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Abstract: Let f : Y → X be a continuous map between a compact real analytic Kähler manifold (Y , g) and a
compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy

of (Y , g) in terms of the diastatic entropy of (X, g0) and the degree of f . When the lower bound is attained

we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G.

Courtois and S. Gallot [2] for the volume entropy. As a corollary, when X = Y, we get that theminimal diastatic

entropy is achieved if and only if g is isometric to the hyperbolic metric g
0
.

1 Introduction and statement of main results
In this paper, we define the diastatic entropy Ent

d
(Y , g) of a compact real analytic Kähler manifold (Y , g)

with globally defined diastasis function (see Definition 2.1 and 2.2 below). This is a real analytic invariant de-
fined, in the noncompact case, by the author in [15], where the link with Donaldson’s balanced condition is

studied. The diastatic entropy extends the concept of volume entropy using the diastasis function instead

of the geodesic distance. Throughout this paper a compact complex hyperbolic manifold will be a compact

real analytic complex manifold (X, g
0
) endowed with locally Hermitian symmetric metric with holomorphic

sectional curvature strictly negative (i.e. (X, g0) is the compact quotient of a complex hyperbolic space, see

Example 2.3 below). Ourmain result is the following theorem, analogous to the celebrated result of G. Besson,

G. Courtois, S. Gallot on the minimal volume entropy of a compact negatively curved locally symmetric man-

ifold (see (3.2) below) [2, Théorème Principal]:

Theorem 1.1. Let (Y , g)bea compact Kählermanifold of dimension n ≥ 2and let (X, g0)bea compact complex
hyperbolic manifold of the same dimension. If f : Y → X is a nonzero degree continuous map, then

Ent
d
(Y , g)2n Vol (Y , g) ≥ |deg (f )| Ent

d
(X, g0)2n Vol (X, g0) . (1.1)

Moreover, the equality is attained if and only if f is homotopic to a holomorphic or anti-holomorphic homothetic
(F is said to be homothetic if F*g

0
= α g for some α > 0) covering F : Y → X.

As a first corollary we obtain a characterization of the hyperbolic metric as that metric which realises the

minimum of the diastatic entropy:

Corollary 1.1. Let (X, g0) be a compact complex hyperbolic manifold of dimension n ≥ 2 and denote by
E (X, g0) the set of metrics g on X with globally defined diastasis and fixed volume Vol (g) = Vol (g0). Then the
functional F : E (X, g0) → R ∪ {∞} given by g F↦→ Ent

d
(X, g) , attains its minimum when g is holomorphically

or anti-holomorphically isometric to g
0
.
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This corollary can be seen as the diastatic version of the A. Katok and M. Gromov conjecture on the minimal

volume entropy of a locally symmetric space with strictly negative curvature (see [8, p. 58]), proved by G.

Besson, G. Courtois, S. Gallot in [2]. We also apply Theorem 1.1 to give a simple proof for the complex version

of the Mostow and Corlette–Siu–Thurston rigidity theorems:

Corollary 1.2. (Mostow). Let (X, g0)and (Y , g)be two compact complex hyperbolicmanifolds of dimension n ≥
2. If X and Y are homotopically equivalent then they are holomorphically or anti-holomorphically homothetic.

Corollary 1.3. (Corlette–Siu–Thurston). Let (X, g0) and (Y , g) be as in the previous corollary and with the
same (constant) holomorphic sectional curvature. If f : Y → X is a continuous map such that

Vol (Y) = |deg (f )|Vol (X) (1.2)

then there exists a holomorphically or anti-holomorphically Riemannian covering F : Y → X homotopic to f .

The paper consists of others two sections. In Section 2 we recall the definitions of diastasis, diastatic entropy

and volume entropy. Section 3 is dedicated to the proof of Theorem 1.1 which is based on the analogous result

for the volume entropy (see formula (3.2) below) and on Lemma 2.6 which provides a lower bound for the

diastatic entropy in terms of volume entropy.

Acknowledgments. The author would like to thank Professor Sylvestre Gallot and Professor Andrea Loi for
their help and their valuable comments.

2 Diastasis, diastatic entropy and volume entropy

The diastasis is a special Kähler potential defined by E. Calabi in his seminal paper [5]. Let

(︁̃︀Y , ̃︀g)︁ be a real
analytic Kähler manifold. For every point p ∈ ̃︀Y there exists a real analytic functionΦ : V → R, called Kähler
potential, defined in a neighbourhood V of p such that ̃︀ω =

i
2

∂∂ Φ, where ̃︀ω is the Kähler form associated

to ̃︀g. Let z = (z
1
, . . . , zn) be a local coordinates system around p. By duplicating the variables z and z the

real analytic Kähler potential Φ can be complex analytically continued to a function
^Φ : U × U → C in a

neighbourhood U × U ⊂ V × V of (p, p) which is holomorphic in the first entry and antiholomorphic in the

second one.

Definition 2.1 (Calabi, [5]). The diastasis functionD : U × U → R is defined by

D (z, w) := ^Φ (z, z) + ^Φ (w, w) − ^Φ (z, w) − ^Φ (w, z) .

The diastasis function centered in w, is the Kähler potentialDw : U → R around w given by

Dw (z) := D (z, w) .

One can prove ([5, Proposition 1]) that the diastasis is uniquely determined by the Kähler metric ̃︀g and that it
does not depend on the choice of the local coordinates system or on the choice of the Kähler potential Φ.

Calabi in [5] uses the diastasis to give necessary and sufficient conditions for the existence of an holomor-

phic isometric immersion of a real analytic Kählermanifolds into a complex space form. For others interesting

applications of the diastasis function see [10–13, 16, 18] and reference therein.

We will say that a compact Kähler manifold (Y , g) has globally defined diastasis if its universal Kähler
covering

(︁̃︀Y , ̃︀g)︁ has globally defined diastasisD :
̃︀Y ×̃︀Y → R. By Example 2.3 below, any complex hyperbolic

manifold has globally defined diastasis. Assume that

(︁̃︀Y , ̃︀g)︁ has globally defined diastasisD :
̃︀Y × ̃︀Y → R.
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Its (normalized¹) diastatic entropy is defined by:

Ent
d

(︁̃︀Y , ̃︀g)︁ = X
(︀̃︀g)︀ inf

⎧⎪⎨⎪⎩c ∈ R+

:

∫︁
̃︀Y
e−cDw ν̃︀g < ∞

⎫⎪⎬⎪⎭ , (2.1)

whereX
(︀̃︀g)︀ = supy, z∈ ̃︀Y ‖ gradyDz‖ and ν̃︀g is the Riemannian volume form of ̃︀g. IfX (︀̃︀g)︀ = ∞ or the infimum

in (2.1) is not achieved by any c ∈ R+

, we set Ent
d

(︁̃︀Y , ̃︀g)︁ = ∞. The definition does not depend on the base

point w, indeed, denoted by ρ the geodesic distance of
(︁̃︀Y , ̃︀g)︁, we have

|Dw
1
(x) −Dw

2
(x)| = |Dx (w1)

−Dx (w2)
| ≤ X(̃︀g) ρ (w1

, w
2)
,

and

e−cX(̃︀g)ρ(w1
, w

2)

∫︁
̃︀Y
e−cDw

1

(x)ν̃︀g ≤
∫︁
̃︀Y
e−cDw

2

(x)ν̃︀g ≤ ecX(̃︀g)ρ(w1
, w

2)

∫︁
̃︀Y
e−cDw

1

(x)ν̃︀g ,

therefore

∫︀̃︀Y e−cDw
2

(x)ν̃︀g < ∞ if and only if

∫︀
e−cDw

1

(x)ν̃︀g < ∞.

Definition 2.2. Let (Y , g) be a compact Kähler manifold with globally defined diastasis. We define the di-
astatic entropy of (Y , g) as

Ent
d
(Y , g) = Ent

d

(︁̃︀Y , ̃︀g)︁ ,
where

(︁̃︀Y , ̃︀g)︁ is the universal Kähler covering of (Y , g).
Example 2.3. LetCHn =

{︀
z ∈ Cn : ‖z‖2 = |z

1
|2 + · · · + |zn|2 < 1

}︀
be theunitarydisc endowedwith thehyper-

bolic metric ̃︀gh of constant holomorphic sectional curvature −4. The associated Kähler form and the globally

defined diastasis are respectively given by

̃︀ωh = − i
2

∂¯∂ log

(︁
1 − ‖z‖2

)︁
.

and

Dh
(w, z) = − log

(︃(︀
1 − ‖z‖2

)︀ (︀
1 − ‖w‖2

)︀
|1 − zw*|2

)︃
. (2.2)

Denote by ωe = i
2

∂¯∂ ‖z‖2 the restriction to CHn of the flat form of Cn. One has∫︁
CHn

e−αD
h
0

ωnh
n! =

∫︁
CHn

(︁
1 − |z|2

)︁α−n−1 ωne
n! < ∞ ⇔ α > n,

and by a straightforward computation one sees that X
(︀̃︀gh)︀ = 2. We conclude by (2.1) that

Ent
d

(︀
CHn , ̃︀gh)︀ = 2 n. (2.3)

Remark 2.4. It should be interesting to computeX (gB), where gB is the Bergmanmetric of an homogeneous

boundeddomain. This, combinedwith the results obtained in [15],will allowus to obtain thediastatic entropy

of these domains.

1 Our definition of diastatic entropy differs respect to the one given in [15] by the normalizing factor X
(︀̃︀g)︀.
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Let (M, g) be a compact Riemannian manifold and let π :

(︁̃︀M, ̃︀g)︁ → (M, g) be its riemannian universal

cover. We define the volume entropy of (M, g) as

Ent
v (M, g) = inf

⎧⎪⎨⎪⎩c ∈ R+

:

∫︁
̃︀M
e−c̃︀ρ(w, x) ν̃︀g(x) < ∞

⎫⎪⎬⎪⎭ , (2.4)

where ̃︀ρ is the geodesic distance on (︁̃︀M, ̃︀g)︁ and ν̃︀g is the Riemannian volume form associated to ̃︀g. By the
triangle inequality, we can see that the definition does not depend on the base pointw. As the volume entropy

depends only on the Riemannian universal cover it make sense to define

Ent
v

(︁̃︀M, ̃︀g)︁ = Ent
v (M, g) .

The classical definition of volume entropy (see e.g. [14]) of a compact riemannian manifold (M, g), is the
following

Ent
vol

(M, g) = lim

t→∞

1

t logVol (Bp (t)) , (2.5)

where Vol (Bp (t)) denotes the volume of the geodesic ball Bp (t) ⊂ ̃︀M, of center in p and radius t. This no-
tion of entropy is related with one of the main invariant for the dynamics of the geodesic flow of (M, g): the
topological entropy Ent

top (
M, g) of this flow. For every compact manifold (M, g) A. Manning in [17] proved

the inequality Ent
vol

(M, g) ≤ Enttop (M, g), which is an equality when the curvature is negative. We refer the

reader to the paper [2] (see also [3] and [4]) of G. Besson, G. Courtois and S. Gallot for an overview on the

volume entropy and for the proof of the celebrated minimal entropy theorem. For an explicit computation of

the volume entropy Ent
v (Ω, g) of a bounded symmetric domain (Ω, g) see [14].

The next lemma shows that the classical definition of volume entropy (2.5) does not depend on the base

point and it is equivalent to definition (2.4), that is

Ent
vol

(M, g) = Ent
v (M, g) .

Lemma 2.5. Denote by

L := lim inf

R→+∞

(︂
1

R log (Vol B (x0, R))
)︂

and
L := lim sup

R→+∞

(︂
1

R log (Vol B (x0, R))
)︂
,

where B (x0, R) ⊂
(︁̃︀M, ̃︀g)︁ is the geodesic ball of centre x

0
and radius R. Then the two limits does not depends

on x
0
and

L ≤ Ent
v (M, g) ≤ L.

Proof. Let x
1
an arbitrary point of M. Set D = d (x0, x1) and R > D. By the triangular inequality

B (x0, R − D) ⊂ B (x1, R) ⊂ B (x0, R + D) .

Let R′
= R + D, we have

lim inf

R→+∞

(︂
1

R log (Vol B (x1, R))
)︂
≤ lim inf

R→+∞

(︂
1

R log (Vol B (x0, R + D))
)︂

= lim inf

R′→+∞

(︂
R′

R′
− D

1

R′ log
(︀
Vol B

(︀
x
0
, R′)︀)︀)︂

≤ lim inf

R′→+∞

(︂
1

R′ log
(︀
Vol B

(︀
x
0
, R′)︀)︀)︂

.

With the same argument one can prove the inequality in the other direction, so that L does not depend on x
0
.

Analogously we can prove that L does not depend on x
0
.
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By the definition of limit inferior and superior, for every ε > 0, there exists R
0
(ε) such that, for R ≥ R

0
(ε),

L − ε ≤
(︂
1

R log (Vol B (x0, R))
)︂
≤ L + ε

equivalently

e(L−ε)R ≤ (Vol B (x0, R)) ≤ e(L+ε)R . (2.6)

Integrating by parts we obtain

I :=
∫︁
̃︀M
e−c̃︀ρ(x0 , x)dv(x) =

∞∫︁
0

e−c r Voln−1 (S (x0, r)) dr

= Vol (B (x0, r)) e−c r
⃒⃒⃒
∞

0

+ c
∞∫︁
0

e−c r Vol (B (x0, r)) dr.

where S (x0, r) = ∂B (x0, r). On the other hand, by (2.6) we get
∞∫︁

R
0
(ε)

e(L−c−ε)r dr ≤
∞∫︁

R
0
(ε)

e−c r Vol (B (x0, r)) dr ≤
∞∫︁

R
0
(ε)

e−(c−L−ε)r dr.

We deduce that if c > L then I is convergent i.e L ≥ Ent
v
and that if I is not convergent when c < L, that is

Ent
v
≥ L, as wished.

In the proof of Theorem 1.1 we need the following key result which shows that the diastasis entropy is a

sharp upper bound for the volume entropy.

Lemma 2.6. Let (Y , g) be a compact Kähler manifold with globally defined diastasis, then

Ent
d
(Y , g) ≥ Ent

v (Y , g) . (2.7)

This bound is sharp when (Y , g) is a compact complex hyperbolic manifold. That is,

Ent
d

(︀
CHn , ̃︀gh)︀ = 2 n = Ent

v

(︀
CHn , ̃︀gh)︀ . (2.8)

Proof. Let (̃︀Y , ̃︀g) be universal Kähler cover of (Y , g). For every w, x ∈ ̃︀Y we have

Dw (x) = Dw (x) −Dw (w) ≤ sup
z∈̃︀Y ‖dzDw‖ ρw (x) ≤ X(̃︀g) ρw (x) ,

so ∫︁
̃︀Y
e−cX(̃︀g) ρw(x) ν̃︀g ≤

∫︁
̃︀Y
e−cDw(x) ν̃︀g .

Therefore, if cX(̃︀g) ≤ Ent
v
(
̃︀Y , ̃︀g) then cX (̃︀g) ≤ Ent

d
(
̃︀Y , ̃︀g). We obtain (2.7) by setting c = Ent

v
(
̃︀Y ,̃︀g)

X(̃︀g) . Equation

(2.8) follows by (2.3) and [14, Theorem 1.1].

3 Proof of Theorem 1.1 and Corollaries 1.1, 1.2 and 1.3
Proof of Theorem 1.1. Let (X, g0) as in Theorem 1.1 and let πX :

(︀
CHn , ̃︀g

0

)︀
→ (X, g0) be the universal

covering. Notice that ̃︀g
0
= λ ̃︀gh for some positive λ. Then we have

Vol (X, g0) Entv (X, g0)2n = Vol (X, gh) Entv (X, gh)2n

= Vol (X, gh) Entd (X, gh)2n = Vol (X, g0) Entd (X, g0)2n ,
(3.1)
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where the first and the third equality are consequence of the fact that Ent
v

(︀
CHn , ̃︀g

0

)︀
=

1√
λ
Ent

v

(︀
CHn , ̃︀gh)︀

and Ent
d

(︀
CHn , ̃︀g

0

)︀
=

1√
λ
Ent

d

(︀
CHn , ̃︀gh)︀, while the second equality follows by (2.8). Let f : Y → X be as in

Theorem 1.1, then, by [2, Théorème Principal] we know that

Ent
v (Y , g)2n Vol (Y , g) ≥ |deg (f )| Entv (X, g0)2n Vol (X, g0) (3.2)

where the equality is attained if and only if f is homotopic to a homothetic covering F : Y → X. Putting
together (2.7), (3.1) and (3.2) we get that

Ent
d
(Y , g)2n Vol (Y , g) ≥ |deg (f )| Ent

d
(X, g0)2n Vol (X, g0)

where the equality is attained if and only if f is homotopic to a homothetic covering F : Y → X.
To conclude the proof it remains to prove that F is holomorphic or anti-holomorphic. Up to homotheties,

it is not restrictive to assume that g = F*g
0
, so that its lift

̃︀F :
̃︀Y → CHn to the universal covering it is a

global isometry. Fix a point q ∈ ̃︀Y, let p =
̃︀F(q) and denote Aq =

̃︀F*J
0p the endomorphism acting on Tq̃︀Y,

where J
0
is the complex structure ofCHn. Denote by G̃︀Y and respectively GCHn the holonomy groups of (̃︀Y , ̃︀g)

and respectively

(︀
CHn , ̃︀g

0

)︀
. Note that G̃︀Y =

̃︀F*GCHn and that GCHn = SU(n), therefore G̃︀Y acts irreducibly on
Tq̃︀Y. As J0 commutes with the action of GCHn , by construction it follows that Aq is invariant with respect to

the action of G̃︀Y . Therefore, denoted Idq the identity map of Tq̃︀Y, by Schur’s lemma, Aq = λ Idq with λ ∈ C.
Moreover − Idq = A2q = λ2 Idq, so λ = ±i. We conclude that

̃︀F is holomorphic or anti-holomorphic.

Proof of Corollary 1.1. This is an immediate consequence of Theorem 1.1 once assumed Y = X, Vol (g) =
Vol (g0) and f = idX.

Proof of Corollary 1.2. Let h : Y → X be an homotopic equivalence and h−1 its homotopic inverse. Substi-

tuting in (1.1), once with f = h and once with f = h−1, we have respectively

Ent
d
(Y , g)2n Vol (Y , g) ≥ |deg (h)| Ent

d
(X, g0)2n Vol (X, g0)

and

Ent
d
(X, g0)2n Vol (X, g0) ≥

⃒⃒⃒
deg

(︁
h−1
)︁⃒⃒⃒

Ent
d
(Y , g)2n Vol (Y , g) .

We then conclude that Ent
d
(Y , g)2n Vol (Y , g) = Ent

d
(X, g0)2n Vol (X, g0) and that |deg (h)| = 1. Therefore,

by applying the last part of Theorem 1.1, we see that h is homotopic to a holomorphic (or antiholomorphic)

homothety F : X → Y.

Proof of Corollary 1.3. Let πY :

(︀
CHn , ̃︀g)︀ → (Y , g) and πX :

(︀
CHn , ̃︀g

0

)︀
→ (X, g0) be the universal

coverings, since g
0
and g are both hyperbolic with the same curvature, we conclude that ̃︀g

0
= ̃︀g and that

Ent
d
(X, g0) = Ent

d
(Y , g). Therefore we get an equality in (1.1). By the last part of Theorem 1.1 we get Vol (Y) =

|deg (F)|Vol (X) and we conclude that F is a local isometry.
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