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Abstract: Let (X, L) be a polarized algebraic manifold. Then for every test configuration µ = (X,L, ψ) for
(X, L) of exponent ℓ, we obtain an ℓ-th root (κ, D) of µ andGm-equivariant desingularizations ι : X̂ → X and
η : X̂ → Y, both isomorphic on X̂ \ X̂0, such that

ι*L = O
X̂
(ℓD)⊗ η*Q⊗ℓ,

where κ = (Y,Q, φ) is a test configuration for (X, L) of exponent 1, and D is an effective Q-divisor on X̂ such
that ℓD is an integral divisor with support in the fiber X0. Then (κ, D) can be chosen in such a way that

ℓ−n deg ι*D + deg η*D ≤ C1‖µ‖∞ and ‖κ‖∞ ≤ C2‖µ‖∞,

where C1 and C2 are positive real constants independent of the choice of µ and ℓ. This plays an important
role in our forthcoming papers on the existence of constant scalar curvature Kähler metrics (cf. [6]) and also
on the compactified moduli space of test configurations (cf. [5],[7]).

1 Introduction
By a polarized algebraic manifold (X, L), we mean a pair of a smooth irreducible projective variety X, defined
over C, and a very ample line bundle L over X. Put n := dimC X. For such a pair (X, L), replacing L by its
power if necessary, we may assume without loss of generality that

H i(X, L⊗ℓ) = {0}, i ≥ 1, ℓ ≥ 1,

and that the natural map H0(X, L)⊗k → H0(X, L⊗k) is surjective. Fix a Hermitian metric h for L such that
ω := c1(L, ω) is Kähler. Then for each positive integer ℓ, we define a Hermitian metric ρℓ on Vℓ := H0(X, L⊗ℓ)
by

ρℓ(σ, σ′) :=
∫︁
X

(σ, σ′)h ωn , σ, σ′ ∈ Vℓ,

where (σ, σ′)h denotes the pointwise Hermitian inner product of σ and σ′ by the ℓ-multiple hℓ of h. Put Nℓ :=
dimVℓ. By choosing an orthonormal basis {σ1, σ2, . . . , σNℓ

} for (Vℓ, ρℓ), we define

ωFS,ℓ :=
√
−1∂∂̄ log ΣNℓ

α=1|σα|
2.

In this paper, we fix a polarized algebraic manifold (X, L) as above once for all, and we consider a test config-
uration

µ = (X,L, ψ),
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of exponent ℓ, for (X, L). LetGm = { t ∈ C*} be the 1-dimensional algebraic torus. Then we have an algebraic
group homomorphism

ψ : Gm → GL(Vℓ)

such that the maximal compact subgroup S1 ⊂ Gm acts isometrically on (Vℓ, ρℓ), and that (X,L) is the De
Concini-Procesi family for ψ. Namely, for the affine line A1 = { z ∈ C }, X is the closure in A1 × P*(Vℓ) of the
graph

Γψ :=
{︁
(t, ψ(t)x) ; t ∈ C*, x ∈ X

}︁
,

and L is the restriction to X of the pullback pr*2 OP*(Vℓ)(1) by the projection pr2 : A1 × P*(Vℓ) → P*(Vℓ) to
the second factor, where X is viewed as a subvariety of P*(Vℓ) by the Kodaira embedding Φℓ : X →˓ P*(Vℓ)
associated to the complete linear system |L⊗ℓ| on X. Let

π : X → A1

be the restriction toXof theprojectionpr1 : A1×P*(Vℓ) → A1 to thefirst factor. Then thefiberX1 = π−1(1) over
1 ∈ A1 is naturally identified with X. Recall that µ is said to be trivial, if the algebraic group homomorphism

ψPGL : Gm → PGL(Vℓ)

induced by ψ is trivial. For the multiplicative real Lie group R+, we define a real Lie group homomorphism
ψSL : R+ → SL(Vℓ) by

ψSL(t) := ψ(t)
{detψ(t)}1/Nℓ

, t ∈ R+.

Let bα, α = 1, 2, . . . , Nℓ, be the weights of the R+-action on Vℓ by ψSL. Then we define 0 ≤ ‖ψ‖∞ ∈ Q by
setting

‖ψ‖∞ := ℓ−1max{ |bα| ; α = 1, 2, . . . , Nℓ },

and then put ‖µ‖∞ := ‖ψ‖∞. For an invertible sheaf L̂ over a smooth irreducible variety X̂, we call (X̂, L̂) a
Gm-equivariant desingularization of (X,L), if there exists aGm-equivariant proper birational morphism

ι : X̂ → X,

isomorphic over X \ X0, such that L̂ = ι*L, where X0 denotes the scheme-theoretic fiber π−1(0) of π over the
origin. Now, the main purpose of this paper is to show the following:

Main Theorem. For a test configuration µ = (X,L, ψ) for (X, L), following the construction in Section 2, we
obtain a Gm-equivariant desingularization (X̂, L̂) of (X,L) and a test configuration κ = (Y,Q, φ) for (X, L), of
exponent 1, such that L̂ over X̂ isGm-equivariantly identified with

O
X̂
(D̂)⊗ η*Q⊗ℓ,

where η : X̂ → Y is a C*-equivariant proper birational morphism, isomorphic over Y \ Y0, and D̂ is an effective
divisor on X̂ sitting in X̂0 set-theoretically. Moreover, ι, η, κ and D := D̂/ℓ can be chosen in such a way that

ℓ−n deg ι*D + deg η*D ≤ C1 ‖µ‖∞, (a)
‖κ‖∞ ≤ C2 ‖µ‖∞, (b)

where C1 and C2 are positive real constants independent of the choice of the test configuration µ and the expo-
nent ℓ.

Here ι*D and η*D are viewed as algebraicQ-cycles on the projective spaces {0}×P*(Vℓ) and {0}×P*(V1),
respectively, for V1 := H0(X, L). Note that the pair (κ, D) above is called an ℓ-th root of µ. This main theorem
plays an important role in our forthcoming papers (cf. [5],[6],[7]).
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2 Proof of Main Theorem
In this section, we shall proveMain Theorem except the inequalities (a) and (b), where these inequalities will
be shown in later sections. Consider the relative Kodaira embedding

X →˓ A1 × P*(Vℓ)

whose restriction Xz := π−1(z) →˓ {z} × P*(Vℓ) over each z ∈ A1 \ {0} is the Kodaira embedding of Xz by the
complete linear system |Lz|. Take amember H in the complete linear system |L| for the line bundle L on X. By
identifying X withX1, we view H as a divisor onX1. Then on the trivial projective bundleA1 ×P*(Vℓ) over the
complex affine lineA1 = {z ∈ C}, we can choose aGm-invariant irreducible reduced divisor δ as a projective
subbundle, of codimension 1, of the bundle A1 × P*(Vℓ) such that

δ · X1 = ℓH, (2.1)

where ℓH is viewed as a member of the complete linear system |L1| = |L⊗ℓ| onX1 (= X). The restriction of the
divisor δ to X is written in the form

δ · X = zero(ζ ) (2.2)

for a suitable choice of a quasi-invariant section ζ for L over X such that ζ|X1 ≠ 0. Recall that ζ is quasi-
invariant, if there exists an integer β independent of t such that

ψ(t) ζ = tβζ , t ∈ Gm ,

i.e., zβζ is Gm-invariant. We here explain how ζ is specified. By choosing an element v ≠ 0 in Vℓ associated
to ζ|X1 via the identification

H0(X1,L1) ∼= Vℓ,

we obtain zero(v) = ℓH. Let b1 ≥ b2 ≥ · · · ≥ bNℓ
be theweights of theGm-action on Vℓ byψ. Then for a suitable

basis {v1, v2, . . . , vNℓ
} for Vℓ,

ψ(t) vα = tbα vα , t ∈ Gm ,

where v is written as ΣNℓ
α=1 aαvα for some aα ∈ C. Let α1 be the largest integer α in {1, 2, . . . , Nℓ} such that

aα ≠ 0. Then ζ can be chosen in such a way that its restriction to each Xt, t ∈ A1 \ {0}, is(︁
Σα1α=1 t

bα−bα1 aαvα
)︁
|Xt

whereXt is viewed as a smooth subvariety of P*(Vℓ) ∼= {t}×P*(Vℓ). Let α0 be the smallest α in {1, 2, . . . , Nℓ}
such that bα coincides with bα1 . It then follows that the restriction of ζ to X0 is(︀

Σα1α=α0 aαvα
)︀
|X0

where X0 is viewed as a subscheme of P*(Vℓ) ∼= {0} × P*(Vℓ). Now for the complex variety X, we choose its
properGm-equivariant desinguralization

ι : X̂ → X,

isomorphic over X \ X0, such that the support of the fiber X̂0 over the origin is simple normal crossing as a
divisor on X̂. Put π̂ := π ∘ ι. By a suitable choice of ι, we may assume that π̂ is a projective morphism. We then
consider theGm-invariant irreducible reduced divisorH on X̂ obtained as the closure in X̂ of the preimage of⋃︁

t∈C*
{t} × ψ(t)H

under themapping ι, whereH on X is viewd as a subset ofP*(Vℓ) via the Kodaira embeddingΦℓ : X →˓ P*(Vℓ)
in the introduction. Then

ι*(δ · X) = D̂ + ℓH, (2.3)
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where D̂ is an effective divisor on X̂ with support in X̂0. Here by viewing X0 as a subscheme of P*(Vℓ) ∼=
{0} × P*(Vℓ), we can characterize the restriction of D̂ + ℓH to X̂0 as the zeroes of ι*(Σα1α=α0 aαvα)|X̂0

. Since the
divisorH on X̂ isGm-invariant, theGm-action on X̂ lifts to aGm-linearization of

Q̂ := O
X̂
(H). (2.4)

In this paper, we use locally free sheaves and vector bundles interchangeably. By (2.3) and (2.4), the pullback
L̂ := ι*L of L = OX(δ · X) is written as

L̂ = O
X̂
(D̂)⊗ Q̂⊗ℓ. (2.5)

In particular, theGm-linearizations of L̂ and Q̂ induce aGm-linearization ofOX̂
(D̂) making the identification

(2.5) Gm-equivariant. For the direct image sheaf F := π̂*Q̂ over A1, let Fz be the fiber of F over each z ∈ A1.
Then we have aGm-equivariant rational map

η : X̂ → P*(F)

whose restriction over each z ∈ A1 \ {0} is the Kodaira embedding ηz : X̂z →˓ P*(Fz) associated to the
complete linear system |Q̂z| on X̂z. Put

Yz := ηz(X̂z).

Then by this η, we can naturally identify the open subset X \ X0 of X̂ with theGm-invariant subset

Y* :=
⋃︁

0≠z∈A1

Yz

of P*(F). Let Y be the Gm-invariant subvariety of P*(F) obtained as the closure of Y* in P*(F), i.e., Y is the
meromorphic image of X̂ under the rational map η. Then the restriction

πY : Y → A1

to Y of the natural projection of P*(F) ontoA1 is aGm-equivariant projective morphism with a relatively very
ample invertible sheaf

Q := OP*(F)(1)|Y (2.6)

on the fiber space Y over A1. Note that π̂ = πY ∘ η. The Gm-action on Q̂ naturally induces a Gm-action on F.
It then induces aGm-action on Q covering theGm-action on Y. By the affirmative solution ofGm-equivariant
Serre’s conjecture, we have aGm-equivariant trivialization

F ∼= A1 × F0, (2.7)

where this isomorphism can be chosen in such a way that the Hermitian metric ρ1 (= ρℓ |ℓ=1) as in the intro-
duction for the vector space

F1 = V1 = H0(X, L)

corresponds to a Hermitian metric on F0 which is preserved by the action of the compact subgroup S1 ⊂
Gm (see [2]). By this trivialization, F0 is identified with F1 (= V1), so that the Gm-action on F0 induces a
representation

φ : Gm → GL(V1).

Hence (Y,Q, φ) is a test configuration for (X, L) of exponent 1. By (2.4), the base point set B for the linear
subsystem F0 of H0(X̂0, Q̂0) contains no components of dimension n. Replacing X̂ by its suitable birational
model obtained from X̂ by a sequence ofGm-equivariant proper birational morphisms with exceptional sets
sitting over B, we may assume from the beginning that B is empty (see for instance [3], p.114). Hence the
rational map η : X̂ → Y ⊂ P*(F) is holomorphic satisfying

Q̂ = η*Q, (2.8)
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as required. In view of (2.8), we now conclude from (2.5) that Main Theorem is true except (a) and (b).

Remark 2.9. If the Gm-action on P*(Vℓ) by ψ preserves the subset Xℓ := Φℓ(X), then X = A1 × Xℓ, and hence
we can choose (X̂, L̂, D̂) = (X,L, 0).

Remark 2.10. For a test configuration µ in Main Theorem, κ should be taken in such away that ‖κ‖∞ becomes
as large as possible. In some sense, our κ constructed as above satisfies such a requirement.

3 Proof of the inequality (a)
In this section, we compactifyA1 = {z ∈ C} to the complex projective lineP1 by viewingP1 = A1∪{∞}. Since
X sits in A1 × P*(Vℓ), we consider the subvariety X̄ in P1 × P*(Vℓ) obtained as the closure of X in P1 × P*(Vℓ).
Then L over X extends to a holomorphic line bundle

L̄ := pr*2 OP*(Vℓ)(1)|X̄, (3.1)

over X̄, where pr2 : P1 × P*(Vℓ) → P*(Vℓ) is the projection to the second factor. By setting d := ℓnc1(L)n[X],
we consider the tensor space

Wℓ := {Symd(Vℓ)}⊗n+1, (3.2)

where Symd(Vℓ) is the d-th symmetric tensor product of Vℓ. We now put N := OP*(Wℓ)(1). For the projection
p2 : P1 × P*(Wℓ) → P*(Wℓ) to the second factor, we consider the composite

Z̄ : P1 → P*(Wℓ)

of the projection p2 with the Chow section (see [9], 1.3) for X̄ over P1. Note that each Z̄(z), z ∈ P1, is the Chow
point for X̄z, wherewe view X̄z as a cycle on the projective space {z}×P*(Vℓ) (∼= P*(Vℓ)). For z = 1, an element
Z(1) ofW*

ℓ \{0}which lies above Z̄(1) ∈ P*(Wℓ) is called the Chow form for X̄1 = X1 = Φℓ(X). Nowby Theorem
1.4 in [9],

L̄⟨n+1⟩ ∼= Z̄*N, (3.3)

where L̄⟨n+1⟩ := ⟨L̄, . . . , L̄⟩(X̄/P1(C)) is the Deligne pairing of (n + 1)-pieces of L̄. For theGm-action by ψ on
Vℓ, let b′ and b′′ be the maximal weight and the minimal weight, respectively. Then by (3.2), the difference
between the maximal weight and the minimal weight for theGm-action onWℓ is

d(n + 1)(b′ − b′′), (3.4)

If Z̄ is a trivial map, then by Remark 2.9, we may assume D̂ = 0, so that (a) holds in this case. Hence we may
assume without loss of generality that Z̄ is a non-trivial map. Then Z̄(P1) is a rational curve obtained as the
closure in P*(Wℓ) of theGm-orbit

Gm · Z̄(1) := { [ψ(t) · Z(1)] ; t ∈ C* },

where for each w ∈ W*
ℓ \ {0}, its natural image in P*(Wℓ) is written as [w]. Hence by taking a general hyper-

plane Σ in P*(Wℓ), we see from (3.4) that 𝛾 := deg Z̄*(Σ) satisfies

0 < 𝛾 ≤ d(n + 1)(b′ − b′′), (3.5)

where 𝛾 is characterized also by the equality Z̄*(N) = OP1(C)(𝛾). Now for the algebraic cycleW := (pr2)*X̄ on
P*(Vℓ), by (3.1), (3.3) and (3.5) combined with the projection formula applied to pr2|X̄, we obtain

𝛾 = c1(L̄⟨n+1⟩)[P1(C)] =
∫︁
X̄

c1(L̄)n+1 = deg W. (3.6)
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For the divisor δ on A1 × P*(Vℓ) as in (2.1), let δ̄ be the irreducible reduced effective divisor on P1 × P*(Vℓ)
obtained as the closure of δ in P1 × P*(Vℓ). Note that δ̄ is a projective subbundle, of codimension 1, of the
trivial projective bundle P1 ×P*(Vℓ) over P1. Let Ψ be a hyperplane in P*(Vℓ). We further choose a curve C on
P1 × P*(Vℓ) written in the form

C = P1 × {p},

where p is a general point in P*(Vℓ). Let z be a general point in P1. Then δ̄ as a cycle on P1 × P*(Vℓ) is homol-
ogous to

P1 × Ψ + a {z} × P*(Vℓ), (3.7)

where a is the intersection number δ̄ · C on P1 × P*(Vℓ). Since ζ in (2.2) is quasi-invariant, we see that

0 ≤ a ≤ b′ − b′′. (3.8)

In view of (2.4), (2.6) and (2.8), we have a quasi-invariant section σ ≠ 0 for Q over Y such that the divisorH
on X̂ in (2.3) is written as

H = η* zero(σ), (3.9)

where η : X̂ → Y is the holomorphic map as in the previous section. By (2.7), we haveGm-equivariant identi-
fications

F = A1 × F0 and P*(F) = A1 × P*(F0).

For an arbitrary element f0 ≠ 0 in F0, we extend it to a section f for F = π̂*Q̂ by sending each z ∈ A1 to

f (z) := (z, f0) ∈ A1 × F0.

Then by (2.8), we obtain a nonzero section τ = τ(f0) for Q over Y such that the section f for F = π̂*Q̂ comes
from the section η*τ for Q̂. Next by taking aGm-equivariant desingularization

ι′ : X′ → X̄ (3.10)

whose restriction over A1 coincides with ι : X̂ → X, we may further assume that η : X̂ → Y ⊂ P*(F) =
A1 × P*(F0) extends to aGm-equivariant holomorphic map

η′ : X′ → P*(F′),

where F′ := P1 × F0 and P*(F′) := P1 × P*(F0). Let Y′ be the closure of Y in P*(F′). Note that Y′ is the image of
X′ under the holomorphic map η′. Now for τ = τ(f0), we consider the following divisor on X′:

H′(f0) := (η′)* zero(τ′), (3.11)

where τ′ = τ′(f0) denotes the section for Q′ := OP*(F′)(1)|Y′ which coincides with τ = τ(f0) when restricted to
Y. Let X′

∞ be the fiber of X′ over ∞. Since the vector space F0 is generated by quasi-invariant elements, there
exists a quasi-invariant element f #0 in F0 nonvanishing at some point in the image η′(X′

∞). Consider the case
when f0 = f #0 . Then the corresponding f and τ, denoted by f # and τ#, respectively, are quasi-invariant. For a
suitable choice of H, replacing σ in (3.9) by τ#, we may assume that

H = η* zero(τ#), (3.12)

and on the space X′ over P1, by (3.11) applied to τ′ = τ′(f #0 ), we have the divisorH′(f #0 ) := (η′)* zero(τ′(f #0 )).

On the other hand, for a general element f0 in F0, we easily see that the divisorH′(f0) is horizontal in the
sense that no components in the divisor H′(f0) sit in the fibers of X′ over P1. Hence we have a sequence of
elements

f (j)0 , j = 1, 2, . . . ,
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in F0 converging to f #0 , as j → ∞, such that the divisorsH′(f (j)0 ) are all horizontal. Then for each j, the corre-
sponding f and τwill be denoted by f (j) and τ(j), respectively. For each z ∈ A1\{0}, the inclusionX′

z →˓ P*(Vℓ)
allows us to obtain hyperplanes δ(j)z , δ#z in P*(Vℓ) such that

δ(j)z · X′
z = ℓH′(f (j)0 )|X′

z
and δ#z · X′

z = ℓH′(f #0 )|X′
z
,

where on the right-hand side of both equalities above, the intersection is taken in the projective space P*(Vℓ).
For the projective subbundles

δ(j) :=
⋃︁
z∈C*

{z} × δ(j)z and δ# :=
⋃︁
z∈C*

{z} × δ#z

of the trivial bundle (A1 \ {0}) × P*(Vℓ), let δ̄(j) and δ̄# be the irreducible reduced divisors on P1 × P*(Vℓ)
obtained as the closures of δ(j) and δ#, respectively, in P1 × P*(Vℓ). Then δ̄(j) and δ̄# are viewed as projective
subbundles, of codimension 1, of the trivial projective bundle P1 × P*(Vℓ) over P1. Since the divisorsH′(f (j)0 )
are horizontal, we obtain

ℓH′(f (j)0 ) ≤ (ι′)*(δ̄(j) · X̄), j = 1, 2, . . . , (3.13)

where the inequalitymeans that the right-hand sideminus the left-hand side is an effective divisor. Let j →∞
in (3.13). Then, since f (j)0 → f #0 , we have

ℓH′(f #0 ) ≤ (ι′)*(δ̄# · X̄). (3.14)

From now on, the divisorH′(f #0 ) onX′ will be written simply asH′ by abuse of terminology. Then by (2.3) and
(3.14), there exists an effective divisor D′ on X′ sitting over ∞ ∈ P1 such that

(ι′)*(δ̄# · X̄) = D̂ + ℓH′ + D′, (3.15)

where D̂ is an effective divisor as in (2.3) on X̂ ⊂ X′ sitting over the origin. Now by (3.7) and (3.8) applied to
δ̄ = δ̄#, we see that δ′ := (ι′)*(δ̄# · X̄) is a nef divisor on X′. Note also thatH′ is nef. Let i be an integer such
that 1 ≤ i ≤ n. Then by (3.15),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ′ n−i+1 · ℓiH′ i

= δ′ n−i · ℓi+1H′ i+1 + ℓi δ′ n−i ·H′ i · (D̂ + D′)
≥ δ′ n−i · ℓi+1H′ i+1 + ℓi δ′ n−i ·H′ i · D̂
≥ δ′ n−i · ℓi+1H′ i+1.

(3.16)

In particular, by applying this to i = n, we obtain

δ′ · ℓnH′n ≥ ℓn+1H′n+1 + (ℓH′) n · D̂ = ℓn+1H′n+1 + ℓn deg η*D̂. (3.17)

Hence by (3.7), (3.15), (3.16) and (3.17), we see that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ′ n+1 = δ′ n · (D̂ + ℓH′ + D′)
= deg ι*D̂ + δ′ n · ℓH′ + deg ι′*D′

≥ deg ι*D̂ + δ′ n · ℓH′ ≥ deg ι*D̂ + δ′ · ℓnH′n

≥ deg ι*D̂ + ℓn+1H′n+1 + ℓn deg η*D̂
≥ deg ι*D̂ + ℓn deg η*D̂.

(3.18)

Now by (3.7), δ′n+1 is written as

(n + 1) a Ψn[Xz] + pr*2 Ψ
n+1 · X̄ = d (n + 1) a +

∫︁
X̄

c1(L̄)n+1
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and hence by (3.5) and (3.6) together with (3.8), we obtain

δ′n+1 ≤ 2d(n + 1)(b′ − b′′). (3.19)

Then by D̂ = ℓD and b′ − b′′ ≤ 2ℓ‖µ‖∞, we see from (3.18) and (3.19) that

ℓ deg ι*D + ℓn+1 deg η*D ≤ 2d(n + 1)(b′ − b′′) ≤ 4(n + 1)d ℓ ‖µ‖∞,

and hence by setting C1 := 4(n + 1) c1(L)n[X], we obtain the inequality ℓ−n deg ι*D + deg η*D ≤ C1 ‖µ‖∞, as
required.

4 Proof of the inequality (b)
For the irreducible components D̂α, α = 1, 2, . . . , r, of Supp(X̂0), we can write the divisor D̂ on X̂ in the form

D̂ =
r∑︁
α=1

êα D̂α ,

where êα is the multiplicity ≥ 0 of D̂α in D̂. Then we may assume that, for some integer r0 with 1 ≤ r0 ≤ r,

η*D̂α = 0 if and only if r0 < α ≤ r, (4.1)

where we view η*D̂α as an n-dimensional algebraic cycle on P*(F0) ∼= P*(V1). For the normalization νY : Ŷ →
Y of Y, it follows from the Stein factorization that η : X̂ → Y factor through Ŷ, i.e.,

η = νY ∘ η̂

for some Gm-equivariant birational morphism η̂ : X̂ → Ŷ with connected fibers. Then by Zariski’s Main
Theorem, r0 in (4.1) is expressible as

r0 = n0,

where n0 is the number of the irreducible components in Supp(Ŷ0). Hence, we see from (4.1) that

deg η*D̂ =
n0∑︁
α=1

êα deg η*D̂α ≥
n0∑︁
α=1

êα ,

where deg η*D̂ = ℓdeg η*D ≤ C1 ℓ ‖µ‖∞ by (a) in Main Theorem. Then the nonnegative rational numbers
eα := êα/ℓ satisfy

0 ≤
n0∑︁
α=1

eα ≤ C1 ‖µ‖∞. (4.2)

For α = 1, 2, . . . , n0, we consider the irreducible reduced effective divisor Dα := η̂(D̂α) ≠ 0 on Ŷ. The divisor
η̂*D on Ŷ is witten in the form

η̂*D =
n0∑︁
α=1

eαDα .

Let mα be the multiplicity of Dα in the scheme-theoretic fiber Ŷ0. Then for all α = 1, 2, . . . , n0, we obtain

mα ≤ m1 deg η*D1 + · · · + mn0 deg η*Dn0 = c1(L)n[X]. (4.3)

Let b1 ≥ b2 ≥ · · · ≥ bNℓ
be theweights of theGm-action on Vℓ byψ. To the test configuration µ = (X,L, ψ),

we assign a new test configuration
µ̃ := (X,L, ψ̃)
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obtained from µ by replacing ψ by the algebraic group homomorphism ψ̃ : Gm → GL(Vℓ) defined by

ψ̃(t) = t −b1ψ(t) t ∈ C*.

Let b̃1 ≥ b̃2 ≥ · · · ≥ b̃Nℓ
be the weights of the Gm-action on Vℓ by ψ̃, so that we have an orthonormal basis

{σ1, σ2, . . . , σNℓ
} for (Vℓ, ρℓ) satisfying

ψ̃(t) · σi = tb̃iσi (4.4)

for all i ∈ {1, 2, . . . , Nℓ} and t ∈ Gm. Then b̃i = bi − b1, and hence

0 = b̃1 ≥ b̃2 ≥ · · · ≥ b̃Nℓ
. (4.5)

Let νX : X → X be the normalization of X. Then for L := ν*XL, we have the Gm-action on (X,L) induced by
that on (X,L) via ψ̃. Let π : X → A1 be the natural projection. For the direct image sheaves

E := π*L and E := π*L

over A1, the algebraic torusGm acts on E and E via ψ̃ preserving the fibers E0 and E0 over the origin 0 ∈ A1.
SinceL0 := L|X0 is generated by E0 over all points ofX0, so isL0 := L|X0

by E0 over all points ofX0. In view
of Vℓ = H0(P*(Vℓ),OP*(Vℓ)(1)) and L = pr*2 OP*(Vℓ)(1)|X, consider the pullback

ι*0 : Vℓ → H0(X0,L0)

by the inclusion ι0 : X0 →˓ {0} × P*(Vℓ), where {0} × P*(Vℓ) is identified with P*(Vℓ). We here observe that

L0 is generated by ι*0Vℓ over all points of X0. (4.6)

Lemma 4.7. Every weight b of theGm-action on E0 by ψ̃ is nonpositive.

Proof : For a weight b as above, we have a nonzero element e0 in E0 such that ψ̃(t) · e0 = tb e0 for all t ∈ Gm.
For theGm-action on E via ψ̃, we have aGm-equivariant identification

E ∼= A1 × E0, (4.7)

taking the Hermitian metric ρℓ on E1 (= Vℓ) to a Hermitian metric on E0 preserved by the maximal compact
group S1 inGm. Let τ denote A1 × {e0} viewed as a section of E over A1. Then τ ∈ H0(A1, E) satisfies

ψ̃(t) · τ = tb τ, t ∈ Gm , (4.8)

and also τ(0) = e0 ≠ 0 in E0. For the embedding X →˓ A1 × P*(Vℓ), the restriction to X of the projection
pr2 : A1 × P*(Vℓ) → P*(Vℓ) to the second factor will be denoted by p2. Then

L = p*2OP*(Vℓ)(1). (4.9)

From a Hermitian metric h for L over X, we obtain a Hermitian metric ρℓ for Vℓ as in the introduction. Hence
by (4.9), ρℓ induces pointwise Hermitian norms for L, L and their powers, denoted both by | |h by abuse of
terminology. We now view τ above as an element in H0(X,L) by the isomorphism H0(A1, E) ∼= H0(X,L). We
then have a rational number ε satisfying 0 ≤ ε < 1 such that

|τ|2h = |z|2εξ ,

where ξ is a real-valued nonnegative C∞ function on X such that ξ (x) > 0 for some point x in X0. Let m0 be
the smallest positive integer such that m0 ε is an integer. Then τ̃ := τ⊗m0 /zε m0 is a section in H0(X,L⊗m0 )
such that τ̃(x) ≠ 0. In view of (4.8), by theGm-actions via ψ̃, we obtain

ψ̃(t) · τ̃(x) = tm0(b+ε) τ̃(ψ̃(t) · x), t ∈ Gm , (4.10)
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so that τ̃ is non-vanishing along theGm-orbit through x. Consider the point

x′ := lim
t→0

ψ̃(t) · x ∈ X0 (4.11)

fixed by theGm-action. For the restriction (νX)0 : X0 → X0 of νX : X → X to X0, we consider the pullback

(νX)*0 : H0(X0,L0) → H0(X0,L0).

In view of (4.6), by setting σi := (νX)*0(ι*0σi), we obtain σi(x′) ≠ 0 for some i ∈ {1, 2, . . . , Nℓ}. Fix such an i
until the end of this proof. Then by theGm-equivariance of ι*0 and (νX)*0, it follows from (4.4) that

ψ̃(t) · σi(x)
⊗k = tkb̃iσi(ψ̃(t) · x)

⊗k , t ∈ Gm , (4.12)

where k is an arbitrary positive integer. Now by σi(x′) ≠ 0, we see that σi is non-vanishing at every points in
a neighborhood of x′. In view of (4.12) applied to k = 1, it follows from (4.11) that σi is non-vanishing along
theGm-orbit through x. In the fiber of the line bundle L⊗m0 over x, we have

σi(x)
⊗m0 ≠ 0 ≠ τ̃(x).

Replacing σi by its suitable constant multiple if necessary, we may assume without loss of generality that
σi(x)⊗m0 = τ̃(x). Then

ψ̃(t) · σi(x)
⊗m0 = ψ̃(t) · τ̃(x), t ∈ Gm . (4.13)

Hence by (4.10) together with (4.12) applied to k = m0, we can rewrite the equality (4.13) in the form

τ̃(ψ̃(t) · x) = tm0(b̃i−b−ε)σi(ψ̃(t) · x)
⊗m0 , t ∈ Gm .

Then by letting t → 0, we obtain the convergences τ̃(ψ̃(t) · x) → τ̃(x′) and σi(ψ̃(t) · x)⊗m0 → σi(x′)⊗m0 ≠ 0.
Hence we obtain b̃i − b − ε ≥ 0, so that by (4.5) and ε ≥ 0, we now conclude that b ≤ b̃i − ε ≤ 0, as required.

For each weight b̃ of the Gm-action on Vℓ by ψ̃, we define a subspace S0 = S0(b̃), depending on b̃, of Vℓ

by
S0 := { σ ∈ Vℓ ; ψ̃(t) · σ = tb̃σ }.

Endow S0 with the Hermitian metric induced by ρℓ on Vℓ. Now, we inductively define a strictly decreasing
sequence ofGm-invariant linear subspaces

S0 ⊃ S1 ⊃ · · · ⊃ Sk ⊃ Sk+1 ⊃ · · ·

as follows. In view of the identification Vℓ = H0(P*(Vℓ),OP*(Vℓ)(1)), we consider the Gm-equivariant linear
map

p*2 : Vℓ →˓ H0(X,L) = H0(A1, E).

Let k ≥ 0 be an integer. For each 0 ≠ σ ∈ Sk, let 𝛾(σ) denote the largest integer 𝛾 ≥ 0 such that p*2σ is divisible
by z𝛾 in the space H0(A1, E). Put

ak := max
0≠σ∈Sk

𝛾(σ).

For the linear subspace S⊥k+1 := {0 ≠ σ ∈ Sk ; 𝛾(σ) = ak } ∪ {0} of Sk, we define Sk+1 as the orthogonal
complement of S⊥k+1 in Sk. Since Sk ≠ Sk+1, and since S0 is finite dimensional, the above decreasing sequence
stops at some finite k, so that for some positive integer k0

Sk0−1 ≠ {0} = Sk0 .

Hence S0 = S0(b̃) is expressible as ⊕k0
k=1S

⊥
k . Let Σk be an orthonormal basis for S⊥k . Then Σ(b̃) := ∪k0k=1 Σk is

an orthonormal basis for S0(b̃). Let
Σ := ∪b̃ Σ(b̃),
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where b̃ runs through the set of all weights of theGm-action on Vℓ by ψ̃. We can choose Σ as the orthonormal
basis {σ1, σ2, . . . , σNℓ

} for Vℓ associated to the weights b̃1, b̃2, . . . , b̃Nℓ
in (4.4). Then we have integers 𝛾i ≥ 0

satisfying

p*2(σi) = z𝛾iσ′i , i = 1, 2, . . . , Nℓ, (4.14)

where σ′i ∈ H0(A1, E) are such that {σ′1(0), σ′2(0), . . . , σ′Nℓ
(0)} is a basis for E0. Since p*2 is Gm-equivariant,

by (4.4) and (4.14), we obtain
ψ̃(t) · σ′i(0) = tb̃i+𝛾iσ′i(0),

i.e., the associated weight βi of theGm-action on E0 by ψ̃ is b̃i + 𝛾i, so that by 𝛾i ≥ 0, we have the inequalities

βi ≥ b̃i , i = 1, 2, . . . , Nℓ. (4.15)

We next consider aGm-equivariant identification E ∼= A1 × E0 similar to the identification E ∼= A1 × E0 in
the beginning of the proof of Lemma 4.7. Then to each e0 ∈ E0, we assign the subsetA1 × {e0} of E viewed as
a section in H0(A1, E). Hence E0 is regarded as aGm-invariant subspace of H0(A1, E). By setting p := ν*X|E0 ,
we have the restriction to E0,

p : E0 →˓ H0(A1, E),

of the Gm-equivariant pullback ν*X : H0(A1, E) →˓ H0(A1, E). Then we consider the weights β1, β2, . . . , βNℓ

of theGm-action on E0 by ψ̃. Note that we have an orthonormal basis {τ1, τ2, . . . , τNℓ
} for E0 such that

ψ̃(t) · τi = tβi τi , (4.16)

for all i ∈ {1, 2, . . . , Nℓ} and t ∈ Gm. In (4.14), we obtain σ′i ∈ H0(A1, E), i = 1, 2, . . . , Nℓ, for the Gm-
equivariant linear map p*2 : Vℓ →˓ H0(A1, E). Similarly, applying the same argument to the Gm-equivariant
linear map p : E0 →˓ H0(A1, E), we see for a suitable choice of {τ1, τ2, . . . , τNℓ

} that there exist integers
ϵi ≥ 0 satisfying

p(τi) = zϵi τi , i = 1, 2, . . . , Nℓ, (4.17)

where τi ∈ H0(A1, E) are such that {τ1(0), τ2(0), . . . , τNℓ
(0)} is a basis for E0. Since p isGm-equivariant, by

(4.16) and (4.17), we obtain
ψ̃(t) · τi(0) = tβi+ϵi τi(0),

i.e., the associated weight bi of theGm-action on E0 by ψ̃ is βi + ϵi, so that by ϵi ≥ 0, we have the inequalities

bi ≥ βi , i = 1, 2, . . . , Nℓ. (4.18)

By (4.15) and (4.18) together with Lemma 4.7, the weights b1, b2, . . . , bNℓ
of theGm-action on E0 satisfy

0 ≥ bi ≥ b̃i , i = 1, 2, . . . , Nℓ. (4.19)

Let φ̃ : Gm → GL(V1) be the Gm-action on F0 (= V1) induced by ψ̃, where we identify V1 with F0 as in
Section 2. Let Γ (⊂ Z) be the set of all weights of the Gm-action on F0 (= V1) by φ̃. If Γ consists of a single
element, then ‖κ‖∞ = ‖φ‖∞ = ‖φ̃‖∞ = 0, so that ‖κ‖∞ ≤ C2‖µ‖∞, i.e., (b) holds. Hence we may assume that
Γ has more than one element. Then

‖κ‖∞ = ‖φ̃‖∞ ≤ 𝛾max − 𝛾min, (4.20)

where 𝛾max (resp. 𝛾min) is themaximal (resp. minimal) element in Γ. Note that 𝛾max −𝛾min ≥ 1. Let 𝛾 ∈ Γ. Then
we have some 0 ≠ ζ0 ∈ F0 such that

ψ̃(t) · ζ0 = t𝛾 ζ0, t ∈ Gm .

For each 𝛾 as above, we fix such a ζ0 once for all. In view of the isomorphism (2.7),A1 × {ζ0} defines a section
ζ ∈ H0(A1, F) such that

ψ̃(t) · ζ = t𝛾 ζ , t ∈ Gm , (4.21)
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and that ζ (0) = ζ0. For a Hermitian metric ρ on Q = OP*(F)(1)|Y, we consider its pullback ρ̂ := ν*Yρ on Q
Ŷ
:=

ν*YQ. From now on until the end of this section, by the identification

H0(A1, F) = H0(X̂, Q̂) = H0(Ŷ,Q
Ŷ
),

we view ζ as a section in H0(Ŷ,Q
Ŷ
). For α = 1, 2, . . . , n0, we see from (4.3) that 1 − m−1α ≤ 1 − δ, where

δ := {c1(L)n[X]}−1 > 0. Hence

|ζ | 2ρ̂ = |z|2ϵξ1, (4.22)

where ϵ is a rational number satisfying 0 ≤ ϵ ≤ 1− δ, and ξ1 is a real-valued nonnegative continuous function
on Ŷ such that

ξ1(y) > 0 (4.23)

for general points y on some irreducible component of Ŷ0. By the Stein factorization, the birationalmorphism
ι : X̂ → X factors through the normalization X of X, so that we naturally have a birational morphism

ι : X̂ → X

with connected fibers. For each α = 1, 2, . . . , r, let τ̂α be the natural section for the line bundle OX̂
(D̂α) over

X̂ such that the zeroes of τ̂α on X̂ is the divisor D̂α. Then by (2.5) and (2.8), we have an integer a(𝛾) ≥ 0 and a
section θ ≠ 0 in H0(A1, E) satisfying 0 ≠ θ(0) ∈ E0 such that

(η̂*ζ )⊗ℓ Πrα=1 τ̂êαα = za(𝛾) ι*θ, (4.24)

where we view θ as a section in H0(X,L) by the identification H0(A1, E) = H0(X,L). Let Ŷreg be the set of all
smooth points in Ŷ. We may assume

τ̂α = η̂*τα for some τα ∈ H0(Ŷreg,O
Ŷreg (Dα)), α = 1, 2, . . . , n0,

with simple zeroes of τα along Dα on Ŷreg. Hence, outside the preimage η̂−1(Z) by η̂ of some algebraic subset
Z of codimension ≥ 2 in Ŷ, we can write (4.24) in the form

η̂*
(︁
ζ⊗ℓ Πn0α=1 τ

êα
α

)︁
· Ψ = za(𝛾)ι*θ, (4.25)

where the term Ψ := Πn0<α≤r τ̂êαα is non-vanishing outside η̂−1(Z). Recall that mα is the multiplicity of Dα in
the scheme-theoretic fiber Ŷ0 viewed as an algebraic cycle. By (4.25) together with (4.22) and (4.23), we obtain

a(𝛾) ≤ ϵ ℓ + max{êα/mα; α = 1, 2, . . . , n0} ≤ (1 − δ)ℓ + Σn0α=1 êα . (4.26)

SinceGm acts on O
X̂
(D̂α), α = 1, 2, . . . , r, we have an integer λα independent of t and 𝛾 such that

ψ̃(t) · τ̂α = tλα τ̂α , t ∈ Gm . (4.27)

We now set b(𝛾) := a(𝛾) + ℓ𝛾 + Σrα=1λα êα. Then by (4.24) together with (4.21) and (4.27), we see that

ψ̃(t) · θ(0) = tb(𝛾) θ(0).

From the definition of b(𝛾) applied to 𝛾 = 𝛾max and 𝛾 = 𝛾min, we obtain

b(𝛾max) − b(𝛾min) = a(𝛾max) − a(𝛾min) + ℓ(𝛾max − 𝛾min). (4.28)

Since we have a(𝛾) ≥ 0 for all 𝛾 ∈ Γ, in view of (4.2), it follows from (4.26) and (4.28) that

ℓ(𝛾max − 𝛾min) ≤ b(𝛾max) − b(𝛾min) + a(𝛾min)
≤ b(𝛾max) − b(𝛾min) + (1 − δ)ℓ + C1 ℓ ‖µ‖∞.
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By 𝛾max − 𝛾min ≥ 1, we have 1 − δ ≤ (1 − δ)(𝛾max − 𝛾min). Hence

ℓ (𝛾max − 𝛾min)δ ≤ b(𝛾max) − b(𝛾min) + C1 ℓ ‖µ‖∞. (4.29)

Since we have the inequality 𝛾max − 𝛾min ≥ ‖φ̃‖∞ = ‖κ‖∞, and since (4.5) and (4.19) imply that

b(𝛾max) − b(𝛾min) ≤ |b̃Nℓ
| ≤ 2ℓ‖ψ̃‖∞ = 2ℓ‖ψ‖∞ = 2ℓ‖µ‖∞,

it follows from (4.29) that ℓ ‖κ‖∞δ ≤ (2 + C1) ℓ ‖µ‖∞. Then by setting

C2 := δ−1(2 + C1) = c1(L)n[X]
{︀
2 + 4(n + 1)c1(L)n[X]

}︀
,

we now conclude that ‖κ‖∞ ≤ C2‖µ‖∞, as required.

Appendix
In this appendix, we shall give a uniform upper bound for some seminorm of the Q-divisor D = D̂/ℓ on X̂ in
Main Theorem. We write the scheme-theoretic fiber X̂0 over the origin as a divisor

X̂0 =
r∑︁
α=1

mα D̂α

on X̂, where mα is the multiplicity of D̂α in X̂0. As in Section 2, Supp(X̂0) is simple normal crossing. Put
Dα := η̂(D̂α) for α ≤ n0 as in Section 4. Then by Zariski’s Main Theorem,

Ŷ0 =
n0∑︁
α=1

mαDα .

In view of the expression D̂ := Σrα=1 êαDα at the beginning of Section 4, since êα is nonnegative, we can define
nonnegative rational numbers

q̂α := êα/mα and qα := q̂α/ℓ,

where α = 1, 2, . . . , r. By setting q̄ := max{qα ; α = 1, 2, . . . , r}, we consider the nonnegative rational num-
bers

∆̄α := q̄ − qα , α = 1, 2, . . . , r.

Then the seminorm ‖D‖∞ := max{ ∆̄α ; α = 1, 2, . . . , n0 } for D will be shown to be uniformly bounded as
follows. In addition, we can show that the maximum q̄ is attained by qα for some α satisfying 1 ≤ α ≤ n0.

Theorem A. (A.1) q̄ = qα for some α satisfying 1 ≤ α ≤ n0.
(A.2) There exists a positive real constant C3 independent of the choice of the test configuration µ and the expo-
nent ℓ such that ‖D‖∞ ≤ C3.

Remark A.3. By definition, we easily see from (A.1) that ‖D‖∞ = 0 if and only if η̂*D is a rational multiple of
Ŷ0 as a divisor on Ŷ.

Remark A.4. By setting q := min{qα ; α = 1, 2, . . . , n0}, we consider the rational numbers ∆α := qα − q,
α = 1, 2, . . . , r. Then by (A.1), we can write

‖D‖∞ := max{ ∆α ; α = 1, 2, . . . , n0 } = q̄ − q .

Proof of (A.1): By setting q̄′ := max{qα ; α = 1, 2, . . . , n0}, we have q̄′ ≤ q̄. Hence it suffices to show that
q̄′ = q̄. For contradiction, we assume the contrary, i.e., assume q̄′ < q̄. Then

q̄ = qα0 (A.5)
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for some α0 with n0 < α0 ≤ r. In view of the fact that q̄′ is a rational number, we take the smallest positive
integer j such that jℓq̄′ is an integer. For a sufficiently small ε ≪ 1, by choosing an open disc Uε := {|z| < ε}
in A1, we consider the preimage X̂ε := π̂−1(Uε). We now take a general point x in D̂α0 . Since the restriction of
L̂ to X̂0 is generated by the sections in (π̂*L̂)0 (⊆ H0(X̂0, L̂0)), and since

L̂ = O
X̂
(D̂)⊗ Q̂⊗ℓ,

we obtain a holomorphic section σ̂ for L̂ over X̂ε with σ̂(x) ≠ 0 which can be viewed as ameromorphic section
(denoted also by σ̂ by abuse of terminology) for Q̂⊗ℓ over X̂ε, holomorphic outside Supp(D̂), with a pole of
order êα0 along D̂α0 and possibly with poles of order ≤ êα along D̂α for all α ≠ α0. Let τ̂ be the meromorphic
section for Q̂⊗jℓ over X̂ε defined by

τ̂ := zjℓq̄
′
σ̂⊗j .

Let 𝛾α be the order of the possible pole of τ̂ along D̂α. For α = α0, in view of (A.5) together with the definition
of qα, we obtain

𝛾α0 = −jℓq̄′mα0 + jêα0 = jℓmα0 (−q̄′ + qα0 ) = jℓmα0 (−q̄′ + q̄) > 0,

so that τ̂ actually has a pole along D̂α0 . If α ∈ {1, 2, . . . , n0}, then

𝛾α = −jℓq̄′mα + jêα = jℓmα(−q̄′ + qα) ≤ 0,

and in this case τ̂ is holomorphic along D̂α. Note that η̂*D̂α vanishes as a cycle on Ŷ for α > n0. Recall that
Q
Ŷ
:= ν*YQ. Put πŶ := πY ∘ νY. Since Q̂ = η̂*Q

Ŷ
, it follows from the Hartogs extension theorem that there exists

a holomorphic section τ for Q⊗ℓj
Ŷ

over Ŷε := π−1
Ŷ
(Uε) such that

τ̂ = η̂*τ.

Hence the section τ̂ for Q̂⊗ℓj over X̂ε is holomorphic. On the other hand, τ̂ has a pole along D̂α0 . This is a
contradiction, as required.

Proof of (A.2): Let µj = (Xj ,Lj , ψj), j = 1, 2, . . . , be a sequence of test configurations for (X, L). Let ℓj be the
exponent of µj. Then for each j, we take an ℓj-th root (κj , Dj) of µj. Hence, we have test configurations

(Yj ,Qj , φj), j = 1, 2, . . . ,

for (X, L), of exponent 1, andGm-equivariant desingularizations (X̂j , L̂j) of (Xj ,Lj) such that, by setting D̂j =
ℓjDj, we have

L̂j = O
X̂j
(D̂j)⊗ Q̂

⊗ℓj
j , (A.6)

where ηj : X̂j → Yj and ιj : X̂j → Xj are Gm-equivariant proper birational morphisms with Q̂j = η*jQj and
L̂j = ι*jLj. For contradiction, assume that

‖Dj‖∞ → +∞ as j →∞. (A.7)

Let (Qj)0 be the restriction of the line bundle Qj to the central fiber (Yj)0. Take the normalization νYj
: Ŷj → Yj

of Yj. Let (Dj)α, 1 ≤ α ≤ n0(j), be the irreducible components of (Ŷj)0, and let (D̂j)α, 1 ≤ α ≤ r(j), be the
irreducible components of (X̂j)0. Then we can write{︃

(X̂j)0 = Σr(j)α=1 mα(j) (D̂j)α ,
(Ŷj)0 = Σn0(j)α=1 mα(j) (Dj)α ,

where mα = mα(j) is the multiplicity of (D̂j)α in (X̂j)0. Here each (Dj)α with 1 ≤ α ≤ n0(j) is the image of (D̂j)α
under the Gm-equivariant birational morphism η̂j : X̂j → Ŷj induced by ηj. Let êα(j) be the multiplicity of
(D̂j)α in D̂j. For 1 ≤ α ≤ r(j), we put

q̂α(j) := êα(j)/mα(j) and qα(j) := q̂α(j)/ℓj .
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In view of (A.1) above and Remark A.4, we set q(j) := min{qα(j) ; α = 1, 2, . . . , n0(j)} and ∆α(j) := qα(j) − q(j),
α ∈ {1, 2, . . . , r(j)}. Now for α ≠ β in {1, 2, . . . , n0(j)}, consider the complex (n − 1)-dimensional cycle

(Dj)αβ := (Dj)α · (Dj)β

on (Dj)β with multiplicities defined by the ideal sheaf Iα|(Dj)β on (Dj)β, where Iα denotes the ideal sheaf of
(Dj)α in Ŷj. Then for theGm-equivariant embedding Yj →˓ P*(F) = A1 × P*(V1), we put

H(j) := Yj · (A1 × H), (A.8)

where H is a general hyperplane in P*(V1). Put Ĥ(j) := ν*Yj
H(j) for the normalization νYj

: Ŷj → Yj. Since we
can view each

yj = ((Yj)0, (Qj)0)

as an element of the Hilbert scheme for the projective subschemes of P*(V1) with the Hilbert polynomial

P(k) = dimH0(X, L⊗k), k ≫ 1.

Replacing the sequence {µj} by its suitable subsequence if necessary, we may assume from the projectivity
of the Hilbert scheme that n0(j) and mα(j) with 1 ≤ α ≤ n0(j) are independent of the choice of j, and that

(Dj)αβ · (Ĥ(j))n−1 ≤ C4, (A.9)

where C4 is a positive real constant independent of α, β and j. Hence n0(j) and mα(j) as above can be written
simply as n0 and mα. Then by (A.7), replacing {µj} by its subsequence if necessary, we may assume that

∆α0 (j) → +∞, as j →∞,

for some α0 ∈ {1, 2, . . . , n0} independent of the choice of j. Similarly by (A.1) above, replacing {µj} by
its subsequence if necessary, we may assume that there exist nonempty complementary subsets A, B of
{1, 2, . . . , n0} with A ∪ B = {1, 2, . . . , n0} satisfying the following:{︃

If α ∈ A, then ∆α(j) → +∞, as j →∞.
If β ∈ B, then ∆β(j), j = 1, 2, . . . , are bounded.

Since ∪n0α=1(Dj)α set-theoretically coincides with the connected fiber (Ŷj)0, some α(j) ∈ A and some β(j) ∈ B
are neighboring in the sense that

(Dj)α(j) ∩ (Dj)β(j) ≠ ∅.

Replacing {µj} by its subsequence if necessary, wemay assume that both α(j) and β(j) are independent of the
choice of j. Hence, such α(j) and β(j) are written as α# and β#, respectively. Let X′

j be the smooth compactifi-
cation of X̂j as in Section 3. Then by (A.6),

c1(L̂j) = ℓj η*j c1(Qj) +
r(i)∑︁
α=1

êα(j) [(D̂j)α], (A.10)

where [(D̂j)α] ∈ H2(X̂j ,Q) is the restriction to X̂j of the Poincaré dual ∈ H2(X′
j ,Q) of the algebraic cycle (D̂j)α

on X′
j. On the other hand,

r(j)∑︁
α=1

mα [(D̂j)α] = 0. (A.11)

From now on, we replace {µj} by its suitable subsequence if necessary. In view of (A.1), by renumbering
(D̂j)1, (D̂j)2, . . . , (D̂j)n0 if necessary, we may assume that q(j) = q1(j) for all i. Hence 1 ∈ B. Multiply (A.11) by
q1(j). Then by subtracting it from 1/ℓj times (A.10), we obtain

c1(L̂j)/ℓj = η̂*j c1(QŶj
) +

r(j)∑︁
α=1

mα ∆α(j) [(D̂j)α],
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since η*j c1(Qj) = η̂*j c1(QŶj
) by η̂*jQŶj

= η̂*j ν*Yj
Qj = η*jQj. By (A.8), the divisorH(j) on Yj is viewed as a hyper-

plane section obtained as the pullback to Yj of a hyperplane in P*(V1), while c1(Qj) on Yj is the pullback to
Yj of the first Chern class of the hyperplane bundle on P*(V1). To general hyperplanes Hk, 1 ≤ k ≤ n − 1, in
P*(V1), we associate the hyperplane sectionsH(j)

k on Yj as in (A.8). By setting

Ĥ
(j)
k := ν*Yj H

(j)
k , 1 ≤ k ≤ n − 1.

we consider the restriction to (Ŷj)0 of the intersection Ĥ
(j)
1 · Ĥ

(j)
2 · · · Ĥ(j)

n−1 written in the form

Ĥ
(j)
1 · Ĥ

(j)
2 · · · Ĥ(j)

n−1|(Ŷj)0 =
n0∑︁
α=1

𝛾α ,

where 𝛾α := mα Ĥ
(j)
1 · Ĥ

(j)
2 · · · Ĥ(j)

n−1 · (Dj)α is a nontrivial effective algebraic cycle of complex dimension 1 on
(Dj)α. Then for 0 ≠ t ∈ A1 \ {0},

c1(L)n[X] = ⟨ c1(L̂j)/ℓj , η̂*j (Ĥ
(j)
1 · Ĥ

(j)
2 · · · Ĥ(j)

n−1|(Ŷj)t ) ⟩

= ⟨ c1(L̂j)/ℓj , η̂*j (Ĥ
(j)
1 · Ĥ

(j)
2 · · · Ĥ(j)

n−1|(Ŷj)0 ) ⟩

= ⟨ c1(L̂j)/ℓj , Σn0α=1 η̂
*
j 𝛾α ⟩ ≥ ⟨ c1(L̂j)/ℓj , η̂*j 𝛾β# ⟩

= ⟨ c1(QŶj
), 𝛾β# ⟩ + Σr(j)α=1 mα ∆α(j) ⟨ [(D̂j)α], η̂*j 𝛾β# ⟩

≥ Σr(j)α=1 mα ∆α(j) ⟨ [(D̂j)α], η̂*j 𝛾β# ⟩

= Jα# (j) + Jβ# (j) + Σα#≠α≠β# Jα(j),

where we put Jα(j) := mα∆α(j) ⟨ [(D̂j)α], η̂*j 𝛾β#⟩ for all α ∈ {1, 2, . . . , r(j)}, and the pairing ⟨ [(D̂j)α], η̂*j 𝛾β#⟩ is
taken on (D̂)β# with [(D̂j)α] viewed as its restriction to (D̂)β# . Moreover, the summation Σα#≠α≠β# is taken over
all α in {1, 2, . . . , r(j)} such that α# ≠ α ≠ β#. Since, by (4.1), we have

(η̂j)*(D̂j)α =
{︃

(Dj)α if 1 ≤ α ≤ n0 ;
0 if α > n0,

we obtain the following from the projection formula 5.6.16 in [8], p.254, applied to the holomorphic mapping
η̂j : (D̂j)β# → (Dj)β# :

⟨ [(D̂j)α], η̂*i 𝛾β# ⟩ =
{︃

⟨ [(Dj)α], 𝛾β# ⟩ if 1 ≤ α ≤ n0 ;
0 if α > n0.

(A.12)

In particular Σα#≠α≠β# Jα(j) ≥ 0. Hence c1(L)n[X] ≥ Jα# (j) + Jβ# (j). Since ∆β# (j), j = 1, 2, . . . , is a bounded
sequence, in view of (A.9), (A.11) and (A.12), it now follows that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|Jβ# (j)| = |mβ#∆β# (j) ⟨ [(D̂j)β# ], η̂
*
j 𝛾β# ⟩ |

= ∆β# (j) | ⟨ Σ1≤α≤r(j), α≠β# mα[(D̂j)α], η̂*j 𝛾β# ⟩ |

= ∆β# (j) | Σn0≥α≠β# mα ⟨ [(Dj)α], 𝛾β# ⟩ |

= ∆β# (j) Σn0≥α≠β# mα(Dj)αβ# · (Ĥ(j))n−1 ≤ C5,

(A.13)

where C5 is a positive constant independent of the choice of j. On the other hand, since α# and β# are neigh-
boring, we see from (A.12) that

⟨ [(D̂j)α# ], η̂
*
j 𝛾β# ⟩ = deg (νYj )*(Dj)α#β# (A.14)

is a positive integer, where (Yj)0 is viewed as a subvariety in P*(V1). Since ∆α# (j) → +∞ as j → ∞, and since
mα# ≥ 1, it follows from (A.14) that

Jα# (j) = mα#∆α# (j) ⟨ [(D̂j)α# ], η̂
*
j 𝛾β# ⟩ → +∞,

in contradiction to Jα# (j) + Jβ# (j) ≤ c1(L)n[X] and (A.13), as required.
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