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Abstract: Let f : Y — X be a continuous map between a compact real analytic Kdhler manifold (Y, g) and a
compact complex hyperbolic manifold (X, go). In this paper we give a lower bound of the diastatic entropy
of (Y, g) in terms of the diastatic entropy of (X, go) and the degree of f. When the lower bound is attained
we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G.
Courtois and S. Gallot [2] for the volume entropy. As a corollary, when X = Y, we get that the minimal diastatic
entropy is achieved if and only if g is isometric to the hyperbolic metric go.

1 Introduction and statement of main results

In this paper, we define the diastatic entropy Entq (Y, g) of a compact real analytic Kdhler manifold (Y, g)
with globally defined diastasis function (see Definition 2.1 and 2.2 below). This is a real analytic invariant de-
fined, in the noncompact case, by the author in [15], where the link with Donaldson’s balanced condition is
studied. The diastatic entropy extends the concept of volume entropy using the diastasis function instead
of the geodesic distance. Throughout this paper a compact complex hyperbolic manifold will be a compact
real analytic complex manifold (X, go) endowed with locally Hermitian symmetric metric with holomorphic
sectional curvature strictly negative (i.e. (X, go) is the compact quotient of a complex hyperbolic space, see
Example 2.3 below). Our main result is the following theorem, analogous to the celebrated result of G. Besson,
G. Courtois, S. Gallot on the minimal volume entropy of a compact negatively curved locally symmetric man-
ifold (see (3.2) below) [2, Théoréme Principal]:

Theorem 1.1. Let (Y, g) be a compact Kdhler manifold of dimensionn = 2 and let (X, go) be a compact complex
hyperbolic manifold of the same dimension. If f : Y — X is a nonzero degree continuous map, then

Enty (Y, g)™" Vol (Y, g) = |deg(f)| Enty (X, g0)*" Vol (X, go). (1.1)

Moreover, the equality is attained if and only if f is homotopic to a holomorphic or anti-holomorphic homothetic
(F is said to be homothetic if " gy = a g for some a > 0) covering F: Y — X.

As a first corollary we obtain a characterization of the hyperbolic metric as that metric which realises the
minimum of the diastatic entropy:

Corollary 1.1. Let (X, go) be a compact complex hyperbolic manifold of dimension n > 2 and denote by
& (X, go) the set of metrics g on X with globally defined diastasis and fixed volume Vol (g) = Vol (o). Then the
functional F : € (X, go) = RU {oo} givenby g A Enty (X, 8), attains its minimum when g is holomorphically
or anti-holomorphically isometric to go.
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This corollary can be seen as the diastatic version of the A. Katok and M. Gromov conjecture on the minimal
volume entropy of a locally symmetric space with strictly negative curvature (see [8, p. 58]), proved by G.
Besson, G. Courtois, S. Gallot in [2]. We also apply Theorem 1.1 to give a simple proof for the complex version
of the Mostow and Corlette—Siu-Thurston rigidity theorems:

Corollary 1.2. (Mostow). Let (X, go)and (Y, g) be two compact complex hyperbolic manifolds of dimensionn =
2.If X and Y are homotopically equivalent then they are holomorphically or anti-holomorphically homothetic.

Corollary 1.3. (Corlette-Siu—Thurston). Let (X, go) and (Y, g) be as in the previous corollary and with the
same (constant) holomorphic sectional curvature. Iff : Y — X is a continuous map such that

Vol (Y) = |deg (f)| Vol (X) (1.2)
then there exists a holomorphically or anti-holomorphically Riemannian covering F : Y — X homotopic to f.

The paper consists of others two sections. In Section 2 we recall the definitions of diastasis, diastatic entropy
and volume entropy. Section 3 is dedicated to the proof of Theorem 1.1 which is based on the analogous result
for the volume entropy (see formula (3.2) below) and on Lemma 2.6 which provides a lower bound for the
diastatic entropy in terms of volume entropy.

Acknowledgments. The author would like to thank Professor Sylvestre Gallot and Professor Andrea Loi for
their help and their valuable comments.

2 Diastasis, diastatic entropy and volume entropy

The diastasis is a special Kdhler potential defined by E. Calabi in his seminal paper [5]. Let (?, §) be a real

analytic Kahler manifold. For every point p € Y there exists a real analytic function @ : V — R, called Kdhler
potential, defined in a neighbourhood V of p such that w = % 00 @, where @ is the Kihler form associated
to g. Let z = (z1,...,2zn) be a local coordinates system around p. By duplicating the variables z and Z the
real analytic Kihler potential @ can be complex analytically continued to a function ® : Ux U — Cina
neighbourhood U x U C V x V of (p, p) which is holomorphic in the first entry and antiholomorphic in the
second one.

Definition 2.1 (Calabi, [5]). The diastasis function D : U x U — R is defined by
Dz, W)= D(z,2)+ D(w, W) - D(z, W) - D(w, 2).
The diastasis function centered in w, is the Kédhler potential Dy, : U — R around w given by
Dw(2) :=D(z, w).

One can prove ([5, Proposition 1]) that the diastasis is uniquely determined by the Kihler metric g and that it
does not depend on the choice of the local coordinates system or on the choice of the Kahler potential @.
Calabi in [5] uses the diastasis to give necessary and sufficient conditions for the existence of an holomor-
phicisometricimmersion of a real analytic Kdhler manifolds into a complex space form. For others interesting
applications of the diastasis function see [10-13, 16, 18] and reference therein.
We will say that a compact Kdhler manifold (Y, g) has globally defined diastasis if its universal Kahler
covering (f’, §) has globally defined diastasis D : YxY - R. By Example 2.3 below, any complex hyperbolic

manifold has globally defined diastasis. Assume that (17, §) has globally defined diastasis D : YxY > R.
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Its (normalized?) diastatic entropy is defined by:

Entgy (17, §) =X(g) inf{ ceR": /e"c Dw Vg <oo s, 2.1

Y

where X (g) = sup, , _y Il grad, D.|| and v is the Riemannian volume form of g. If X' (g) = o or the infimum

A
in (2.1) is not achieved by any ¢ € R*, we set Enty (?, §> = oo. The definition does not depend on the base

point w, indeed, denoted by p the geodesic distance of (f’, §), we have

[Dw, (X) = Dw, ()] = [Dx (w1) — Dx (w2)] < X(8) p (W1, W2),

and
e—ci)C@)p(wl,wz)/e—cﬂwl(x)v§ < /e—chz(x)V§ < ecx@p(wl’WZ)/e_Cle(X)Vg,

Y Y Y

therefore [; e PvMy; < oo ifand onlyif [ e Wy, < oo,
Definition 2.2. Let (Y, g) be a compact Kadhler manifold with globally defined diastasis. We define the di-
astatic entropy of (Y, g) as

Enty (Y, g) = Enty (17, g) ,
where (?’, §) is the universal Kahler covering of (Y, g).
Example 2.3. Let CH" = {z € C" : ||z||* = |z1|* + - -+ + |zn|* < 1} be the unitary disc endowed with the hyper-
bolic metric gj, of constant holomorphic sectional curvature —4. The associated Kihler form and the globally
defined diastasis are respectively given by

~ _ _i‘ < _ 2

@) = - 03 log (1 Izl ) .

and

_ 2 _ 2
Dh(w, 2) = - log ((1 112 (1 - [[wl| )) _ 22)

11-zw*?
Denote by we = 4 99 ||z||? the restriction to CH" of the flat form of C". One has
n -n-1 ;)N
/e—aﬂgﬂ=/(1_|z‘2)an &<oo¢>a>n’
n! n!
CHn CHn
and by a straightforward computation one sees that X (§h) = 2. We conclude by (2.1) that

Enty (CH", gp) = 2n. 23)

Remark 2.4. It should be interesting to compute X (gg), where gg is the Bergman metric of an homogeneous
bounded domain. This, combined with the results obtained in [15], will allow us to obtain the diastatic entropy
of these domains.

1 Our definition of diastatic entropy differs respect to the one given in [15] by the normalizing factor X (§)
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Let (M, g) be a compact Riemannian manifold and let 77 : (1171 , §) — (M, g) be its riemannian universal
cover. We define the volume entropy of (M, g) as

Enty (M, g) =inf{ c c R*: /e"C’N’(W’ X) vg(x) <o b, 2.4)
M
where 7 is the geodesic distance on (M, g) and Vg is the Riemannian volume form associated to g. By the

triangle inequality, we can see that the definition does not depend on the base point w. As the volume entropy
depends only on the Riemannian universal cover it make sense to define

Enty (1\71 §) = Enty (M, g).

The classical definition of volume entropy (see e.g. [14]) of a compact riemannian manifold (M, g), is the
following

.1
Ent,o (M, 8) = tlgg 7 log Vol (Bp (1)) , (2.5)

where Vol (B, (t)) denotes the volume of the geodesic ball By, (t) C M, of center in p and radius t. This no-
tion of entropy is related with one of the main invariant for the dynamics of the geodesic flow of (M, g): the
topological entropy Entiop (M, g) of this flow. For every compact manifold (M, g) A. Manning in [17] proved
the inequality Ent,,) (M, g) < Entp (M, g), which is an equality when the curvature is negative. We refer the
reader to the paper [2] (see also [3] and [4]) of G. Besson, G. Courtois and S. Gallot for an overview on the
volume entropy and for the proof of the celebrated minimal entropy theorem. For an explicit computation of
the volume entropy Enty (Q, g) of a bounded symmetric domain (Q, g) see [14].

The next lemma shows that the classical definition of volume entropy (2.5) does not depend on the base
point and it is equivalent to definition (2.4), that is

Enty (M, g) = Enty (M, g).

Lemma 2.5. Denote by
L :=liminf (l log (Vol B (xo, R)))
R—+oc0 R

and
L :=limsup <% log (Vol B (xo, R))) ’

R—+o0

where B (xg, R) C (1\7[ R §> is the geodesic ball of centre xy and radius R. Then the two limits does not depends

on xo and
L <Enty (M, g) < L.

Proof. Let x; an arbitrary point of M. Set D = d (x¢, x1) and R > D. By the triangular inequality
B(xp, R-D) C B(x1, R) C B(xg, R+ D).

Let R’ = R + D, we have

lim inf llog(VolB(xl,R)) < lim inf llog(VolB(xo,R+D))
R—+00 \ R R—+00 \ R

L R 1
= liminf (mﬁlog (Vol B (xo, R’)))

< liminf <%log (Vol B (xo, R’))) .

R/ —+00

With the same argument one can prove the inequality in the other direction, so that L does not depend on x,.
Analogously we can prove that L does not depend on xo.
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By the definition of limit inferior and superior, for every € > 0, there exists Ry (g) such that, for R > Ry(g),
L-¢x (% log (Vol B (xo, R))) <L+e¢

equivalently -
e OR < (Vol B (xo, R)) < e(F*R, (2.6)

Integrating by parts we obtain

I:= /e"cﬁ("o’x)dv(x) = /e"”Voln,l (S (x0, 1)) dr

i 0

:+ c/e‘”vOl (B (xo, 1)) dr.
0

where S (xo, 1) = 0B (xo, r). On the other hand, by (2.6) we get

= Vol (B (xo, 1)) e "

S oo [eS)

/e@‘c_g)rdrs / e " Vol (B (xo, ) dr < / e (L8 gr,

Ro(e) Ro(e) Ro(e)

We deduce that if ¢ > L then I is convergent i.e L > Enty and that if I is not convergent when c < L, that is
Enty > L, as wished. O

In the proof of Theorem 1.1 we need the following key result which shows that the diastasis entropy is a
sharp upper bound for the volume entropy.

Lemma 2.6. Let (Y, g) be a compact Kdihler manifold with globally defined diastasis, then
Entq (Y, g) = Enty (Y, g). 27
This bound is sharp when (Y, g) is a compact complex hyperbolic manifold. That is,
Enty (CH", g,) =2n= Enty (CH", g3) . (2.8)
Proof. Let (v, g) be universal Kihler cover of (Y, g). For every w, x € Y we have

Dy (X) = D (x) = Dw (W) < sup | d=Dul| pw (x) < X(&) pw (),
zeY

_C:X:E pw(X) — _CDW(X) I~
/e () vgs/e Vg'

Y Y

SO

Therefore, if ¢ X(g) < Enty (Y, ) then ¢ X () < Enty (Y, 2). We obtain (2.7) by setting ¢ = %. Equation
(2.8) follows by (2.3) and [14, Theorem 1.1]. O

3 Proof of Theorem 1.1 and Corollaries 1.1, 1.2 and 1.3

Proof of Theorem 1.1. Let (X, go) as in Theorem 1.1 and let 7y : ((CH”, §o) — (X, go) be the universal
covering. Notice that g = A g}, for some positive A. Then we have

Vol (X, go) Enty (X, g0)*" = Vol (X, g») Enty (X, gn)*"
3.1)
= Vol (X, g»)Entq (X, g»)™" = Vol (X, go) Entq (X, g0)*",
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where the first and the third equality are consequence of the fact that Enty (CH", go) = % Enty (CH", gj)
and Enty (CH", go) = % Entq (CH", g3,), while the second equality follows by (2.8). Let f : Y — X be as in

Theorem 1.1, then, by [2, Théoréme Principal] we know that
Enty (Y, g)*" Vol (Y, g) = |deg(f)| Enty (X, g0)>" Vol (X, go) 3.2

where the equality is attained if and only if f is homotopic to a homothetic covering F : Y — X. Putting
together (2.7), (3.1) and (3.2) we get that

Entq (Y, g)*" Vol (Y, g) = |deg (f)| Entq (X, g0)>" Vol (X, go)

where the equality is attained if and only if f is homotopic to a homothetic covering F : ¥ — X.

To conclude the proof it remains to prove that F is holomorphic or anti-holomorphic. Up to homotheties,
it is not restrictive to assume that g = F"go, so that its lift F : Y — CH" to the universal covering it is a
global isometry. Fix a point g € Y, let p= F (g) and denote A4 = F *]Op the endomorphism acting on Tqi?,
where ], is the complex structure of CH". Denote by 9y and respectively Gcgn the holonomy groups of (Y, g)
and respectively ((CH", §0). Note that 9;, =F *SCHH and that Gcgn = SU(n), therefore 9;, acts irreducibly on
Tq Y. As J, commutes with the action of Scpn, by construction it follows that A4 is invariant with respect to
the action of Gy. Therefore, denoted Idg the identity map of T, Y, by Schur’s lemma, Ag = Aldg with A € C.
Moreover - Idg = AZ = A21dg, so A = +i. We conclude that F is holomorphic or anti-holomorphic.

Proof of Corollary 1.1. This is an immediate consequence of Theorem 1.1 once assumed Y = X, Vol(g) =
Vol (go) and f = idy.

Proof of Corollary 1.2. Let h : Y — X be an homotopic equivalence and h~! its homotopic inverse. Substi-
tuting in (1.1), once with f = h and once with f = h™!, we have respectively

Entq (Y, g)™" Vol (Y, g) 2 |deg(h)| Entq (X, g0)*" Vol (X, go)

and
Entq (X, 80)*" Vol (X, go) 2

deg (h‘l)‘ Enty (Y, g)2" Vol (Y, g).

We then conclude that Enty (Y, g)*" Vol (Y, g) = Enty (X, g0)*" Vol (X, go)and that |deg (h)| = 1. Therefore,
by applying the last part of Theorem 1.1, we see that h is homotopic to a holomorphic (or antiholomorphic)
homothety F: X — Y.

Proof of Corollary 1.3. Let 7y : (CH",g) — (Y, g)and iy : (CH", g0) — (X, go) be the universal
coverings, since go and g are both hyperbolic with the same curvature, we conclude that go = g and that
Enty (X, go) = Enty (Y, g). Therefore we get an equality in (1.1). By the last part of Theorem 1.1 we get Vol (Y) =
|deg (F)| Vol (X) and we conclude that F is a local isometry.
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