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Abstract: Let (X, L) be a polarized algebraic manifold. Then for every test configuration y = (X, £, i) for
(X, L) of exponent ¢, we obtain an ¢-th root (x, D) of u and Gn-equivariant desingularizations  : X — X and
n: X - Y, both isomorphic on X \ §CO, such that

("L = 04(tD) @ n"Q%,

where x = (Y, Q, @) is a test configuration for (X, L) of exponent 1, and D is an effective Q-divisor on X such
that £D is an integral divisor with support in the fiber X. Then (x, D) can be chosen in such a way that

" deg t+D + degn«D < Cq||u|le» and ||k|jcs < C2]|U]|oos

where C; and C, are positive real constants independent of the choice of y and ¢. This plays an important
role in our forthcoming papers on the existence of constant scalar curvature Kahler metrics (cf. [6]) and also
on the compactified moduli space of test configurations (cf. [5],[7]).

1 Introduction

By a polarized algebraic manifold (X, L), we mean a pair of a smooth irreducible projective variety X, defined
over C, and a very ample line bundle L over X. Put n := dim¢ X. For such a pair (X, L), replacing L by its
power if necessary, we may assume without loss of generality that

H(X,L®)={0}, i=1,¢>1,

and that the natural map H°(X, L)®* — H°(X, L®X) is surjective. Fix a Hermitian metric h for L such that
w := c1(L, w) is Kéhler. Then for each positive integer ¢, we define a Hermitian metric p, on V, := H(X, L®Y
by

pi(0,0') := /(0, o)y w", 0,0 €V,
X

where (g, 0’);, denotes the pointwise Hermitian inner product of o and ¢’ by the ¢-multiple h® of h. Put N, :=

dim V,. By choosing an orthonormal basis {01, 02, ..., oy, } for (V,, py), we define
wes,¢ := V=103 1og =N 04|12

In this paper, we fix a polarized algebraic manifold (X, L) as above once for all, and we consider a test config-
uration

H= (:x’L’ '1[)),
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of exponent /, for (X, L). Let Gn = { t € C"} be the 1-dimensional algebraic torus. Then we have an algebraic
group homomorphism
Y : Gm — GL(Vy)

such that the maximal compact subgroup S* c G acts isometrically on (V,, p,), and that (X, £) is the De
Concini-Procesi family for i. Namely, for the affine line A = {z € C}, X is the closure in A x P*(V,) of the
graph

Iy := { t, POx); teC xe x} ,

and £ is the restriction to X of the pullback pr, Op+(y,)(1) by the projection pr, : A' x P*(V,) — P*(V,) to
the second factor, where X is viewed as a subvariety of P*(V,) by the Kodaira embedding @, : X — P"(V,)
associated to the complete linear system |[L®*| on X. Let

X — Al

be the restriction to X of the projection pr; : A'xP*(V,) — A! to the first factor. Then the fiber X; = (1) over
1 € Al is naturally identified with X. Recall that y is said to be trivial, if the algebraic group homomorphism

Yo G — PGL(V))
induced by o is trivial. For the multiplicative real Lie group R., we define a real Lie group homomorphism

PSR, — SL(V,) by

SLepy . P(t)
YD) 2= etpopme (ERe

Let ba, a = 1,2,..., Ny, be the weights of the R.-action on V, by 15", Then we define 0 < |1~ € Q by
setting
[Wleo := ¢ ' max{|bal; a=1,2,...,N¢},

and then put ||| := ||§)||cs. For an invertible sheaf £ over a smooth irreducible variety X, we call (X, £) a
Gm-equivariant desingularization of (X, L), if there exists a Gm-equivariant proper birational morphism

1:§C—>DC,

isomorphic over X \ Xo, such that £ = (*£, where X, denotes the scheme-theoretic fiber 77(0) of 7 over the
origin. Now, the main purpose of this paper is to show the following:

Main Theorem. For a test configuration u = (X, £, V) for (X, L), following the construction in Section 2, we
obtain a Gm-equivariant desingularization (X, £) of (X, £) and a test configuration x = (Y, Q, o) for (X, L), of
exponent 1, such that £ over X is Gm-equivariantly identified with

Ojc(f)) ®n %,

wheren : X - Yisa (C*-equivariant proper birational morphism, isomorphic over Y \ Yo, and Disan effective
divisor on X sitting in §C0 set-theoretically. Moreover, 1, 1, k and D := b /£ can be chosen in such a way that

¢ deg +D + degn«D < Cq ||U]oos (a)
Ca [[ulloos (b)

IN

3/

where Cq and C, are positive real constants independent of the choice of the test configuration y and the expo-
nent ¢.

Here t-D and 1+D are viewed as algebraic Q-cycles on the projective spaces {0} xP*(V,) and {0} x P"(V1),
respectively, for V; := H°(X, L). Note that the pair (x, D) above is called an ¢-th root of . This main theorem
plays an important role in our forthcoming papers (cf. [5],[6],[7]).
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2 Proof of Main Theorem

In this section, we shall prove Main Theorem except the inequalities (a) and (b), where these inequalities will
be shown in later sections. Consider the relative Kodaira embedding

X — A'xP'(V))

whose restriction X, := m1(z) — {z} x P"(V,) over each z € A! \ {0} is the Kodaira embedding of X by the
complete linear system |£,|. Take a member H in the complete linear system |L| for the line bundle L on X. By
identifying X with X1, we view H as a divisor on X;. Then on the trivial projective bundle A! xP"(V,) over the
complex affine line A = {z € C}, we can choose a Gn-invariant irreducible reduced divisor § as a projective
subbundle, of codimension 1, of the bundle A! x P*(V,) such that

§-X, = ¢H, (21)

where ¢H is viewed as a member of the complete linear system |£1| = [L®¢| on X; (= X). The restriction of the
divisor 6 to X is written in the form

6-X = zero({) (2.2)

for a suitable choice of a quasi-invariant section ¢ for £ over X such that ¢y, # 0. Recall that ¢ is quasi-
invariant, if there exists an integer § independent of ¢ such that

v = P, teGm,

ie., zf { is Gm-invariant. We here explain how ( is specified. By choosing an element v # 0 in V, associated
to |, via the identification
HO(X1,£1) ¥V,

we obtain zero(v) = ¢H.Let by = b, = - - - 2 by, be the weights of the G;-action on V, by 1. Then for a suitable
basis {v1,v2,...,vy,} for V,,

l/)(t) Va = tbaVa, t S Gm,
where v is written as 22’;51 a,v, for some aq € C. Let a; be the largest integer a in {1, 2, ..., Ny} such that
aq # 0. Then { can be chosen in such a way that its restriction to each X;, t € A! \ {0}, is

ba-b
T o "1av>
( a=1 ava) ..

where X; is viewed as a smooth subvariety of P*(V,) = {t} xP"(V,). Let ao be the smallest ain {1, 2, ..., N}
such that bq coincides with bg, . It then follows that the restriction of ¢ to Xy is

(Zglzao aava) %o

where X is viewed as a subscheme of P*(V,) ~ {0} x P*(V,). Now for the complex variety X, we choose its
proper Gp-equivariant desinguralization

(X = X,
isomorphic over X \ Xy, such that the support of the fiber X, over the origin is simple normal crossing as a
divisor on X. Put 7 := 7o 1. By a suitable choice of 1, we may assume that 7 is a projective morphism. We then
consider the Gn-invariant irreducible reduced divisor H on X obtained as the closure in X of the preimage of

U (6 < (oH

teC*

under the mapping (, where H on X is viewd as a subset of P*(V,) via the Kodaira embedding @, : X — P*(V,)
in the introduction. Then

C(6-X) = D+ox, (2.3)
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where D is an effective divisor on X with support in Xo. Here by viewing X, as a subscheme of P*(V,) =
{0} x P"(V,), we can characterize the restriction of D + ¢ to X, as the zeroes of 1*(231:,10 a,xva)m. Since the

divisor H on X is Gm-invariant, the Gp-action on X lifts to a Gy-linearization of
Q := 04(30). (2.4)

In this paper, we use locally free sheaves and vector bundles interchangeably. By (2.3) and (2.4), the pullback
L =1L of £ = Oy(6 - X) is written as

L = 04D Q%" (2.5)

In particular, the G;-linearizations of £ and Q induce a Gp-linearization of OX(D) making the identification
(2.5) Gm-equivariant. For the direct image sheaf F := 70 over A, let F, be the fiber of F over each z € Al.
Then we have a Gi-equivariant rational map

n: X — P'(F)

whose restriction over each z € A! \ {0} is the Kodaira embedding 1. : X, < P*(F;) associated to the
complete linear system |Q| on X,. Put
Yz = Uz(xz)-

Then by this 77, we can naturally identify the open subset X \ X of X with the G,-invariant subset

Y= J ¥

0#z€ Al

of P*(F). Let Y be the Gp-invariant subvariety of P*(F) obtained as the closure of Y in P*(F), i.e., Y is the
meromorphic image of X under the rational map 1. Then the restriction

n9:H—>A1

to Y of the natural projection of P*(F) onto A! is a Gn-equivariant projective morphism with a relatively very
ample invertible sheaf

Q := O]P’*(F)(l)\‘é (2.6)

on the fiber space Y over Al. Note that 7 = 7y o 1. The Gm-action on 0 naturally induces a Gm-action on F.
It then induces a Gp-action on Q covering the Gp-action on Y. By the affirmative solution of G,;-equivariant
Serre’s conjecture, we have a Gp-equivariant trivialization

F ~ A'xF,, .7

where this isomorphism can be chosen in such a way that the Hermitian metric p1 (= p; |,-1) as in the intro-
duction for the vector space
Fi = V; = H(X,L)

corresponds to a Hermitian metric on F, which is preserved by the action of the compact subgroup S' ¢
Gm (see [2]). By this trivialization, Fy is identified with F; (= V), so that the Gp-action on F induces a
representation

Q: Gm — GL(Vl)

Hence (Y, Q, ¢) is a test configuration for (X, L) of exponent 1. By (2.4), the base point set B for the linear
subsystem F, of H°({o, O0) contains no components of dimension n. Replacing X by its suitable birational
model obtained from X by a sequence of G -equivariant proper birational morphisms with exceptional sets
sitting over B, we may assume from the beginning that B is empty (see for instance [3], p.114). Hence the
rational map 17 : X — Y c P"(F) is holomorphic satisfying

9 = n'q, (2.8)
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as required. In view of (2.8), we now conclude from (2.5) that Main Theorem is true except (a) and (b).

Remark 2.9. If the G p-action on P*(V,) by 1 preserves the subset X, := @,(X), then X = A! x X, and hence
we can choose (X, £, D) = (X, £, 0).

Remark 2.10. For a test configuration y in Main Theorem, x should be taken in such a way that ||x||.. becomes
as large as possible. In some sense, our x constructed as above satisfies such a requirement.

3 Proof of the inequality (a)

In this section, we compactify A! = {z € C} to the complex projective line P! by viewing P! = A U{oo}. Since
X sits in A! x P*(V,), we consider the subvariety X in P! x P*(V,) obtained as the closure of X in P! x P*(V,).
Then £ over X extends to a holomorphic line bundle

L :=pr, Op vy (D)% (3.1)

over X, where pr, : P! x P*(V,) — P"(V,) is the projection to the second factor. By setting d := ¢"c(L)"[X],
we consider the tensor space

W, = {Sym?(V,)}®"™1, (3.2

where Sym“(V,) is the d-th symmetric tensor product of V,. We now put N := Op+(w,)(1). For the projection
py : PLx P*(W,) — P*(W,) to the second factor, we consider the composite

Z:Pt S5 P'(W))

of the projection p, with the Chow section (see [9], 1.3) for X over P!. Note that each Z(2), z € P!, is the Chow
point for X, where we view X, as a cycle on the projective space {z} xP*(V,) (= P*(V,)). For z = 1, an element
Z(1) of W;\{0} which lies above Z(1) € P"(W,) is called the Chow form for X1 = X1 = @;(X). Now by Theorem
1.4 in [9],

£t ~ 7'\, (3.3)

where £ .= (L, ..., L)(X/P(C)) is the Deligne pairing of (n + 1)-pieces of £. For the Gp-action by 1 on
Vy, let b’ and b” be the maximal weight and the minimal weight, respectively. Then by (3.2), the difference
between the maximal weight and the minimal weight for the G, -action on W, is

din+ 1) -b"), (3.4)

If Z is a trivial map, then by Remark 2.9, we may assume D = 0, so that (a) holds in this case. Hence we may
assume without loss of generality that Z is a non-trivial map. Then Z(P!) is a rational curve obtained as the
closure in P*(W,) of the Gn-orbit

Gm-Z(1) := {[Y(®)-ZQ)]; teC"},

where for each w € W} \ {0}, its natural image in P"(W,) is written as [w]. Hence by taking a general hyper-
plane  in P*(W,), we see from (3.4) that v := deg Z*(Z) satisfies

O0<~y<dn+1)d -b"), (3.5

where ~ is characterized also by the equality Z"(N) = Op1(cy(7)- Now for the algebraic cycle W := (pr,)+X on
P*(V,), by (3.1), (3.3) and (3.5) comhined with the projection formula applied to pr, %> We obtain

¥ = c@O)EYO) = / (B = deg W. (3.6)
X
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For the divisor 6 on A x P*(V,) as in (2.1), let § be the irreducible reduced effective divisor on P! x P*(V,)
obtained as the closure of § in P! x P*(V,). Note that & is a projective subbundle, of codimension 1, of the
trivial projective bundle P! x P*(V,) over P!. Let ¥ be a hyperplane in P*(V,). We further choose a curve C on
P! x P*(V,) written in the form

C = P'x{p},

where p is a general point in P*(V,). Let z be a general point in P!. Then 6 as a cycle on P! x P*(V,) is homol-
ogous to

P! x ¥ + a{z} xP"(V,), 3.7)
where a is the intersection number & - C on P! x P*(V,). Since ¢ in (2.2) is quasi-invariant, we see that
0<ac<b-b. (3.8)

In view of (2.4), (2.6) and (2.8), we have a quasi-invariant section ¢ # O for Q over Y such that the divisor H
on X in (2.3) is written as

H = 11* zero(o), (3.9)

where ) : X — Y is the holomorphic map as in the previous section. By (2.7), we have G,-equivariant identi-
fications
F = A'xFy and P'(F) = A xP"(Fy).

For an arbitrary element f, # 0 in Fy, we extend it to a section f for F = 7.Q by sending each z € A to
f@) := (z, fo) € A' x Fo.

Then by (2.8), we obtain a nonzero section T = 7(f,) for Q over Y such that the section f for F = 7.0 comes
from the section "1 for Q. Next by taking a Gm-equivariant desingularization

X' > X (3.10)

whose restriction over Al coincides with 1 : X — X, we may further assume that n : X - Yy c P(F) =
Al xP"(F,) extends to a Gp-equivariant holomorphic map

n X — P(F),

where F' := P! x Fy and P*(F') := P! x P*(F,). Let Y’ be the closure of Y in P*(F’). Note that Y’ is the image of
X’ under the holomorphic map 1. Now for 1 = 7(fy), we consider the following divisor on X':

H'(fo) = () zero(r"), (3.11)

where 7’ = 7/(f) denotes the section for Q’ := O]P’*(F’)(l)\‘z)’ which coincides with T = 7(fy) when restricted to
Y. Let X, be the fiber of X’ over oo. Since the vector space Fy is generated by quasi-invariant elements, there
exists a quasi-invariant element f§ in F, nonvanishing at some point in the image ’(X.,). Consider the case
when f; = f&. Then the corresponding f and 7, denoted by f* and 7#, respectively, are quasi-invariant. For a
suitable choice of H, replacing ¢ in (3.9) by ™, we may assume that

H = n* zero(t"), (3.12)

and on the space X’ over P!, by (3.11) applied to 7’ = 7/(f%), we have the divisor '(f§) := (n')" zero(r' (f})).

On the other hand, for a general element f; in Fy, we easily see that the divisor 3’ (fy) is horizontal in the
sense that no components in the divisor H'(f,) sit in the fibers of X’ over P'. Hence we have a sequence of
elements

0 ’ } ’ EAL RS ]
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in Fy converging to fi, as j — oo, such that the divisors H’ g)) are all horizontal. Then for each j, the corre-
sponding f and T will be denoted by f and 7%, respectively. For each z € A’ \{0}, theinclusion X} < P"(V,)
allows us to obtain hyperplanes 62’), 6% in P*(V,) such that

89 %, = 03 (M), and  8E-%L = eI ()

where on the right-hand side of both equalities above, the intersection is taken in the projective space P*(V,).
For the projective subbundles

89 = | J {z}x6? and 6" = ] {z}x6f
zeC* zeC*

of the trivial bundle (A \ {0}) x P*(V,), let § and &* be the irreducible reduced divisors on P* x P*(V,)
obtained as the closures of 87 and 6*, respectively, in P* x P*(V,). Then 6%’ and 6* are viewed as projective
subbundles, of codimension 1, of the trivial projective bundle P! x P*(V,) over P1. Since the divisors H’ (fg))
are horizontal, we obtain

e} D) < (Y6,  j=1,2,..., (13)

where the inequality means that the right-hand side minus the left-hand side is an effective divisor. Let j — oo
in (3.13). Then, since f(()’) — f&, we have

(H'FE < ) 0). (3.14)

From now on, the divisor ' (fg ) on X’ will be written simply as 3’ by abuse of terminology. Then by (2.3) and
(3.14), there exists an effective divisor D’ on X’ sitting over oo € P! such that

()Y'(@6*-%X) =D+ +D, (3.15)

where D is an effective divisor as in (2.3) on X c X’ sitting over the origin. Now by (3.7) and (3.8) applied to
6 = 6%, we see that & := (¢)"(6" - X) is a nef divisor on X'. Note also that H’ is nef. Let i be an integer such
that 1 < i < n. Then by (3.15),

6/ n-i+1 . fi j—(’ i
=& g Ay (D + D) 6
> " rge M g g D 016
> 5/ n-i . £i+1 f]-(’ i+1.
In particular, by applying this to i = n, we obtain
& MK L L (e )" D = M H™ 4 " degnD. (3.17)

Hence by (3.7), (3.15), (3.16) and (3.17), we see that

5™ = 8" (D + (3 + D)

=deg «D + 8" - ¢H' + deg LD’

> deg D + 6" ¢H' > deg -D + & - "H" (3.18)
> deg 1D + (13 + M degnD

> deg D + (" degn+D.

Now by (3.7), 6™ is written as

M+1)a¥"[X;] + pr, Y™ . X = d(n+1)a + /Cl(Z)'”1
X
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and hence by (3.5) and (3.6) together with (3.8), we obtain
& < 2d(n+ 1) - b"). (3.19)
Then by D = ¢D and b’ - b” < 2/||u||, we see from (3.18) and (3.19) that
¢ deg xD + (™1degn+D < 2d(n+1)(b' -b") < 4(n+1)d ¢ ||y|,

and hence by setting C; := 4(n + 1) ¢1(L)"[X], we obtain the inequality ¢ " deg «D + degn+D < Cj ||}]|ces @S
required.

4 Proof of the inequality (b)
For the irreducible components f)a, a=1,2,...,r,0f Supp(§C0), we can write the divisor D on X in the form
r
D = Z éa Da,
a=1
where &, is the multiplicity > 0 of Dy in D. Then we may assume that, for some integer ro with 1 < r < 7,

n+De¢ = 0 ifandonlyif ro<as<r, (4.0

where we view n*D,x as an n-dimensional algebraic cycle on P*(Fy) = P*(V). For the normalization Vy : g
Y of Y, it follows from the Stein factorization that ) : X — Y factor through 9, ie.,

A

n=vyonq

for some Gn-equivariant birational morphism 7 : X — Y with connected fibers. Then by Zariski’s Main
Theorem, r in (4.1) is expressible as
ro = No,

where ng is the number of the irreducible components in Supp(Y,). Hence, we see from (4.1) that

no no
deg n+D = Z éq deg n+Dy > Z a,
a=1 a=1

where deg D = ¢degn+D < Ci¢|u|l~ by (a) in Main Theorem. Then the nonnegative rational numbers
eq := &q/ ! satisfy

no
0<> ea = Cplue (4.2)
a=1
Fora=1,2,...,nq, we consider the irreducible reduced effective divisor Dy := f](f)a) # 0 on 9 The divisor

71D on Y is witten in the form
Nno
fI*D = Z eaDa.
a=1
Let mq be the multiplicity of D in the scheme-theoretic fiber Jo. Then foralla =1, 2, ..., no, we obtain
Ma < mydegn«Dy + -+ Mp, degn+Dn, = c1(L)"[X]. (4.3)

Letby = by = - -+ = by, be the weights of the Gz-action on V, by 1. To the test configuration u = (X, £, ),
we assign a new test configuration
ﬂ = (:X:, L! l/))
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obtained from y by replacing i by the algebraic group homomorphism 1]1 : Gm — GL(V,) defined by
P = t 7yt teC.

Lethy > by 2---2 b ~, be the weights of the Gp-action on V, by 1]), so that we have an orthonormal basis
{01,02,...,0y,} for (V,, p,) satisfying

PO -0; = Mo (4.4)
forallie {1,2,...,N;} and t € Gy. Then b; = b; - by, and hence

0 = Bl > 132 2 e 2 bN

R

(4.5)

Let vy : X — X be the normalization of X. Then for £ := V;CE, we have the Gr-action on (X, £) induced by
that on (X, £) via fb Let  : X — A! be the natural projection. For the direct image sheaves

E:=mf and E:=mL

over A', the algebraic torus Gy, acts on E and E via 17; preserving the fibers Ey and E,, over the origin 0 € AL
Since Lg := L, is generated by Ej over all points of Xy, sois £, := £ 16, by E, over all points of X,,. In view
of V, = HO(P"(V,), Op(v,)(1)) and £ = pr, Op+(v,)(1)|x, consider the pullback

to: Vo — H(Xo, £o)
by the inclusion 1o : Xo < {0} x P*(V,), where {0} x P*(V,) is identified with P*(V,). We here observe that

Lo is generated by 1y V, over all points of X. (4.6)

Lemma 4.7. Every weight b of the Gm-action on E, by ) is nonpositive.

Proof: For a weight b as above, we have a nonzero element e, in E, such that 1])(t) ey = th ey forallt € Gm.
For the Gp-action on E via i, we have a Gm-equivariant identification

E ~ A'xE,, (4.7)

taking the Hermitian metric p, on E; (= V,) to a Hermitian metric on E, preserved by the maximal compact
group S' in Gp. Let 7 denote A' x {e,} viewed as a section of E over A'. Then t € H°(A!, E) satisfies

P(t)-T = 21,  teGCm, (4.8)

and also 7(0) = e, # O in E,. For the embedding X — Al x P*(V,), the restriction to X of the projection
pr, : Al x P*(V,) — P"(V,) to the second factor will be denoted by p,. Then

L = pr0p (D). (4.9)

From a Hermitian metric h for L over X, we obtain a Hermitian metric p, for V, as in the introduction. Hence
by (4.9), p, induces pointwise Hermitian norms for £, £ and their powers, denoted both by | |, by abuse of
terminology. We now view 7 above as an element in H°(X, £) by the isomorphism H°(A!, E) ~ H°(X, £). We
then have a rational number ¢ satisfying O < € < 1 such that

2 2
Tlh = 12174,

where ¢ is a real-valued nonnegative C* function on X such that £(x) > 0 for some point x in X,,. Let mg be
the smallest positive integer such that mq € is an integer. Then 7 := 7®™0 /2™ is a section in H°(X, £L&™0)
such that (x) # 0. In view of (4.8), by the Gnr-actions via 1, we obtain

() - 700) = ("L EDFR(E) - x),  teCm, (4.10)
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so that 7 is non-vanishing along the Gn,-orbit through x. Consider the point
X' = lim () - x € X, (4.11)
t—0
fixed by the G-action. For the restriction (v4)g : Xy — Xo of vy : X — X to X, we consider the pullback
(vao)o : H(Xo, Lo) = HO(Xo, £o).

In view of (4.6), by setting g; := (vy)5(160;), we obtain ¢;(x’) # O for some i € {1,2,...,N,}. Fixsuch an i
until the end of this proof. Then by the Gn-equivariance of 1y and (vx)(*), it follows from (4.4) that

PO - 0,0% = FPg o) - 0%, teGm, (4.12)

where k is an arbitrary positive integer. Now by g;(x’) # 0, we see that g; is non-vanishing at every points in
a neighborhood of x'. In view of (4.12) applied to k = 1, it follows from (4.11) that g; is non-vanishing along
the Gnp-orbit through x. In the fiber of the line bundle £ ©Mo gyer x, we have

()%™ # 0 # T(x).

Replacing o; by its suitable constant multiple if necessary, we may assume without loss of generality that
0;(x)®™ = F(x). Then

PO - g;(0%™ = PO -7(x),  teCn. (4.13)
Hence by (4.10) together with (4.12) applied to k = mg, we can rewrite the equality (4.13) in the form
PO -0 = "E L) 0™, teCm.

Then by letting t — 0, we obtain the convergences %(l])(t) -x) —» 7(x’) and Qi(l])(t) - x0)®M 5 gy (x)®Mo £ 0.
Hence we obtain b; - b - € = 0, so that by (4.5) and € > 0, we now conclude that b < b; - € < 0, as required.

For each weight b of the G,-action on V, by l]), we define a subspace Sy = So(D), depending on b, of V,
by .
So = {0€Vy; !:b(t)-a = tbo}.

Endow Sy with the Hermitian metric induced by p, on V,. Now, we inductively define a strictly decreasing
sequence of Gp-invariant linear subspaces

S0281 D285 D81 D

as follows. In view of the identification V, = HO(P*(V,), Op+(v,)(1)), we consider the Gp-equivariant linear
map
py: Vy — HO(X, L) = H(AL E).

Let k > 0 be an integer. For each 0 # 0 € Sy, let v(0) denote the largest integer > 0 such that p5 o is divisible
by 27 in the space H°(A!, E). Put
ay := max ~(0).
k 0£0€ Sk ’Y( )
For the linear subspace Skﬁl = {0 # 0 € S¢; v(0) = ai} U {0} of Sy, we define Sy, as the orthogonal
complement of S ,ﬁl in Sy. Since Sy # Sy.1, and since S is finite dimensional, the above decreasing sequence
stops at some finite k, so that for some positive integer kg

Ske-1 # {0} = Sk

Hence Sy = So(b) is expressible as @’,ﬁ‘; 1Sﬁ. Let X} be an orthonormal basis for S,f. Then 2(b) := uﬁgl 2y is

an orthonormal basis for So(b). Let
2= u; 2(b),
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where b runs through the set of all weights of the Gm-action on V, by . We can choose X as the orthonormal
basis {01, 02, ..., oy, } for V, associated to the weights b1, by, ..., b N, in (4.4). Then we have integers v; = 0
satisfying

p3(0y) = 270},  i=1,2,...,Ny, (4.14)
where o} € H°(A', E) are such that {0(0), 05(0), ..., o}, (0)} is a basis for Eo. Since p} is Gm-equivariant,

by (4.4) and (4.14), we obtain i
P(6) - 0}(0) = "7 0}(0),

i.e., the associated weight j3; of the Gp-action on E by J) is b; +;, so that by 4; = 0, we have the inequalities
Bi = b;, i=1,2,...,N,. (4.15)

We next consider a Gn-equivariant identification E = A! x Eq similar to the identification E =~ A® x E,in
the beginning of the proof of Lemma 4.7. Then to each ey € Eq, we assign the subset A! x {ey} of E viewed as
a section in H(A', E). Hence Ej is regarded as a Gp-invariant subspace of H°(A', E). By setting p := vy g,
we have the restriction to Ep,

p: Ey — H(A', B),

of the Gm-equivariant pullback vy : H°(A!, E) < H°(A!, E). Then we consider the weights f1, Ba, ..., B,
of the Gp-action on Egy by l]; Note that we have an orthonormal basis {71, 75, ..., Ty, } for Eq such that

P -1; = thr, (4.16)

foralli € {1,2,...,N,}and t € Gp. In (4.14), we obtain o} € H°(A',E), i = 1,2,..., N, for the Gp-
equivariant linear map p5 : V, — H°(A!, E). Similarly, applying the same argument to the Gm-equivariant
linear map p : E; — HC(A?!, E), we see for a suitable choice of {11, T2, ..., Ty, } that there exist integers
€; = 0 satisfying

p(t;) = 28y, i=1,2,...,Ny, (4.17)

where 7; € H°(A!, E) are such that {,(0), 7,(0), ..., 7y,(0)} is a basis for E,. Since p is Gm-equivariant, by
(4.16) and (4.17), we obtain
PO - 7,00) = Fei7(0),

i.e., the associated weight b, of the Gp-action on E; by J) is B; + €;, so that by €; = 0, we have the inequalities
b, > i, i=1,2,...,N,. (4.18)

By (4.15) and (4.18) together with Lemma 4.7, the weights b,, b5, ..., by , of the Gm-action on E|, satisfy
0=>b >h, i=1,2,...,N,. (4.19)

Let  : Gm — GL(V1) be the Gp-action on Fo (= V) induced by z]), where we identify V; with Fy as in
Section 2. Let I' (C Z) be the set of all weights of the Gy-action on Fo (= V;) by §. If I’ consists of a single
element, then ||k||eo = ||@]|co = ||@||e= = O, so that ||k||es £ C2]||}]|ces i.€., (b) holds. Hence we may assume that
I' has more than one element. Then

HK||°° = ”@”N S Ymax ~ Ymin> (4.20)

where ymax (resp. Ymin) is the maximal (resp. minimal) element in I'. Note that ymax — Ymin = 1. Lety € I'. Then
we have some 0 # (y € Fy such that

D) § = 4, t € Gm.

For each ~ as above, we fix such a ¢, once for all. In view of the isomorphism (2.7), A x {{,} defines a section
{ € H°(A%, F) such that

YO-¢=1¢  teGn, (4.21)
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afld that {(0) = {o. For a Hermitian metric p on Q = O]P’*(F)(l)\‘j’ we consider its pullback p := v; p on Qg =
vy Q. From now on until the end of this section, by the identification

H°(AY F) = HY(X, Q) = H(9, Q9),

we view ( as a section in HO(G, Qg). Fora = 1,2,...,no, we see from (4.3) that 1 - m3z' < 1 - &, where
6 := {c1(L)"[X]}"! > 0. Hence

mpz = |Z|2€§1, (4.22)

where € is a rational number satisfying O < € < 1 -8, and £] is a real-valued nonnegative continuous function
on 9 such that

&L) >0 (4.23)

for general points y on some irreducible component of Y. By the Stein factorization, the birational morphism
(:X — X factors through the normalization X of X, so that we naturally have a birational morphism

L:DACAX

with connected fibers. Foreacha =1, 2,...,r, let T4 be the natural section for the line bundle Ox(f)a) over
X such that the zeroes of 7, on X is the divisor D4. Then by (2.5) and (2.8), we have an integer a(v) = 0 and a
section 8 # 0in H°(A!, E) satisfying 0 # 6(0) € E, such that

@ O% Moy 7o = 2700 (g, (4.24)

where we view 6 as a section in HO(X, £) by the identification HO(A®, E) = H°(X, £). Let §™¢ be the set of all
smooth points in §. We may assume

toa = 1 for some 1, € HO(Y™8, Ogreg(Da)), a=1,2,...,np,

with simple zeroes of 7, along D, on 8. Hence, outside the preimage 771(2) by #} of some algebraic subset
Z of codimension > 2 in J, we can write (4.24) in the form

7 (( 2, Tf{‘) S o= 000, (4.25)

where the term ¥ := [Ty <qr 75 is non-vanishing outside 771(2). Recall that mg is the multiplicity of Dq in
the scheme-theoretic fiber J, viewed as an algebraic cycle. By (4.25) together with (4.22) and (4.23), we obtain

a(y) < el +max{éa/ma;a=1,2,...,n0} < (1 - 8)+ 2, éq. (4.26)
Since G, acts on (i)jc(f),x), a=1,2,...,r,wehave an integer A, independent of t and ~ such that
P(t) - ta = N2,  tEGn. (4.27)

We now set b(v) := a(y) + £y + 2}_;Aa€q. Then by (4.24) together with (4.21) and (4.27), we see that
PO -000) = 2 6(0).
From the definition of b(y) applied to v = ymax and v = ypin, We obtain
b(ymax) = b(ymin) = a(ymax) = A(Ymin) + £(Ymax = Ymin)- (4.28)
Since we have a(v) = 0 for all v € I, in view of (4.2), it follows from (4.26) and (4.28) that

(ymax — Ymin) < B(ymax) = B(ymin) + a(Ymin)
< b(ymax) = b(vmin) + (1 = 8)¢ + C1 £ ||pt|oo.
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BY Ymax — Ymin 2 1, we have 1 - 8 < (1 - 6)(Ymax — Ymin)- Hence
£ (ymax = Ymin)6 < B(ymax) = B(ymin) + C1£|[1]|co- (4.29)
Since we have the inequality ymax — Ymin 2 ||@]|ee = ||K||e, and since (4.5) and (4.19) imply that
b(ymax) = BOmin) < |by,| < 20[Plleo = 20 llec = 2¢|u]es
it follows from (4.29) that £ ||k||c6 < (2 + C1) £||1t]|ce- Then by setting

Coi= 6712+ C1) = al@)"IX] {2 + 4+ Der (L)"[X] },

IN

we now conclude that ||k||c < C3]||}||e, as required.

Appendix

In this appendix, we shall give a uniform upper bound for some seminorm of the Q-divisor D = D/¢ on X in
Main Theorem. We write the scheme-theoretic fiber X over the origin as a divisor

r
XO = Z maDa
a=1

on X, where my is the multiplicity of Dy in Xo. As in Section 2, Supp(Xo) is simple normal crossing. Put
Dy := ﬁ(f)a) for a < ng as in Section 4. Then by Zariski’s Main Theorem,

no
Yo = Z MaDg.
a=1

In view of the expression D := 27 _1 eaDq at the beginning of Section 4, since &, is nonnegative, we can define
nonnegative rational numbers

QQ = éa/ma and da = Qa/&

wherea =1,2,...,r.Bysetting g := max{qa; a = 1, 2, ..., r}, we consider the nonnegative rational num-
bers

Ag := G- qa, a=1,2,...,r.

Then the seminorm ||D||es := max{Aq; @ = 1,2,...,ng } for D will be shown to be uniformly bounded as
follows. In addition, we can show that the maximum g is attained by g« for some a satisfying 1 < a < ny.

Theorem A. (A.1) g = qq for some a satisfying 1 < a < ny.

(A.2) There exists a positive real constant C3 independent of the choice of the test configuration yu and the expo-
nent ¢ such that ||D||e < Cs.

Remark A.3. By definition, we easily see from (A.1) that ||D|| = O if and only if #}«D is a rational multiple of
3, as a divisor on Y.

Remark A4. By setting g := min{qq; @ = 1,2,...,no}, we consider the rational numbers 4, := ga - ¢,
a=1,2,...,r.Then by (A.1), we can write

[ID]|es :=max{A,; a=1,2,...,n0} = -4
Proof of (A.1): By setting ¢’ := max{qq; @ = 1,2,...,n0}, we have ¢’ < §. Hence it suffices to show that
g’ = q. For contradiction, we assume the contrary, i.e., assume g’ < g. Then

q = {qa (AS)
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for some ag with ng < ag < r. In view of the fact that g’ is a rational number, we take the smallest positive
integer j such that j¢g’ is an integer. For a sufficiently small ¢ <« 1, by choosing an open disc U; := {|z| < €}
in A", we consider the preimage X := 7i"1(Ue). We now take a general point x in Dao. Since the restriction of
£ to X, is generated by the sections in (7=£) (C H°(Xo, £o)), and since

'Z‘ = Ox(ﬁ)®g®€’

we obtain a holomorphic section & for £ over X¢ with G(x) # 0 which can be viewed as a meromorphic section
(denoted also by & by abuse of terminology) for 0%¢ over X, holomorphic outside Supp(D), with a pole of
order &4, along Dy, and possibly with poles of order < &, along D, for all & # @. Let 7 be the meromorphic
section for Q®/* over X defined by

Let ~q be the order of the possible pole of # along Dg. For a = g, in view of (A.5) together with the definition
of qa, we obtain
Yao = _qu/mﬂo +jéﬂ0 = jemﬂo(_q/ + qao) = ].Zmao(—q/ + q) > 0,

so that 7 actually has a pole along Dao. Ifae{l,2,...,n0}, then
Ya = _]'eqlma +jéq = ].Zma(—q/ +da) < O,

and in this case 7 is holomorphic along D,. Note that ﬁ*f)a vanishes as a cycle on § for a > ng. Recall that

Qq = vy Q. Put My i= My oVvy. Since Q= ﬁ*Qg, it follows from the Hartogs extension theorem that there exists
a holomorphic section 7 for Q?a over J; := ﬂél(U‘g) such that

AK

T=1r.

Hence the section 7 for %% over X, is holomorphic. On the other hand, # has a pole along Da,. This is a
contradiction, as required.

Proof of (A.2): Let u; = (X, £;,¥;),j = 1,2, ..., be a sequence of test configurations for (X, L). Let ¢; be the
exponent of ;. Then for each j, we take an ¢;-th root (x;, D;) of u;. Hence, we have test configurations

Y, 9, 9)), ji=1,2,...,

for (X, L), of exponent 1, and G,;-equivariant desingularizations (§C,-, z i) of (X;, £;) such that, by setting f)]- =
¢;D;, we have

A A A Z
L = 05 D) @97, (A6)
where n; : §Cj — Yjand g : fij — X; are Gm-equivariant proper birational morphisms with Qj = n;Q}- and
z j = I;L ;. For contradiction, assume that
IDjllos — +o0 asj — oo, (A7)

Let (Q;)o be the restriction of the line bundle Q; to the central fiber (Y;)o. Take the normalization vy, 9 i =Y

of Y;. Let (Dj)a, 1 < & < no(j), be the irreducible components of (9,-)0, and let (f)j)a, 1 < a < r(j), be the
irreducible components of (5@-)0. Then we can write

{ Xo = =9 ma() (D))a,
o = = ma() (D))as

where mq = my(j) is the multiplicity of (f)}-)a in (fij)o. Here each (Dj)q With 1 < a < ny(j) is the image of (ﬁj)a
under the Gn-equivariant birational morphism #; : 5C]- — 9}- induced by n;. Let 84(j) be the multiplicity of
(Dj)a in f),-. For 1 < a < r(j), we put

Ga() := 8a()/ma(j) and qa(j) := f]a(i)/ﬁ,--
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In view of (A.1) above and Remark A.4, we set q(j) := min{qa(j); a = 1, 2,...,no(j)} and 4,(j) := qa(j) - q(j),
ae{1,2,...,r(G)}.Nowfora # Bin {1, 2, ..., no(j)}, consider the complex (n - 1)-dimensional cycle

(Dj)ap = (Dj)a - (Dj)g

on (D,-)/; with multiplicities defined by the ideal sheaf jﬂ\(D,—) , On (Dj)/;, where J, denotes the ideal sheaf of
(D)a in Y;. Then for the Gm-equivariant embedding Y; — P"(F) = A! x P*(V), we put

HD = Y; - (A x H), (A.8)

where H is a general hyperplane in P*(V;). Put FO .= v;],fH(j) for the normalization vy, 91- — Y;. Since we
can view each

yi = (Y7o, (Q))o)

as an element of the Hilbert scheme for the projective subschemes of P"(V;) with the Hilbert polynomial
P(k) = dimH°(X,L®Y), k> 1.

Replacing the sequence {y;} by its suitable subsequence if necessary, we may assume from the projectivity
of the Hilbert scheme that ng(j) and mq(j) with 1 < a < ng(j) are independent of the choice of j, and that

(D))ep - HN < 4, (A9)

where C, is a positive real constant independent of a, 8 and j. Hence n(j) and mq(j) as above can be written
simply as no and mq. Then by (A.7), replacing {y;} by its subsequence if necessary, we may assume that

Ag, () — +oo, asj — oo,

for some @y € {1,2,...,n0} independent of the choice of j. Similarly by (A.1) above, replacing {y;} by
its subsequence if necessary, we may assume that there exist nonempty complementary subsets A, B of
{1,2,...,np} withAUB=1{1,2,...,ng} satisfying the following:

Ifa e A, thenA,(j) » +o0, asj— oco.
If 8 € B, then 4;;(]'),]' =1,2,...,arebounded.

Since U2 1(Dj)a set-theoretically coincides with the connected fiber (9;)0, some a(j) € A and some (j) € B
are neighboring in the sense that
(Djagy N (Dilggy # 0.
Replacing {y;} by its subsequence if necessary, we may assume that both a(j) and (j) are independent of the
choice of j. Hence, such a(j) and B(j) are written as a* and ¥, respectively. Let DC]’ be the smooth compactifi-
cation of DAC; as in Section 3. Then by (A.6),
r(i)
a€)) = gniea(Q) + > 2a() [(Dal, (A.10)
a=1

where [(D]-)a] €H 2(DAC]-, Q) is the restriction to 5Cj of the Poincaré dual € H2(X/, Q) of the algebraic cycle (f)j)a
on DC}’ On the other hand,

r(j) .

> mal(D)al = 0. (A11)

a=1
From now on, we replace {y;} by its suitable subsequence if necessary. In view of (A.1), by renumbering
(Di)l, (D]-)z, e (ﬁ,-)n0 if necessary, we may assume that q(j) = q1(j) for all i. Hence 1 € B. Multiply (A.11) by
q1(j). Then by subtracting it from 1/¢; times (A.10), we obtain

A r(j) A
c1(Lple = §; Cl(ng) + Z ma A,(j) [(Dj)e],
a=1
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since n;cl(Qj) = ﬁ;cl(ng) by ﬁ;Qgi = ﬁ;v;in = n;Qj. By (A.8), the divisor K% on Y; is viewed as a hyper-
plane section obtained as the pullback to Y; of a hyperplane in P*(V), while ¢1(Q;) on Y; is the pullback to
Y; of the first Chern class of the hyperplane bundle on P*(V1). To general hyperplanes Hy, 1 < k < n -1, in

PP*(V1), we associate the hyperplane sections ﬂ{g) on Y; asin (A.8). By setting
7R ()]
Hy .—v%i%k, l1<ks<sn-1.

we consider the restriction to (9 ,-)0 of the intersection IJA{(lj) . U:C(zj) v 79 written in the form

n-1
no
() () v ()
9{1 9{2 g{"‘”(%)o Z Yas
a=1

where vy := Mg JA{? . ﬂg) ces ﬂ:(gzl . (Dj)a is a nontrivial effective algebraic cycle of complex dimension 1 on
(Dj)a. Then for 0 # t € A*\ {0},

G = (@, TP 5 FD, )
= { Cl(z:j)/eﬁ ﬁ;(j:f(ll) : f]:(:(2]) Tt fcg)—l\(gi)o) >

AK

(cr@DIy Ty fiva ) = (€], fiyge )
(e1(Qg), vpr ) + Z2 ma o) ([(Dal, e )
210 ma 8,G) ([Dal, e )
= Jor () + Jpe () + Zgesqupr Ja(),
where we put Ja(j) := mad,() ([(D))al, fljvpe) forall a € {1,2,...,(j)}, and the pairing ( [(D))al, 7 vpe) is

taken on (ﬁ)ﬁ” with [(D,-)a] viewed as its restriction to (D) p+. Moreover, the summation % 4.+ is taken over
allain {1, 2,...,r(j)} such that af # a # ﬁ#. Since, by (4.1), we have

v

o a (Dy)a if 1cac<ng;
@p«Dj)a = e °
0 if a> ng,
we obtain the following from the projection formula 5.6.16 in [8], p.254, applied to the holomorphic mapping

ﬁj : (D}')ﬂ# — (D]')ﬂ# :

( [(Dj)a], Vg )y ifl<as<ng;
0 ifa> no.

<[(Dj)a], TA];’W;«) = { (A.12)

In particular Zpsq.p Ja(j) = 0. Hence c1(L)"[X] = J+(j) + ]ﬁ#(j). Since Ags (),j=1,2,...,is a bounded
sequence, in view of (A.9), (A.11) and (A.12), it now follows that

e () = ‘mﬁ#éﬁ#(jﬂ [(Dj)[g#], fl;’Vﬁ# N
= 4/3#(]) | < Z1sasr(j), azpt ma[(f)j)a], fl;’}/ﬁ# > |
= D ()| Zpaanpr M ( [D)al, s ) |
N Aﬂ#(j) Znoza#{# ma(Dj)aﬁ# (Ot <,

(A.13)

where Cj is a positive constant independent of the choice of j. On the other hand, since a* and * are neigh-
boring, we see from (A.12) that

([(Dy)gs)s Ajvpe ) = deg (vy Ix(Dj)gspe (A.14)

is a positive integer, where (Y;)o is viewed as a subvariety in P*(V;). Since A,+(j) — +oo as j — oo, and since
Mgy 2 1, it follows from (A.14) that

]a#(j) = ma#éa#(jﬂ [(Dj)a#], ﬁ;vﬁ# ) — +oo,
in contradiction to J . (j) + J % () < c1(L)"[X] and (A.13), as required.
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