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Abstract: For a simply connected solvable Lie group G with a lattice I', the author constructed an explicit
finite-dimensional differential graded algebra A} which computes the complex valued de Rham cohomology
H (I \ G, C) of the solvmanifold I'\ G. In this note, we give a quick introduction to the construction of such A}
including a simple proof of H"(A}) =~ H'(I'\G, C).
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1 Introduction

In [11], Nomizu proved that the de Rham cohomology of nilmanifolds can be computed by the left-invariant

differential forms. Nomizu’s Theorem is the most important tool for studying the geometry of nilmanifolds.

Nomizu’s Theorem was extended to solvmanifolds of completely solvable type by Hattori in [5]. However,

there exist solvmanifolds whose de Rham cohomology can not computed by left-invariant differential forms.
This note is a self-contained quick reference for the following statement.

Theorem 1.1. Let G be a simply connected solvable Lie group. We assume that G contains a lattice I'. Then,
we can construct an explicit finite-dimensional sub-DGA (differential graded algebra) A} which computes the
complex valued de Rham cohomology of the solvmanifold I'\ G.

In fact, on author’s studies of extensions of Nomizu’s theorem, this statement is only the tip of the iceberg. In
order to gain a deeper understanding, we should study relations to rational homotopy theory, local system
cohomology, linear algebraic groups, group cohomology, etc., (see [7], [8], [9], [10] for details). However, with-
out such details, by using Theorem 1.1, we may produce many results on solvmanifolds, like use of Nomizu’s
theorem in [11].

2 Constructions of A}

2.1 Cartan subalgebras

Let g be a Lie algebra over R. A subalgebra ¢ C g is a Cartan subalgebra if:
— cisnilpotent and

— the normalizer of ¢ in g is equal to c.

It is known that any g contains a Cartan subalgebra.
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Lemma 2.1. ([6, 15.4 Lemma A]) Let ¢ : g — g’ be a surjective homomorphism between Lie algebras. If ¢ C g
is a Cartan subalgebra in g, then the image ¢(c) is a Cartan subalgebrain g'.

2.2 Semi-simple complements of solvable Lie algebras

Let g be a solvable Lie algebra over R. The nilradical n of g is the maximal nilpotent ideal in g. The nilradical
n is characterized by
n = {X € g: ady is nilpotent}.

It is known that n O [g, g].

Lemma 2.2. Ifc¢ C gis a Cartan subalgebra in g, then
g=c+n

where the sum is not direct in general.

Proof. Consider the quotient g : g — g/n. By Lemma 2.1, g(c) is a Cartan subalgebra in g/n. On the other
hand, by n D [g, gl, g/n is Abelian and so g(c) = g/n. Hence the lemma follows. O

Definition 2.3. A semi-simple complement of g is a vector subspace (not necessarily Lie subalgebra) s C g
so that:

- g =s®nas adirect sum of vector spaces.

— Forany A, B € s, (adg)s(B) = 0 where (ady)s is the semi-simple part for the Jordan decomposition.

Lemma 2.4. ([3, Section III.1]) For a semi-simple complement s, the map
Y:g=sdn>A+X— (ady)s € D(g)

is a semi-simple representation where D(g) is the space of derivations on g.

Proposition 2.5. Any solvable Lie algebra g contains a semi-simple complement.

Proof. Take a Cartan subalgebra ¢ C g. Then, by Lemma 2.2, we can take a subspace s C c¢sothatg=s®n.
Since ¢ is nilpotent, the proposition follows.
O

2.3 Constructions of A},

Let G be a simply connected solvable real Lie group with the Lie algebra g. We assume that G contains a lattice
I'. Take a semi-simple complement s of g and the semi-simple representation 1) : g — D(g) as in Lemma 2.4.
Take the extension ¥ : G — Aut(g). Since ¥ is semi-simple, we take a basis X1, ..., Xn of g ® C so that

¥ = diag(ay, ..., an)

for complex characters a4, ..., an of G where n = dim g. Take the dual basis x1, ..., xn of g* ®C. Considering
X1, ..., Xn as complex valued left-invariant differential forms on I'\ G, we define the graded subspace A} -
AG(T\G) so that

AP = span(a;x;|I C {1,...,n}with [I| = p, af|r = 1)

where for a multi-index I = {i, ..., ip} we write a; = a;, ---@;, and x; = x;, A -+ A x;, and for a character a
of G whose restriction on I'is trivial, a is considered as a function on I'\ G.
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Lemma 2.6. A} is a sub-DGA of the complex valued de Rham complex Ai-(I'\G) of I'\G.

Proof. Take the weight space decomposition
/\ g* RC= @ Va
a

for the dual representation of ¥ : G — Aut(g). We notice that /\5* ® C c V, where s is a semi-simple
complement. We have Va A Vg C Vyp and dVa C Vg for any weight vector spaces Ve, V. In fact, we have

Ar= P a 'V
a|r=1
Hence, A} is closed under the wedge product. Since a tda € V; for any character a of G, we have

dla V) cada ' Aa ' WWa+a 1dVe c a1V,

and so
dA} C Ar.

Hence the lemma follows. O

Theorem 2.7. The inclusion A} - AE;(F\ G) induces a cohomology isomorphism.

We will prove this theorem in Section 5. The proof in this paper is simpler than the one which was given
previously.

3 Examples

cos2mt —sin2mt

Example1. Let G = R x, R? so that ¢(f) =
P ¢ ¢(0) ( sin2nt  cos2mt

>. Then G has a lattices I' = Z x Z?. We

have 5 5 5
_ 9 vt 9 -2nV/-1t O
g®(C—span<at,e aZ,e az>

where z = x + /=1y € R?. We take
0
s = span <a>

as a semi-simple complement. Then the map ¥ is given by
¥ = diag(1, 2™, e 27V71Y),
For the dual basis dt, e2™V "1t dz, e2™V-1t 4z we have

Ar = /\ span(dt, dz, dz)

since the characters e 27V-1t s e2™V1t gre restricted to the trivial character 1 on the lattice I'.
In fact, we have an isomorphism I' & 73 and hence I' \ G is a 3-torus. By standard computations on tori,
we can also see that the DGA A span(dt, dz, dz) computes the complex valued de Rham cohomology.

Example 2. Let G = C x4, C? such that

x+v/—1y
Pp(x +V-1y) = ( € o e—x—?ﬂy > )
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Then we have a lattice I' = (aZ + 2mv/-1) x I'” for some a € R* and some lattice I in C2. For example,
a =log(2 + v/3). Considering g as a real 6-dimensional Lie algebra C x C? = R? x R*, we have

a Zli Z1 a —Zli -Z1 a >.

g®C=Span<Th, 0721,6 azz,e E,e 623’6 623
We take
§ = span 9.9
P ox’ oy
as a semi-simple complement where z; = x + v/—1y. Then the map ¥ is given by
v = diag(1, 1, €1, €™, e7?1, e 2.

For the dual basis dz;, dz1, e %' dz,, e *'dz,, e* dz3, e?'dz;, we can write A}. (Left as an exercise for the
reader.) We remark that the character e?1 7% = ™ V=1 is restricted to 1 on the lattice T

4 Some useful properties of A}

We use the same setting as in Section 2.3.

4.1 Completely solvable case

Proposition 4.1. If G is completely solvable (i.e. for any g € G all eigenvalues of Adg are real), then
Arc \o' ®C.
Proof. In this case, the characters ay, ..., an are real valued. Hence, forany I C {1,..., n}, if the restriction
(ap)|r is trivial, then a; is also trivial. Hence we have
A =span(x;I c {1,...,n}, a;j=1)C /\g* ® C.
O

This implies that if G is completely solvable, then every de Rham cohomology class of I'\ G is represented by
a left-invariant differential form. This statement is Hattori’s theorem [5].

4.2 Harmonic forms

Since the representation ¥ : G — Aut(g) is real valued, we can choose X1, ..., X so that for some k, [ with
k+2l=n,Xq,...X; arereal and X;,; = X;.1.; foreach 1 < i < L Consider the left-invariant Riemannian
metric g on I'\ G so that

k l
g= in C Xt Zxkﬂ' * Xietl+i-
i=1 i=1

Proposition 4.2. The space of the harmonic forms on I'\ G associated with the left-invariant Riemannian metric
g is contained in the DGA Aj.

Proof. For any complex character a of G, if the restriction of @ on I’ is trivial, then « is unitary since I'\G is
compact. Thus, for the anti-linear Hodge star operator *, we have
*(arxg) = arx; = a1 ' x;

forI c {1,...,n} with (a;)|r = 1 where 1= {1,...,n} - I Itis known that any Lie group admitting a lattice
is unimodular and so a4 - - - an = 1. Thus, a}l = forany I c {1,...,n}. Thus * preserves A}. By this, the
proposition easily follows from Theorem 2.7. O
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4.3 Nilpotence

For the semi-simple representation ¥ : g — D(g) as in Lemma 2.4, we define the new bracket [, ], : gxg — g
so that
(X, Y]u = [X, Y] - XY + p(V)X

for X, Y € g. Then this is a Lie bracket and we denote by u the new Lie algebra. It is known that u is nilpotent
and the Lie algebra structure on u is independent of the choice of a semi-simple complement (see [3, Section
I11.2, I11.3]). We call u the nilshadow of g.

Proposition 4.3. A} is a sub-DGA of A\u” ® C.

Proof. For the basis X1, ..., Xn, the Lie bracket [, ], on the complexification is given by
[Xi’ X]]u = [Xi, X}] - aj'lXi(a]-)X}- + a,-'lX]-(a,-)X,-.
Consider the subspace
g= span(a{le, e, a;an>

of Lie algebra y(G) ® C of all complex valued vector fields on G. Then, we can say that g is a Lie subalgebra of
X(G) ® C. By the weight space decomposition g ® C = €5, ga for the representation ¥ : G — Aut(g), we can
check this claim. In fact, we can easily check [a " ga, B~ gg] C @' B g4p and hence § = P, a ™" ga is closed
under the Lie bracket.

By computing

la; ' X, o7 X;] = o ' ([Xi,Xj] - a; Xi(a))X; + ai_lxj(ai)xi) ,

the correspondence § > a;*X; — X; € u® C gives an isomorphism § =~ u ® C by the above formula on the
bracket [, ].,.. Define the subspace
A" = span(a;x;|[I c {1,...,n})

of the complex valued de Rham complex A*(G) of the Lie group G. Then A" is identified with the DGA A "
and so it is isomorphic to A u” ® C. This implies the proposition. O

4.4 Averaging

A Lie group containing a lattice is unimodular (see [12]). Since G is unimodular and I'\G is compact, there
exists a bi-invariant Haar measure dV so that | nedV=1

Proposition 4.4. Define n: AL(I'\G) — A} so that for A¢(T'\G) > w = 3", fixy,
m(w) = Z / artfidV | apx;.
ﬂ1|f=1 \G

Then, mtis a cochain complex homomorphism and for the natural inclusion t : A} — ATC(F \G), we have ot = id.

Proof. For a complex character a of G with a| = 1, we have the sub-complex
a- /\ g ®C
of AZ(I'\G). Define the map 74 : A¢(I'\G) — a- A g" @ C so that for AL(I'\G) > w = 3, fixy,

Ta(w)=z /a"lfldV axj.

I \fg
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Then, for the inclusion ¢ : a - A\ g eC— ATC(F \G), we have 74 o ¢ = id. It is known that for any function f on
I'\G and any left-invariant vector field X, we have fr\ ¢ X(f)dV = 0. (see [1]). By this formula, we can easily
check that 74 is a cochain complex homomorphism.

Let = be the set of characters a; for all multi-indices I c {1,..., n} satisfying a;|; = 1. Then A} isa
sub-complex of P,z a- A g~ ® C. Moreover, we have

@a-/\g*@ﬂ(ﬁ = span(ax;|I C {1,...,n}, a € 5 where a # a;) ® Ay
acs
and this is a direct sum of cochain complexes. Thus the projectionp : @,z - A g ®C— A} is a cochain
complex homomorphism. For themap 7 = P 7q : A(*C(I“\G) = Ppcza- N\ g ®@C,wehaver=porandson
is a cochain complex homomorphism so that 77 o ¢ = id.
O

5 Proof of Theorem 2.7

Let N be the connected normal subgroup of G which corresponds to the nilradical n. Then, it is known that
thegroup I'y = 'MNisalatticein N, I'N = NT is a closed subgroup in G and I'N\ G is a torus (see [12]). By this,
the solvmanifold I'\ G is a fiber bundle over the torus I'N\ G with the nilmanifold fiber I'y\ N. We call this fiber
bundle structure the Mostow fibration. By this fiber bundle structure, we have the spectral sequence E¥*? so
that
EP1 ~ HP(IN\G, HY(I'y\N, C))
and it converges to H?*4(I'\ G, C).
For a semi-simple complement s of g, we define the filtration FP(A g" ® C) of A\ ¢" ® C so that

FP(\ o) =@/\s®/\n.

izp

Then, for AZ(I'\G) = €=(I'\G) ® A ¢" ® C, the filtration FP(A¢(I'\G)) = €=(I'\G) ® FP(\ ¢") ® C induces the
spectral sequence E?*?. We consider the filtration FP(A}) of the sub-DGA A} of A¢(I'\G) by the restriction of
FP (ATC(F \G)). Then, we obtain the spectral sequence ff "% which is induced by the filtration FP (A}). By the
standard fact on the spectral sequence, we can reduce Theorem 2.7 to proving the following statement.

Theorem 5.1. The inclusion A} - A(*C(F \G) induces an isomorphism
EyY ~ ERA,

By the map 7 : A¢.(I'\G) — A} as in Proposition 4.4, we can easily show that the induced map B EPis
injective. Hence, it is sufficient to show that there exists an isomorphism (not necessarily canonical)

HP(I'N\G, HY(I'y\N, C)) ~ E5"1.

We consider the sub-representation ¥, : G — Aut(n) of the representation ¥ : G — Aut(g). Take the
weight space decomposition /\* n® C = P Wy for the dual of this representation. Then we have Wa A Wg C
W, and dWq C Wy for any weight vector spaces Wa, Wp.

Lemma 5.2. There exists an isomorphism
HP(IN\G, HY(Ty\N, C)) * P HP(g/n, HI(Wa) @ Eq1)
lX‘r=1

where we regard the cohomology H(W) as g/n-module induced by the adjoint representation and we denote

by E,-1 the complex 1-dimensional module induced by a character a™*.
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Proof. By Nomizu’s Theorem in [11], we have an isomorphism
H'(Iy\N,C) ¥ H (n@ C).

Hence, HP(I'N\G, H4(I'y\N, C)) is the cohomology of the torus I'N\ G with values in the local system associ-
ated with the action of N\ G on H?(n® C) via the adjoint representation. We can check that each H4(W,) is the
generalized a-eigenspace of the action of N\G on H4(n ® C). By this, the lemma follows from the following
proposition.

Proposition 5.3. Let A be a simply connected Abelian Lie group with the Lie algebra a and A be a lattice in A.

Consider the torus T = A\A. Let L be a complex local system over T. Then:

— If L contains no trivial local subsystem, then H*(T, L) = 0 where we call a local system trivial if its mon-
odromy representation is trivial.

— If L comes from the restriction of a complex unipotent representation p : A — GL(V), then we have an
isomorphism H (a, V) =~ H'(T, L).

We can easily show this proposition by induction. We omit details.

Finally, the theorem follows from the following lemma.

Lemma 5.4. There exists an isomorphism

By~ (D H(a/n, HI (Wa) ® Eg1).

a‘rzl

Proof. We can write A = \s™ ® (P,,-, @ Wa). Thus, we have

FPAp =P \s o (P a'wa).

i?P a‘I':].

The lemma follows from the straightforward computation of the second term of the spectral sequence. [

6 Dolbeault cohomology of complex parallelizable solvmanifolds

We give an extension of Sakane’s theorem in [13].

Let g be a Lie algebra over C. Then the arguments in Section 2.2 are extended for complex coefficients
without any problem. We take a semi-simple complement s and define the representation 1 : g — D(g) as in
Lemma 2.4. Let G be a simply connected solvable complex Lie group with the complex Lie algebra g. We have
the holomorphic representation ¥ : G — Aut(g). Since ¥ is diagonalizable, we take a basis X1,...,Xn of g
so that

V¥ = diag(ay, ..., an)

for holomorphic characters ay, . .., an of G. Take the dual basis x4, ..., xn of g".

We assume that G has a lattice I'. Then we can consider g~ as the space of holomorphic 1-forms on the
complex parallelizable solvmanifold I'\G. Let B? be the subspace of (0, g)-forms A%4(I'\G) on I'\ G defined
as

B! = span <a1)_(1‘1 c{1,...,n} with |I| = g, (ﬂ) = 1>
ag ar Ir
where X; is the complex conjugation of x; € A? g". Then, we can easily show that B}.is a sub-DGA of A%"(I'\ G)
with the Dolbeault operator 9. We have:
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Theorem 6.1. The inclusion Bj. ¢ A%"(I'\G) induces a cohomology isomorphism
H'(Br) = H*'(I'\G).
Hence we have an isomorphism
/p\g* @ HY(Br) = HY(I\G).

We can prove this theorem as similar to Theorem 2.7. We have the spectral sequence of the Dolbeault coho-
mology associated with the holomorphic Mostow fibration (see [4]). We must remark that the second term
of such spectral sequence is the Dolbeault cohomology of a complex torus with values in holomorphic flat
bundles. Details are left to the reader. See [2] for more general case.
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