{I}}\right)_{|\Gamma} = 1 \right\rangle$$

where \bar{x}_I is the complex conjugation of $x_I \in \bigwedge^q \mathfrak{g}^*$. Then, we can easily show that B_{Γ}^* is a sub-DGA of $A^{0,*}(\Gamma \backslash G)$ with the Dolbeault operator $\bar{\partial}$. We have:

Theorem 6.1. The inclusion $B_{\Gamma}^{\star} \subset A^{0,\star}(\Gamma \backslash G)$ induces a cohomology isomorphism

$$H^{\star}(B_{\Gamma}^{\star}) \cong H^{0,\star}(\Gamma \backslash G).$$

Hence we have an isomorphism

$$\bigwedge^p \mathfrak{g}^{\star} \otimes H^q(B_{\Gamma}^{\star}) \cong H^{p,q}(\Gamma \backslash G).$$

We can prove this theorem as similar to Theorem 2.7. We have the spectral sequence of the Dolbeault cohomology associated with the holomorphic Mostow fibration (see [4]). We must remark that the second term of such spectral sequence is the Dolbeault cohomology of a complex torus with values in holomorphic flat bundles. Details are left to the reader. See [2] for more general case.

References

- [1] F. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), no. 1, 1-40.
- S. Console, A. Fino, H. Kasuya, On de Rham and Dolbeault cohomology of solvmanifolds, Transform. Groups 21 (2016), no. 3, 653–680.
- [3] N. Dungey, A. F. M. ter Elst, D. W. Robinson, Analysis on Lie Groups with Polynomial Growth, Birkhäuser (2003).
- [4] H. R. Fischer, F. L. Williams, *The Borel spectral sequence: some remarks and applications. Differential geometry, calculus of variations, and their applications*, 255–266, Lecture Notes in Pure and Appl. Math., **100**, Dekker, New York, 1985.
- [5] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8 1960 289–331 (1960).
- [6] J. E. Humphreys, Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972.
- [7] H. Kasuya, Minimal models, formality and Hard Lefschetz properties of solvmanifolds with local systems, J. Differential Geom., 93, (2013), 269–298.
- [8] H. Kasuya, de Rham and Dolbeault Cohomology of solvmanifolds with local systems. Math. Res. Lett. 21 (2014), no. 4, 781–805.
- [9] H. Kasuya, Central theorems for cohomologies of certain solvable groups. arXiv:1311.1310 to appear in Transactions of the AMS.
- [10] H. Kasuya, Extended simplicial rational Nomizu's Theorem. Preprint arXiv:1410.3176.
- [11] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math. (2) **59**, (1954). 531–538.
- [12] M. S. Raghunathan, Discrete subgroups of Lie Groups, Springer-Verlag, New York, 1972.
- [13] Y. Sakane, On compact complex parallelisable solvmanifolds. Osaka J. Math. 13 (1976), no. 1, 187–212.