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Abstract: For a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit
finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology
H*(Γ∖G,C) of the solvmanifold Γ∖G. In this note, we give a quick introduction to the construction of such A*Γ
including a simple proof of H*(A*Γ) ∼= H*(Γ∖G,C).
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1 Introduction
In [11], Nomizu proved that the de Rham cohomology of nilmanifolds can be computed by the left-invariant
differential forms. Nomizu’s Theorem is the most important tool for studying the geometry of nilmanifolds.
Nomizu’s Theorem was extended to solvmanifolds of completely solvable type by Hattori in [5]. However,
there exist solvmanifolds whose de Rham cohomology can not computed by left-invariant differential forms.

This note is a self-contained quick reference for the following statement.

Theorem 1.1. Let G be a simply connected solvable Lie group. We assume that G contains a lattice Γ. Then,
we can construct an explicit finite-dimensional sub-DGA (differential graded algebra) A*Γ which computes the
complex valued de Rham cohomology of the solvmanifold Γ∖G.

In fact, on author’s studies of extensions of Nomizu’s theorem, this statement is only the tip of the iceberg. In
order to gain a deeper understanding, we should study relations to rational homotopy theory, local system
cohomology, linear algebraic groups, group cohomology, etc., (see [7], [8], [9], [10] for details). However, with-
out such details, by using Theorem 1.1, we may produce many results on solvmanifolds, like use of Nomizu’s
theorem in [11].

2 Constructions of A*
Γ

2.1 Cartan subalgebras

Let g be a Lie algebra over R. A subalgebra c ⊂ g is a Cartan subalgebra if:
– c is nilpotent and
– the normalizer of c in g is equal to c.
It is known that any g contains a Cartan subalgebra.
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Lemma 2.1. ([6, 15.4 Lemma A]) Let ϕ : g → g′ be a surjective homomorphism between Lie algebras. If c ⊂ g

is a Cartan subalgebra in g, then the image ϕ(c) is a Cartan subalgebra in g′.

2.2 Semi-simple complements of solvable Lie algebras

Let g be a solvable Lie algebra overR. The nilradical n of g is the maximal nilpotent ideal in g. The nilradical
n is characterized by

n = {X ∈ g : adX is nilpotent}.

It is known that n ⊃ [g, g].

Lemma 2.2. If c ⊂ g is a Cartan subalgebra in g, then

g = c + n

where the sum is not direct in general.

Proof. Consider the quotient q : g → g/n. By Lemma 2.1, q(c) is a Cartan subalgebra in g/n. On the other
hand, by n ⊃ [g, g], g/n is Abelian and so q(c) = g/n. Hence the lemma follows.

Definition 2.3. A semi-simple complement of g is a vector subspace (not necessarily Lie subalgebra) s ⊂ g

so that:
– g = s⊕ n as a direct sum of vector spaces.
– For any A, B ∈ s, (adA)s(B) = 0 where (adA)s is the semi-simple part for the Jordan decomposition.

Lemma 2.4. ([3, Section III.1]) For a semi-simple complement s, the map

ψ : g = s⊕ n ∋ A + X ↦→ (adA)s ∈ D(g)

is a semi-simple representation where D(g) is the space of derivations on g.

Proposition 2.5. Any solvable Lie algebra g contains a semi-simple complement.

Proof. Take a Cartan subalgebra c ⊂ g. Then, by Lemma 2.2, we can take a subspace s ⊂ c so that g = s ⊕ n.
Since c is nilpotent, the proposition follows.

2.3 Constructions of A*
Γ

Let G be a simply connected solvable real Lie groupwith the Lie algebra g. We assume that G contains a lattice
Γ. Take a semi-simple complement s of g and the semi-simple representation ψ : g → D(g) as in Lemma 2.4.
Take the extension Ψ : G → Aut(g). Since Ψ is semi-simple, we take a basis X1, . . . , Xn of g⊗C so that

Ψ = diag(α1, . . . , αn)

for complex characters α1, . . . , αn of Gwhere n = dim g. Take the dual basis x1, . . . , xn of g*⊗C. Considering
x1, . . . , xn as complex valued left-invariant differential forms on Γ∖G, we define the graded subspace A*Γ ⊂
A*C(Γ∖G) so that

ApΓ = span⟨αIxI |I ⊂ {1, . . . , n}with |I| = p, αI |Γ = 1⟩

where for a multi-index I = {i1, . . . , ip} we write αI = αi1 · · · αip and xI = xi1 ∧ · · · ∧ xip and for a character α
of G whose restriction on Γ is trivial, α is considered as a function on Γ∖G.
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Lemma 2.6. A*Γ is a sub-DGA of the complex valued de Rham complex A*C(Γ∖G) of Γ∖G.

Proof. Take the weight space decomposition⋀︁
g* ⊗C =

⨁︁
α
Vα

for the dual representation of Ψ : G → Aut(g). We notice that
⋀︀
s* ⊗ C ⊂ V1 where s is a semi-simple

complement. We have Vα ∧ Vβ ⊂ Vαβ and dVα ⊂ Vα for any weight vector spaces Vα, Vβ. In fact, we have

A*Γ =
⨁︁
α|Γ=1

α−1Vα .

Hence, A*Γ is closed under the wedge product. Since α−1dα ∈ V1 for any character α of G, we have

d(α−1Vα) ⊂ αdα−1 ∧ α−1Vα + α−1dVα ⊂ α−1Vα

and so
dA*Γ ⊂ A*Γ .

Hence the lemma follows.

Theorem 2.7. The inclusion A*Γ ⊂ A*C(Γ∖G) induces a cohomology isomorphism.

We will prove this theorem in Section 5. The proof in this paper is simpler than the one which was given
previously.

3 Examples

Example 1. Let G = R nϕ R2 so that ϕ(t) =
(︃

cos 2πt − sin 2πt
sin 2πt cos 2πt

)︃
. Then G has a lattices Γ = Z n Z2. We

have
g⊗C = span

⟨
∂
∂t , e

2π
√
−1t ∂
∂z , e

−2π
√
−1t ∂
∂z̄

⟩
where z = x +

√
−1y ∈ R2. We take

s = span
⟨
∂
∂t

⟩
as a semi-simple complement. Then the map Ψ is given by

Ψ = diag(1, e2π
√
−1t , e−2π

√
−1t).

For the dual basis dt, e−2π
√
−1tdz, e2π

√
−1tdz̄, we have

A*Γ =
⋀︁

span⟨dt, dz, dz̄⟩

since the characters e−2π
√
−1t , e2π

√
−1t are restricted to the trivial character 1 on the lattice Γ.

In fact, we have an isomorphism Γ ∼= Z3 and hence Γ∖G is a 3-torus. By standard computations on tori,
we can also see that the DGA

⋀︀
span⟨dt, dz, dz̄⟩ computes the complex valued de Rham cohomology.

Example 2. Let G = Cnϕ C2 such that

ϕ(x +
√
−1y) =

(︃
ex+

√
−1y 0

0 e−x−
√
−1y

)︃
.
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Then we have a lattice Γ = (aZ + 2π
√
−1) n Γ′′ for some a ∈ R* and some lattice Γ′′ in C2. For example,

a = log(2 +
√
3). Considering g as a real 6-dimensional Lie algebra CnC2 = R2 nR4, we have

g⊗C = span
⟨
∂
∂z1

, ∂
∂z̄1

, ez1 ∂
∂z2

, ez̄1 ∂
∂z̄2

, e−z1 ∂
∂z3

, e−z̄1 ∂
∂z̄3

⟩
.

We take
s = span

⟨
∂
∂x ,

∂
∂y

⟩
as a semi-simple complement where z1 = x +

√
−1y. Then the map Ψ is given by

Ψ = diag(1, 1, ez1 , ez̄1 , e−z1 , e−z̄1 ).

For the dual basis dz1, dz̄1, e−z1dz2, e−z̄1dz̄2, ez1dz3, ez̄1dz̄3, we can write A*Γ . (Left as an exercise for the
reader.) We remark that the character ez1−z̄1 = e2π

√
−1y is restricted to 1 on the lattice Γ.

4 Some useful properties of A*
Γ

We use the same setting as in Section 2.3.

4.1 Completely solvable case

Proposition 4.1. If G is completely solvable (i.e. for any g ∈ G all eigenvalues of Adg are real), then

A*Γ ⊂
⋀︁

g* ⊗C.

Proof. In this case, the characters α1, . . . , αn are real valued. Hence, for any I ⊂ {1, . . . , n}, if the restriction
(αI)|Γ is trivial, then αI is also trivial. Hence we have

A*Γ = span⟨xI |I ⊂ {1, . . . , n}, αI = 1⟩ ⊂
⋀︁

g* ⊗C.

This implies that if G is completely solvable, then every de Rham cohomology class of Γ∖G is represented by
a left-invariant differential form. This statement is Hattori’s theorem [5].

4.2 Harmonic forms

Since the representation Ψ : G → Aut(g) is real valued, we can choose X1, . . . , Xn so that for some k, l with
k + 2l = n, X1, . . . Xk are real and Xk+i = Xk+l+i for each 1 ≤ i ≤ l. Consider the left-invariant Riemannian
metric g on Γ∖G so that

g =
k∑︁
i=1

xi · xi +
l∑︁
i=1

xk+i · xk+l+i .

Proposition 4.2. The space of the harmonic forms on Γ∖G associatedwith the left-invariant Riemannianmetric
g is contained in the DGA A*Γ .

Proof. For any complex character α of G, if the restriction of α on Γ is trivial, then α is unitary since Γ∖G is
compact. Thus, for the anti-linear Hodge star operator *̄, we have

*̄(αIxI) = ᾱIx Î = α
−1
I x Î

for I ⊂ {1, . . . , n} with (αI)|Γ = 1 where Î = {1, . . . , n} − I. It is known that any Lie group admitting a lattice
is unimodular and so α1 · · · αn = 1. Thus, α−1I = α Î for any I ⊂ {1, . . . , n}. Thus *̄ preserves A*Γ . By this, the
proposition easily follows from Theorem 2.7.
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4.3 Nilpotence

For the semi-simple representation ψ : g → D(g) as in Lemma 2.4, we define the new bracket [, ]u : g × g → g

so that
[X, Y]u = [X, Y] − ψ(X)Y + ψ(Y)X

for X, Y ∈ g. Then this is a Lie bracket and we denote by u the new Lie algebra. It is known that u is nilpotent
and the Lie algebra structure on u is independent of the choice of a semi-simple complement (see [3, Section
III.2, III.3]). We call u the nilshadow of g.

Proposition 4.3. A*Γ is a sub-DGA of
⋀︀
u* ⊗C.

Proof. For the basis X1, . . . , Xn, the Lie bracket [, ]u on the complexification is given by

[Xi , Xj]u = [Xi , Xj] − α−1j Xi(αj)Xj + α−1i Xj(αi)Xi .

Consider the subspace
ḡ = span⟨α−11 X1, . . . , α−1n Xn⟩

of Lie algebra χ(G)⊗C of all complex valued vector fields on G. Then, we can say that ḡ is a Lie subalgebra of
χ(G) ⊗ C. By the weight space decomposition g ⊗ C =

⨁︀
α gα for the representation Ψ : G → Aut(g), we can

check this claim. In fact, we can easily check [α−1gα , β−1gβ] ⊂ α−1β−1gαβ and hence ḡ =
⨁︀

α α
−1gα is closed

under the Lie bracket.
By computing

[α−1i Xi , α−1j Xj] = α−1i α−1j
(︁
[Xi , Xj] − α−1j Xi(αj)Xj + α−1i Xj(αi)Xi

)︁
,

the correspondence ḡ ∋ α−1i Xi ↦→ Xi ∈ u ⊗ C gives an isomorphism ḡ ∼= u ⊗ C by the above formula on the
bracket [, ]u. Define the subspace

A* = span⟨αIxI |I ⊂ {1, . . . , n}⟩

of the complex valued de Rham complex A*(G) of the Lie group G. Then A* is identified with the DGA
⋀︀
ḡ*

and so it is isomorphic to
⋀︀
u* ⊗C. This implies the proposition.

4.4 Averaging

A Lie group containing a lattice is unimodular (see [12]). Since G is unimodular and Γ∖G is compact, there
exists a bi-invariant Haar measure dV so that

∫︀
Γ∖G dV = 1.

Proposition 4.4. Define π : A*C(Γ∖G) → A*Γ so that for A*C(Γ∖G) ∋ ω =
∑︀

I fIxI ,

π(ω) =
∑︁
αI |Γ=1

⎛⎜⎝∫︁
Γ∖G

α−1I fIdV

⎞⎟⎠ αIxI .
Then, π is a cochain complex homomorphism and for the natural inclusion ι : A*Γ → A*C(Γ∖G), we have π∘ ι = id.

Proof. For a complex character α of G with α|Γ = 1, we have the sub-complex

α ·
⋀︁

g* ⊗C

of A*C(Γ∖G). Define the map τα : A*C(Γ∖G) → α ·
⋀︀
g* ⊗C so that for A*C(Γ∖G) ∋ ω =

∑︀
I fIxI ,

τα(ω) =
∑︁
I

⎛⎜⎝∫︁
Γ∖G

α−1fIdV

⎞⎟⎠ αxI .
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Then, for the inclusion ι : α ·
⋀︀
g* ⊗C → A*C(Γ∖G), we have τα ∘ ι = id. It is known that for any function f on

Γ∖G and any left-invariant vector field X, we have
∫︀
Γ∖G X(f )dV = 0. (see [1]). By this formula, we can easily

check that τα is a cochain complex homomorphism.
Let Ξ be the set of characters αI for all multi-indices I ⊂ {1, . . . , n} satisfying αI |Γ = 1. Then A*Γ is a

sub-complex of
⨁︀

α∈Ξ α ·
⋀︀
g* ⊗C. Moreover, we have⨁︁

α∈Ξ
α ·
⋀︁

g* ⊗C = span⟨αxI |I ⊂ {1, . . . , n}, α ∈ Ξ where α ≠ αI⟩ ⊕ A*Γ

and this is a direct sum of cochain complexes. Thus the projection p :
⨁︀

α∈Ξ α ·
⋀︀
g* ⊗ C → A*Γ is a cochain

complex homomorphism. For the map τ =
⨁︀
τα : A*C(Γ∖G) →

⨁︀
α∈Ξ α ·

⋀︀
g* ⊗C, we have π = p ∘ τ and so π

is a cochain complex homomorphism so that π ∘ ι = id.

5 Proof of Theorem 2.7
Let N be the connected normal subgroup of G which corresponds to the nilradical n. Then, it is known that
the group ΓN = Γ∩N is a lattice in N, ΓN = NΓ is a closed subgroup in G and ΓN∖G is a torus (see [12]). By this,
the solvmanifold Γ∖G is a fiber bundle over the torus ΓN∖Gwith the nilmanifold fiber ΓN∖N. We call this fiber
bundle structure theMostow fibration. By this fiber bundle structure, we have the spectral sequence Ep,qr so
that

Ep,q2
∼= Hp(ΓN∖G, Hq(ΓN∖N,C))

and it converges to Hp+q(Γ∖G,C).
For a semi-simple complement s of g, we define the filtration Fp(

⋀︀
g* ⊗C) of

⋀︀
g* ⊗C so that

Fp(
r⋀︁
g) =

⨁︁
i≥p

i⋀︁
s⊗

r−i⋀︁
n.

Then, for A*C(Γ∖G) = C∞(Γ∖G)⊗
⋀︀
g* ⊗C, the filtration Fp(A*C(Γ∖G)) = C∞(Γ∖G)⊗ Fp(

⋀︀
g*)⊗C induces the

spectral sequence Ep,qr . We consider the filtration Fp(A*Γ) of the sub-DGA A*Γ of A*C(Γ∖G) by the restriction of
Fp(A*C(Γ∖G)). Then, we obtain the spectral sequence Ep,qr which is induced by the filtration Fp(A*Γ). By the
standard fact on the spectral sequence, we can reduce Theorem 2.7 to proving the following statement.

Theorem 5.1. The inclusion A*Γ ⊂ A*C(Γ∖G) induces an isomorphism

Ep,q2 ∼= Ep,q2 .

By the map π : A*C(Γ∖G) → A*Γ as in Proposition 4.4, we can easily show that the induced map Ep,q2 → Ep,q2 is
injective. Hence, it is sufficient to show that there exists an isomorphism (not necessarily canonical)

Hp(ΓN∖G, Hq(ΓN∖N,C)) ∼= E
p,q
2 .

We consider the sub-representation Ψn : G → Aut(n) of the representation Ψ : G → Aut(g). Take the
weight space decomposition

⋀︀* n⊗C =
⨁︀
Wα for the dual of this representation. Then we haveWα ∧Wβ ⊂

Wαβ and dWα ⊂ Wα for any weight vector spacesWα,Wβ.

Lemma 5.2. There exists an isomorphism

Hp(ΓN∖G, Hq(ΓN∖N,C)) ∼=
⨁︁
α|Γ=1

Hp(g/n, Hq(Wα)⊗ Eα−1 )

where we regard the cohomology Hq(Wα) as g/n-module induced by the adjoint representation and we denote
by Eα−1 the complex 1-dimensional module induced by a character α−1.
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Proof. By Nomizu’s Theorem in [11], we have an isomorphism

H*(ΓN∖N,C) ∼= H*(n⊗C).

Hence, Hp(ΓN∖G, Hq(ΓN∖N,C)) is the cohomology of the torus ΓN∖G with values in the local system associ-
atedwith the action of N∖G onHq(n⊗C) via the adjoint representation.We can check that eachHq(Wα) is the
generalized α-eigenspace of the action of N∖G on Hq(n ⊗ C). By this, the lemma follows from the following
proposition.

Proposition 5.3. Let A be a simply connected Abelian Lie group with the Lie algebra a and Λ be a lattice in A.
Consider the torus T = Λ∖A. Let L be a complex local system over T. Then:
– If L contains no trivial local subsystem, then H*(T, L) = 0 where we call a local system trivial if its mon-

odromy representation is trivial.
– If L comes from the restriction of a complex unipotent representation ρ : A → GL(V), then we have an

isomorphism H*(a, V) ∼= H*(T, L).

We can easily show this proposition by induction. We omit details.

Finally, the theorem follows from the following lemma.

Lemma 5.4. There exists an isomorphism

Ep,q2 ∼=
⨁︁
α|Γ=1

Hp(g/n, Hq(Wα)⊗ Eα−1 ).

Proof. We can write A*Γ =
⋀︀
s* ⊗ (

⨁︀
α|Γ=1 α

−1Wα). Thus, we have

Fp(A*Γ) =
⨁︁
i≥p

i⋀︁
s* ⊗ (

⨁︁
α|Γ=1

α−1Wα).

The lemma follows from the straightforward computation of the second term of the spectral sequence.

6 Dolbeault cohomology of complex parallelizable solvmanifolds
We give an extension of Sakane’s theorem in [13].

Let g be a Lie algebra over C. Then the arguments in Section 2.2 are extended for complex coefficients
without any problem. We take a semi-simple complement s and define the representation ψ : g → D(g) as in
Lemma 2.4. Let G be a simply connected solvable complex Lie group with the complex Lie algebra g. We have
the holomorphic representation Ψ : G → Aut(g). Since Ψ is diagonalizable, we take a basis X1, . . . , Xn of g
so that

Ψ = diag(α1, . . . , αn)

for holomorphic characters α1, . . . , αn of G. Take the dual basis x1, . . . , xn of g*.
We assume that G has a lattice Γ. Then we can consider g* as the space of holomorphic 1-forms on the

complex parallelizable solvmanifold Γ∖G. Let BqΓ be the subspace of (0, q)-forms A0,q(Γ∖G) on Γ∖G defined
as

BqΓ = span
⟨
ᾱI
αI
x̄I
⃒⃒⃒
I ⊂ {1, . . . , n} with |I| = q,

(︂
ᾱI
αI

)︂
|Γ
= 1
⟩

where x̄I is the complex conjugation of xI ∈
⋀︀q g*. Then,we can easily show that B*Γ is a sub-DGAof A0,*(Γ∖G)

with the Dolbeault operator ∂̄. We have:
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Theorem 6.1. The inclusion B*Γ ⊂ A0,*(Γ∖G) induces a cohomology isomorphism

H*(B*Γ) ∼= H0,*(Γ∖G).

Hence we have an isomorphism
p⋀︁
g* ⊗ Hq(B*Γ) ∼= Hp,q(Γ∖G).

We can prove this theorem as similar to Theorem 2.7. We have the spectral sequence of the Dolbeault coho-
mology associated with the holomorphic Mostow fibration (see [4]). We must remark that the second term
of such spectral sequence is the Dolbeault cohomology of a complex torus with values in holomorphic flat
bundles. Details are left to the reader. See [2] for more general case.
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