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Abstract:We introduce a flow of Riemannian metrics and positive volume forms over compact oriented man-
ifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in
our previouswork.We still call this newflow, the Soliton-Ricci flow. It corresponds to a forwardRicci type flow
up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new
Soliton-Ricci flow exist for all times. It represents the gradient flow of Perelman’sW functional with respect to
a pseudo-Riemannian structure over the space of metrics and normalized positive volume forms. We obtain
an expression of the Hessian of the W functional with respect to such structure. Our expression shows the
elliptic nature of this operator in the orthogonal directions to the orbits obtained by the action of the group of
diffeomorphism. In the case that initial data is Kähler, the Soliton-Ricci flow over a Fano manifold preserves
the Kähler condition and the symplectic form. Over a Fano manifold, the space of tamed complex structures
embeds naturally, via the Chern-Ricci map, into the space of metrics and normalized positive volume forms.
Over such space the pseudo-Riemannian structure restricts to a Riemannian one. We perform a study of the
sign of the restriction of the Hessian of the W functional over such space. This allows us to obtain a finite
dimensional reduction of the stability problem for Kähler-Ricci solitons. This reduction represents the solu-
tion of this well known problem. A less precise and less geometric version of this result has been obtained
recently by the author in [28].
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1 Introduction and statement of the main result
In this paper we provide a caracterisation of the second variation of Perelman’sWmore precise andmore ge-
ometric that the one described recently in [28]. Indeed here we detect the kernel of the second variation. We
represent also the second variation in terms of a Riemannian structure over the space of compatible complex
structures. This structure is crucial for the computation of the kernel of the second variation. Indeed it al-
lows a fundamental triple decomposition of the tangent cone of the space of compatible complex structures
(embedded in the space of Riemannian metrics and positive normalised volume forms via the Chern-Ricci
map).

This is the first of a series of papers whose purpose is the study the following problem.
Let (X, J0) be a Fano manifold. We remind that the first Chern class c1(X, [J0]) ∈ H2

d(X,R) depends only
on X and the coboundary class [J0] of the complex structure J.

Let also ω ∈ 2πc1(X, [J0]) be an arbitrary J0-invariant Kähler form over X. We want to find under which
conditions on J0 and ω there exists a smooth complex structure J ∈ [J0] and a smooth volume form Ω > 0



The Soliton-Ricci Flow with variable volume forms | 43

over X such that ⎧⎪⎨⎪⎩
ω = RicJ(Ω) ,

∂TX,J
(︁
ω−1d log ωn

Ω

)︁
= 0 ,

i.e. the Riemannian metric g := −ωJ, is a J-invariant Kähler-Ricci soliton.
This set up represents a particular case of the Hamilton-Tian conjecture with a stronger conclusion.

Namely we avoid the singularities in the solution of the Kähler-Ricci soliton equation.
Proofs of the Hamilton-Tian conjecture have been posted on the arXiv server in (2013) by Tian-Zhang [38]

in complex dimension 3 and quite recently by Chen-Wang [6] in arbitrary dimensions.
Our starting point of view is Perelman’s twice contracted second Bianchi type identity introduced in [29].
We remind first what this is about. Let Ω > 0 be a smooth volume form over an oriented compact and

connected Riemannianmanifold (X, g). We remind that the Ω-Bakry-Emery-Ricci tensor of g is defined by the
formula

Ricg(Ω) := Ric(g) + ∇gd log
dVg
Ω .

A Riemannian metric g is called a Ω-Shrinking Ricci soliton if g = Ricg(Ω). We equip the set of smooth Rie-
mannian metricsM with the scalar product

(u, v) ↦−→
∫︁
X

⟨ u, v⟩g Ω, (1.1)

for all u, v ∈ H := L2(X, S2RT*X). Let P*g be the formal adjoint of some operator P with respect to a metric g.
We observe that the operator

P*Ωg := ef P*g
(︁
e−f•

)︁
,

with f := log dVg
Ω , is the formal adjoint of P with respect to the scalar product (1.1). We define also the Ω-

Laplacian operator

∆Ωg := ∇*Ωg ∇g = ∆g +∇g f¬∇g .

It is also useful to introduce the Ω-divergence operator acting on vector fields as follows:

divΩ ξ := d(ξ¬Ω)
Ω = ef divg

(︁
e−f ξ

)︁
= divg ξ − g (ξ ,∇g f ) .

(We denote by ¬ the contraction operator). We infer in particular the identity divΩ∇gu = −∆Ωg u, for all func-
tions u. We observe also the integration by parts formula

−
∫︁
X

u divΩ ξ Ω =
∫︁
X

g(∇gu, ξ )Ω.

We define now the following fundamental objects

h ≡ hg,Ω := Ricg(Ω) − g,

2H ≡ 2Hg,Ω := −∆Ωg f + Trg h + 2f ,

f := log dVgΩ .

An elementary computationmade by Perelman [29] (see also [22]) shows that themaps h and H satisfy Perel-
man’s twice contracted second Bianchi type identity

∇*Ωg h*g,Ω +∇gHg,Ω = 0, (1.2)
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where h*g,Ω := g−1hg,Ω is the endomorphism associated to hg,Ω. We remind now that for any symmetric 2-
tensor u the tensor Rg * u, defined by the formula

(Rg * u)(ξ , η) := − Trg [u (Rg (ξ , · )η, ·)] ,

is also symmetric (see section 3). For any smooth symmetric 2-tensor u we define the Ω-Lichnerowicz Lapla-
cian ∆ΩL,g as

∆ΩL,gu := ∆Ωg u − 2Rg * u + u Ric*g(Ω) + Ricg(Ω)u*g .

This operator is self-adjoint with respect to the scalar product (1.1) thanks to the identity

⟨Rg * u, v⟩g = ⟨u,Rg * v⟩g , (1.3)

for all symmetric 2-tensors u and v (see section 3). We define also the set of normalized volume forms V1 :={︀
Ω > 0 |

∫︀
X Ω = 1

}︀
. From now on we consider the maps h and H overM × V1. Notice that the tangent space

ofM × V1 is TM×V1 = C
∞(X, S2T*X)⊕ C∞(X, ΛmT*X)0, where m = dimR X and

C∞(X, ΛmT*X)0 :=

⎧⎨⎩V ∈ C∞(X, ΛmT*X) |
∫︁
X

V = 0

⎫⎬⎭ .

We denote by Endg (TX) the bundle of g-symmetric endomorphisms of TX and by C∞Ω (X,R)0 the space of
smooth functions with zero integral with respect toΩ. Wewill systematically use the fact that for any (g, Ω) ∈
M × V1 the tangent space TM×V1 ,(g,Ω) identifies with C

∞(X, Endg (TX))⊕ C∞Ω (X,R)0 via the isomorphism

(v, V) ↦−→
(︁
v*g , V*Ω

)︁
:=

(︁
g−1v, V/Ω

)︁
.

With these notations holds the fundamental variation formulas

2Dg,Ωh (v, V) = ∆ΩL,gv − L∇*Ω
g v*g+∇gV*Ω

g − 2v, (1.4)

and

2Dg,ΩH (v, V) = ∆Ωg V*Ω −
(︂
L∇*Ω

g v*g+∇gV*Ω
Ω
)︂*
Ω
− 2V*Ω −

⟨︀
v, hg,Ω

⟩︀
g , (1.5)

where Lξ denotes the Lie derivative in the direction ξ . (We will give a detailed proof in section 3). We infer
that the variations of the non-linear operators h and H are strictly elliptic in restriction to the space

Fg,Ω :=
{︁
(v, V) ∈ TM×V1 | ∇

*Ω
g v*g +∇gV*Ω = 0

}︁
.

This fact strongly suggests that the following flow represents a strictly parabolic system.

Definition 1. The Soliton-Ricci flow is the smooth curve (gt , Ωt)t>0 ⊂M × V1 solution of the evolution system⎧⎪⎨⎪⎩
ġt = −hgt ,Ωt ,

Ω̇t = −Hgt ,ΩtΩt ,

with

Hg,Ω := Hg,Ω −
∫︁
X

Hg,ΩΩ.

Indeed this is the case. We show the strict parabolic statement in the proof of the following basic fact.
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Lemma 1. For every (ǧ0, Ω0) ∈M×V1 there exists a unique smooth solution (gt , Ωt)t>0 ⊂M×V1 of the Soliton-
Ricci flow equation with initial data (ǧ0/λ, Ω0), for some λ > 0. In the case (X, J0) is a Fano variety and ǧ0 is J0
invariant Kähler such that ǧ0J0 ∈ 2πc1(X), we can choose λ = 1. In this case the Soliton-Ricci-flow represents a
smooth family of Kähler structures and normalized positive volumes (Jt , gt , Ωt)t>0 uniquely determined by the
evolution system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ġt = −hgt ,Ωt ,

Ω̇t = −Hgt ,ΩtΩt ,

2J̇t =
[︀
Jt , ġ*t

]︀
.

We call the latter the Soliton-Kähler-Ricci flow.

Let RicJ(Ω) be the Chern-Ricci form associated to the volume form Ω with respect to the complex structure J.
We will show in section 3 that, if the initial data (J0, g0, Ω0) satisfies

ω := g0J0 = RicJ0 (Ω0),
∫︁
X

Ω0 = 1,

then the Soliton-Kähler-Ricci flow equation is equivalent with the evolution system⎧⎪⎨⎪⎩
ω = RicJt (Ωt) ,

∫︀
X Ωt = 1,

J̇t = ∂TX,Jt
(︁
ω−1d log ωn

Ωt

)︁
.

(1.6)

Thus the Soliton-Kähler-Ricci flow preserves the initial symplectic structure ω.
Over a m-dimensional compact Riemannian manifold (X, g) we consider Perelman’sW-functional [29]

W(g, f ) :=
∫︁
X

[︁
|∇g f |2g + Scal(g) + 2f − m

]︁
e−f dVg

=
∫︁
X

[︀
−∆g f + Scal(g) + 2f − m

]︀
e−f dVg .

(We can use here the identity ∆ge−f = −(|∇g f |2g + ∆g f )e−f ). If we use the identifications f ←→ Ω := e−f dVg
andW(g, f ) ≡W(g, Ω), then

W(g, Ω) =
∫︁
X

[︂
Trg hg,Ω + 2 log

dVg
Ω

]︂
Ω = 2

∫︁
X

Hg,ΩΩ.

With these notations Perelman’s first variation formula for the functional
W : M × V1 −→ R in [29] writes as

Dg,ΩW(v, V) = −
∫︁
X

[︁⟨︀
v, hg,Ω

⟩︀
g − 2V

*
ΩHg,Ω

]︁
Ω.

We consider thepseudo-Riemannian structure over the spaceM×V1 givenby the formula (g, Ω) ∈M × V1 ↦−→
Gg,Ω, with

Gg,Ω(u, U; v, V) =
∫︁
X

[︁
⟨u, v⟩g − 2U

*
ΩV*Ω

]︁
Ω,

for all (u, U), (v, V) ∈ TM×V1 . We infer the identity

∇GW(g, Ω) = −
(︀
hg,Ω , Hg,Ω Ω

)︀
.
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This shows that the Soliton-Ricci flow is the gradient flow of the W functional with respect to the pseudo-
Riemmanian structure G. Perelman’s twice contracted second Bianchi identity (1.2) implies the equality{︀

(g, Ω) ∈M × V1 | Dg,ΩW = 0
}︀
=
{︀
(g, Ω) ∈M × V1 | hg,Ω = 0

}︀
,

i.e the critical points of W are precisely the shrinking Ricci solitons. We provide at this point a geometric
interpretation of the space Fg,Ω. Let

[g, Ω] = Di�0(X) · (g, Ω),

be the orbit of the point (g, Ω) under the action of the identity component Di�0(X) of the group of smooth
diffeomorphisms of X. Then Fg,Ω represents the orthogonal space, with respect to G, to the tangent space
T[g,Ω],(g,Ω) at the point (g, Ω) ∈M × V1 of the orbit [g, Ω]. In formal terms holds the equality

T⊥G
[g,Ω],(g,Ω) = Fg,Ω . (1.7)

We define the anomaly space of the pseudo-Riemannian structure G at an arbitrary point (g, Ω) as the vector
space

A
Ω
g := Fg,Ω ∩ T[g,Ω],g,Ω .

In the case (g, Ω) is a shrinking Ricci-Soliton then the map

Ker(∆Ωg − 2I) −→ A
Ω
g

u ↦−→ 2 (∇gdu, −uΩ) ,

is an isomorphism (see section 8). In the case (J, g, Ω) is a Kähler-Ricci soliton then AΩ
g is canonically iso-

morphic with the space of Killing vector fields of g. This is a consequence of a non trivial result (see corollary
5).

We denote by ∇2
GW(g, Ω) the Hessian endomorphism of the W functional with respect to the pseudo-

Riemannian structure G at the point (g, Ω) ∈ M × V1. We show in lemma 7 that its restriction to the space
Fg,Ω is a strictly elliptic operator for any point (g, Ω). A simple consequence of Perelman’s twice contracted
second Bianchi type identity (1.2) is that the map

∇2
GW(g, Ω) : Fg,Ω −→ Fg,Ω , (1.8)

is well defined in the case (g, Ω) is a shrinking Ricci-Soliton (see section 10). In this case holds also the inclu-
sion

A
Ω
g ⊆ Fg,Ω ∩ Ker∇2

GW(g, Ω).

(See lemma 8). In general (see section 10) for any point (g, Ω) holds the fundamental and deep property

∇2
GW(g, Ω)(hg,Ω , Hg,ΩΩ) ∈ Fg,Ω . (1.9)

This is quite crucial for the stability of the Soliton-Kähler-Ricci flow (see [27]). The following basic fact is a
meaningful geometric reformulation of the monotony statement for Perelman’sW functional discovered by
the author in 2006 [21] and published in 2008.

Lemma 2. Let (X, J) be a Fano manifold, let g be a J-invariant Kähler metric with symplectic form ω := gJ ∈
2πc1(X, [J]) and let Ω > 0 be the unique smooth volume form with

∫︀
X Ω = 1 such that ω = RicJ(Ω). Then Perel-

man’sW functional is monotone increasing along the Soliton-Kähler-Ricci flow with initial data (J0, g0, Ω0) =
(J, g, Ω). The monotony is strict unless (J, g) is a Kähler-Ricci soliton.
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Fromnow onwewill refer to the Soliton-Kähler-Ricci flow only if the initial data are as in the previous lemma.
Let Jint be the space of smooth integrable complex structures over X. We consider the space of ω-compatible
complex structures

Jω := {J ∈ Jint | −ωJ ∈M} .

Over a Fano manifold, the Chern-Ricci map provides a natural embedding of Jω inside M × V1. The image
Sω ⊂M × V1 of this embedding is

Sω :=
{︁
(g, Ω) ∈Mω × V1 | ω = RicJ(Ω), J = g−1ω

}︁
,

withMω := −ω ·Jω ⊂M. The fact that the Soliton-Kähler-Ricci flow preserves the symplectic form ω strongly
suggests the study of the restriction of Perelman’sW functional over Sω.

The space Jω may be singular in general. This implies that also the space Sω may be singular. We denote
by TCSω ,(g,Ω) the tangent cone of Sω at an arbitrary point (g, Ω) ∈ Sω. This is by definition the union of all
tangent vectors of Sω at the point (g, Ω). We notice that (see for example [23]) the tangent cone TCMω ,g ofMω

at an arbitrary point g ∈Mω satisfies the inclusion

TCMω ,g ⊆ D
J
g,[0], (1.10)

with

D
J
g,[0] :=

{︃
v ∈ C∞

(︁
X, S2RT*X

)︁
| v = −J*vJ , ∂TX,J v

*
g = 0

}︃
.

The first variation of the Chern-Ricci form (see lemma 17) shows that for any (g, Ω) ∈ Sω hold the inclusion

TCSω ,(g,Ω) ⊆ T
J
g,Ω , (1.11)

with

T
J
g,Ω :=

{︂
(v, V) ∈ DJ

g,[0] × TV1 | L∇*Ω
g v*g+∇gV*Ω

ω = 0
}︂
.

We consider also its sub-space

F
J
g,Ω[0] :=

{︁
(v, V) ∈ Fg,Ω | v ∈ DJ

g,[0]

}︁
.

In the case (X, J, g) is a compact Kähler-Ricci soliton then the map

∇2
GW(g, Ω) : FJg,Ω[0] −→ F

J
g,Ω[0], (1.12)

is well defined. Furthermore for any (g, Ω) ∈ Sω the fundamental property (1.9) implies

∇2
GW(g, Ω)(hg,Ω , Hg,ΩΩ) ∈ F

J
g,Ω[0]. (1.13)

This is precisely the key statement needed for the study of the stability of the Soliton-Kähler-Ricci flow in [27].
For any point (g, Ω) ∈ Sω we denote by

[g, Ω]ω := Symp0(X, ω) · (g, Ω) ⊂ Sω ,

the orbit of (g, Ω) under the action of the identity component Symp0(X, ω) of the group of smooth symplec-
tomorphisms of X. With these notations hold the property

T⊥G
[g,Ω]ω ,(g,Ω)

∩TJg,Ω = FJg,Ω [0] . (1.14)

This combined with (1.11) implies directly the geometric identity

T⊥G
[g,Ω]ω ,(g,Ω)

∩ TCSω ,(g,Ω) = F
J
g,Ω [0] ∩ TCSω ,(g,Ω), (1.15)



48 | Nefton Pali

for any (g, Ω) ∈ Sω. An other remarkable fact is that for any (g, Ω) ∈ Sω the restriction of the symmetric
form Gg,Ω over the vector space TJg,Ω, with J := g−1ω, is positive definite. This implies the G-orthogonal
decomposition (see corollary 6 and the sub-section 18.2)

T
J
g,Ω = T[g,Ω]ω ,(g,Ω) ⊕G F

J
g,Ω[0]. (1.16)

The vector space of Ω-harmonic TX,J-valued (0, 1)-formsH0,1
g,Ω

(︀
TX,J

)︀
embeds naturally insideFJg,Ω[0] via the

map A ∈ H0,1
g,Ω

(︀
TX,J

)︀
↦−→ (gA, 0). By abuse of notations we still denote byH0,1

g,Ω
(︀
TX,J

)︀
⊂ FJg,Ω[0] the image

of this embedding. There exists an infinite dimensional vector spaceEJg,Ω[0] ⊆ F
J
g,Ω[0], (see the sub-section

18.2 for its definition) such that the G-orthogonal decomposition holds true

F
J
g,Ω[0] = E

J
g,Ω[0]⊕G H0,1

g,Ω
(︀
TX,J

)︀
.

We can explain now a more precise property of the tangent cone TCSω ,(g,Ω). For this purpose we consider the
Kuranishi space KJ,g ⊂ H0,1

g,Ω
(︀
TX,J

)︀
, 0 ∈ KJ,g of X. (See theorem 3 in the sub-section 21.4.4 of appendix B

for its definition and properties.) In the sub-section 21.4.5 we define also the Kuranishi space of ω-polarized
complex deformationsKω

J ⊆ KJ,g of the Fano manifold (X, J, ω). (See the definition 2). Then holds the inclu-
sions

T[g,Ω]ω ,(g,Ω) ⊕G E
J
g,Ω[0]⊕G TCKω

J ,0

⊆ TCSω ,(g,Ω) (1.17)

⊆ T[g,Ω]ω ,(g,Ω) ⊕G E
J
g,Ω[0]⊕G TCKJ,g ,0 . (1.18)

Let F := f −
∫︀
X f Ω. We define the non-negative cone of Ω-harmonic variations

H0,1
g,Ω

(︀
TX,J

)︀
>0 :=

⎧⎨⎩A ∈ H0,1
g,Ω

(︀
TX,J

)︀
|
∫︁
X

|A|2g F Ω > 0

⎫⎬⎭ ,

and the sub-cone

H0,1
g,Ω

(︀
TX,J

)︀
0 :=

⎧⎨⎩A ∈ H0,1
g,Ω

(︀
TX,J

)︀
|
∫︁
X

|A|2g F Ω = 0

⎫⎬⎭ .

In the Kähler-Einstein case holds the obvious identities

H0,1
g,Ω

(︀
TX,J

)︀
>0 = H0,1

g,Ω
(︀
TX,J

)︀
0 = H0,1

g,Ω
(︀
TX,J

)︀
.

In the Dancer-Wang Kähler-Ricci soliton caseH0,1
g,Ω

(︀
TX,J

)︀
0 ≠ {0}, thanks to a result in Hall-Murphy [16]. Let

HTX,J be the L
2
Ω-projector over the spaceH

0,1
g,Ω

(︀
TX,J

)︀
. We define also the non-negative cone

T
J,>0
g,Ω :=

{︁
(v, V) ∈ TJg,Ω | HTX,J v

*
g ∈ H0,1

g,Ω
(︀
TX,J

)︀
>0

}︁
,

and in a similar wayTJ,0g,Ω. An interesting non-negative cone from the geometric point of view is also

TC>0
Sω ,(g,Ω) := TCSω ,(g,Ω) ∩T

J,>0
g,Ω .

Let now KRSω be the set of all Kähler-Ricci solitons inside Sω. We observe that Perelman’s twice contracted
second Bianchi type identity implies

KRSω =
{︁
(g, Ω) ∈ Sω | Hg,Ω = 0

}︁
.
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Notice also that for any (g, Ω) ∈ KRSω holds the inclusions [g, Ω]ω ⊆ KRSω and

T[g,Ω]ω ,(g,Ω) ⊆ TCKRSω ,(g,Ω) ⊆ KerDg,ΩH ∩ TCSω ,(g,Ω) .

The following statement provides a finite dimensional reduction of the stability problem for Kähler-Ricci soli-
tons. This reduction represents a different and more sharp formulation of the solution of this well known
problem obtained recently in [28].

Theorem 1. (Main result. The stability of Kähler-Ricci solitons)
Let (X, J, g)be a compact Kähler-Ricci soliton and let Ω > 0be the unique smooth volume formwith

∫︀
X Ω = 1

such that ω := gJ = RicJ(Ω). Then for all (v, V) ∈ TJ,>0
g,Ω the Hessian form of Perelman’s W functional with

respect to the pseudo-Riemannian structure G at the point (g, Ω), in the direction (v, V) satisfies the inequality

∇GDW (g, Ω) (v, V; v, V) 6 0 , (1.19)

with equality if and only if

(v, V) ∈ KerDg,ΩH ∩TJ,0g,Ω (1.20)

= T[g,Ω]ω ,(g,Ω) ⊕G H0,1
g,Ω

(︀
TX,J

)︀
0 (1.21)

⊇ TCKRSω ,(g,Ω) . (1.22)

In more explicit/classic terms the previous statement shows that for any smooth curve (gt , Ωt)t∈R ⊂M ×V1
(not necessarily in Sω!) with (g0, Ω0) = (g, Ω) a Kähler-Ricci soliton and with (ġ0, Ω̇0) = (v, V) ∈ TJ,>0

g,Ω holds
the inequality

d2
dt2 |t=0

W(gt , Ωt) 6 0 ,

with equality if and only if (v, V) ∈ KerDg,ΩH ∩TJ,0g,Ω. (This is precisely the statement obtained in [28]). The
identity (1.21) and the inclusion (1.22) are part of the statement in themain theorem 1.We deduce in particular
that the second variation ofW is istrictly negative in the directionsEJg,Ω[0].

In section 17 we obtain also a quite sharp second variation formula for Perelman’s W functional with
respect to more general variations (v, V) ∈ Fg,Ω over a Kähler-Ricci soliton point (g, Ω). These variations
arise from variations of Kähler structures preserving the first Chern class of X.

This formula provide a precise control of the sign of the second variation of Perelman’s W functional
over a Kähler-Ricci soliton point. This can be of independent interest for experts. (In particular we will see
below some general consequences for the classical stability of Kähler-Einstein metrics.) For our geometric
applications the most striking particular case is the one corresponding to the main theorem 1.

The highly geometric nature of the Soliton-Kähler-Ricci flow combined with the main theorem 1, suggest
to the author the following version of the Hamilton-Tian conjecture (compare with the statements made in
[38] and [6]).

Conjecture 1. Let (X, J0) be a Fanomanifold and let ω ∈ 2πc1(X, [J0]) be an arbitrary J0-invariant Kähler form.
Then there exists an analytic subset Σ ⊂ X of real codimension greater or equal to 4, which is empty for generic
choices of J0 inside [J0] and ω inside 2πc1(X, [J0]), there exists a smooth complex structure J ∈ [J0] outside Σ
and a smooth volume form Ω > 0 outside Σ such that;⎧⎪⎨⎪⎩

ω = RicJ(Ω) ,

∂TX,J
(︁
ω−1d log ωn

Ω

)︁
= 0 ,

outside Σ, i.e. the Riemannian metric g := −ωJ, is a smooth J-invariant Kähler-Ricci soliton outside Σ. The triple
(J, g, Ω) is obtained as the limit in the smooth topology of X r Σ, as t → +∞, of the Soliton-Kähler-Ricci flow
with initial data (J0, g0, Ω0) where g0 := −ωJ0 and ω = RicJ0 (Ω0), with

∫︀
X Ω0 = 1.
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We explain now a very particular consequence of our study of the stability problem. This consequence pro-
vides a result on the stability in the classical sense of Kähler-Einsteinmanifolds.We introduce first a fewbasic
notations.

Let (X, J) be a compact Kähler manifold and let c1 ≡ c1(X, [J]) ∈ H2
d(X,R). We denote by KS the space

of Kähler structures over X and we set

KS2πc1 :=
{︀
(J, g) ∈ KS | gJ ∈ 2πc1

}︀
.

We define also the set KVJ
g(2πc1) of symmetric variations of Kähler structures preserving the first Chern

class of X. The latter is defined as the set of elements v ∈ C∞
(︀
X, S2RT*X

)︀
such that there exists a smooth curve

(Jt , gt)t ⊂ KS2πc1 with (J0, g0) = (J, g), ġ0 = v and J̇0 = (J̇0)Tg . In section 14 we show the inclusion

KV
J
g(2πc1) ⊆ DJ

g,0 , (1.23)

with

D
J
g,0 :=

{︁
v ∈ C∞

(︁
X, S2RT*X

)︁
| ∂gTX,J (v

′
J)*g = 0, ∂TX,J (v

′′
J )*g = 0,

{︀
v′J J

}︀
d = 0

}︁
,

where v′J and v′′J denote respectively the J-invariant and J-anti-invariant parts of v and {α}d denotes the De
Rham cohomology class of any d-closed form α. We introduce also the classical stability operator (see [2])

Lg := ∆g − 2Rg* ,

acting on smooth symmetric 2-tensors. With these notations we can state the following stability (in the clas-
sical sense) result.

Theorem 2. Let (X, J, g) be a Fano Kähler-Einstein manifold. Then for any v ∈ Ker∇*g ∩ DJ
g,0, holds the in-

equality ∫︁
X

⟨︀
Lgv, v

⟩︀
g dVg > 0 ,

with equality if and only if v*g ∈ H0,1
g

(︀
TX,J

)︀
.

(See sub-section 17.1 for the proof). A similar result in the case of negative or vanishing first Chern class has
been proved in the remarkable paper [9] (see also [8]). The statement about the equality case holds also un-
der more general assumptions (see lemma 29 in the appendix B). We wish to point out to the readers that
the sections 4 and 5 are not needed for the proof of the main result. However section 4 is crucial for the gen-
eral gradient flow picture explained in this paper. In the next section we enlighten the results obtained by
other authors in the long standing problem of the stability of Kähler-Ricci solitons and on the Hamilton-Tian
conjecture.

2 Other works on the subject
A question of central importance in complex differential geometry is the Hamilton-Tian conjecture.

Solutions of this conjecture have been posted on the arXiv server in (2013) by Tian-Zhang [38] in complex
dimension 3 and quite recently by Chen-Wang [6] in general.

Since we have learned about this conjecture in 2004 we immediately asked ourself which one is the pre-
cise notion of gauge needed for the convergence. (The Kähler-Ricci flow

(︀
J0, ĝt

)︀
t>0 needs to bemodified since

its formal limit
(︀
J0, ĝ∞

)︀
as t → +∞ is a is a Kähler-Einstein metric, but Fano manifolds do not always admit

such ones!)
It turns out that the Soliton-Kähler-Ricci flow introduced in this paper corresponds to a modification of

the Kähler-Ricci flow via the gauge provided by the gradient of the Ricci potentials.
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To the very best of our knowledge the Soliton-Kähler-Ricci flow with variable volume forms introduced
in this paper does not appear nowhere in the literature.

In our previous works [24] and [25], we introduced also the notion of Soliton-Kähler-Ricci flow with fixed
volume form. This leads to a complete different approach which conducts naturally to the study of the exis-
tence of ancient solutions of the Kähler-Ricci flow and their modified (according to [24] and [25]) convergence
as t → −∞. This approach requires some particular geometric conditions (which imply some strong regu-
larity) on the initial data. The key point in [24] and [25] is that these conditions represent a conservative law
along the Soliton-Kähler-Ricci flowwith fixed volume form. These conditions imply good convexity properties
for the convergence of this flow.

We review now the modifications of the Kähler-Ricci flow made by other authors. We can find two fre-
quent approaches in the literature. One is based on the gauge transformation generated by a holomorphic
vector field with imaginary part generating an S1-action on the manifold (see [34] and [31] for a very elegant
construction). A Kähler-Ricci-soliton vector field provides such example.

The second approach, which has been used quite intensively in the last years is based on the gauge
modification constructed via the minimizers of Perelman’sW functional (see [36] and [33]). As far as known
the minimizers are unique only in a small neighborhood of the Kähler-Ricci soliton. Therefore the ”modified
Kähler-Ricci flow” in [36] and [33] exists only in such small neighborhood.

For historical reasons it is important to remind that Hamilton [17] pointed out first that to any flow of
Kähler structureswithfixed complex structure corresponds another flowofKähler structureswhichpreserves
the symplectic form (see also Donaldson [10] for the same remark). He suggested this approach for the study
of the Kähler-Ricci flow. As far as we know he did not pursuit on this idea.

As explained in the introduction our definition of the Soliton-Ricci flow with variable volume forms was
inspired to us from Perelman’s twice contracted second Bianchi type identity and from the strict ellipticity of
the first variation of the maps h and H in the directions F.

It was surprising for us to discover that the corresponding Soliton-Kähler-Ricci flowwith variable volume
forms (from now on we will refer only to this flow) preserves the symplectic structure.

We realized quickly the power of this fact. It allows indeed the application of Futaki’s weighted complex
Bochner identity and the uniform lower bound on the first eigenvalue of the complex weighted Laplacian
[13]. Themain feature of the Soliton-Kähler-Ricci flow in this paper is the jumping of the complex structure at
the limit when t → +∞. This phenomenon is necessary for the existence of Kähler-Ricci solitons in general.
We learned for the first time about this key phenomenon in the Pioneer work of [30]. In this fundamental
work the authors introduce a condition on stability (is the condition (B) in [30]) witch is the key phenomenon
occurring in the convergence of the Kähler-Ricci flow. We refer also to [32] for further developments.

We remind now that by definition, the stability of a critical point of a functional corresponds to determine
a sign of its second variation in determinate directions.

The stability of critical metrics for natural geometric functionals was naturally born with differential ge-
ometry (see [2]). The main classic example is the Einstein metric. In the case of this metric the corresponding
functional is the integral of the scalar curvature.

In 2003 Grigory Perelman astonished the mathematical community with his spectacular proof of the
Poincaré conjecture. In this celebratedpaper [29] he introduced various entropy functionals for Ricci-solitons.
Shrinking Ricci-solitons correspond to critical points of hisW functional or his entropy functional ν.

Since then, the second variation of Perelman’s functionalsW and ν has been studied quite intensively. It
started in 2004with theworks of Cao-Hamilton-Imlanen [3], [4] andTian-Zhu [35] independently. It continued
with [5] and [15], [16].

We wish to point out that the results in this paper and in [23] are of completely different nature with
respect to the previous works. The reason is that in our work we compute the second variation of Perelman’s
W functional with respect to the pseudo-Riemannian structure G. (The work [23] is a particular case.)

An important fact about Kähler-Ricci solitons is that once they exist, one can obtain the Einstein condi-
tion by proving the vanishing of the Futaki invariant [12]. From our point of view they provide a natural and
necessary generalization in order to control the Einstein condition.
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The stability of Kähler-Ricci solitons is important in order to understand the convergence of the Kähler-
Ricci flow. The first work on the subject is due to Tian-Zhu, see [35].

In 2009 Sun-Wang [33] posted on the arXiv server a stability result for the Kähler-Ricci flow basing on
the Lojasiewicz inequality (see [7]). In this paper the authors use the modified flow in [36]. The same method
was used in Ache [1], where a uniform bound assumption on the curvature is made. We report finally a quite
recent work on the same subject by Kröncke [19]. This author combines the technical details in [33], [1] and
[7] in the Riemannian set up.

The statements made in this section are based on the very best of our knowledge and understanding of
the subject. We sincerely apologize to other authors in case of inaccuracies or omissions in the claims of this
section.

3 Proof of the first variation formulas for the maps h and H

3.1 The first variation of the Bakry-Emery-Ricci tensor

We remind (see [23]) that the first variation of the Bakry-Emery-Ricci tensor with fixed volume form Ω > 0 is
given by the formula

2 ddt Ricgt (Ω) = −∇
*Ω
gt Dgt ġt , (3.1)

whereDg := ∇̂g − 2∇g, with ∇̂g being the symmetrization of∇g acting on symmetric 2-tensors. Explicitly

∇̂gα(ξ0, ..., ξp) :=
p∑︁
j=0
∇α(ξj , ξ0, ..., ξ̂j , ..., ξp),

for all p-tensors α. Fixing an arbitrary time τ and time deriving at t = τ the decomposition

Ricgt (Ωt) = Ricgt (Ωτ) −∇gtd log
Ωt
Ωτ

,

we deduce, thanks to (3.1), the general variation formula

2 ddt Ricgt (Ωt) = −∇
*Ωt
gt Dgt ġt − 2∇gtd

Ω̇t
Ωt

. (3.2)

This formula implies directly Perelman’s general first variation formula for theW functional (see appendix
A). We define the Hodge Laplacian (resp. the Ω-Hodge Laplacian) operators acting on q-forms as

∆TX,g := ∇TX,g∇
*
g +∇*g∇TX,g ,

∆ΩTX,g := ∇TX,g∇
*Ω
g +∇*Ωg ∇TX,g .

We remind also the following Weitzenböck type formula proved in [24]

Lemma 3. Let (X, g) be a orientable Riemannian manifold, let Ω > 0 be a smooth volume form and let A ∈
C∞(X, End(TX)). Then

∆ΩTX,gA = ∆Ωg A −Rg * A + A Ric*g(Ω),

Where (Rg * A) ξ := Trg [(ξ¬Rg)A] for all ξ ∈ TX .

In analogy to the Ω-Hodge Laplacian we can define the Laplace type operator

∆̂Ωg := ∇*Ωg ∇̂g − ∇̂g∇*Ωg : C∞(X, SpT*X) −→ C∞(X, S2T*X).
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Using this notation we observe that for any u ∈ C∞(X, S2T*X) hold the identities

−∇*Ωg Dgu =
(︁
2∆Ωg − ∆̂Ωg

)︁
u − ∇̂g∇*Ωg u

=
(︁
2∆Ωg − ∆̂Ωg

)︁
u − L∇*Ω

g u*g
g,

The last one follows from the equalities ∇*Ωg u = g∇*Ωg u*g and ∇̂g(gξ ) = Lξ g, ξ ∈ C∞(X, TX). We observe now
that for any symmetric 2-tensor u the tensor Rg * u is also symmetric. In fact let (ek)k be a g(x)-orthonormal
base of TX,x. Then

−(Rg * u)(ξ , η) = Rg(ξ , ek , u*gek , η) = Rg(η, u*gek , ek , ξ ).

Furthermore if we choose the g(x)-orthonormal base (ek)k such that u is diagonal with respect to this one,
then

Rg(η, u*gek , ek , ξ ) = Rg(η, ek , u*gek , ξ ) = −(Rg * u)(η, ξ ).

We observe also that the previous computation shows the identity

(Rg * u)(ξ , η) = Rg(ξ , ek , η, u*gek)

= g(Rg(ξ , ek)u*gek , η)

= g
(︁(︁

Rg * u*g
)︁
ξ , η

)︁
,

i.e
(Rg * u)*g = Rg * u*g . (3.3)

We deduce in particular the equality
Rg * u*g =

(︁
Rg * u*g

)︁T
g
. (3.4)

We remind that the Ω-Lichnerowicz Laplacian ∆ΩL,g is self-adjoint with respect to the scalar product (1.1)
thanks to the identity (1.3) that we show now.

We pick a g(x)-orthonormal base (ek)k ⊂ TX,x such that v is diagonal with respect to this one at the point
x. Using (3.3) we infer

⟨Rg * u, v⟩g = TrR
[︁(︁

Rg * u*g
)︁
v*g
]︁

= Rg(v*gel , ek , el , u*gek)

= Rg(el , ek , v*gel , u*gek)

= Rg(ek , el , u*gek , v*gel)

= ⟨Rg * v, u⟩g ,

since these identities are independent of the choice of the g(x)-orthonormal base (ek)k ⊂ TX,x.

Lemma 4. For any g ∈M and u ∈ C∞(X, S2T*X) holds the Weitzenböck type formula

−∇*Ωg Dgu = ∆ΩL,gu − L∇*Ω
g u*g

g.
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Proof. The required formula follows from the identity

∆ΩL,gu =
(︁
2∆Ωg − ∆̂Ωg

)︁
u. (3.5)

In order to show this identity we expand ∆̂Ωg u = ∇*Ωg ∇̂gu − ∇̂g∇*Ωg u. We observe first

∇*Ωg ∇̂gu(ξ , η) = ∇*g∇̂gu(ξ , η) + ∇̂gu(∇g f , ξ , η).

We fix an arbitrary point x0 ∈ X and we choose the vector fields ξ and η such that 0 = ∇gξ (x0) = ∇gη(x0).
Let (ek)k be a g-orthonormal local frame such that∇gek(x0) = 0. Then at the point x0 hold the identities

∇*g∇̂gu(ξ , η) = −∇g,ek∇̂gu(ek , ξ , η)

= −∇g,ek
[︁
∇̂gu(ek , ξ , η)

]︁
= −∇g,ek

[︀
∇gu(ek , ξ , η) +∇gu(ξ , ek , η) +∇gu(η, ek , ξ )

]︀
= −∇g,ek∇g,eku(ξ , η) −∇g,ek∇g,ξu(ek , η) −∇g,ek∇g,ηu(ek , ξ ),

and

∇̂gu(∇g f , ξ , η) = ∇gu(∇g f , ξ , η) +∇gu(ξ ,∇g f , η) +∇gu(η,∇g f , ξ ).

Moreover

∇̂g∇*Ωg u(ξ , η) = ∇̂g∇*gu(ξ , η) + ∇̂g (∇g f¬u) (ξ , η),

and at the point x0 hold the identities

∇̂g∇*gu(ξ , η) = ∇g,ξ∇*gu · η +∇g,η∇*gu · ξ

= ∇g,ξ
[︁
∇*gu · η

]︁
+∇g,η

[︁
∇*gu · ξ

]︁
= −∇g,ξ

[︀
∇g,eku(ek , η)

]︀
−∇g,η

[︀
∇g,eku(ek , ξ )

]︀
= −∇g,ξ∇g,eku(ek , η) −∇g,η∇g,eku(ek , ξ ),

and

∇̂g (∇g f¬u) (ξ , η) = ∇g,ξ (∇g f¬u) · η +∇g,η (∇g f¬u) · ξ

= ∇g,ξ
[︀
u(∇g f , η)

]︀
+∇g,η

[︀
u(∇g f , ξ )

]︀
= ∇gu(ξ ,∇g f , η) +

(︁
u∇2

g f
)︁
(ξ , η) +∇gu(η,∇g f , ξ ) +

(︁
∇gdfu*g

)︁
(ξ , η).

Let now A ∈ C∞(X, End(TX)). We denote by A¬u the 2-tensor defined by the formula

(A¬u)(ξ , η) := u(Aξ , η) + u(ξ , Aη).

We observe that if µ, ζ are two germs of vector fields near x0 such that [µ, ζ ] (x0) = 0 then holds the identity
at the point x0

∇g,µ∇g,ζ u −∇g,ζ∇g,µu = −Rg(µ, ζ )¬u.
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Using this identity we infer the equalities at the point x0(︀
∇g,ξ∇g,eku −∇g,ek∇g,ξu

)︀
(ek , η) = −u

(︀
Rg(ξ , ek)ek , η

)︀
− u

(︀
ek ,Rg(ξ , ek)η

)︀
= −

(︁
u Ric*(g)

)︁
(ξ , η) + (Rg * u)(ξ , η),

(∇g,η∇g,eku −∇g,ek∇g,ηu) (ek , ξ ) = −
(︁
Ric(g)u*g

)︁
(ξ , η) + (Rg * u)(ξ , η),

by obvious symmetries. Combining the identities obtained so far and simplifying we obtain the identity

∆̂Ωg u = ∆Ωg u + 2Rg * u − u Ric*g(Ω) − Ricg(Ω)u*g ,

which in its turn implies the required identity (3.5).

The Weitzenböck type identity in lemma 4 combined with the variation formula (3.2) implies directly the
variation formula (1.4).

3.2 Proof of the first variation formula for Perelman’s H-function

We show now the variation formula (1.5). For this purpose let 0 < (gt , Ωt)t ⊂M × V1 be a smooth family and
set as usual ft := log dVgt

Ωt . We start time deriving the identity

−∆Ωtgt ft = divΩt ∇gt ft .

We compute first the variation of the Ω-divergence operator. Set ut := Ω̇*t and time derive the definition iden-
tity

d (ξ¬Ωt) = (divΩt ξ )Ωt .

We infer

d (ξ¬utΩt) =
(︂
d
dt div

Ωt ξ
)︂
Ωt + ut(divΩt ξ )Ωt .

Moreover expanding the left hand side we obtain

d (ξ¬utΩt) = (ξ .ut)Ωt + utd (ξ¬Ωt) ,

which implies the formula (︂
d
dt div

Ωt
)︂
ξ = g

(︁
∇gΩ̇*t , ξ

)︁
.

We observe also the variation formulas
d
dt (∇gt ft) = ∇gt ḟt − ġ

*
t∇gt ft , (3.6)

and
ḟt =

1
2 Trgt ġt − Ω̇*t . (3.7)

Combining all these formulas we obtain

− ddt ∆
Ωt
gt ft =

(︂
d
dt div

Ωt
)︂
∇gt ft + divΩt

d
dt (∇gt ft)

= gt
(︁
∇gt Ω̇*t ,∇gt ft

)︁
+ ∆Ωtgt

(︂
Ω̇*t −

1
2 Trgt ġt

)︂
− divΩt

(︁
ġ*t∇gt ft

)︁
.
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We expand last term using the identity

divΩ ξ = TrR (∇gξ ) − g (ξ ,∇g f ) .

We obtain with respect to a gt(x)-orthonormal basis (ek)k ⊂ TX,x at an arbitrary space-time point (x, t)

divΩt
(︁
ġ*t∇gt ft

)︁
= gt(∇g,ek

(︁
ġ*t∇gt ft

)︁
, ek) − gt

(︁
ġ*t∇gt ft ,∇gt ft

)︁
= gt

(︁
∇g,ek ġ*t ·∇gt ft + ġ*t∇g,ek∇gt ft , ek

)︁
− gt

(︁
ġ*t∇gt ft ,∇gt ft

)︁
= gt

(︁
∇gt ft ,∇g,ek ġ*t · ek

)︁
+ gt

(︁
∇2
g,ek ft , ġ

*
t ek

)︁
− gt

(︁
∇gt ft , ġ*t∇gt ft

)︁
= −gt

(︁
∇*Ωtgt ġ

*
t ,∇gt ft

)︁
+ ⟨∇gtdft , ġt⟩gt .

We infer the variation formula

− ddt ∆
Ωt
gt ft = ∆Ωtgt

(︂
Ω̇*t −

1
2 Trgt ġt

)︂
+ gt

(︁
∇*Ωtgt ġ

*
t +∇gt Ω̇*t ,∇gt ft

)︁
− ⟨ġt ,∇gtdft⟩gt . (3.8)

We observe next the identity

2 ddt h
*
t = 2ḣ*t − 2ġ*t h*t

= ∆Ωtgt ġ
*
t − 2(Rgt * ġt)*t + ġ*t Ric*gt (Ωt) + Ric

*
gt (Ωt)ġ

*
t −

(︂
L
∇
*Ωt
gt ġ

*
t+∇gt Ω̇*t

gt
)︂*
t
− 2ġ*t − 2ġ*t h*t ,

thanks to the variation formula (1.4). We deduce the formula
d
dt Trgt ht =

1
2∆

Ωt
gt Trgt ġt −

⟨︀
ġt , Ric(gt)

⟩︀
gt
− divgt

(︁
∇*Ωtgt ġ

*
t +∇gt Ω̇*t

)︁
, (3.9)

thanks to the identities

Trg (Rg * v) =
⟨︀
v, Ric(g)

⟩︀
g , (3.10)

Trg(Lξ g) = 2 TrR(∇gξ ) = 2 divg ξ . (3.11)

In order to show the identity (3.10) we expand with respect to a g(x)-orthonormal basis (ek)k ⊂ TX,x the term

Trg (Rg * v) = (Rg * v) (ek , ek)

= −v(Rg(ek , el)ek , el)

= g
(︁
v*gel , Ric*(g)el

)︁
=

⟨︀
v, Ric(g)

⟩︀
g .

The first equality in (3.11) follows from the elementary identity

(Lξ g)*g = ∇gξ + (∇gξ )Tg ,

where ATg denotes the transpose of an endomorphism A of TX with respect to g.
In conclusion combining the variation formulas (3.8), (3.9) and (3.7) we infer the variation identity

2Dg,ΩH (v, V) = ∆Ωg V*Ω − divΩ
(︁
∇*Ωg v*g +∇gV*Ω

)︁
− 2V*Ω −

⟨︀
v, hg,Ω

⟩︀
g ,

and thus the required variation formula (1.5).
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4 The Soliton-Kähler-Ricci Flow with variable volume forms

4.1 Existence of the Soliton-Kähler-Ricci flow

We prove in this sub-section lemma 1.

Proof. From now on we will set for notation simplicity ht ≡ hgt ,Ωt , Ht ≡ Hgt ,Ωt and H t ≡ Hgt ,Ωt . We observe
that for any smooth curve (gt , Ωt)t>0 ⊂M × V1 the identity

ft = log dVgtΩt
,

is equivalent to the evolution equation
2ḟt = Trgt ġt − 2Ω̇*t . (4.1)

with initial data f0 := log dVg0
Ω0

. Along the Soliton-Ricci flow, the equation (4.1) rewrites as

2ḟt = −Trgt ht + 2H t

= −∆Ωtgt ft + 2ft − 2
∫︁
X

HtΩt .

We infer that the Soliton-Ricci flow equation is equivalent to the evolution system⎧⎪⎨⎪⎩
ġt = gt − Ric(gt) −∇gtdft ,

2 ḟt = −∆gt ft − |∇gt ft|2gt + 2ft −W(gt , ft),
(4.2)

with f0 := log dVg0
Ω0

. We consider now the flow of diffeomorphisms (φt)t>0 solution of the equation

2φ̇t = (∇gt ft) ∘ φt ,

with φ0 = IdX and we define (ĝt , f̂t) := φ*t (gt , ft). We observe the evolution formulas

d
dt ĝt = φ*t

(︂
ġt +

1
2L∇gt ftgt

)︂

= φ*t
[︀
gt − Ric(gt)

]︀
= ĝt − Ric(ĝt),

and

2 ddt f̂t = 2ḟt ∘ φt + 2dφt ft · φ̇t

= 2ḟt ∘ φt + dφt ft · [(∇gt ft) ∘ φt]

=
(︁
2ḟt + dft ·∇gt ft

)︁
∘ φt

=
(︁
2ḟt + |∇gt ft|2gt

)︁
∘ φt ,

We deduce thanks to the diffeomorphism invariance of the W functional that the evolution system (4.2) is
equivalent to ⎧⎪⎨⎪⎩

d
dt ĝt = ĝt − Ric(ĝt),

2 d
dt f̂t = −∆ĝt f̂t + 2f̂t −W(ĝt , f̂t),

(4.3)
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with initial data (ĝ0, f̂0) := (g0, f0). Notice indeed that we can obtain (4.2) from (4.3) by performing the inverse
gauge transformation (gt , ft) := ψ*t (ĝt , f̂t) with ψt = φ−1t being characterized by the evolution equation

2ψ̇t = −
(︁
∇ĝt f̂t

)︁
∘ ψt ,

ψ0 = IdX. In order to show all time existence and uniqueness of the solutions of the evolution system (4.3)
we consider a solution of the Ricci flow (ǧt)t∈[0,T),

d
dt ǧt = −2Ric(ǧt),

with initial data ǧ0 and 0 < T < +∞. Then (ĝt)t>0 defined by

ĝt := et
2T ǧT(1−e−t),

satisfies the evolution equation relative to themetrics in (4.3). Thenwe set λ := 2T. In the case (X, J0) is a Fano
variety and ǧ0J0 ∈ 2πc1(X) we can choose λ = 1 since the the evolution equation of ĝt in (4.3) represents a
solution of the Kähler-Ricci flow equation.

The existence and uniqueness of the solutions of the evolution equation for f̂t in (4.3) follows directly
from standard parabolic theory with respect to Hölder spaces. Notice indeed that the presence of the integral
termW(ĝt , f̂t) (we consider the expression involving the H1(X) norm of f ) does not produce any issue in this
theory.

In theFano set upwedefine the complex structures Jt := ψ*t J0. Then the family (Jt , gt)t>0 represents aflow
of Kähler structures since (J0, ĝt)t>0 is also a flow of Kähler structures. The identity φ*t Jt ≡ J0 is equivalent to
the equality

0 = d
dt (φ

*
t Jt)

= φ*t
(︂
J̇t + 1

2 L∇gt ft Jt
)︂

= φ*t
(︁
J̇t + Jt ∂TX,Jt∇gt ft

)︁
,

i.e to the equation

J̇t = −Jt ∂TX,Jt∇gt ft .

This combined with the Jt-linearity of the first two terms in the right hand side of the complex decomposition

Ric*gt (Ωt) = Ric*(gt) + ∂gtTX,Jt∇gt ft + ∂TX,Jt∇gt ft ,

implies the required characterization 2J̇t =
[︀
Jt , ġ*t

]︀
of the evolution of the complex structures Jt.

4.2 Monotony of Perelman’sW-functional along the Soliton-Kähler-Ricci flow

We observe first the following elementary fact.

Lemma 5. Let (X, J) be a Fano manifold and let g be a J-invariant Kähler metric with symplectic form ω :=
gJ ∈ 2πc1(X, [J]). Then (J, g) is a Kähler-Ricci soliton if and only if there exists a smooth volume form Ω > 0
with

∫︀
X Ω = 1 such that

(S)

⎧⎪⎨⎪⎩
ω = RicJ(Ω),

∆Ωg f − 2f + 2
∫︀
X fΩ = 0, f := log ωn

n!Ω .
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Proof. We assume first that (J, g) is a Kähler-Ricci soliton. Then Perelman’s twice contracted Bianchi type
identity (1.2) implies Hg,Ω = 0. The latter is equivalent to the second equation of the system (S) thanks to
the identity Trg hg,Ω = 0. We show now that the solution of the system (S) implies that (J, g) is a Kähler-Ricci
soliton. Indeed multiplying by ∇g f both sides of the identity (1.2) and integrating by parts we obtain the
general formula ∫︁

X

⟨
h*g,Ω ,∇2

g f
⟩
g
Ω = −

∫︁
X

Hg,Ω∆
Ω
g fΩ. (4.4)

In our case this rewrites as
2
∫︁
X

⃒⃒⃒
∂TX,J∇g f

⃒⃒⃒2
g
Ω =

∫︁
X

(∆Ωg − 2I)f∆Ωg fΩ, (4.5)

thanks to the condition ω = RicJ(Ω) and the complex decomposition of the Bakry-Emery-Ricci tensor. We
infer the required conclusion.

We provide now a proof of the monotony statement in lemma 2.

Proof. STEP I. Let (J, ĝt)t>0 be a solution of the Kähler-Ricci flow and observe that this equation rewrites in
the equivalent form ⎧⎪⎨⎪⎩

d
dt ω̂t = i ∂J∂J log

ω̂nt
Ω̂t
,

ω̂t = RicJ(Ω̂t),
∫︀
X Ω̂t = 1,

(4.6)

with ω̂t := ĝtJ, and ω̂0 := ω. We define the function

f̂t := log ω̂nt
Ω̂tn!

,

and we observe the analogue of (4.1)

2 ddt f̂t = Trω̂t
d
dt ω̂t − 2

(︂
d
dt Ω̂t

)︂*
t
.

This combined with the first equation in (4.6) implies

2 ddt f̂t = −∆ĝt f̂t − 2
(︂
d
dt Ω̂t

)︂*
t
. (4.7)

On the other hand time differentiating the identity ω̂t = RicJ(Ω̂t) in (4.6) we obtain

2 ddt ω̂t = 2 ddt RicJ(Ω̂t) = −2i ∂J∂J
(︂
d
dt Ω̂t

)︂*
t
,

which combined with (4.7) implies

2i ∂J∂J f̂t = i ∂J∂J
(︂
2 ddt f̂t + ∆ĝt f̂t

)︂
,

i.e.

2 ddt f̂t = −∆ĝt f̂t + 2f̂t + Ct ,

for some time dependent constant Ct which can be determined time deriving the integral condition
∫︀
X Ω̂t = 1.

Indeed using (4.7) we obtain

0 = −2
∫︁
X

(︂
d
dt Ω̂t

)︂*
t
Ω̂t

=
∫︁
X

[︂
2 ddt f̂t + ∆ĝt f̂t

]︂
Ω̂t

= Ct + 2
∫︁
X

f̂tΩ̂t .
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We infer the evolution formula

2 ddt f̂t = −∆ĝt f̂t + 2f̂t − 2
∫︁
X

f̂te−f̂tdVĝt , (4.8)

with initial data

f̂0 := log ωn
Ωn! .

We observe now that the identity ω̂t = RicJ(Ω̂t) in (4.6) implies

ĝt = −RicJ(Ω̂t)J = Ricĝt (Ω̂t) − ĝt∂TX,J∇ĝt f̂t , (4.9)

and thus Trĝt hĝt ,Ω̂t = 0. We deduce the equality

W(ĝt , f̂t) = 2
∫︁
X

f̂te−f̂tdVĝt . (4.10)

We infer by Cauchy’s uniqueness that the evolution equation (4.8) is equivalent with the second evolution
equation in (4.3). We obtain, as in the proof of lemma 1, a Soliton-Kähler-Ricci flow (Jt , ωt , Ωt)t>0 with initial
data (J0, ω0, Ω0) = (J, ω, Ω).We observe that thanks to (4.9) and (4.10) the Soliton-Ricci flowevolution system
(4.2) writes in our case as ⎧⎪⎨⎪⎩

ġt = −gt∂TX,Jt∇gt ft ,

2ḟt = −∆Ωtgt ft + 2ft − 2
∫︀
X fte

−ftdVgt .
(4.11)

Time deriving the identity ωt = gtJt and using the evolution formula for the complex structure 2J̇t =
[︀
Jt , ġ*t

]︀
in the Soliton-Kähler-Ricci flow equation we infer

ω̇t = ġtJt + gt J̇t

= 1
2 gt

(︁
ġ*t Jt + Jt ġ*t

)︁
= 1

2ωt
(︁
ġ*t − Jt ġ*t Jt

)︁
= ωt(ġ*t )1,0J

= 0,

thanks to the first equation in (4.11). We deduce ωt ≡ ω and thus the identity in time

ω = RicJt (Ωt). (4.12)

STEP IIa.We provide nowafirst proof of themonotony statement for the Soliton-Kähler-Ricci flow. The equal-
ity (4.10) rewrites as

W(gt , Ωt) = 2
∫︁
X

fte−ft
ωn
n! ≡ 2

∫︁
X

ftΩt , (4.13)

thanks to the invariance by diffeomorphisms ofW. Let

Ft := ft −
∫︁
X

ftΩt ,

and observe that the second evolution equation in (4.11) rewrites as

2ḟt = −∆Ωtgt Ft + 2Ft . (4.14)
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Time deriving the expression (4.13) and using the evolution equation (4.14) we infer
d
dtW(gt , Ωt) = 2

∫︁
X

(︁
ḟt − ft ḟt

)︁
Ωt

= −2
∫︁
X

ft ḟt Ωt

=
∫︁
X

(︁
∆Ωtgt Ft − 2Ft

)︁
Ft Ωt > 0,

thanks to the estimate λ1(∆Ωg ) > 2 for the first eigenvalue λ1(∆Ωg ) of the weighted Laplacian ∆Ωg in the case
gJ = RicJ(Ω). (See the estimate (13.15) in the section 13.) Indeed by the variational characterization of the first
eigenvalue holds the estimate

2 6 λ1(∆Ωg ) = inf

⎧⎨⎩
∫︁
X

∆Ωg u u Ω | u ∈ C∞Ω (X,R)0 :
∫︁
X

u2Ω = 1

⎫⎬⎭ , (4.15)

which implies
0 6

∫︁
X

(︁
∆Ωg F − 2F

)︁
FΩ, (4.16)

with

F := f −
∫︁
X

fΩ, f := log dVgΩ .

We assume now equality in (4.16). We assume also F ≠ 0 otherwise g will be a J-invariant Kähler-Einstein
metric. Equality in (4.16) implies 2 = λ1(∆Ωg ) and

u0 := F

⎡⎣∫︁
X

F2Ω

⎤⎦−1/2 ,
attains the infinitum in (4.15). Thus we can apply the method of Lagrange multipliers to the functionals

Φ(u) :=
∫︁
X

∆Ωg uuΩ,

Ψ(u) :=
∫︁
X

u2Ω,

over the space C∞Ω (X,R)0. We have the equalities

2 = min
Ψ=1

Φ = Φ(u0),

which imply Du0Φ = µDu0Ψ , i.e. ∆Ωg u0 = µu0, with µ = 2. The latter is equivalent to the equation ∆Ωg F = 2F.
Then the required conclusion follows from lemma 5.

STEP IIb. We give here a different proof of the monotony statement. We remind first that Perelman’s first
variation formula for theW functional [29] writes as

Dg,ΩW(v, V) = −
∫︁
X

[︁⟨︀
v, hg,Ω

⟩︀
g − 2V

*
ΩHg,Ω

]︁
Ω.

Thus along the Soliton-Ricci flow holds the identity
d
dtW(gt , Ωt) =

∫︁
X

[︁⃒⃒
hgt ,Ωt

⃒⃒2
gt
− 2H2

gt ,Ωt

]︁
Ωt .

Then the conclusion follows from the identity (4.12) combined with the elementary lemma below.
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Lemma 6. Let (X, J) be a Fano manifold, let g be a J-invariant Kähler metric with symplectic form ω := gJ ∈
2πc1(X, [J]) and let Ω > 0 be a smooth volume form with

∫︀
X Ω = 1 such that ω = RicJ(Ω). Then∫︁

X

⃒⃒
hg,Ω

⃒⃒2
g Ω > 2

∫︁
X

H2
g,ΩΩ, (4.17)

with equality if and only if (J, g) is a Kähler-Ricci soliton.

Proof. The condition ω = RicJ(Ω) and the complex decomposition of the Bakry-Emery-Ricci tensor in [25]
imply

hg,Ω = g∂TX,J∇g f ,

and thus Trg hg,Ω = 0. We deduce

2Hg,Ω = −(∆Ωg − 2I)F. (4.18)

Then ∫︁
X

[︁⃒⃒
hg,Ω

⃒⃒2
g − 2H

2
g,Ω

]︁
Ω =

∫︁
X

[
⃒⃒⃒
∂TX,J∇g f

⃒⃒⃒2
g
− 1
2

⃒⃒⃒
(∆Ωg − 2I)F

⃒⃒⃒2
]Ω

=
∫︁
X

(∆Ωg − 2I)F · FΩ,

thanks to the integral identity (4.5). The conclusion follows from the variational argument at the end of step
IIa.

Remark 1. We observe that the elementary identities

∇g f = Jω−1df = 2ω−1dcJ f ,

with 2dcJ f := −df · J, allow to rewrite the Soliton-Ricci flow evolution system (4.11) as⎧⎪⎨⎪⎩
J̇t = ∂TX,Jt

(︀
ω−1dft

)︀
,

2ḟt = Trω
(︀
ddcJt ft − dft ∧ d

c
Jt ft

)︀
+ 2ft − 2

∫︀
X fte

−ft ωn
n! .

(4.19)

We notice also that the Soliton-Kähler-Ricci flow evolution system with initial data (J0, g0, Ω0) = (J, g, Ω) such
that ω := gJ = RicJ(Ω) is equivalent to the system (1.6). Indeed the argument in step I of the proof of lemma
2 shows that our Soliton-Kähler-Ricci flow is equivalent to the Kähler-Ricci flow equation (4.6) via the gauge
transformation given by the diffeomorphisms φt. But (1.6) is also equivalent to (4.6) via the same gauge trans-
formation. Notice in fact the identities

d
dt ω̂t = 1

2φ
*
t

(︁
L∇gt ftω

)︁
= φ*t

(︁
i ∂Jt∂Jt ft

)︁
= i ∂J∂J f̂t .

The corresponding identities for the transformation of the complex structure have been considered at the end of
the proof of lemma 1. We infer the equivalence of our Soliton-Kähler-Ricci flow with (1.6).

Remark 2. Let (gt , Ωt)t>0 be the Soliton-Ricci flow and set for notation simplicityWt := W(gt , Ωt), ht := hgt ,Ωt ,
H t := Hgt ,Ωt . Perelman’s twice contracted differential Bianchi identity (1.2) implies

∇*Ωtgt ġ
*
t +∇gt Ω̇*t = 0. (4.20)

Then the fundamental variation formula (1.5) implies the evolution equation along the Soliton-Ricci flow

2 ddt H t = −(∆
Ωt
gt − 2I)H t + |ht|

2
gt − Ẇt . (4.21)
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This combined with the monotony statement in lemma 2 or in [21] implies the inequality

2 ddt H t 6 −(∆
Ωt
gt − 2I)H t + |ht|

2
gt , (4.22)

along the Soliton-Kähler-Ricci flow.

The following section is not needed for the proof of the main result.

5 The second variation of theW functional along the
Soliton-Kähler-Ricci flow

Let (Jt , gt , Ωt)t>0 be the Soliton-Kähler-Ricci flow. In the proof of step I of lemma 2 we obtained the identity

Ẇt = −2
∫︁
X

ft ḟte−ft
ωn
n! .

Time deriving this we obtain

Ẅt = −2
∫︁
X

ḟ 2t Ωt − 2
∫︁
X

ft
(︁
f̈t − ḟ 2t

)︁
Ωt .

Time deriving the identity

0 =
∫︁
X

ḟtΩt ≡
∫︁
X

ḟte−ft
ωn
n! ,

we deduce

0 =
∫︁
X

(︁
f̈t − ḟ 2t

)︁
Ωt ,

and thus the evolution formula

Ẅt = −2
∫︁
X

ḟ 2t Ωt − 2
∫︁
X

Ft
(︁
f̈t − ḟ 2t

)︁
Ωt . (5.1)

We observe now that the second evolution equation in the system (4.11) rewrites as

2ḟt = −∆Ωtgt ft + 2ft −Wt ,

thanks to (4.13). Time deriving this we infer

−2f̈t =
d
dt ∆

Ωt
gt ft − 2ḟt + Ẇt . (5.2)

Plugging the identity (4.20) in the variation formula (3.8) and using the first equation in the system (4.11) we
obtain

d
dt ∆

Ωt
gt ft = ∆Ωtgt H t −

⃒⃒⃒
∂TX,Jt∇gt ft

⃒⃒⃒2
gt

= ∆Ωtgt H t − |ht|
2
gt ,

with 2H t = −(∆Ωtgt − 2I)Ft. Thus ḟt = H t thanks to (4.14). Using (5.2) we infer

−2f̈t = (∆Ωtgt − 2I)H t − |ht|
2
gt + Ẇt .
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(This last follows also from the general evolution formula (4.21).) Integrating by parts we obtain the identity

−2
∫︁
X

Ft f̈tΩt = −
∫︁
X

[︁
2H2

t + Ft |ht|
2
gt

]︁
Ωt ,

(since
∫︀
X FtΩt = 0). Plunging this identity in the evolution formula (5.1) we deduce the simple second varia-

tion formula

Ẅt = −
∫︁
X

[︁
4H2

t +
(︁
|ht|2gt − 2H

2
t

)︁
Ft
]︁
Ωt

= −
∫︁
X

[︂⃒⃒⃒
∂TX,Jt∇gt ft

⃒⃒⃒2
gt
Ft +

1
2

⃒⃒⃒
(∆Ωtgt − 2I)

⃒⃒⃒2
(2 − Ft)

]︂
Ωt .

6 The Levi-Civita connection of the
pseudo-Riemannian structure G
In this section we compute the Levi-Civita connection of the pseudo-Riemannian structure G. This is needed
for the computation of the second variation of the W functional with respect to such structure. We set for
notations simplicity T := TM×V1 and we compute the first variation of G at an arbitrary point (g, Ω),

Dg,ΩG : T × T −→ T*.

In a direction (θ, Θ) ∈ T this is given by the identity

Dg,ΩG(θ, Θ; u, V)(v, V) = d
dt |t=0

Ggt ,Ωt (u, U; v, V),

where (gt , Ωt)t∈(−ε,ε) ⊂ M × V1 is a smooth curve with (g0, Ω0) = (g, Ω) and (ġ0, Ω̇0) = (θ, Θ). For notation
simplicity let denote u*t := g−1t u and U*t := U/Ωt. Then holds the equality

Dg,ΩG(θ, Θ; u, V)(v, V) = d
dt |t=0

⎡⎣∫︁
X

TrR(u*t v*t )Ωt − 2
∫︁
X

U*t V

⎤⎦
=

∫︁
X

[︂
d
dt |t=0

TrR(u*t v*t )
]︂
Ωt +

∫︁
X

TrR(u*t v*t )Θ − 2
∫︁
X

d
dt |t=0

U*t V .

Using the identity d
dt u

*
t = −ġ*t u*t , which follows from the formula

d
dt g

−1
t = −g−1t ġt g−1t ,

we obtain

d
dt TrR(u

*
t v*t ) = TrR

(︂
d
dt u

*
t v*t + u*t

d
dt v

*
t

)︂

= −TrR(ġ*t u*t v*t + u*t ġ*t v*t )

= − 2TrR(ġ*t u*t v*t ) ,
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since ġt is also symmetric. Indeed we observe the elementary identities

TrR
[︁
(u*t ġ*t )v*t

]︁
= TrR

[︁
v*t (u*t ġ*t )

]︁
= TrR

[︁
v*t (u*t ġ*t )

]︁T
t

= TrR
[︁
(u*t ġ*t )Tt v*t

]︁
= TrR(ġ*t u*t v*t ),

where ATt denotes the transpose of A with respect to gt. Time deriving the identity U = U*tΩt we infer

0 = dU*t
dt Ωt + U

*
t Ω̇t ,

and thus

dU*t
dt = −U*t Ω̇*t .

Summing up we infer the expression of the variation of G at the point (g, Ω) in the direction (θ, Θ)

Dg,ΩG(θ, Θ; u, U)(v, V) =
∫︁
X

{TrR[(Θ*Ω − 2θ*g)u*g v*g] + 2Θ*ΩU*ΩV*Ω} Ω.

We can compute now the Levi-Civita connection ∇G = D + ΓG of the pseudo-Riemannian structure G. At a
point (g, Ω) the symmetric bilinear form

ΓG(g, Ω) : T × T −→ T,

is identified by the expression

2Gg,Ω
(︀
ΓG(g, Ω)(u, U; v, V); θ, Θ

)︀
= [Dg,ΩG(u, U; v, V) + Dg,ΩG(v, V; u, U)] (θ, Θ)

− Dg,ΩG(θ, Θ; u, U)(v, V).

Expanding and arranging the terms of the right hand side we obtain

2Gg,Ω
(︀
ΓG(g, Ω)(u, U; v, V); θ, Θ

)︀
=

∫︁
X

{︁
TrR

[︁
(U*Ω − 2u*g)v*g θ*g

]︁
+ 2U*ΩV*ΩΘ*Ω

}︁
Ω

+
∫︁
X

{︁
TrR

[︁
(V*Ω − 2v*g)u*g θ*g

]︁
+ 2V*ΩU*ΩΘ*Ω

}︁
Ω

−
∫︁
X

{︁
TrR

[︁
(Θ*Ω − 2θ*g)u*g v*g

]︁
+ 2Θ*ΩU*ΩV*Ω

}︁
Ω

=
∫︁
X

{︁
TrR

[︁
(U*Ω − 2u*g)v*g θ*g + V*Ωu*g θ*g − Θ*Ωu*g v*g

]︁
+ 2U*ΩV*ΩΘ*Ω

}︁
Ω

=
∫︁
X

TrR
[︁
(u*g(V*Ω − v*g) + v*g(U*Ω − u*g)) θ*g

]︁
Ω

−
∫︁
X

[︁
TrR(u*g v*g) − 2U*ΩV*Ω

]︁
Θ*Ω Ω
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=
∫︁
X

⟨
u(V*Ω − v*g) + v(U*Ω − u*g), θ

⟩
g
Ω

− 2
∫︁
X

[︂
1
2 ⟨u, v⟩g − U

*
ΩV*Ω −

1
2Gg,Ω(u, U; v, V)

]︂
Θ*Ω Ω,

since
∫︀
X Θ = 0. We infer the expression

(ψ, Ψ) ≡ ΓG(g, Ω)(u, U; v, V),

ψ = 1
2

[︁
u(V*Ω − v*g) + v(U*Ω − u*g)

]︁
,

Ψ = 1
4

[︁
⟨u, v⟩g − 2U

*
ΩV*Ω − Gg,Ω(u, U; v, V)

]︁
Ω.

This concludes the computation of the Levi-Civita connection∇G.

7 The second variation of theW functional with respect to the
pseudo-Riemannian structure G

We justify first the geometric interpretation of Fg,Ω provided by the identity (1.7). We observe indeed that
(v, V) ∈ T⊥G

[g,Ω],(g,Ω) if and only if
Gg,Ω(Lξ g, LξΩ; v, V) = 0,

for all ξ ∈ C∞(X, TX), i.e

0 =
∫︁
X

[︁⟨︀
Lξ g, v

⟩︀
g − 2(LξΩ)

*
ΩV*Ω

]︁
Ω

= 2
∫︁
X

[︂⟨
∇gξ , v*g

⟩
g
− (divΩ ξ )V*Ω

]︂
Ω

= 2
∫︁
X

⟨
ξ ,∇*Ωg v*g +∇gV*Ω

⟩
g
Ω,

which shows the required conclusion. We introduce now the operator

LΩg : C∞(X, End(TX)) −→ C∞(X, End(TX)),

defined by the formula

LΩg A := ∆Ωg A − 2Rg * A.

By abuse of notations we define also

LΩg : C∞(X, S2T*X) −→ C∞(X, S2T*X),

defined by the same formula

LΩg v := ∆Ωg v − 2Rg * v.

We observe that (3.3) implies the identity (LΩg v)*g = LΩg v*g. We show now the second variation formula for the
W functional.
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Lemma 7. The Hessian endomorphism∇2
GW(g, Ω) of theW functional with respect to the pseudo-Riemannian

structure G at the point (g, Ω) ∈M × V1 in the directions (v, V) ∈ Fg,Ω is given by the expressions

(u, U) ≡ ∇2
GW(g, Ω)(v, V),

u := −12

(︁
LΩg + Hg,Ω

)︁
v − 1

2V
*
Ωhg,Ω ,

U*Ω := −12

(︁
∆Ωg + Hg,Ω − 2I

)︁
V*Ω +

1
4
⟨︀
hg,Ω , v

⟩︀
g +

1
4Dg,ΩW(v, V).

In particular if hg,Ω = 0 then

u = −12L
Ω
g v,

U*Ω = −12(∆
Ω
g − 2I)V*Ω .

Proof. We consider a smooth curve (gt , Ωt)t∈R ⊂ M × V1 with (g0, Ω0) = (g, Ω) and with arbitrary speed
(ġ0, Ω̇0) = (v, V). We observe that the G-covariant derivative of its speed is given by the expressions

(θt , Θt) ≡ ∇G(ġt , Ω̇t)(ġt , Ω̇t) = (g̈t , Ω̈t) + Γ(gt , Ωt)(ġt , Ω̇t; ġt , Ω̇t),

θt := g̈t + ġt
(︁
Ω̇*t − ġ*t

)︁
,

Θt := Ω̈t +
1
4

[︁
|ġt|2t − 2(Ω̇

*
t )2 − Ggt ,Ωt (ġt , Ω̇t; ġt , Ω̇t)

]︁
Ωt .

We infer

θ*t = d
dt ġ

*
t + Ω̇*t ġ*t ,

Θ*t = d
dt Ω̇

*
t +

1
2(Ω̇

*
t )2 +

1
4 |ġt|

2
gt −

1
4Ggt ,Ωt (ġt , Ω̇t; ġt , Ω̇t).

Using this expressions and Perelman’s first variation formula we expand the Hessian form

∇GDW(gt , Ωt)(ġt , Ω̇t; ġt , Ω̇t) = d2
dt2W(gt , Ωt) − Dgt ,ΩtW(θt , Θt)

= − ddt

∫︁
X

[︁
TrR

(︁
ġ*t h*t

)︁
− 2Ω̇*tHt

]︁
Ωt

+
∫︁
X

[︁
TrR

(︁
θ*t h*t

)︁
− 2Θ*tHt

]︁
Ωt

= −
∫︁
X

[︂
TrR

(︂
d
dt ġ

*
t h*t + ġ*t

d
dt h

*
t

)︂
− 2 ddt Ω̇

*
tHt − 2Ω̇*t Ḣt

]︂
Ωt

−
∫︁
X

[︁
TrR

(︁
ġ*t h*t

)︁
− 2Ω̇*tHt

]︁
Ω̇t

+
∫︁
X

[︁
TrR

(︁
θ*t h*t

)︁
− 2Θ*tHt

]︁
Ωt

= −
∫︁
X

{︁
TrR

[︁
ġ*t

(︁
ḣ*t − ġ*t h*t

)︁]︁
− 2Ω̇*t Ḣt

}︁
Ωt
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− 1
2

∫︁
X

[︁
|ġt|2gt − 2(Ω̇

*
t )2 − Ggt ,Ωt (ġt , Ω̇t; ġt , Ω̇t)

]︁
HtΩt .

Using the variation formulas (1.4) and (1.5) and evaluating the previous identity at time t = 0 we obtain the
expression

∇GDW(g, Ω)(v, V; v, V) = −12

∫︁
X

[︃⟨
LΩg v − L∇*Ω

g v*g+∇gV*Ω
g, v

⟩
g

]︃
Ω

− 1
2

∫︁
X

{−2V*Ω[(∆Ωg − 2I)V*Ω − divΩ
(︁
∇*Ωg v*g +∇gV*Ω

)︁
−
⟨︀
v, hg,Ω

⟩︀
g]}Ω

− 1
2

∫︁
X

[|v|2g − 2(V
*
Ω)2]Hg,ΩΩ,

since
∫︀
X Hg,ΩΩ = 0. Arranging symmetrically the integrand terms via the identity

∇GDW(g, Ω)(v, V; v, V) = Gg,Ω(u, U; v, V),

(u, U) ≡ ∇2
GW(g, Ω)(v, V),

we infer the general expressions

u = −12

(︁
LΩg + Hg,Ω

)︁
v + 1

2L∇*Ω
g v*g+∇gV*Ω

g − 1
2V

*
Ωhg,Ω ,

U*Ω = −12

(︁
∆Ωg + Hg,Ω − 2I

)︁
V*Ω +

1
2

(︂
L∇*Ω

g v*g+∇gV*Ω
Ω
)︂*
Ω
+ 1
4
⟨︀
hg,Ω , v

⟩︀
g +

1
4Dg,ΩW(v, V).

Then the required expression of the Hessian ofW follows from the assumption (v, V) ∈ Fg,Ω. If hg,Ω = 0 then
the required conclusion follows fromPerelman’s twice contracted second Bianchi identity (1.2) which implies
Hg,Ω = 0.

8 The anomaly space of the pseudo-Riemannian structure G
Let Isom0

g,Ω be the identity component of the group

Isomg,Ω :=
{︁
φ ∈ Di�(X) | φ*g = g, φ*Ω = Ω

}︁
,

and let

Killg,Ω := Lie
(︁
Isom0

g,Ω

)︁
≡

{︀
ξ ∈ C∞(X, TX) | Lξ g = 0, LξΩ = 0

}︀
.

We define the anomaly space of the pseudo-Riemannian structure G at an arbitrary point (g, Ω) as the vector
space

A
Ω
g := Fg,Ω ∩ T[g,Ω],g,Ω .

We will study some properties of this space. It is clear by definition that this space is generated by the vector
fields ξ ∈ C∞(X, TX) such that

0 =
[︁
∇*Ωg ∇̂g + d divΩg

]︁
(gξ ) = ∆̂Ωg (gξ ).
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More precisely there exists the exact sequence of finite dimensional vector spaces

0 −→ Killg,Ω −→ Ker ∆̂Ωg −→ A
Ω
g −→ 0

ξ ↦→ gξ = α ↦→
(︁
∇̂gα, (divΩg α)Ω

)︁
.

We observe that if α = du ∈ Ker ∆̂Ωg then the function u satisfies the equation

2∆Ωg∇gu −∇g∆Ωg u = 0,

which is equivalent to the equation [︁
∆Ωg − Ric*g(Ω)

]︁
∇gu = 0, (8.1)

thanks to the general identity
∇g∆Ωg u = ∆Ωg∇gu + Ric*g(Ω)∇gu. (8.2)

We set

Vg,Ω :=
{︁
α ∈ Ker ∆̂Ωg | α = du

}︁
∼=

{︁
u ∈ C∞Ω (X,R)0 |

[︁
∆Ωg − Ric*g(Ω)

]︁
∇gu = 0

}︁
.

We observe that in the soliton case hg,Ω = 0 we have

Vg,Ω ∼= Ker(∆Ωg − 2I) ⊂ C∞Ω (X,R)0, (8.3)

thanks to the identity (8.2). By duality we can consider Killg,Ω ⊂ Ker ∆̂Ωg and we observe the inclusion

Vg,Ω ⊆ Kill⊥g,Ω
g,Ω , (8.4)

where the symbol ⊥g,Ω indicates the orthogonal space inside Ker ∆̂Ωg with respect to the scalar product (1.1)
at the level of 1-forms. The previous inclusion holds true for any (g, Ω) since∫︁

X

⟨du, β⟩g Ω = −
∫︁
X

⟨
u, divΩg β

⟩
g
Ω = 0,

for any β ∈ Killg,Ω. We infer that in the soliton case the previous exact sequence can be reduced to the se-
quence

0 −→ Ker(∆Ωg − 2I) −→ A
Ω
g

u ↦→ 2 (∇gdu, −uΩ) .

In order to show that the previous map is also surjective we need to show a few differential identities. We
show first the Weitzenböck type formula

∆̂Ωg α = ∆Ωg α − α Ric*g(Ω). (8.5)

(This implies in particular the identification ofVg,Ω in terms of functions). We decompose the expression

∆̂Ωg α =
[︁
∇*Ωg ∇̂g − d∇*Ωg

]︁
α. (8.6)

We decompose first the term

∇*Ωg ∇̂gα · ξ = ∇*g∇̂gα · ξ + ∇̂gα(∇g f , ξ ).
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We fix an arbitrary point p and we choose the vector fields ξ and η such that 0 = ∇gξ (p) = ∇gη(p). Let (ek)k
be a g-orthonormal local frame such that∇gek(p) = 0. Then at the point p hold the identities

∇*g∇̂gα · ξ = −∇g,ek∇̂gα(ek , ξ )

= −∇g,ek
[︁
∇̂gα(ek , ξ )

]︁
= −∇g,ek

[︀
∇g,ekα · ξ +∇g,ξα · ek

]︀
= −∇g,ek∇g,ekα · ξ −∇g,ek∇g,ξα · ek .

We infer the expression

∇*Ωg ∇̂gα · ξ = ∆Ωg α −∇g,ek∇g,ξα · ek +∇gα(ξ ,∇g f ).

Moreover

d∇*Ωg α(ξ ) = −∇g,ξ∇g,ekα · ek +∇g,ξα ·∇g f + α ·∇
2
g,ξ f .

Summing up we deduce

∆̂Ωg α · ξ = ∆Ωg α · ξ +
(︀
∇g,ξ∇g,ekα −∇g,ek∇g,ξα

)︀
· ek − α ·∇2

g,ξ f

= ∆Ωg α · ξ − α ·Rg(ξ , ek)ek − α ·∇2
g,ξ f ,

thanks to the dual identity

∇g,ξ∇g,ηα −∇g,η∇g,ξα = ∇g,[ξ ,η]α − α ·Rg(ξ , η), (8.7)

and to the fact that [ξ , ek] (p) = 0. We infer the required formula (8.5). We deduce that in the soliton case
hg,Ω = 0 holds the equality

Ker ∆̂Ωg = Ker(∆Ωg − I) ⊂ C∞(X, T*X). (8.8)

We define now the Ω-Hodge Laplacian acting on scalar valued differential forms as the operator

∆Ωd,g := d∇*Ωg +∇*Ωg d.

At the level of scalar valued 1-forms we observe the identities(︁
∆Ωd,g + ∆̂

Ω
g

)︁
α = ∇*Ωg

(︁
d + ∇̂g

)︁
α

= 2∇*Ωg ∇gα

= 2∆Ωg α.

We infer thanks to the identity (8.5) that for any scalar valued 1-form α holds the Weitzenböck type formula

∆Ωg α = ∆Ωd,gα − α Ric*g(Ω). (8.9)

Applying the∇*Ωg -operator to both sides of this identity and using the fact that (∇*Ωg )2 = 0 at the level of scalar
valued differential forms we obtain

∇*Ωg ∆Ωg α = ∆Ωg∇*Ωg α −∇*Ωg
[︁
α Ric*g(Ω)

]︁
.
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In the soliton case hg,Ω = 0 this implies the formula

∇*Ωg ∆Ωg α = ∆Ωg∇*Ωg α −∇*Ωg α. (8.10)

Then the identity (8.8) implies that the map

Ker ∆̂Ωg −→ Ker(∆Ωg − 2I) ⊂ C∞Ω (X,R)0

α ↦→ divΩg α,

is well defined. More precisely there exists the exact sequence of finite dimensional vector spaces

0 −→ Killg,Ω −→ Ker ∆̂Ωg −→ Ker(∆Ωg − 2I) −→ 0

ξ ↦→ gξ = α ↦→ divΩg α.

Indeed the surjectivity follows from the isomorphism (8.3). The injectivity follows from the fact that

Killg,Ω ∼=
{︁
α ∈ Ker ∆̂Ωg | divΩg α = 0

}︁
.

This hold true thanks to the identity∫︁
X

⃒⃒⃒
divΩg α

⃒⃒⃒2
g
Ω = 1

2

∫︁
X

⃒⃒⃒
∇̂gα

⃒⃒⃒2
g
Ω,

which follows from the expression

∆̂Ωg α =
[︂
1
2 ∇̂

*Ω
g ∇̂g − d∇*Ωg

]︂
α.

For dimensional reasons we conclude the existence of the required exact sequence

0 −→ Ker(∆Ωg − 2I) −→ A
Ω
g −→ 0

u ↦→ 2 (∇gdu, −uΩ) .

(We observe also that for dimensional reasons (8.4) is an equality.)

9 Properties of the kernel of the Hessian ofW
Lemma 8. In the soliton case hg,Ω = 0 holds the inclusion

A
Ω
g ⊆ Fg,Ω ∩ Ker∇2

GW(g, Ω).

We start with a few notations. For any tensor A ∈ C∞(X, (T*X)⊗p+1 ⊗ TX) we define the divergence type oper-
ations

divgA(u1, . . . , up) := Trg [∇gA( ·, u1, . . . , up , · )] ,

divΩg A(u1, . . . , up) := divgA(u1, . . . , up) − A(u1, . . . , up ,∇g f ).

The once contracted differential Bianchi identity writes often as divgRg = −∇TX ,g Ric
*
g. This combined with

the identity∇TX ,g∇
2
g f = Rg ·∇g f implies

divΩg Rg = −∇TX ,g Ric
*
g(Ω). (9.1)
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We define the Ω-Lichnerowicz Laplacian ∆ΩL,g acting on g-symmetric endomorphisms A as

∆ΩL,gA := LΩg A + Ric*g(Ω)A + A Ric*g(Ω).

We fix a point p ∈ X and we take an arbitrary vector field ξ such that ∇gξ (p) = 0. Let also (ek)k be a g-
orthonormal local frame such that∇gek(p) = 0. We expand the identity at the point p

(∆Ωg∇2
gu)ξ = −∇g,ek∇3

gu(ek , ξ ) +∇3
gu(∇g f , ξ ).

Commuting derivatives at the point p we obtain

∇g,ek∇
3
gu(ek , ξ ) = ∇g,ek

[︁
∇3
gu(ek , ξ )

]︁
= ∇g,ek

[︁
∇g,ek∇g,ξ∇gu −∇2

gu ·∇g,ek ξ
]︁

= ∇g,ek
[︁
∇g,ξ∇g,ek∇gu +Rg(ek , ξ )∇gu −∇2

gu ·∇g,ξ ek
]︁

= ∇g,ξ∇g,ek∇g,ek∇gu + 2Rg(ek , ξ )∇g,ek∇gu

+ ∇g,ekRg(ek , ξ )∇gu −∇2
gu ·∇g,ek∇g,ξ ek ,

since [ek , ξ ] (p) = 0. Taking a covariant derivative of the identity

∆g∇gu = −∇g,ek∇g,ek∇gu +∇2
gu ·∇g,ek ek ,

we infer

∇g,ξ∆g∇gu = −∇g,ξ∇g,ek∇g,ek∇gu +∇2
gu ·∇g,ξ∇g,ek ek ,

at the point p. Combining with the previous expression we obtain

∇g,ek∇
3
gu(ek , ξ ) = −2

(︁
Rg *∇2

gu
)︁
ξ −∇g,ξ∆g∇gu +∇2

gu · Ric*(g)ξ +∇g,ekRg(ek , ξ )∇gu.

On the other hand deriving the identity

∆Ωg∇gu = ∆g∇gu +∇2
gu ·∇g f ,

we infer

∇g,ξ∆Ωg∇gu = ∇g,ξ∆g∇gu +∇g,ξ∇2
gu ·∇g f +∇2

gu ·∇2
g,ξ f ,

and thus

∇g,ek∇
3
gu(ek , ξ ) = −2

(︁
Rg *∇2

gu
)︁
ξ −∇g,ξ∆Ωg∇gu +∇g,ξ∇2

gu ·∇g f

+ ∇2
gu · Ric*g(Ω)ξ − divgRg(ξ ,∇gu) −

(︁
∇gu¬∇*gRg

)︁
ξ ,

thanks to the algebraic Bianchi identity. We obtain

(∆Ωg∇2
gu)ξ = 2

(︁
Rg *∇2

gu
)︁
ξ −∇TX ,g∇

2
gu(ξ ,∇g f ) + divgRg(ξ ,∇gu) +

(︁
∇gu¬∇*gRg

)︁
ξ

+ ∇g,ξ∆Ωg∇gu −∇2
gu · Ric*g(Ω)ξ .
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The identity∇TX ,g∇
2
gu = Rg ·∇gu implies

−∇TX ,g∇
2
gu(ξ ,∇g f ) = Rg(∇g f , ξ )∇gu

= −Rg(ξ ,∇gu)∇g f +Rg(∇g f ,∇gu)ξ ,

thanks again to the algebraic Bianchi identity. We infer

(LΩg∇2
gu)ξ =

[︁
∇gu¬

(︁
∇*Ωg Rg − divΩg Rg

)︁]︁
ξ +∇g,ξ∆Ωg∇gu −∇2

gu · Ric*g(Ω)ξ

=
[︁
∇gu¬

(︁
∇*Ωg Rg +∇TX ,g Ric

*
g(Ω)

)︁]︁
ξ + (∇2

g∆Ωg u)ξ −∇g,ξ [Ric*g(Ω)∇gu] −∇2
gu · Ric*g(Ω)ξ ,

thanks to (9.1) and (8.2). Thus

∆ΩL,g∇2
gu = ∇2

g∆Ωg u +∇gu¬
[︁
∇*Ωg Rg +∇g Ric*g(Ω)

]︁
− 2∇g Ric*g(Ω)∇gu. (9.2)

We observe now that the endomorphism section∇gu¬∇*Ωg Rg is g-anti-symmetric thanks to the identity

Rg(ξ , η) = −
(︀
Rg(ξ , η)

)︀T
g ,

which is a consequence of the alternating property of the (4, 0)-Riemann curvature operator. Notice indeed
that the previous identity implies

∇g,µRg(ξ , η) = −
(︀
∇g,µRg(ξ , η)

)︀T
g ,

for all vector fields ξ , η, µ. Combining the g-symmetric and g-anti-symmetric parts in the identity (9.2) we
infer the formulas

∆ΩL,g∇2
gu = ∇2

g∆Ωg u +∇gu¬∇TX ,g Ric
*
g(Ω) − [∇g Ric*g(Ω)∇gu

]︁T
g
,

ξ¬∇*Ωg Rg = ∇g Ric*g(Ω)ξ − [∇g Ric*g(Ω)ξ
]︁T
g
,

for all ξ ∈ TX since the function u is arbitrary. In the case∇g Ric*g(Ω) = 0 we deduce the identities ∆ΩL,g∇2
gu =

∇2
g∆Ωg u and∇*Ωg Rg = 0. More in particular in the soliton case hg,Ω = 0 the first formula reduces to the differ-

ential identity
LΩg∇2

gu = ∇2
g(∆Ωg − 2I)u. (9.3)

We infer the conclusion of lemma 8. This formula will be also quite crucial for the study of the sign of the
second variation of theW functional at a Kähler-Ricci soliton point.

10 Invariance ofF under the action of the
Hessian endomorphism ofW
We observe that Perelman’s twice contracted second Bianchi type identity (1.2) rewrites as;

∇*Ωg hg,Ω + dHg,Ω = 0.

If we differentiate this over the spaceM × V1 we obtain[︁
(Dg,Ω∇*•• ) (v, V)

]︁
hg,Ω +∇*Ωg

[︀
Dg,Ωh (v, V)

]︀
+ d

[︀
Dg,ΩH (v, V)

]︀
= 0.

We deduce using the fundamental variation formulas (1.4) and (1.5)

∇*Ωg
[︁
LΩg v + vh*g,Ω + hg,Ωv*g

]︁
+ d

[︁
(∆Ωg − 2I)V*Ω −

⟨︀
v, hg,Ω

⟩︀
g

]︁
= −2

[︁
Dg,Ω∇*•• (v, V)

]︁
hg,Ω
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in the directions (v, V) ∈ Fg,Ω. We infer that in the soliton case hg,Ω = 0 the map

∇2
GW(g, Ω) : Fg,Ω −→ Fg,Ω ,

is well defined. In order to investigate the general case we use a different method which has the advantage
to involve less computations. Let (ek)k be a g-orthonormal local frame of TX. For any u, v ∈ C∞

(︀
X, S2T*X

)︀
we

define the real valued 1-form

Mg(u, v)(ξ ) := 2∇gv(ek , u*gek , ξ ) +∇gu(ξ , v*gek , ek) ,

for all ξ ∈ TX. One can show that the operator

Tg(u, v) := Mg(u, v) −Mg(v, u),

is related with the torsion of the distribution F. We observe now that by lemma 3 holds the identity

∆Ωg v*g −∇g∇*Ωg v*g = ∇*Ωg ∇TX ,gv
*
g +Rg * v*g − v*g Ric*g(Ω).

Applying the∇*Ωg -operator to both sides of this identity we deduce the commutation formula[︁
∇*Ωg , ∆Ωg

]︁
v*g = ∇*Ωg

[︁
∇*Ωg ∇TX ,gv

*
g +Rg * v*g − v*gh*g,Ω − v*g

]︁
.

We observe now that for any ψ ∈ C∞(X, Λ2TX ⊗R TX) and ξ ∈ C∞(X, TX) hold the equalities∫︁
X

⟨
(∇*Ωg )2ψ, ξ

⟩
g
Ω =

∫︁
X

⟨
∇*Ωg ψ,∇gξ

⟩
g
Ω

= 1
2

∫︁
X

⟨
∇*ΩTX ,gψ,∇gξ

⟩
g
Ω

= 1
2

∫︁
X

⟨
ψ,∇2

TX ,gξ
⟩
g
Ω

= 1
2

∫︁
X

⟨ψ,Rg · ξ⟩g Ω,

and

⟨ψ,Rg · ξ⟩g =
⟨︀
ψ(ek , el),Rg(ek , el)ξ

⟩︀
g = −

⟨︀
Rg(ek , el)ψ(ek , el), ξ

⟩︀
g .

We infer

(∇*Ωg )2∇TX ,gv
*
g = −12Rg(ek , el)

[︁
∇gv*g(ek , el) −∇gv*g(el , ek)

]︁
= Rg(el , ek)∇gv*g(ek , el).

This combined with the expression

∇*Ωg (Rg * v*g) = ∇*Ωg Rg(ek)v*gek +Rg(el , ek)∇gv*g(ek , el),

implies the identity

∇*Ωg LΩg v*g = (∆Ωg − I)∇*Ωg v*g +∇gv*g(ek , h*g,Ωek) − v*g∇*Ωg h*g,Ω −∇*Ωg Rg(ek)v*gek ,

which rewrites also under the form

∇*Ωg LΩg v = (∆Ωg − I)∇*Ωg v +∇gv(ek , h*g,Ωek , •) − v∇*Ωg h*g,Ω + v
(︁
ek ,∇*Ωg Rg(ek)•

)︁
,
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thanks to (3.3) and the anti-symmetry property

ek¬∇*Ωg Rg = −
(︁
ek¬∇*Ωg Rg

)︁T
g
.

On the other hand the once contracted differential Bianchi type identity (9.1) rewrites as

−∇TX ,g Ric
*
g(Ω) = Alt

(︁
∇*Ωg Rg

)︁
,

thanks to the algebraic Bianchi identity. Therefore for any ξ ∈ C∞(X, TX) hold the identities

v
(︁
ek ,∇*Ωg Rg(ek)ξ

)︁
= v

(︁
∇*Ωg Rg(ek)ξ , ek

)︁
= v

(︁
∇*Ωg Rg(ξ )ek , ek

)︁
+ v

(︁[︁
ξ¬∇TX ,g Ric

*
g(Ω)

]︁
ek , ek

)︁
= TrR

[︁
v*g∇*Ωg Rg(ξ )

]︁
+ Trg

[︁
v
(︁
ξ¬∇TX ,g Ric

*
g(Ω)

)︁]︁
= Trg

[︁
v
(︁
ξ¬∇TX ,gh

*
g,Ω

)︁]︁
,

since the endomorphism section∇*Ωg Rg(ξ ) is g-anti-symmetric. Notice indeed that if A, B ∈ C∞
(︀
X, End(TX)

)︀
satisfy A = ATg and B = −BTg then

TrR(AB) = TrR(BA)

= TrR(BA)Tg

= TrR(ATgBTg )

= − TrR(AB),

i.e TrR(AB) = 0. We deduce in conclusion the formula

∇*Ωg LΩg v = (∆Ωg − I)∇*Ωg v − v∇*Ωg h*g,Ω +∇gv(ek , h*g,Ωek , •) + Trg
[︁
v
(︁
•¬∇TX ,gh

*
g,Ω

)︁]︁
.

Using the general formula
∇*Ωg (φv) = −v∇gφ + φ∇*Ωg v,

with φ ∈ C∞(X,R) we infer

∇*Ωg
[︁
Hg,Ωv + V*Ωhg,Ω

]︁
= −v∇gHg,Ω + Hg,Ω∇*Ωg v − hg,Ω∇gV*Ω + V*Ω∇*Ωg hg,Ω

= v∇*Ωg h*g,Ω + Hg,Ω∇*Ωg v − dV*Ω · h*g,Ω − V*ΩdHg,Ω ,

thanks to Perelman’s twice contracted differential Bianchi type identity (1.2). Using the identity (15.1) we ex-
pand the term

d
[︂(︁
∆Ωg + Hg,Ω − 2I

)︁
V*Ω −

1
2
⟨︀
v, hg,Ω

⟩︀
g

]︂
= ∆Ωg dV*Ω + dV*Ω · Ric*g(Ω) + V*ΩdHg,Ω + Hg,ΩdV*Ω − 2dV*Ω −

1
2d

⟨︀
v, hg,Ω

⟩︀
g

= (∆Ωg + Hg,Ω − I)dV*Ω + dV*Ω · h*g,Ω + V*ΩdHg,Ω −
1
2d

⟨︀
v, hg,Ω

⟩︀
g .
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Summing up we infer

∇*Ωg
[︁(︁

LΩg + Hg,Ω
)︁
v + V*Ωhg,Ω

]︁
+ d

[︂(︁
∆Ωg + Hg,Ω − 2I

)︁
V*Ω −

1
2
⟨︀
v, hg,Ω

⟩︀
g

]︂

= (∆Ωg + Hg,Ω − I)
(︁
∇*Ωg v + dV*Ω

)︁
+ ∇gv(ek , h*g,Ωek , •) + Trg

[︁
v
(︁
•¬∇TX ,gh

*
g,Ω

)︁]︁
− 1
2d

⟨︀
v, hg,Ω

⟩︀
g .

We observe now the identity

∇gv(ek , h*g,Ωek , •) + Trg
[︁
v
(︁
•¬∇TX ,gh

*
g,Ω

)︁]︁
− 1
2d

⟨︀
v, hg,Ω

⟩︀
g = 1

2Tg(hg,Ω , v).

We deduce the formula

∇*Ωg
[︁(︁

LΩg + Hg,Ω
)︁
v + V*Ωhg,Ω

]︁
+ d

[︂(︁
∆Ωg + Hg,Ω − 2I

)︁
V*Ω −

1
2
⟨︀
v, hg,Ω

⟩︀
g

]︂

= (∆Ωg + Hg,Ω − I)
(︁
∇*Ωg v + dV*Ω

)︁
+ 1
2Tg(hg,Ω , v).

Setting (v, V) = (hg,Ω , Hg,ΩΩ) ∈ Fg,Ω in the previous identity we infer

0 = ∇*Ωg
[︁(︁

LΩg + 2Hg,Ω
)︁
hg,Ω

]︁
+ d

[︂(︁
∆Ωg + Hg,Ω − 2I

)︁
Hg,Ω −

1
2
⃒⃒
hg,Ω

⃒⃒2
g

]︂
.

This shows the fundamental property (1.9) of the Soliton-Ricci flow.

11 The Kähler set up
In this section we introduce a few basic notations needed in sequel. Let (X, J, g) be a compact connected
Kähler manifold with symplectic form ω := gJ. Let h := g − igJ = 2gπ1,0J be the hermitian metric over TX,J
induced by g. We remind that in the Kähler case the Chern connection

DgTX,J = ∂gTX,J + ∂TX,J : C∞(TX,J) −→ C∞(T*X ⊗R TX,J),

of the hermitian vector bundle (TX,J , h) coincides with the Levi-Civita connection∇g. We setCTX := TX⊗RC
andCT*X := T*X ⊗R C. We observe further that the sesquiliner extension of g

gC ∈ C∞(X,CT*X ⊗C CT*X), gC(ξ , η) := g(ξ , η̄), ∀ξ , η ∈ CTX ,

is a hermitian metric overCTX and theC-linear extension of the Levi-Civita connection∇g

∇Cg : C∞(CTX) −→ C∞(CT*X ⊗C CTX),

is a gC-hermitian connection over the vector bundle TX ⊗R C. We will focus our interest on the sections of
the hermitian vector bundle (︁

(CT*X)⊗p ⊗C TX,J , gC ⊗ h
)︁
,

and we will denote by abuse of notations∇g ≡ ∇Cg ⊗ DgTX,J the gC ⊗ h-hermitian connection over this vector
bundle. Still by abuse of notations we will use the identification ⟨·, ·⟩ω := gC ⊗ h. With these notations we
define the operators

∇1,0
g,J : C

∞
(︁
(CT*X)⊗p ⊗C TX,J

)︁
−→ C∞

(︁
Λ1,0J T*X ⊗C (CT*X)⊗p ⊗C TX,J

)︁
,

∇0,1
g,J : C

∞
(︁
(CT*X)⊗p ⊗C TX,J

)︁
−→ C∞

(︁
Λ0,1J T*X ⊗C (CT*X)⊗p ⊗C TX,J

)︁
,
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by the formulas

2∇1,0
g,J := ∇g − J∇g,J•,

2∇0,1
g,J := ∇g + J∇g,J• .

Then the formal adjoints of the operators ∂gTX,J and ∂TX,J acting on TX,J-valued differential forms satisfy the
identities (see [26])

∂*gTX,Jα = −q Trg∇0,1
g,J α,

∂*gTX,Jα = −q Trg∇1,0
g,J α,

for any α ∈ C∞(X, ΛqT*X ⊗C TX,J). We remind now that with our conventions (see [23]) the Hodge Laplacian
operator acting on TX-valued q-forms satisfies the identity

∆TX,g = 1
q∇TX,g∇

*
TX,g +

1
q + 1∇

*
TX,g∇TX,g .

We define also the holomorphic and antiholomorphic Hodge Laplacian operators acting on TX-valued q-
forms as

∆JTX,g := 1
q ∂

g
TX,J∂

*g
TX,J +

1
q + 1∂

*g
TX,J∂

g
TX,J ,

∆−JTX,g := 1
q ∂TX,J∂

*g
TX,J +

1
q + 1∂

*g
TX,J∂TX,J ,

with the usual convention ∞ · 0 = 0. This Hodge Laplacian operators coincide with the standard ones used
in the literature. We remind that in the Kähler case holds the decomposition identity

∆TX,g = ∆JTX,g + ∆−JTX,g .

We observe now that the formal adjoint of the ∂gTX,J operator with respect to the hermitian product

⟨·, ·⟩ω,Ω :=
∫︁
X

⟨·, ·⟩ω Ω, (11.1)

is the operator

∂*g,ΩTX,J := ef ∂*gTX,J
(︁
e−f•

)︁
.

In a similar way the formal adjoint of the ∂TX,J operator with respect to the hermitian product (11.1) is the
operator

∂*g,ΩTX,J := ef ∂*gTX,J
(︁
e−f•

)︁
.

With these notations we define the holomorphic and anti-holomorphic Ω-Hodge Laplacian operators acting
on TX-valued q-forms as

∆Ω,JTX,g := 1
q ∂

g
TX,J∂

*g,Ω
TX,J +

1
q + 1∂

*g,Ω
TX,J ∂

g
TX,J ,

∆Ω,−JTX,g := 1
q ∂TX,J∂

*g,Ω
TX,J +

1
q + 1∂

*g,Ω
TX,J ∂TX,J .



78 | Nefton Pali

12 The decomposition of the operatorLΩ
g in the Kähler case

For any A ∈ End(TX) we denote by A′
J and by A′′

J the J-linear, respectively the J-anti-linear parts of A. We
observe that the operator

LΩg : C∞(X, End(TX)) −→ C∞(X, End(TX)),

defined by the formula

LΩg A := ∆Ωg A − 2Rg * A,

restricts as;
LΩg : C∞

(︁
X, T*X,J ⊗ TX,J

)︁
−→ C∞(X, T*X,J ⊗ TX,J), (12.1)

LΩg : C∞
(︁
X, T*X,−J ⊗ TX,J

)︁
−→ C∞(X, T*X,−J ⊗ TX,J), (12.2)

Indeed these properties follow from the identities

(Rg * A)′J = Rg * A′
J , (12.3)

(Rg * A)′′J = Rg * A′′
J , (12.4)

for any A ∈ End(TX). In their turn they are direct consequence of the identities

J(Rg * A) = Rg * (JA), (12.5)

(Rg * A)J = Rg * (AJ), (12.6)

In order to see (12.5) and (12.6) let (ek)k be a g-orthonormal real basis. Using the J-invariant properties of
the curvature operator we infer

J(Rg * A)ξ = JRg(ξ , ek)Aek = Rg(ξ , ek)JAek =
[︀
Rg * (JA)

]︀
ξ ,

(Rg * A)Jξ = Rg(Jξ , ek)Aek = −Rg(ξ , Jek)Aek = Rg(ξ , ηk)AJηk ,

where ηk := Jek. The fact that (ηk)k is also a g-orthonormal real frame implies (12.6). By (12.1) and (12.2) we
conclude the decomposition formula∫︁

X

⟨
LΩg A, A

⟩
g
Ω =

∫︁
X

⟨
LΩg A′

J , A′
J

⟩
g
Ω +

∫︁
X

⟨
LΩg A′′

J , A′′
J

⟩
g
Ω. (12.7)

We observe that the properties (12.1) and (12.2) imply also that A ∈ KerLΩg if and only if A′
J ∈ KerLΩg and

A′′
J ∈ KerLΩg . We observe further that the identity (9.3) combined with the properties (12.1) and (12.2) implies

the formulas
LΩg ∂gTX,J∇gu = ∂

g
TX,J∇g(∆

Ω
g − 2I)u, (12.8)

LΩg ∂TX,J∇gu = ∂TX,J∇g(∆
Ω
g − 2I)u, (12.9)

in the Kähler-Ricci soliton case. The properties (1.8) and (1.9) combined with (12.2) imply (1.12) and (1.13).
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13 Basic complex Bochner type formulas
We need to review in detail now some fact from [12], (see also [21]). Most of the formulas in this section will be
intensively used in the rest of the paper. Let (X, J, g) be a compact connected Kählermanifoldwith symplectic
formω := gJ.We remind that the hermitian product inducedbyω over the bundleΛ1,0J T*X satisfies the identity

2 ⟨α, β⟩ω = Trω
(︀
iα ∧ β̄

)︀
.

Let Ω > 0 be a smooth volume form and set as usual f := log dVg
Ω . We define the Ω-weighted complex Laplace

type operator acting on functions u ∈ C∞(X,C) as

∆Ωg,Ju := ef Trω
[︁
i∂J

(︁
e−f ∂Ju

)︁]︁
= ∆gu + 2

⟨︀
∂Ju, ∂J f

⟩︀
ω

= ∆gu + 2∂Ju ·∇g f .

We notice the identities ∆Ωg,J f = ∆Ωg f and ∆Ωg = Re(∆Ωg,J). The complex operator ∆Ωg,J is self-adjoint with respect
to the the L2Ω-hermitian product

⟨u, v⟩Ω :=
∫︁
X

uvΩ. (13.1)

Indeed integrating by parts we obtain∫︁
X

i∂J
(︁
e−f ∂Ju

)︁
v ∧ ωn−1 =

∫︁
X

∂Ju ∧ ie−f ∂Jv ∧ ωn−1

= −
∫︁
X

ui∂J
(︁
e−f ∂Jv

)︁
∧ ωn−1.

(Notice the equality Ω = e−fωn/n!.) We observe in particular the identity∫︁
X

∆Ωg,Ju · vΩ =
∫︁
X

2
⟨︀
∂Ju, ∂Jv

⟩︀
ω Ω,

which implies that all the eigenvalues satisfy λj(∆Ωg,J) > 0. For any function u ∈ C∞(X,C) we define the
J-complex g-gradient as the real vector field;

∇g,Ju := ∇g Re u + J∇g Im u ∈ C∞(X, TX).

With these notations hold the complex decomposition formula

∇g,Ju¬g = ∂Ju + ∂Ju. (13.2)

We consider now the linear operator

BΩg,J : C∞(X,R) −→ C∞Ω (X,R)0,

BΩg,Ju := divΩ(J∇gu).

This is a first order differential operator. Indeed

BΩg,Ju = TrR
(︁
J∇2

gu
)︁
− df · J∇gu

= g(∇gu, J∇g f ),
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since J is g-anti-symmetric. We extend BΩg,J over C∞(X,C) by complex linearity. Let also

2dcJ u := i(∂J − ∂J)u = −du · J.

Then the identity 2∂J = d + 2idcJ implies the decomposition

∆Ωg,J = ∆Ωg + 2i∇g f¬dcJ .

In other terms

∆Ωg,J = ∆Ωg − iBΩg,J .

The following lemma is needed for the study of the operator ∆Ωg,J . (Compare also with [12].)

Lemma 9. Let (X, J, g) be a Kähler manifold with symplectic form ω := gJ and let Ω > 0 be a smooth volume
form. Then for all u ∈ C∞(X,R) and v ∈ C∞(X,C) hold the complex Bochner type formulas

2∂*g,ΩTX,J ∂
g
TX,J∇gu = ∇g,J∆

Ω
g,Ju − 2∂TX,J∇g f∇gu, (13.3)

2∂*g,ΩTX,J ∂TX,J∇g,Jv = ∇g,J∆Ωg,Jv − 2Ric
*
J (Ω)ω∇g,Jv. (13.4)

Proof. Let ξ ∈ C∞(X, TX) and observe that for bi-degree reasons hold the identity

2∂*g,ΩTX,J ∂
g
TX,J ξ = 2∇*Ωg ∂gTX,J ξ

= ∆Ωg ξ −∇*Ωg
(︀
J∇g,J•ξ

)︀
= ∆Ωg ξ −∇*g

(︀
J∇g,J•ξ

)︀
− J∇g,J∇g f ξ .

Let (ek)2nk=1 be a local g-orthonormal frame over a neighborhood of an arbitrary point p such that∇gek(p) = 0.
Then at the point p hold the equalities

−∇*g
(︀
J∇g,J•ξ

)︀
= J∇g,ek∇g,Jek ξ

= 1
2
(︀
J∇g,ek∇g,Jek ξ − J∇g,Jek∇g,ek ξ

)︀
,

since (Jek)2nk=1 is also a local g-orthonormal frame. Then the fact that
[ek , Jek] (p) = 0 implies

−∇*g
(︀
J∇g,J•ξ

)︀
= 1

2 JRg(ek , Jek)ξ = Ric*(g)ξ .

We infer the complex Bochner type formula

2∂*g,ΩTX,J ∂
g
TX,J ξ = ∆

Ω
g ξ + Ric*(g)ξ − J∇g,J∇g f ξ . (13.5)

In a similar way we obtain
2∂*g,ΩTX,J ∂TX,J ξ = ∆

Ω
g ξ − Ric*(g)ξ + J∇g,J∇g f ξ . (13.6)

Using formulas (13.5) and (8.2) we deduce the expressions

2∂*g,ΩTX,J ∂
g
TX,J∇gu = ∇g∆Ωg u −∇2

g f∇gu − J∇2
guJ∇g f

= ∇g∆Ωg u −
(︁
∇2
g f + J∇2

g fJ
)︁
∇gu − J

(︁
∇2
guJ∇g f −∇2

g fJ∇gu
)︁

= ∇g∆Ωg u − 2∂TX,J∇g f∇gu − J∇g[g(∇gu, J∇g f )].
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Using the first order expression of BΩJ,g we obtain

2∂*g,ΩTX,J ∂
g
TX,J∇gu =

[︁
∇g∆Ωg − J∇gBΩg,J

]︁
u − 2∂TX,J∇g f∇gu.

We infer the complex differential Bochner type formula (13.3). In a similar way using formulas (13.6) and (8.2)
we deduce

2∂*g,ΩTX,J ∂TX,J∇gu = ∇g∆Ωg u − 2Ric*g(Ω)∇gu +∇2
g f∇gu + J∇2

guJ∇g f

= ∇g∆Ωg u − 2Ric*g(Ω)∇gu +
(︁
∇2
g f + J∇2

g fJ
)︁
∇gu + J

(︁
∇2
guJ∇g f −∇2

g fJ∇gu
)︁

= ∇g∆Ωg u − 2Ric*g(Ω)∇gu + 2∂TX,J∇g f∇gu + J∇g[g(∇gu, J∇g f )].

Using the first order expression of BΩJ,g we obtain

2∂*g,ΩTX,J ∂TX,J∇gu =
[︁
∇g∆Ωg + J∇gBΩg,J

]︁
u − 2Ric*J (Ω)ω∇gu.

We infer the complex differential Bochner type formula

2∂*g,ΩTX,J ∂TX,J∇gu = ∇g,J∆Ωg,Ju − 2Ric
*
J (Ω)ω∇gu. (13.7)

More in general for all v ∈ C∞(X,C) this writes as (13.4).

Notice that for bi-degree reasons the identity (8.2) decomposes as

2∂*g,ΩTX,J ∂
g
TX,J∇gu + 2∂

*g,Ω
TX,J ∂TX,J∇gu = ∇g,J∆

Ω
g,Ju +∇g,J∆Ωg,Ju − 2∂TX,J∇g f∇gu − 2Ric

*
J (Ω)ω∇gu.

Then we can obtain (13.7) from (13.3) and vice versa. We observe also that the complex Bochner identities
(13.3), (13.4) write in the Kähler-Ricci-Soliton case as

2∂*g,ΩTX,J ∂
g
TX,J∇gu = ∇g,J∆

Ω
g,Ju, (13.8)

2∂*g,ΩTX,J ∂TX,J∇g,Jv = ∇g,J(∆Ωg,J − 2I)v, (13.9)

for all u ∈ C∞(X,R) and v ∈ C∞(X,C). Obviously the identity (13.9) still hold in the more general case
RicJ(Ω) = ω. We observe now an other integration by parts formula.

Let ξ ∈ C∞ (X, TX), A ∈ C∞
(︀
X, T*X,−J ⊗ TX,J

)︀
and observe that the comparison between Riemannian and

hermitian norms of TX-valued 1-forms (see the appendix in [22]) implies∫︁
X

⟨
∂TX,J ξ , A

⟩
g
Ω = 1

2

∫︁
X

[︁⟨
∂TX,J ξ , A

⟩
ω
+
⟨
A, ∂TX,J ξ

⟩
ω

]︁
Ω

= 1
2

∫︁
X

[︁⟨
ξ , ∂*g,ΩTX,JA

⟩
ω
+
⟨
∂*g,ΩTX,JA, ξ

⟩
ω

]︁
Ω

=
∫︁
X

⟨
ξ , ∂*g,ΩTX,JA

⟩
g
Ω.

Using this and multiplying both sides of (13.9) by∇g,Jv we obtain the identity

2
∫︁
X

⃒⃒⃒
∂TX,J∇g,Jv

⃒⃒⃒2
g
Ω =

∫︁
X

⟨
∇g,J(∆Ωg,J − 2I)v,∇g,Jv

⟩
g
Ω, (13.10)

in the case RicJ(Ω) = ω. We consider now the J-anti-linear component of the complex Hessian map;

H0,1
g,J : C

∞
Ω (X,C)0 −→ C∞(X, Λ0,1J T*X ⊗C TX,J)

u ↦−→ ∂TX,J∇g,Ju.

We observe that H1
d(X,C) = 0 in the case of Fano manifolds and we remind the following well known fact
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Lemma 10. Let (X, J, g) be a compact connected Kähler manifold such that H1
d(X,C) = 0. Then the map

KerH0,1
g,J −→ H0(X, TX,J)

u ↦−→ ∇g,Ju,

is an isomorphism of complex vector spaces.

Proof. We observe first the injectivity. Using the complex decomposition (13.2) we infer the formula

d(∇g,Ju¬g) = ∂J∂J(u − u),

which in the case∇g,Ju = 0 implies Im u = 0 and thus Re u = 0. In order to show the surjectivity we consider
an arbitrary ξ ∈ H0(X, TX,J). Then the identity (13.11) below implies

∂J(ξ1,0J ¬ω) = 0.

By Hodge decomposition hold the identity H0,1
∂

(X,C) = 0. We deduce the existence of a unique function
u ∈ C∞Ω (X,C)0 such that

i∂Ju = ξ1,0J ¬ω = iξ1,0J ¬g.

Thus ξ = ∇g,Ju thanks to the complex decomposition (13.2).

Lemma 11. Let (X, J) be a complex manifold and let ω ∈ C∞(X, Λ1,1J T*X), ξ ∈ C∞(X, T1,0X ). Then hold the
identity

∂J(ξ¬ω) = ∂T1,0X,J ξ¬ω − ξ¬∂Jω. (13.11)

Proof. Let η, µ ∈ C∞(X, T0,1X ) and observe the identities (see [20])

∂J(ξ¬ω)(η, µ) = η.ω(ξ , µ) − µ.ω(ξ , η) − ω(ξ , [η, µ]),

∂Jω(η, ξ , µ) = η.ω(ξ , µ) + µ.ω(η, ξ ) − ω([η, ξ , ]1,0 , µ) + ω([η, µ] , ξ ) − ω([ξ , µ]1,0 , η)

= ∂J(ξ¬ω)(η, µ) − ω
(︁
∂T1,0X,J ξ (η), µ

)︁
+ ω

(︁
∂T1,0X,J ξ (µ), η

)︁
= ∂J(ξ¬ω)(η, µ) − ω

(︁
∂T1,0X,J ξ (η), µ

)︁
− ω

(︁
η, ∂T1,0X,J ξ (µ)

)︁
=

[︁
∂J(ξ¬ω) − ∂T1,0X,J ξ¬ω

]︁
(η, µ),

which implies the required identity.

On the other hand the identities (13.9) and (13.10) show that in the case RicJ(Ω) = ω hold the identity

Ker(∆Ωg,J − 2I) = KerH0,1
g,J . (13.12)

We infer the followingwell known result due to Futaki [12]. (See also [14] and the sub-section 21.2 in appendix
B for a more more complete statement.)

Corollary 1. Let (X, J) be a Fano manifold and let g be a J-invariant Kähler metric such that ω := gJ ∈
2πc1(X, [J]). Let also Ω > 0 be the unique smooth volume form with

∫︀
X Ω = 1 such that RicJ(Ω) = ω. Then

the map

Ker(∆Ωg,J − 2I) −→ H0(X, TX,J)

u ↦−→ ∇g,Ju,
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is well defined and it represents an isomorphism of complex vector spaces. The first eigenvalue λ1(∆Ωg,J) of the
operator ∆Ωg,J satisfies the estimate λ1(∆Ωg,J) > 2, with equality in the case H0(X, TX,J) ≠ 0. Moreover if we set
Killg := Lie(Isom0

g) and

KerR(∆Ωg,J − 2I) := Ker(∆Ωg,J − 2I) ∩ C∞Ω (X,R)0,

then the map
J∇g : KerR(∆Ωg,J − 2I) −→ Killg , (13.13)

is well defined and it represents an isomorphism of real vector spaces.

Proof. We only need to show the statement concerning the map (13.13). Let ξ ∈ Killg and let (φt)t∈R ⊂ Isom0
g

be the corresponding 1-parameter sub-group. The Kähler condition ∇g J = 0 implies ∆d,gω = 0 and thus
∆d,g(φ*tω) = 0. Time deriving the latter at t = 0 we infer

∆d,gLξω = 0. (13.14)

But Lξω = d(ξ¬ω) and (13.14) rewrites as d*gd(ξ¬ω) = 0. We infer

0 = Lξω = gLξ J = 2ω∂TX,J ξ ,

and thus

Killg =
{︁
ξ ∈ H0(X, TX,J) | Lξω = 0

}︁
=

{︁
ξ ∈ H0(X, TX,J) | d(ξ¬ω) = 0

}︁
=

{︁
ξ ∈ H0(X, TX,J) | ∃u ∈ C∞Ω (X,R)0 : ξ¬ω = du

}︁
,

thanks to the fact that H1
d(X,R) = 0. But the latter identity rewrites as

Killg =
{︁
ξ ∈ H0(X, TX,J) | ∃u ∈ C∞Ω (X,R)0 : ξ = J∇gu

}︁
,

which shows that the map (13.13) is well defined thanks to the first statement of corollary 1. The surjectivity
of the map (13.13) follows from the identity (13.9) applied to the function v := −iu, with u ∈ C∞Ω (X,R)0 such
that J∇gu ∈ Killg. The injectivity of the map (13.13) is obvious.

Using the variational characterization of the first eigenvalue we observe;

λ1(∆Ωg,J) = inf
{︃∫︀

X ∆
Ω
g,JuuΩ∫︀

X |u|
2 Ω

| u ∈ C∞Ω (X,C)0 r {0}
}︃

6 inf
{︃∫︀

X 2
⃒⃒
∂Ju

⃒⃒2
ω Ω∫︀

X u2Ω
| u ∈ C∞Ω (X,R)0 r {0}

}︃

= inf
{︃∫︀

X ∆
Ω
g uuΩ∫︀

X u2Ω
| u ∈ C∞Ω (X,R)0 r {0}

}︃

= λ1(∆Ωg ),

thanks to the identity 2
⃒⃒
∂Ju

⃒⃒2
ω = |∇gu|2g . We deduce that in the set-up of corollary 1 hold the estimate

λ1(∆Ωg ) > 2. (13.15)
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14 Symmetric variations of Kähler structures
We show a few fundamental facts about the space of symmetric variations of Kähler structuresKVJ

g given by
the elements v ∈ C∞

(︀
X, S2RT*X

)︀
such that there exists a smooth family (Jt , gt)t ⊂ KS with (J0, g0) = (J, g),

ġ0 = v and J̇0 = (J̇0)Tg . One can observe (see [23]) thatKVJ
g ⊆ DJ

g with

D
J
g :=

{︁
v ∈ C∞

(︁
X, S2RT*X

)︁
| ∂gTX,J (v

*
g)1,0J = 0, ∂TX,J (v

*
g)0,1J = 0

}︁
, (14.1)

where (v*g)1,0J and (v*g)0,1J denote respectively the J-linear and J-anti-linear parts of the endomorphism v*g. We
remind here some lines of this basic fact. We define

2∇1,0
g,i,J := ∇g − i∇g,J•

2∇0,1
g,i,J := ∇g + i∇g,J•

Let v′J and v′′J be respectively the J-invariant and J-anti-invariant parts of v and set for notation simplicity

A′ := (v*g)1,0J = (v′J)*g ,

A′′ := (v*g)0,1J = (v′′J )*g .

The identity A′′ = −JJ̇0 (see [23]) implies directly ω̇0 = v′J J = ωA′. We infer

0 = dω̇0 = d(v′J J).

The fact that the (1, 1)-form v′J J is real implies that the identity d(v′J J) = 0 is equivalent to the identity ∂J(v′J J) =
0. In its turn this is equivalent to the identity ∂gTX,JA

′ = 0.We observe indeed that for all ξ , η, µ ∈ C∞(X, TX⊗R
C) hold the equalities

∂J(ωA′)(ξ ′, η′, µ′′) = ∇1,0
g,i,J(ωA

′)(ξ ′, η′, µ′′) −∇1,0
g,i,J(ωA

′)(η′, ξ ′, µ′′) +∇1,0
g,i,J(ωA

′)(µ′′, ξ ′, η′)

= ω
(︁[︁
∇1,0
g,i,JA

′(ξ ′, η′) −∇1,0
g,i,JA

′(η′, ξ ′)
]︁
, µ′′

)︁
− ω

(︁
∇1,0
g,i,JA

′(µ′′, ξ ′), η′
)︁

= ω
(︁[︁
∇1,0
g,J A

′(ξ ′, η′) −∇1,0
g,J A

′(η′, ξ ′)
]︁
, µ′′

)︁
= ω

(︁
∂gTX,JA

′(ξ ′, η′), µ′′
)︁
.

In order to continue the study of the spaceDJ
g we need to show a few general and fundamental facts. We start

with the following weighted complex Weitzenböck type formula obtained in [28]. (We include the proof for
readres convenience).

Lemma 12. Let (X, J, g)beaKählermanifold, let Ω > 0bea smooth volume formand let A ∈ C∞
(︀
X, T*X,−J ⊗ TX,J

)︀
.

Then hold the identity
∆Ω,−JTX,g A = ∇*Ωg ∇0,1

g,J A −Rg * A + A Ric*J (Ω)ω (14.2)



The Soliton-Ricci Flow with variable volume forms | 85

Proof. We observe that for bi-degree reasons hold the identities

∆Ω,−JTX,g A := ∂TX,J∂
*g,Ω
TX,JA + 1

2∂
*g,Ω
TX,J ∂TX,JA

= ∂TX,J∇
*Ω
TX ,gA + 1

2∇
*Ω
TX ,g∂TX,JA

= ∂TX,J∇
*Ω
g A +∇*Ωg ∂TX,JA.

Let

∇̂0,1
g,J A(ξ , η) := ∇0,1

g,J A(η, ξ ).

Then

2∆Ω,−JTX,g A = ∇g∇*Ωg A + J∇g,J•∇*Ωg A + 2∇*Ωg ∇0,1
g,J A − 2∇

*Ω
g ∇̂0,1

g,J A.

We fix an arbitrary point p and we choose an arbitrary vector field ξ such that ∇gξ (p) = 0. Let (ek)k be a
g-orthonormal local frame such that∇gek(p) = 0. We observe the local expression

∇*Ωg ∇̂0,1
g,J A · ξ = −∇g,ek∇̂0,1

g,J A(ek , ξ ) +∇
0,1
g,J A(ξ ,∇g f ).

At the point p hold the identities

2∇g,ek∇̂0,1
g,J A(ek , ξ ) = 2∇g,ek

[︁
∇0,1
g,J A(ξ , ek)

]︁
= ∇g,ek∇g,ξA · ek + J∇g,ek∇g,JξA · ek ,

and thus

2∇*Ωg ∇̂0,1
g,J A · ξ = −∇g,ek∇g,ξA · ek − J∇g,ek∇g,JξA · ek +∇g,ξA ·∇g f + J∇g,JξA ·∇g f .

We obtain the identity at the point p,

2∆Ω,−JTX,g A · ξ = −∇g,ξ∇g,ekA · ek +∇g,ξ (A ·∇g f ) − J∇g,Jξ∇g,ekA · ek + J∇g,Jξ (A ·∇g f )

+ 2∇*Ωg ∇0,1
g,J A · ξ +∇g,ek∇g,ξA · ek + J∇g,ek∇g,JξA · ek

− ∇g,ξA ·∇g f − J∇g,JξA ·∇g f .

We remind that for any A ∈ C∞
(︀
X, End(TX)

)︀
and ξ , η ∈ C∞(X, TX) hold the general formula

∇g,ξ∇g,ηA −∇g,η∇g,ξA =
[︀
Rg(ξ , η), A

]︀
+∇g,[ξ ,η]A. (14.3)

Using (14.3) and the fact that in our case [ek , ξ ] (p) = [ek , Jξ ] (p) = 0 we obtain

2∆Ω,−JTX,g A · ξ = Rg(ek , ξ )A · ek − ARg(ek , ξ ) · ek + J
[︀
Rg(ek , Jξ )A · ek − ARg(ek , Jξ ) · ek

]︀
+ 2∇*Ωg ∇0,1

g,J A · ξ + A∇
2
g,ξ f + JA∇g,Jξ∇g f

= −(Rg * A) · ξ + A Ric*(g) · ξ − J(Rg * A) · Jξ + JA Ric*(g) · Jξ

+ 2∇*Ωg ∇0,1
g,J A · ξ + A∂

g
TX,J∇g f · ξ

= 2
[︁
∇*Ωg ∇

0,1
g,J A −Rg * A + A Ric*J (Ω)ω

]︁
· ξ ,

thanks to (12.4).
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Multiplying both sides of (14.2) by A and integrating by parts we infer∫︁
X

⟨
∆Ω,−JTX,g A, A

⟩
g
Ω =

∫︁
X

[︂⟨
∇0,1
g,J A,∇gA

⟩
g
+
⟨
A Ric*J (Ω)ω −Rg * A, A

⟩
g

]︂
Ω.

Using the fact that
⟨
∇1,0
g,J A

′′
J ,∇

0,1
g,J A

′′
J

⟩
g
= 0 we obtain the integral identity

∫︁
X

⟨
∆Ω,−JTX,g A, A

⟩
g
Ω =

∫︁
X

[︂
|∇0,1

g,J A|
2
g +

⟨
A Ric*J (Ω)ω −Rg * A, A

⟩
g

]︂
Ω. (14.4)

We observe also the following corollary.

Corollary 2. Let (X, J, g)beaKählermanifold, let Ω > 0bea smooth volume formand let A ∈ C∞
(︀
X, T*X,−J ⊗ TX,J

)︀
.

Then hold the identities
LΩg A = 2∆Ω,−JTX,g A + divΩg ∇g,J•(JA) − 2A Ric*J (Ω)ω , (14.5)

divΩg ∇g,J•(JA) = Ric*(g)A + A Ric*(g) − (J∇g f )¬(J∇gA). (14.6)

Proof. It is obvious that the identity (14.2) rewrites as (14.5). In order to show (14.6) let (ηk)nk=1 be a local
complex frame of TX,J in a neighborhood of a point p with ∇gηk(p) = 0 such that the real frame (el)2nl=1,
el = ηl, l = 1, . . . , n and en+k = Jηk, k = 1, . . . , n is g-orthonormal. Then at the point p hold the equalities

divg∇g,J•(JA′′
J ) =

2n∑︁
l=1
∇g,el∇g,Jel (JA

′′
J )

=
n∑︁
k=1

[︀
∇g,ηk∇g,Jηk (JA

′′
J ) −∇g,Jηk∇g,ηk (JA

′′
J )
]︀

=
n∑︁
k=1

[︀
Rg(ηk , Jηk), JA′′

J
]︀
,

thanks to the general formula (14.3) and thanks to the fact that [ηk , Jηk] (p) = 0. Using the J-linear and J-anti-
linear properties of the tensors involved in the previous equality we obtain

divg∇g,J•(JA′′
J ) =

n∑︁
k=1

[︀
JRg(ηk , Jηk)A′′

J + A′′
J JRg(ηk , Jηk)

]︀
= Ric*(g)A′′

J + A′′
J Ric*(g).

Notice indeed the identities

2Ric*(g) =
2n∑︁
l=1

JRg(el , Jel)

=
n∑︁
k=1

[︀
JRg(ηk , Jηk) − JRg(Jηk , ηk)

]︀

= 2
n∑︁
k=1

JRg(ηk , Jηk).

We conclude the required formula (14.6).
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We define now the vector spaces

H0,1
g,Ω

(︀
TX,J

)︀
:= Ker ∆Ω,−JTX,g ∩ C

∞
(︁
X, T*X,−J ⊗ TX,J

)︁
,

H0,1
g,Ω

(︀
TX,J

)︀
sm :=

{︁
A ∈ H0,1

g,Ω
(︀
TX,J

)︀
| A = ATg

}︁
.

The follwing result as also been obtained in [28]. We include the proof for readres convenience.

Lemma 13. Let (X, J) be a Fano manifold, let g be a J-invariant Kähler metric with symplectic form ω := gJ ∈
2πc1(X, [J]) and let Ω > 0 be the unique smooth volume form with

∫︀
X Ω = 1 such that ω = RicJ(Ω). Then hold

the identity

H0,1
g,Ω

(︀
TX,J

)︀
= H0,1

g,Ω
(︀
TX,J

)︀
sm .

Proof. We consider the decomposition A = Asm + Aas, where Aas and Aas are respectively the g-symmetric
and g-anti-symmetric parts of A. We observe the symmetries

Rg * Asm = (Rg * Asm)Tg ,

Rg * Aas = −(Rg * Aas)Tg .

The fact that A ∈ C∞
(︀
X, T*X,−J ⊗ TX,J

)︀
implies Asm, Aas ∈ C∞

(︀
X, T*X,−J ⊗ TX,J

)︀
and thus

∇*Ωg ∇
0,1
g,J Asm =

(︁
∇*Ωg ∇

0,1
g,J Asm

)︁T
g
,

∇*Ωg ∇
0,1
g,J Aas = −

(︁
∇*Ωg ∇

0,1
g,J Aas

)︁T
g
,

Then the identity (14.2) implies the equalities(︁
∆Ω,−JTX,g Asm

)︁T
g
− ∆Ω,−JTX,g Asm =

[︁
Ric*J (Ω)ω , Asm

]︁
, (14.7)

(︁
∆Ω,−JTX,g Aas

)︁T
g
+ ∆Ω,−JTX,g Aas =

[︁
Aas, Ric*J (Ω)ω

]︁
. (14.8)

We deduce that in the case RicJ(Ω) = λω, with λ = ±1, 0, the condition A ∈ H0,1
g,Ω

(︀
TX,J

)︀
is equivalent to the

conditions Asm, Aas ∈ H0,1
g,Ω

(︀
TX,J

)︀
. We focus now on the Fano case λ = 1.We remind the identityRg *Aas = 0.

(See (20.9) in the appendix.) Thus if A ∈ H0,1
g,Ω

(︀
TX,J

)︀
and RicJ(Ω) = ω then the integral formula (14.4) reduces

to

0 =
∫︁
X

[︁
|∇0,1

g,J Aas|
2
g + |Aas|2g

]︁
Ω,

which shows Aas = 0 and thus the required conclusion of the lemma.

We obtain also the following statement (the case c1 < 0 has been proved in [9]).

Lemma 14. Let (X, J, g) be a compact non Ricci flat Kähler-Einstein manifold. Then hold the identity

H0,1
g

(︀
TX,J

)︀
= H0,1

g
(︀
TX,J

)︀
sm .

Proof. Using the identities (14.7) and (14.8)withΩ = CdVg wededuce that in the Kähler-Einstein case Ric(g) =
λg, with λ = ±1, 0, the condition A ∈ H0,1

g
(︀
TX,J

)︀
is equivalent to the conditions Asm, Aas ∈ H0,1

g
(︀
TX,J

)︀
. On

the other hand the identities (14.5) and (14.6) imply in the case Ω = CdVg the formula

LgA = 2∆−JTX,gA + [Ric*(g), A], (14.9)
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for any A ∈ C∞
(︀
X, T*X,−J ⊗ TX,J

)︀
. The fact that Rg * Aas = 0 implies the formula

∆gAas = 2∆−JTX,gAas + [Ric
*(g), Aas].

We conclude that in the Kähler-Einstein case Ric(g) = λg, with λ = ±1, 0, any A ∈ H0,1
g

(︀
TX,J

)︀
satisfies

∇gAas = 0. Then the formula (14.6) with Ω = CdVg implies

0 = divg∇g,J•(JAas) = Ric*(g)Aas + Aas Ric*(g) = 2λAas.

We deduce Aas = 0 in the case λ = ±1. This shows the required conclusion.

We denote by

ΛΩg,J := Ker(∆Ωg,J − 2I) ⊂ C∞Ω (X,C)0,

and by

ΛΩ,⊥g,J :=
[︁
Ker(∆Ωg,J − 2I)

]︁⊥Ω
⊆ C∞Ω (X,C)0,

its L2Ω-orthogonal inside C∞Ω (X,C)0. We obtain as corollary of lemma (13) the following fundamental fact
obtained in [28]. (We include the proof for readres convenience).

Corollary 3. (Decomposition of the variation of the complex structure)
Let (X, J) be a Fano manifold, let g be a J-invariant Kähler metric with symplectic form ω := gJ ∈

2πc1(X, [J]) and let Ω > 0 be the unique smooth volume form with
∫︀
X Ω = 1 such that ω = RicJ(Ω). Then

for all v ∈ DJ
g there exists a unique ψ ∈ ΛΩ,⊥g,J and a unique A ∈ H0,1

g,Ω
(︀
TX,J

)︀
such that

(v*g)0,1J = ∂TX,J∇g,Jψ + A.

Proof. We observe that the identity

∂TX,J (v
*
g)0,1J = 0,

combined with the Ω-Hodge isomorphism

H0,1
g,Ω

(︀
TX,J

)︀
≃ H0,1(X, TX,J)

:=

{︁
B ∈ C∞(X, Λ0,1J T*X ⊗C TX,J) | ∂TX,JB = 0

}︁
{︁
∂TX,J ξ | ξ ∈ C∞(X, TX)

}︁ ,

implies the decomposition

(v*g)0,1J = ∂TX,J ξ + A,

with ξ ∈ C∞(X, TX) and unique A ∈ H0,1
g,Ω

(︀
TX,J

)︀
. Then the fact that the endomorphism (v*g)0,1J is g-symmetric

combined with lemma 13 implies that ∂TX,J ξ is also g-symmetric. Then formula (13.11) implies that for all
η, µ ∈ C∞(X, T0,1X ) holds the identity

∂J(ξ1,0J ¬ω)(η, µ) = ω
(︁
∂TX,J ξ · η, µ

)︁
+ ω

(︁
η, ∂TX,J ξ · µ

)︁
= g

(︁
J∂TX,J ξ · η, µ

)︁
+ g

(︁
Jη, ∂TX,J ξ · µ

)︁
= g

(︂[︂(︁
∂TX,J ξ

)︁T
g
− ∂TX,J ξ

]︂
· Jη, µ

)︂

= 0.
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Then the argument showing the surjectivity of the map in lemma 10 in the section 13 implies the existence of
a function Ψ ∈ C∞Ω (X,C)0 such that
ξ = ∇g,JΨ . This combined with the identity (13.12) implies the existence and uniqueness of ψ ∈ ΛΩ,⊥g,J such
that

∂TX,J ξ = ∂TX,J∇g,Jψ.

We infer the required conclusion.

We show now the inclusion (1.23). Time deriving the condition ωt := gtJt ∈ 2πc1 we infer {ω̇0}d = 0. Then
(1.23) follows from the complex decomposition identity

v*g = g−1 ġ0 = ω−1ω̇0 − JJ̇0 = (v′J)*g + (v′′J )*g .

15 The decomposition of the spaceFg,Ω in the soliton case
Lemma 15. Let (X, g, Ω) be a compact shrinking Ricci soliton. Then the linear map

Tg,Ω : C∞Ω (X,R)0 ⊕
[︁
Ker∇*Ωg ∩ C∞(X, S2T*X)

]︁
−→ Fg,Ω

(φ, θ) ↦−→
(︁
∇gdφ + θ, (φ − ∆Ωg φ)Ω

)︁
,

is an isomorphism of vector spaces.

Proof. STEP I. We observe first that in the compact shrinking Ricci soliton case the first eigenvalue λ1(∆Ωg )
of ∆Ωg satisfies the inequality λ1(∆Ωg ) > 1. Indeed multiplying both sides of the identity (8.2) with ∇gu and
integrating we infer∫︁

X

⟨
∇g∆Ωg u,∇gu

⟩
g
Ω =

∫︁
X

[︂⟨
∆Ωg∇gu,∇gu

⟩
g
+ Ricg(Ω)(∇gu,∇gu)

]︂
Ω

=
∫︁
X

[︂⃒⃒⃒
∇2
gu

⃒⃒⃒2
g
+ Ricg(Ω)(∇gu,∇gu)

]︂
Ω.

Let now u ∈ C∞Ω (X,R)0 be an eigen-function corresponding to λ1(∆Ωg ) > 0. By definition u ̸≡ 0. Thus by the
previous integral identity we deduce

λ1(∆Ωg )
∫︁
X

|∇gu|2g Ω =
∫︁
X

⟨
∇g∆Ωg u,∇gu

⟩
g
Ω

=
∫︁
X

[︂⃒⃒⃒
∇2
gu

⃒⃒⃒2
g
+ |∇gu|2g

]︂
Ω

>
∫︁
X

|∇gu|2g Ω > 0,

which implies the required estimate.
STEP II. Multiplying both sides of the the identity (8.2) with g we obtain

d∆Ωg u = ∆Ωg du + du · Ric*g(Ω). (15.1)

Let now (v, V) := Tg,Ω(φ, θ) and observe the equalities

∇*Ωg v = ∇*Ωg ∇gdφ = ∆Ωg dφ = d(∆Ωg φ − φ).
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The last one follows from (15.1). We infer that the linear map Tg,Ω is well defined. The fact that in the soliton
case hg,Ω = 0 the differential operator ∆Ωg − I is invertible over C∞Ω (X,R)0 implies the injectivity of the map
Tg,Ω.

In order to show the surjectivity of the map Tg,Ω let (v, V) ∈ Fg,Ω and define the function

φ := (I − ∆Ωg )−1V*Ω ∈ C∞Ω (X,R)0.

Then the identity

∇*Ωg ∇gdφ = d(∆Ωg φ − φ),

implies that the tensor θ := v − ∇gdφ satisfies ∇*Ωg θ = 0. We deduce the orthogonal decomposition with
respect to the scalar product (1.1)

v = ∇gdφ + θ, (15.2)
with∇*Ωg θ = 0. We deduce the required surjectivity statement.

We need to introduce a few notations. From now on we assume H1
d(X,R) = 0 (this is the case of any Fano

manifold) and we observe that the first projection map

p1 : Fg,Ω −→ Sg,Ω :=
{︁
v ∈ C∞(X, S2TX) | d∇*Ωg v = 0

}︁
,

is an isomorphism. Over a compact Kähler manifold we define the real vector spaces

S
J
g,Ω := Sg,Ω ∩DJ

g ,

S
J
g,Ω(0) := Sg,Ω ∩DJ

g,0,

S
J
g,Ω [0] := Sg,Ω ∩DJ

g,[0],

and

E
Ω
g,J :=

{︁
ψ ∈ ΛΩ,⊥g,J | ∆

Ω
g,J(∆Ωg,J − 2I)ψ = ∆Ωg,J(∆Ωg,J − 2I)ψ

}︁
.

With the notations introduced so far we can state the following decomposition result.

Lemma 16. Let (J, g) be a Kähler-Ricci-Soliton and let Ω > 0 be the unique smooth volume form such that
gJ = RicJ(Ω) and

∫︀
X Ω = 1. Then the linear map

C∞Ω (X,R)0 ⊕EΩg,J ⊕H0,1
g,Ω

(︀
TX,J

)︀
−→ S

J
g,Ω(0)

(φ, ψ, A) ↦−→ v,

(v*g)1,0J := ∂gTX,J∇g(φ + τ),

(v*g)0,1J := ∂TX,J∇g,J(φ + ψ) + A,

with τ ∈ C∞Ω (X,R)0 the unique solution of the equation

−∆Ωg,Jτ = (∆Ωg,J − 2I)ψ, (15.3)

is an isomorphism of real vector spaces. In particular the linear map

E
Ω
g,J ⊕H0,1

g,Ω
(︀
TX,J

)︀
−→ S

J
g,Ω [0]

(ψ, A) ↦−→ v,

(v*g)0,1J := ∂TX,J∇g,J(φ + ψ) + A,
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with φ ∈ C∞Ω (X,R)0 the unique solution of the equation

∆Ωg,Jφ = (∆Ωg,J − 2I)ψ, (15.4)

is also an isomorphism of real vector spaces.

Proof. Let first v ∈ Sg,Ω and observe that the decomposition formula (15.2) rewrites as

v*g = ∂gTX,J∇gφ + ∂TX,J∇gφ + θ*g .

This implies that v ∈ DJ
g if and only if θ ∈ DJ

g, and also v ∈ DJ
g,0 if and only if θ ∈ D

J
g,0.

Let now v ∈ SJg,Ω(0). Then the decomposition of the variation of the complex structure in corollary 3
implies the existence of unique τ ∈ C∞Ω (X,R)0, ψ ∈ Λ

Ω,⊥
g,J and A ∈ H0,1

g,Ω
(︀
TX,J

)︀
such that

θ*g = ∂gTX,J∇gτ + ∂TX,J∇g,Jψ + A. (15.5)

For bi-degree reasons the condition∇*Ωg θ = 0 is equivalent to the identity

0 = 2∂*g,ΩTX,J ∂
g
TX,J∇gτ + 2∂

*g,Ω
TX,J ∂TX,J∇g,Jψ.

The latter is equivalent to the equation

0 = ∇g,J
[︁
∆Ωg,Jτ + (∆Ωg − 2I)ψ

]︁
,

thanks to the complex Bochner identities (13.8) and (13.9).We remind that if u ∈ C∞Ω (X,C)0 satisfies∇g,Ju = 0
then u = 0. (See the proof of the injectivity statement in lemma 10 in the section 13.) We conclude that the
condition∇*Ωg θ = 0 is equivalent to the equation (15.3) via the decomposition (15.5) of θ.

Then the required decomposition statement concerning the space SJg,Ω(0) follows from the fact that the
condition τ real valued is equivalent to the equation defining ψ ∈ EΩg,J . In order to see this we show first the
commutation identity [︁

∆Ωg , BΩg,J
]︁
= 0. (15.6)

Indeed using an arbitrary g-orthonormal local frame (ek)k we obtain

∆Ωg BΩg,Ju = ∆Ωg
[︀
g(∇gu, J∇g f )

]︀
= g(∆Ωg∇gu, J∇g f ) − 2g(∇2

gu · ek , J∇2
g f · ek) + g(∇gu, J∆Ωg∇g f )

= g(∆Ωg∇gu +∇gu, J∇g f ) − 2 TrR
(︁
∇2
guJ∇2

g f
)︁

thanks to formula (8.2) applied to f and thanks to the fact that (∆Ωg − 2I)f = 0. Moreover the endomorphism
J∇2

g f is g-anti-symmetric since in the soliton case
[︀
J,∇2

g f
]︀
= 0. We deduce

∆Ωg BΩg,Ju = g(∇g∆Ωg u, J∇g f ) = BΩg,J∆Ωg u,

thanks to formula (8.2) applied to u. We infer the identity (15.6) which implies[︁
∆Ωg,J , ∆Ωg,J

]︁
= 2i

[︁
BΩg,J , ∆Ωg

]︁
= 0. (15.7)

Multiplying both sides of (15.3) with ∆Ωg,J we obtain

−
(︁
∆Ωg,J∆Ωg,J

)︁
τ = ∆Ωg,J(∆Ωg,J − 2I)ψ. (15.8)

The invertible operator

∆Ωg,J∆Ωg,J : C
∞
Ω (X,C)0 −→ C∞Ω (X,C)0,
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is real thanks to (15.7). We deduce that the condition τ real valued is equivalent to the left hand side of (15.8)
being real valued, thus equivalent to the equation defining ψ ∈ EΩg,J .

We observe finally that a variation v ∈ SJg,Ω [0] ⊂ S
J
g,Ω(0) corresponds to φ = −τ, i.e. to (φ, ψ) solution of

the equation (15.4).

Remark 1. If we write ψ = ψ1 + iψ2, with ψ1, ψ2 ∈ C∞Ω (X,R)0, then (15.3) is equivalent to the system⎧⎪⎨⎪⎩
−∆Ωg τ = (∆Ωg − 2I)ψ1 + BΩg,Jψ2,

−BΩg,Jτ = (∆Ωg − 2I)ψ2 − BΩg,Jψ1.
(15.9)

Moreover separating real and imaginary parts in the equation defining ψ ∈ EΩg,J and using the commutation
identity (15.6) we obtain

E
Ω
g,J =

{︁
ψ ∈ ΛΩ,⊥g,J |

[︁
∆Ωg (∆Ωg − 2I) − (BΩg,J)2

]︁
ψ2 = 2(∆Ωg − I)BΩg,Jψ1

}︁
. (15.10)

Using (15.10) and the complex Bochner formula (13.9) we obtain also the identity

E
Ω
g,J =

{︁
ψ ∈ ΛΩ,⊥g,J | − div

Ω ∂*g,ΩTX,J ∂TX,J∇gψ2 = (∆Ωg − I)BΩg,Jψ1
}︁
.

Remark 2. We observe that the linear map

∆Ωg,J : ΛΩ,⊥g,J −→ ΛΩ,⊥g,J , (15.11)

is well defined and it represents an isomorphism of complex vector spaces. In fact this follows from the iden-
tity

2
∫︁
X

u v Ω =
∫︁
X

∆Ωg,Ju v Ω,

for all v ∈ ΛΩg,J . Thus the linear map

∆Ωg,J − 2I : ΛΩ,⊥g,J −→ ΛΩ,⊥g,J , (15.12)

is also well defined and represents an isomorphisms of complex vector spaces. The surjectivity of the latter
follows from the finiteness theorem for elliptic operators. By definition ofEΩg,J we deduce the existence of the
isomorphism of real vector spaces

∆Ωg,J(∆Ωg,J − 2I) : EΩg,J −→ ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0.

We notice also the inclusion

ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0 ⊇ (∆Ωg,J − 2I)(∆Ωg,J − 2I)C

∞
Ω (X,R)0.

16 The geometric meaning of the spaceFJg,Ω [0]

We define the subspaces

F
J
g,Ω(0) :=

{︁
(v, V) ∈ Fg,Ω | v ∈ SJg,Ω(0)

}︁
,

F
J
g,Ω [0] :=

{︁
(v, V) ∈ Fg,Ω | v ∈ SJg,Ω [0]

}︁
.

In the previous section we gave a parametrization of the space SJg,Ω (0), and thus of FJg,Ω (0), which is fun-
damental for the computation of a general second variation formula for the W functional at a Kähler-Ricci
soliton point. In this section we give a simpler parametrization of the sub-space FJg,Ω [0] and a useful geo-
metric interpretation of it. We show first a quite general variation formula for the Chern-Ricci form.
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Lemma 17. Let (gt , Jt)t ⊂ KS, (Ωt)t ⊂ V1 be two smooth families such that J̇t = (J̇t)Tgt . Then hold the first
variation formula

2 ddt RicJt (Ωt) = −d
(︁
gt∇

*Ωt
gt J̇t + 2d

c
Jt Ω̇

*
t

)︁
. (16.1)

Proof. In the case of a fixed volume form Ω > 0 we have the variation formula (see [26])

2 ddt RicJt (Ω) = −d
(︁
gt∇*Ωgt J̇t

)︁
.

For an arbitrary family (Ωt)t ⊂ V1 we fix an arbitrary time τ and we time derive at t = τ the decomposition

RicJt (Ωt) = RicJt (Ωτ) − dd
c
Jt log

Ωt
Ωτ

.

We obtain the required variation formula.

We show now that for any point (g, Ω) ∈ Sω hold the inclusion (1.11). Indeed for any smooth curve (gt , Ωt)t ⊂
Sω, with (g0, Ω0) = (g, Ω) we have ġ*t = −Jt J̇t and thus

0 = 2 ddt RicJt (Ωt) = −d
[︁(︁
∇*Ωtgt ġ

*
t +∇gt Ω̇*t

)︁
¬ω

]︁
,

thanks to the variation formula (16.1). Then the inclusion (1.11) follows from (1.10) and Cartan’s formula for
the Lie derivative of differential forms.

We can provide at this point the geometric interpretation of the sub-space FJg,Ω [0].

Lemma 18. For any point (g, Ω) ∈ Sω hold the identities (1.14) and (1.15).

Proof. We remind that by the orthogonal decomposition in corollary 3 any element v ∈ DJ
g,[0] decomposes as

v*g = ∂TX,J∇g,Jψv + Av ,

with uniqueψv ∈ ΛΩ,⊥g,J andAv ∈ H0,1
g,Ω

(︀
TX,J

)︀
. Moreover theweighted complexBochner identity (13.9) implies

the equality
∂*g,ΩTX,J v

*
g +∇gV*Ω = 1

2∇g,J
[︁
(∆Ωg,J − 2I)ψv + 2V

*
Ω

]︁
, (16.2)

for any (v, V) ∈ DJ
g,[0] × TV1 . Thus

F
J
g,Ω [0] =

{︁
(v, V) ∈ DJ

g,[0] × TV1 | (∆
Ω
g,J − 2I)ψv = −2V*Ω

}︁
. (16.3)

Let

Rψ := Re
[︁
(∆Ωg,J − 2I)ψ

]︁
, (16.4)

Iψ := Im
[︁
(∆Ωg,J − 2I)ψ

]︁
, (16.5)

(for any z ∈ C we write z = Re z + i Im z) and observe that (16.2) implies the identity(︁
∇*Ωg v*g +∇gV*Ω

)︁
¬ω = 1

2dIψv + d
c
J

(︁
Rψv + 2V

*
Ω

)︁
,

for any (v, V) ∈ DJ
g,[0] × TV1 . Thus

T
J
g,Ω =

{︁
(v, V) ∈ DJ

g,[0] × TV1 | Rψv = −2V
*
Ω

}︁
. (16.6)

We notice now the equalities

T[g,Ω]ω ,(g,Ω) =
{︀
(Lξ g, LξΩ) | ξ ∈ C∞(X, TX) : Lξω = 0

}︀
=

{︀
(LJ∇gug, LJ∇guΩ) | u ∈ C

∞
Ω (X,R)0

}︀
=

{︁
(2gJ∂TX,J∇gu, div

Ω(J∇gu)Ω) | u ∈ C∞Ω (X,R)0
}︁
,
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indeed

(LJ∇gug)
*
g = J∇2

gu −∇2
guJ = 2J∂TX,J∇gu.

We deduce that (v, V) ∈ T⊥G
[g,Ω]ω ,(g,Ω)

if and only if for all u ∈ C∞Ω (X,R)0 hold the equalities

0 = 2
∫︁
X

[︂⟨
J∂TX,J∇gu, v

*
g

⟩
g
− divΩ(J∇gu) · V*Ω

]︂
Ω

= −2
∫︁
X

⟨
∇gu, J

(︁
∂*g,ΩTX,J v

*
g +∇gV*Ω

)︁⟩
g
Ω

= 2
∫︁
X

u · divΩ
[︁
J
(︁
∂*g,ΩTX,J v

*
g +∇gV*Ω

)︁]︁
Ω.

If we assume (v, V) ∈ TJg,Ω then

∂*g,ΩTX,J v
*
g +∇gV*Ω = −12 J∇g Iψv , (16.7)

thanks to (16.2) and (16.6). Thus if (v, V) ∈ T⊥G
[g,Ω]ω ,(g,Ω)

∩TJg,Ω then

0 = −
∫︁
X

u · ∆Ωg IψvΩ,

for all u ∈ C∞Ω (X,R)0, i.e. ∆Ωg Iψv = 0, which is equivalent to the condition Iψv = 0. We infer

T⊥G
[g,Ω]ω ,(g,Ω)

∩TJg,Ω ⊆ F
J
g,Ω [0] .

The reverse inclusion is obvious. We deduce the identity (1.14). Then the identity (1.15) follows from the inclu-
sion (1.11).

17 The sign of the second variation of theW functional at a
Kähler-Ricci soliton point

Proposition 1. Let (X, J, g) be a compact Kähler-Ricci-Soliton and let Ω > 0 be the unique smooth volume form
such that gJ = RicJ(Ω) and

∫︀
X Ω = 1. Let also (gt , Ωt)t∈R ⊂ M × V1 be a smooth curve with (g0, Ω0) = (g, Ω)

and with (ġ0, Ω̇0) = (v, V) ∈ FJg,Ω(0). Then with the notations of lemma 16 hold the second variation formula

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= 1
2

∫︁
X

(∆Ωg − I)(∆Ωg − 2I)φ · (∆Ωg − 2I)φΩ

− 1
2

∫︁
X

[︁
(∆Ωg − I) ∆Ωg τ · ∆Ωg τ + PΩg,J Imψ · Imψ + |A|2g F

]︁
Ω,

where

PΩg,J := (∆Ωg,J − 2I)(∆Ωg,J − 2I),
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is a non-negative self-adjoint real elliptic operator with respect to the L2Ω-hermitian product. In particular if
(v, V) ∈ FJg,Ω [0] then

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= −12

∫︁
X

[︂
4
⃒⃒⃒
(∆Ωg − I)φ

⃒⃒⃒2
+ PΩg,J Imψ · Imψ + |A|2g F

]︂
Ω.

Proof. STEP I. Let (X, g, Ω) be a compact shrinking Ricci soliton point and let (gt , Ωt)t∈R ⊂ M × V1 be a
smooth curve with (g0, Ω0) = (g, Ω) and with arbitrary speed (ġ0, Ω̇0) = (v, V) ∈ Fg,Ω. We know from lemma
7

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= −12

∫︁
X

[︂⟨
LΩg v, v

⟩
g
− 2(∆Ωg − 2I)V*Ω · V*Ω

]︂
Ω.

By the considerations in the beginning of section 10 we deduce that in the soliton case hg,Ω = 0 holds the
identity

∇*Ωg LΩg v + d(∆Ωg V*Ω − 2V*Ω) = 0, (17.1)
for all (v, V) ∈ Fg,Ω. Applying the operator∇*Ωg to both sides of this identity we infer

(∇*Ωg )2LΩg v + ∆Ωg (∆Ωg − 2I)V*Ω = 0. (17.2)

For any function φ ∈ C∞Ω (X,R)0 let (v, V) := Tg,Ω(φ, 0). Integrating by parts and using the identity (17.2) we
infer the equalities

∇GDW(g, Ω)(v, V; v, V) = −12

∫︁
X

[︁
(∇*Ωg )2LΩg v · φ + 2(∆Ωg − 2I)(∆Ωg − I)φ · (I − ∆Ωg )φ

]︁
Ω

= −12

∫︁
X

∆Ωg (∆Ωg − 2I)(∆Ωg − I)φ · φΩ

− 1
2

∫︁
X

2(∆Ωg − 2I)(∆Ωg − I)φ · (I − ∆Ωg )φΩ

= 1
2

∫︁
X

(∆Ωg − 2I)(∆Ωg − I)φ · (∆Ωg − 2I)φΩ

= 1
2

∫︁
X

(∆Ωg − I)(∆Ωg − 2I)φ · (∆Ωg − 2I)φΩ.

Remark 1. We can also compute the integral∫︁
X

⟨
LΩg∇2

gφ,∇2
gφ

⟩
g
Ω,

in the previous expansion via the formula (9.3). Indeed∫︁
X

⟨
LΩg∇2

gφ,∇2
gφ

⟩
g
Ω =

∫︁
X

⟨
∇2
g(∆Ωg − 2I)φ,∇2

gφ
⟩
g
Ω

=
∫︁
X

⟨
∆Ωg∇g(∆Ωg − 2I)φ,∇gφ

⟩
g
Ω

=
∫︁
X

⟨
∇g(∆Ωg − I)(∆Ωg − 2I)φ,∇gφ

⟩
g
Ω,
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thanks to the identity (8.2). We conclude integrating by parts∫︁
X

⟨
LΩg∇2

gφ,∇2
gφ

⟩
g
Ω =

∫︁
X

∆Ωg (∆Ωg − 2I)(∆Ωg − I)φ · φΩ.

Remark 2. We set Φ := (∆Ωg − 2I)φ ∈ C∞Ω (X,R)0. Then the previous variation formula rewrites also as

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= 1
2

∫︁
X

[︁
|∇gΦ|2g − Φ

2
]︁
Ω > 0.

the last inequality follows from the variational characterization of the first eigenvalue of ∆Ωg ,

λ1(∆Ωg ) = inf
{︃∫︀

X |∇gu|
2
g Ω∫︀

X u2Ω
| u ∈ C∞Ω (X,R)0 r {0}

}︃
,

which satisfies the inequality λ1(∆Ωg ) > 1.
STEP II. Let (v, V) ∈ Fg,Ω. Using the L2-orthogonal decomposition (15.2) in the proof of lemma 15, we

expand the integral term∫︁
X

⟨
LΩg v, v

⟩
g
Ω =

∫︁
X

[︂⟨
LΩg∇gdφ + LΩg θ,∇gdφ

⟩
g
+
⟨
LΩg∇gdφ + LΩg θ, θ

⟩
g

]︂
Ω.

We observe that ∫︁
X

⟨
LΩg θ,∇gdφ

⟩
g
Ω =

∫︁
X

⟨
∇*Ωg LΩg θ, dφ

⟩
g
Ω = 0,

since∇*Ωg LΩg θ = 0 thanks to the identity (17.1) applied to (θ, 0) ∈ Fg,Ω. On the other hand formula (9.3) implies∫︁
X

⟨
LΩg∇gdφ, θ

⟩
g
Ω =

∫︁
X

⟨
d(∆Ωg − 2I)φ,∇*Ωg θ

⟩
g
Ω = 0.

We conclude the decomposition identity∫︁
X

⟨
LΩg v, v

⟩
g
Ω =

∫︁
X

[︂⟨
LΩg∇gdφ,∇gdφ

⟩
g
+
⟨
LΩg θ, θ

⟩
g

]︂
Ω.

Then step I implies

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= 1
2

∫︁
X

(∆Ωg − I)(∆Ωg − 2I)φ · (∆Ωg − 2I)φΩ −
1
2

∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω.

On the other hand using the decomposition (15.5) of θ and the decomposition formula (12.7) we infer∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω =

∫︁
X

⟨
LΩg ∂gTX,J∇gτ, ∂

g
TX,J∇gτ

⟩
g
Ω

+
∫︁
X

⟨
LΩg ∂TX,J∇g,Jψ, ∂TX,J∇g,Jψ + A

⟩
g
Ω +

∫︁
X

⟨
LΩg A, ∂TX,J∇g,Jψ + A

⟩
g
Ω.
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Using the identities (12.8), (12.9) and the property (12.5) we deduce∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω =

∫︁
X

⟨
∂gTX,J∇g(∆

Ω
g − 2I)τ, ∂gTX,J∇gτ

⟩
g
Ω +

∫︁
X

⟨
∂TX,J∇g,J(∆

Ω
g − 2I)ψ, ∂TX,J∇g,Jψ + A

⟩
g
Ω

+
∫︁
X

[︂⟨
∂*g,ΩTX,JL

Ω
g A,∇g,Jψ

⟩
g
+
⟨
LΩg A, A

⟩
g

]︂
Ω.

By bi-degree reasons ∇*Ωg A = 0, which means (gA, 0) ∈ Fg,Ω. We infer ∇*Ωg LΩg A = 0 thanks to the identity
(17.1). Then the property (12.2) implies

∂*g,ΩTX,JL
Ω
g A = 0, (17.3)

by bi-degree reasons. Integrating by parts further and using the weighted complex Bochner identities (13.8),
(13.9) we obtain∫︁

X

⟨
LΩg θ, θ

⟩
g
Ω =

∫︁
X

⟨
∇g(∆Ωg − 2I)τ, ∂*g,ΩTX,J ∂

g
TX,J∇gτ

⟩
g
Ω +

∫︁
X

⟨
∇g,J(∆Ωg − 2I)ψ, ∂

*g,Ω
TX,J ∂TX,J∇g,Jψ

⟩
g
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω

= 1
2

∫︁
X

⟨
∇g(∆Ωg − 2I)τ,∇g,J∆Ωg,Jτ

⟩
g
Ω + 1

2

∫︁
X

⟨
∇g,J(∆Ωg − 2I)ψ,∇g,J(∆Ωg,J − 2I)ψ

⟩
g
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.

Using the integration by parts formulas (20.4) and (20.3) in the subsection 20.2 of the appendix A, we deduce∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω = 1

4

∫︁
X

∆Ωg,J(∆Ωg − 2I)τ · ∆Ωg,JτΩ + 1
4

∫︁
X

∆Ωg,J(∆Ωg − 2I)τ · ∆Ωg,JτΩ

+ 1
4

∫︁
X

∆Ωg,J(∆Ωg − 2I)ψ · (∆Ωg,J − 2I)ψΩ + 1
4

∫︁
X

∆Ωg,J(∆Ωg − 2I)ψ · (∆
Ω
g,J − 2I)ψΩ

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.

We observe now that the commutation identity (15.6) implies∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω = 1

4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jτ · ∆Ωg,JτΩ + 1
4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jτ · ∆Ωg,JτΩ

+ 1
4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jψ · (∆Ωg,J − 2I)ψΩ + 1
4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jψ · (∆
Ω
g,J − 2I)ψΩ

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.
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Completing the square we obtain∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω = 1

4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jτ · ∆Ωg,JτΩ + 1
4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jτ · ∆Ωg,JτΩ

+ 1
4

∫︁
X

(∆Ωg − 2I)(∆Ωg,J − 2I)ψ · (∆Ωg,J − 2I)ψΩ + 1
4

∫︁
X

(∆Ωg − 2I)(∆Ωg,J − 2I)ψ · (∆
Ω
g,J − 2I)ψΩ

+ 1
2

∫︁
X

(∆Ωg − 2I)ψ · (∆Ωg,J − 2I)ψΩ + 1
2

∫︁
X

(∆Ωg − 2I)ψ · (∆Ωg,J − 2I)ψΩ

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.

Using the equation (15.3) we infer∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω = 1

4

∫︁
X

(∆Ωg − 2I)
(︁
∆Ωg,Jτ + ∆Ωg,Jτ

)︁
·
(︁
∆Ωg,Jτ + ∆Ωg,Jτ

)︁
Ω

+
∫︁
X

|(∆Ωg,J − 2I)ψ|2Ω + i
2

∫︁
X

[︁
BΩg,Jψ · (∆Ωg,J − 2I)ψ − B

Ω
g,Jψ · (∆Ωg,J − 2I)ψ

]︁
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω

=
∫︁
X

[︂
(∆Ωg − 2I)∆Ωg τ · ∆Ωg τ + |∆Ωg,Jτ|2 +

⟨
LΩg A, A

⟩
g

]︂
Ω

− i
2

∫︁
X

[︁
BΩg,Jψ · ∆Ωg,Jτ − BΩg,Jψ · ∆Ωg,Jτ

]︁
Ω.

We observe now that the operator BΩg,J is L2Ω-anti-adjoint. This implies in particular∫︁
X

∆Ωg τ · BΩg,Jτ Ω = 0,

and

− i2

∫︁
X

[︁
BΩg,Jψ · ∆Ωg,Jτ − BΩg,Jψ · ∆Ωg,Jτ

]︁
Ω = i

2

∫︁
X

[︁
ψ · ∆Ωg,JBΩg,Jτ − ψ · ∆Ωg,JBΩg,Jτ

]︁
Ω

= i
2

∫︁
X

[︁
∆Ωg,Jψ − ∆

Ω
g,Jψ

]︁
BΩg,JτΩ

= −
∫︁
X

(︁
∆Ωg ψ2 + BΩg,Jψ1

)︁
BΩg,JτΩ.

thanks to the commutation identity (15.6). Thus∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω =

∫︁
X

[︂
(∆Ωg − I)∆Ωg τ · ∆Ωg τ + |BΩg,Jτ|2 +

⟨
LΩg A, A

⟩
g

]︂
Ω

−
∫︁
X

(︁
∆Ωg ψ2 + BΩg,Jψ1

)︁
BΩg,JτΩ

=
∫︁
X

[︂
(∆Ωg − I)∆Ωg τ · ∆Ωg τ +

⟨
LΩg A, A

⟩
g

]︂
Ω − 2

∫︁
X

(∆Ωg − I)ψ2 · BΩg,JτΩ,
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thanks to the second equation in (15.9). Using again the second equation in (15.9) we expand the term

−2
∫︁
X

(∆Ωg − I)ψ2 · BΩg,JτΩ = 2
∫︁
X

(∆Ωg − I)ψ2 · (∆Ωg − 2I)ψ2Ω − 2
∫︁
X

(∆Ωg − I)ψ2 · BΩg,Jψ1Ω

=
∫︁
X

[︂⃒⃒⃒
(∆Ωg − 2I)ψ2

⃒⃒⃒2
+ ∆Ωg ψ2 · (∆Ωg − 2I)ψ2

]︂
Ω − 2

∫︁
X

ψ2 · (∆Ωg − I)BΩg,Jψ1Ω

=
∫︁
X

[︁
(∆Ωg − 2I)2 + (BΩg,J)2

]︁
ψ2 · ψ2Ω,

thanks to the expression (15.10). We observe further that the formula

PΩg,J = (∆Ωg − 2I)2 + (BΩg,J)2, (17.4)

hold thanks to the commutation identity (15.6). We conclude∫︁
X

⟨
LΩg θ, θ

⟩
g
Ω =

∫︁
X

[︂
(∆Ωg − I)∆Ωg τ · ∆Ωg τ + PΩg,Jψ2 · ψ2 +

⟨
LΩg A, A

⟩
g

]︂
Ω,

which implies the required formula for the variations (v, V) ∈ FJg,Ω(0).
STEP III. We compute now the stability integral involving A. The trivial identity

LΩg A = LgA +∇g f¬∇gA,

combined with the formula (14.9) implies

LΩg A = 2∂TX,J∂
*g
TX,JA +

[︁
Ric*(g), A

]︁
+∇g f¬∇gA,

since ∂TX,JA = 0. Integrating by parts we deduce∫︁
X

⟨
LΩg A, A

⟩
g
Ω =

∫︁
X

[︂
2
⟨
∂TX,J∂

*g
TX,JA, A

⟩
g
+ ⟨∇g f¬∇gA, A⟩g

]︂
Ω

=
∫︁
X

[︂
2
⟨
∂*gTX,JA, ∂

*g,Ω
TX,JA

⟩
g
+ 1
2∇g f . |A|

2
g

]︂
Ω

= 1
2

∫︁
X

∆Ωg f |A|2g Ω

=
∫︁
X

F |A|2g Ω,

since ∂*g,ΩTX,JA = 0 and (J, g) is a Kähler-Ricci-Soliton. (This last identity has been obtained by Hall-Murphy [16]
using a different integration by parts method.)

We show now the second variation formula corresponding to the particular case (v, V) ∈ FJg,Ω [0]. With
this assumption hold the relation φ = −τ. Thus we rearrange the expression

E := 1
2

∫︁
X

(∆Ωg − I)(∆Ωg − 2I)φ · (∆Ωg − 2I)φΩ −
1
2

∫︁
X

(∆Ωg − I)∆Ωg φ · ∆Ωg φΩ

= 1
2

∫︁
X

[︁
−4(∆Ωg − I)∆Ωg φ · φ + 4(∆Ωg − I)φ · φ

]︁
Ω

= −2
∫︁
X

(∆Ωg − I)2φ · φΩ

= −2
∫︁
X

⃒⃒⃒
(∆Ωg − I)φ

⃒⃒⃒2
Ω,
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which implies the required formula in the particular case (v, V) ∈ FJg,Ω [0].
Let A := ∆Ωg,J − 2I and observe that [A, Ā] = −2i[∆Ωg , BΩg,J] = 0, thanks to (15.6). Then the statement

concerning the operator PΩg,J follows from the elementary lemma below.

Lemma 19. Let H := L2Ω(X,C)0 and A, B : D ⊂ H −→ H be closed densely defined linear operators such that
0 6 A = A*, 0 6 B = B*, [A, B] = 0. If A and B are differential operators of same order with A elliptic then
AB > 0. In particular if [A, Ā] = 0 then AĀ > 0.

Proof. Let Eλk (A) ⊂ H be the eigenspace of A corresponding to an eigenvalue λk ∈ R>0. Then the identity
[A, B] = 0 implies that the restriction B : Eλk (A) −→ Eλk (A) is well defined and represents a non-negative
self-adjoint operator.We deduce by the spectral theorem in finite dimensions the existence of an orthonormal
basis (ek,l)l∈Ik ⊂ Eλk (A) such that Bek,l = µk,lek,l, with µk,l ∈ R>0. Moreover Aek,l = λkek,l. We consider a
strictly monotone increasing parametrization (λk)k. Then any u ∈ H writes as

u =
∑︁
k>0

∑︁
l∈Ik

ck,lek,l ,

ck,l ∈ C. In particular for u ∈ C∞(X,C)0 hold the expressions

Au =
∑︁
k>0

∑︁
l∈Ik

λkck,lek,l ,

Bu =
∑︁
k>0

∑︁
l∈Ik

µk,lck,lek,l ,

and

(ABu, u)Ω = (Bu, Au)Ω =
∑︁
k>0

∑︁
l∈Ik

λkµk,l
⃒⃒
ck,l

⃒⃒2
> 0.

The inequality in the general case u ∈ D follows from the density of the smooth functions in the graph
topology of A. In order to see that Ā > 0 we observe the trivial equalities

0 6
∫︁
X

Au · uΩ =
∫︁
X

u · AuΩ =
∫︁
X

Āu · uΩ =
∫︁
X

Āv · vΩ,

with v := u. In order to show its self-adjointness we observe also the trivial equalities∫︁
X

Āu · vΩ =
∫︁
X

v · AuΩ =
∫︁
X

Av · uΩ =
∫︁
X

u · AvΩ.

We deduce the following corollary of proposition 1.

Corollary 4. In the setting of proposition 1 assume (v, V) ∈ FJg,Ω [0] with Av = 0. Then

d2
dt2 |t=0

W(gt , Ωt) 6 0,

with equality if and only if (v, V) = (0, 0).

We notice indeed that the equality hold if and only if φ = 0.

17.1 The Kähler-Einstein case

In the Kähler-Einstein case the complex operator ∆Ωg,J reduces to the real operator ∆Ωg . Let

Λg := KerR(∆g − 2I) ⊂ C∞(X,R)0,
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and let Λ⊥
g ⊂ C∞(X,R)0 be its L2-orthogonal with respect to themeasure dVg. We observe the decomposition

ΛΩg,J = Λg ⊕ iΛg , which implies the decomposition

ΛΩ,⊥g,J = Λ⊥
g ⊕ iΛ⊥

g ,

and thus the identity EΩg,J = Λ⊥
g . With the notations of lemma 16 let Φ := (∆g − 2I)φ, and Ψ := (∆g − 2I)ψ.

Then the second variation formulas in proposition 1 reduces to

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= 1
2Volg(X)

∫︁
X

[(∆g − I)Φ · Φ − (∆g − I)Ψ · Ψ ]dVg ,

in the case (v, V) ∈ FJg(0) and to

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= − 2
Volg(X)

∫︁
X

⃒⃒⃒
∆−1g (∆g − I)Ψ

⃒⃒⃒2
dVg > 0,

in the case (v, V) ∈ FJg [0], with equality if and only if v*g ∈ H0,1
g

(︀
TX,J

)︀
.

Proof of step II in the Kähler-Einstein case.
The most difficult part in the proof of proposition 1 is the computation of the stability integral∫︁

X

⟨
LΩg θ, θ

⟩
g
Ω,

in step II of the proof. In the Kähler-Einstein case the argument is much more simple. We include the details
for readers convenience.

We remind first the isomorphism g−1 : S2RT*X ≃ Endg(TX). We have the g-orthogonal spiting

Endg(TX) = E′g,J ⊕g E′′g,J ,

E′g,J := Endg(TX) ∩ C∞
(︁
X, T*X,J ⊗ TX,J

)︁
,

E′′g,J := Endg(TX) ∩ C∞
(︁
X, T*X,−J ⊗ TX,J

)︁
.

We observe that if α ∈ Λ2RT*X then holds the identity α*ω = −Jα*g, where α*ω := ω−1α. We define also the vector
bundle

Λ1,1J,R := Λ1,1J T*X ∩ Λ2RT*X ,

and we notice the isomorphism ω−1 : Λ1,1J,R ≃ E
′
g,J . Moreover the identity (3.4) combined with the properties

(12.1) and (12.2) implies that the maps

LΩg : C∞
(︀
X, E′g,J

)︀
−→ C∞(X, E′g,J), (17.5)

LΩg : C∞
(︀
X, E′′g,J

)︀
−→ C∞(X, E′′g,J), (17.6)

are well defined. We observe also that by (12.5) and (20.7) we deduce the formula

ωLΩg α*ω = ∆Ωg α + 2Rg * α, (17.7)
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for all α ∈ C∞(X, Λ1,1J,R). Notice indeed that the endomorphism Jα*ω is g-anti-symmetric thanks to the J-
linearity of α*ω. We deduce using (17.7) and the identity Trω α = TrR α*ω,

Trω
(︁
∆Ωg α + 2Rg * α

)︁
= TrR

(︁
LΩg α*ω

)︁
.

This combined with the identity (3.10), which in our case rewrites as

TrR
(︁
Rg * α*ω

)︁
= TrR

[︁
Ric*(g)α*ω

]︁
,

implies that in the Einstein case hold the trace formula

Trω (∆gα + 2Rg * α) = (∆g − 2I) Trω α. (17.8)

We observe also the identity
⟨α, β⟩g =

⟨
α*ω , β*ω

⟩
g
, (17.9)

for all α, β ∈ Λ1,1J,R. Indeed we consider the equalities

⟨α, β⟩g =
⟨
α*g , β*g

⟩
g

= TrR
[︁
α*g(β*g)Tg

]︁
= −TrR

[︁
α*gβ*g

]︁
= TrR

[︁
Jα*g Jβ*g

]︁
= TrR

[︁
α*ωβ*ω

]︁
=

⟨
α*ω , β*ω

⟩
g
.

We deduce by the identity (20.6) in the appendix and by the Stokes theorem that over a compact Kähler man-
ifold if α, β ∈ C∞(X, Λ1,1J,R), dα = dβ = 0 satisfy {α}d = 0, or {β}d = 0 then

2
∫︁
X

⟨α, β⟩g dVg =
∫︁
X

Trω α Trω βdVg . (17.10)

(Notice indeed the identity ⟨α, β⟩g = ⟨α, β⟩ω for all α, β ∈ Λ1,1J,R.) We decompose now the endomorphism
section θ*g = A′

J + A′′
J and we estimate the integral∫︁

X

⟨
LΩg θ, θ

⟩
g
Ω =

∫︁
X

⟨
LΩg θ*g , θ*g

⟩
g
Ω

=
∫︁
X

[︂⟨
LΩg A′

J , A′
J

⟩
g
+
⟨
LΩg A′′

J , A′′
J

⟩
g

]︂
Ω.

The last equality hold thanks to the identity (12.7). Let α := ωA′
J and assume {α}d = 0. Using the identity

(20.10) we obtain

∆Ωg α + 2Rg * α = (∆Ωd,g − 2I)α = d∇*Ωg α − 2α,
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and thus
{︁
∆Ωg α + 2Rg * α

}︁
d
= 0. Then the identities (17.9), (17.7), (17.10) and (17.8) imply∫︁

X

⟨︀
LgA′

J , A′
J
⟩︀
g dVg =

∫︁
X

⟨∆gα + 2Rg * α, α⟩g dVg

= 1
2

∫︁
X

(∆g − 2I) Trω α · Trω αdVg > 0,

since λ1(∆g) > 2 in the Kähler-Einstein case. (Notice that the condition
∫︀
X Trω αdVg = 0 hold thanks to the

assumption {α}d = 0.) In the set up of lemma 16 we have α = i∂J∂Jτ and

A′′
J = ∂TX,J∇gψ + A,

with ψ ∈ Λ⊥
g and A ∈ H0,1

g
(︀
TX,J

)︀
. Thus by the previous computation∫︁

X

⟨︀
LgA′

J , A′
J
⟩︀
g dVg = 1

2

∫︁
X

(∆g − 2I)∆gτ · ∆gτdVg .

On the other hand formula (14.9) implies in the Kähler-Einstein case

LgA′′
J = 2∆−JTX,gA

′′
J = 2∂TX,J∂

*g
TX,JA

′′
J ,

since ∂TX,JA
′′
J = 0. Integrating by parts we deduce∫︁

X

⟨︀
LgA′′

J , A′′
J
⟩︀
g dVg = 2

∫︁
X

⃒⃒⃒
∂*gTX,JA

′′
J

⃒⃒⃒2
g
dVg = 2

∫︁
X

⃒⃒⃒
∂*gTX,J∂TX,J∇gψ

⃒⃒⃒2
g
dVg .

In the Kähler-Einstein case the complex Bochner type formula (13.9) combined with the equation (15.3) im-
plies

2∂*gTX,J∂TX,J∇gψ = ∇g(∆g − 2I)ψ = −∇g∆gτ.

We obtain ∫︁
X

⟨︀
LgA′′

J , A′′
J
⟩︀
g dVg = 1

2

∫︁
X

|∇g∆gτ|2g dVg =
1
2

∫︁
X

∆2gτ · ∆gτdVg ,

and thus the required formula∫︁
X

⟨︀
Lgθ, θ

⟩︀
g dVg =

∫︁
X

(∆g − I)∆gτ · ∆gτdVg > 0.

We notice also that the latter implies the statement of theorem 2. Indeed in the equality case holds ∆gτ = 0
since λ1(∆g) > 2. Then the equation (15.3) implies ψ = 0. The conclusion follows from the decomposition
identity (15.5).

Remark 3. We consider the particular case of a smooth curve (gt , Ωt)t ⊂ Sω with g0 Kähler-Einstein metric.
Time deriving twice the expression

W(gt , Ωt) = 2
∫︁
X

log
(︂
ωn
Ωt

)︂
Ωt − 2 log n!,

we infer

d2
dt2 |t=0

W(gt , Ωt) = −2
∫︁
X

⃒⃒⃒
Ω̇*0

⃒⃒⃒2
Ω0 − 2

∫︁
X

log
(︂
Ω0
ωn

)︂
Ω̈0

= −2
∫︁
X

⃒⃒⃒
Ω̇*0

⃒⃒⃒2
Ω0,

thanks to the Kähler-Einstein condition. Then a trivial change of variables allows to deduce our previous second
variation formula in the particular case (ġ0, Ω̇0) ∈ FJ0g0 ,Ω0

[0].
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17.2 The case of variations in the directionTJ
g,Ω

The first part of the following result has been obtained in [28]. We provide here a new proof of the crucial case
of the variations insideFJg,Ω[0]. For readers convenience we include also the general proof explained in [28].

Proposition 2. Let (X, J, g) be a compact Kähler-Ricci-Soliton and let Ω > 0 be the unique smooth volume form
such that gJ = RicJ(Ω) and

∫︀
X Ω = 1. Let also (gt , Ωt)t∈R ⊂ M × V1 be a smooth curve with (g0, Ω0) = (g, Ω)

and with (ġ0, Ω̇0) = (v, V) ∈ TJg,Ω. Then with respect to the decomposition

v*g = ∂TX,J∇g,Jψ + A,

with unique ψ ∈ ΛΩ,⊥g,J and A ∈ H0,1
g,Ω

(︀
TX,J

)︀
, hold the second variation formula

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= −12

∫︁
X

[︁
PΩg,J Reψ · Reψ + |A|2g F

]︁
Ω,

where

PΩg,J := (∆Ωg,J − 2I)(∆Ωg,J − 2I),

is a non-negative self-adjoint real elliptic operator with respect to the L2Ω-hermitian product.Moreover if (v, V) ∈
F
J
g,Ω[0] then the previous formula writes as

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= −12

∫︁
X

[︂
4
⃒⃒⃒
V*Ω

⃒⃒⃒2
+ PΩg,J Imψ · Imψ + |A|2g F

]︂
Ω.

Proof. Step I. Reconsidering a computation in the poof of step II of the proposition 1 we see that for all vari-
ations v ∈ DJ

g,[0] holds the identity∫︁
X

⟨
LΩg v, v

⟩
g
Ω =

∫︁
X

⟨
LΩg ∂TX,J∇g,Jψ, ∂TX,J∇g,Jψ + A

⟩
g
Ω +

∫︁
X

⟨
LΩg A, ∂TX,J∇g,Jψ + A

⟩
g
Ω.

Using the identity (12.9) and the property (12.5) we deduce∫︁
X

⟨
LΩg v, v

⟩
g
Ω =

∫︁
X

⟨
∂TX,J∇g,J(∆

Ω
g − 2I)ψ, ∂TX,J∇g,Jψ + A

⟩
g
Ω +

∫︁
X

[︂⟨
∂*g,ΩTX,JL

Ω
g A,∇g,Jψ

⟩
g
+
⟨
LΩg A, A

⟩
g

]︂
Ω.

Using the identity (17.3), integrating by parts further and using the weighted complex Bochner identity (13.9)
we obtain ∫︁

X

⟨
LΩg v, v

⟩
g
Ω =

∫︁
X

⟨
∇g,J(∆Ωg − 2I) ψ, ∂

*g,Ω
TX,J ∂TX,J∇g,Jψ

⟩
g
Ω +

∫︁
X

⟨
LΩg A, A

⟩
g
Ω

= 1
2

∫︁
X

⟨
∇g,J(∆Ωg − 2I) ψ,∇g,J(∆Ωg,J − 2I)ψ

⟩
g
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.
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Using the integration by parts formula (20.3) in the subsection 20.2 of the appendix A we infer∫︁
X

⟨
LΩg v, v

⟩
g
Ω = 1

4

∫︁
X

∆Ωg,J(∆Ωg − 2I)ψ · (∆Ωg,J − 2I)ψΩ + 1
4

∫︁
X

∆Ωg,J(∆Ωg − 2I)ψ · (∆
Ω
g,J − 2I)ψΩ

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω (17.11)

for all v ∈ DJ
g,[0].

STEP II. We show first the variation formula in the case (v, V) ∈ FJg,Ω[0] since the proof is simpler. Using
the expression (16.3) for the space FJg,Ω[0] inside the identity (17.11) we deduce the equalities∫︁

X

⟨
LΩg v, v

⟩
g
Ω = −

∫︁
X

(∆Ωg − 2I) Re(∆Ωg,Jψ) · V*Ω Ω +
∫︁
X

⟨
LΩg A, A

⟩
g
Ω

= −
∫︁
X

(∆Ωg − 2I)(∆Ωg ψ1 + BΩg,Jψ2) · V*Ω Ω +
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.

Let write ψ = ψ1 + iψ2, with ψj real valued functions. Then the condition in the expression (16.3) rewrites as

(∆Ωg − 2I) ψ1 + BΩg,J ψ2 = −2V*Ω , (17.12)

(∆Ωg − 2I) ψ2 − BΩg,J ψ1 = 0. (17.13)

We use now the condition (17.12) in the formula

−2 d
2

dt2 |t=0
W(gt , Ωt) = −2∇GDW(g, Ω)(v, V; v, V)

=
∫︁
X

[︂⟨
LΩg v, v

⟩
g
− 2(∆Ωg − 2I)V*Ω · V*Ω

]︂
Ω

= −2
∫︁
X

(∆Ωg − 2I)ψ1 · V*Ω Ω +
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.

Using again the condition (17.12), we expand the integral

−2
∫︁
X

(∆Ωg − 2I)ψ1 · V*Ω Ω =
∫︁
X

(∆Ωg − 2I)ψ1 ·
[︁
(∆Ωg − 2I) ψ1 + BΩg,J ψ2

]︁
Ω

=
∫︁
X

ψ1
[︁
(∆Ωg − 2I)2ψ1 + BΩg,J(∆Ωg − 2I)ψ2

]︁
Ω

=
∫︁
X

ψ1

[︂
(∆Ωg − 2I)2ψ1 +

(︁
BΩg,J

)︁2
ψ1

]︂
Ω,

thanks to the identities (15.6) and (17.13). Using the formula (17.4), we infer

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= −12

∫︁
X

[︂
PΩg,Jψ1 · ψ1 +

⟨
LΩg A, A

⟩
g

]︂
Ω.
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Using again the condition (17.12) and the commutation identity (15.6) we expand the integral∫︁
X

4
⃒⃒⃒
V*Ω

⃒⃒⃒2
Ω =

∫︁
X

[︂⃒⃒⃒
(∆Ωg − 2I)ψ1

⃒⃒⃒2
+
⃒⃒⃒
BΩg,Jψ2

⃒⃒⃒2
+ 2(∆Ωg − 2I)ψ1 · BΩg,Jψ2

]︂
Ω

=
∫︁
X

[︁
(∆Ωg − 2I)2ψ1 · ψ1 − (BΩg,J)2ψ2 · ψ2 + 2ψ1 · BΩg,J(∆Ωg − 2I)ψ2

]︁
Ω,

thanks to the fact that the operator BΩg,J is L2Ω-anti-adjoint. Using again this fact and the condition (17.13) we
deduce ∫︁

X

2ψ1 · BΩg,J(∆Ωg − 2I)ψ2Ω =
∫︁
X

ψ1 · (BΩg,J)2ψ1Ω −
∫︁
X

BΩg,J ψ1 · (∆Ωg − 2I)ψ2Ω

=
∫︁
X

[︁
(BΩg,J)2ψ1 · ψ1 − (∆Ωg − 2I)ψ2 · (∆Ωg − 2I) ψ2

]︁
Ω,

and thus ∫︁
X

4
⃒⃒⃒
V*Ω

⃒⃒⃒2
Ω =

∫︁
X

[︁
PΩg,Jψ1 · ψ1 − PΩg,Jψ2 · ψ2

]︁
Ω.

We infer the second variation formula

d2
dt2 |t=0

W(gt , Ωt) = ∇GDW(g, Ω)(v, V; v, V)

= −12

∫︁
X

[︂
4
⃒⃒⃒
V*Ω

⃒⃒⃒2
+ PΩg,Jψ2 · ψ2 +

⟨
LΩg A, A

⟩
g

]︂
Ω.

The conclusion follows from the computation in the beginning of step III in the proof of the proposition 1.
STEP III. We shownow the second variation formula in themore general case of variations (v, V) ∈ TJg,Ω.

We observe first that the general expression of∇2
GW(g, Ω) obtained at the end of the proof of lemma 7 implies

that over a shrinking-Ricci-Soliton point holds the variation formula

−2 d
2

dt2 |t=0
W(gt , Ωt) = −2∇GDW(g, Ω)(v, V; v, V)

=
∫︁
X

⟨
LΩg v − L∇*Ω

g v*g+∇gV*Ω
g, v

⟩
g
Ω

− 2
∫︁
X

[︃
(∆Ωg − 2I)V*Ω − divΩ

(︁
∇*Ωg v*g +∇gV*Ω

)︁ ]︃
V*Ω Ω

=
∫︁
X

[︂⟨
LΩg v, v

⟩
g
− 2(∆Ωg − 2I)V*Ω · V*Ω

]︂
Ω

− 2
∫︁
X

⟨
∇g

(︁
∇*Ωg v*g +∇gV*Ω

)︁
, v*g

⟩
g

Ω

− 2
∫︁
X

⟨
∇*Ωg v*g +∇gV*Ω ,∇gV*Ω

⟩
g
Ω

=
∫︁
X

[︂⟨
LΩg v, v

⟩
g
− 2(∆Ωg − 2I)V*Ω · V*Ω − 2

⃒⃒⃒
∇*Ωg v*g + ∇gV*Ω

⃒⃒⃒2
g

]︂
Ω,
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for arbitrary directions (v, V) ∈ TM×V1 . Using now the fact that in the case (v, V) ∈ TJg,Ω hold the expressions
Rψ = −2V*Ω, (we use here the definitions (16.4), (16.5)) and (16.7) we obtain

−2∇GDW(g, Ω)(v, V; v, V) =
∫︁
X

[︂⟨
LΩg v, v

⟩
g
− 1
2(∆

Ω
g − 2I)Rψ · Rψ −

1
2
⃒⃒
∇g Iψ

⃒⃒2
g

]︂
Ω,

for all (v, V) ∈ TJg,Ω. Thanks to the commutation identity (15.6) we can rewrite the identity (17.11) as∫︁
X

[︂⟨
LΩg v, v

⟩
g
−
⟨
LΩg A, A

⟩
g

]︂
Ω = 1

4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jψ · (∆Ωg,J − 2I)ψΩ

+ 1
4

∫︁
X

(∆Ωg − 2I)∆Ωg,Jψ · (∆
Ω
g,J − 2I)ψΩ.

Adding and subtracting 2ψ to the factor ∆Ωg,Jψ and respectively 2ψ to the factor ∆Ωg,Jψ, we infer∫︁
X

[︂⟨
LΩg v, v

⟩
g
−
⟨
LΩg A, A

⟩
g

]︂
Ω = 1

4

∫︁
X

(∆Ωg − 2I)(∆Ωg,J − 2I)ψ · (∆Ωg,J − 2I)ψΩ

+ 1
4

∫︁
X

(∆Ωg − 2I)(∆Ωg,J − 2I)ψ · (∆
Ω
g,J − 2I)ψΩ

+ 1
2

∫︁
X

(∆Ωg − 2I)ψ · (∆Ωg,J − 2I)ψΩ

+ 1
2

∫︁
X

(∆Ωg − 2I)ψ · (∆Ωg,J − 2I)ψΩ.

We deduce the equalities

−2∇GDW(g, Ω)(v, V; v, V) =
∫︁
X

[︂
(∆Ωg − 2I)(∆Ωg,J − 2I)ψ · ψ + 1

2(∆
Ω
g − 2I)Iψ · Iψ −

1
2
⃒⃒
∇g Iψ

⃒⃒2
g

]︂
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω

=
∫︁
X

{︂[︁
PΩg,J − iBΩg,J(∆Ωg,J − 2I)

]︁
ψ · ψ − Iψ · Iψ +

⟨
LΩg A, A

⟩
g

}︂
Ω.

Using the expression

Iψ = (∆Ωg − 2I) ψ2 − BΩg,J ψ1,

we find the formula

−2∇GDW(g, Ω)(v, V; v, V) =
∫︁
X

[︁
PΩg,J − iBΩg,J(∆Ωg − 2I) − (BΩg,J)2

]︁
ψ · ψ Ω

−
∫︁
X

[︂⃒⃒⃒
(∆Ωg − 2I)ψ2

⃒⃒⃒2
+
⃒⃒⃒
BΩg,Jψ1

⃒⃒⃒2
− 2(∆Ωg − 2I) ψ2 · BΩg,J ψ1

]︂
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.
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The fact that the operator BΩg,J is L2Ω-anti-adjoint combined with the commutation identity (15.6) implies that
BΩg,J(∆Ωg − 2I) is also L2Ω-anti-adjoint. We deduce in particular the identity∫︁

X

BΩg,J(∆Ωg − 2I)ψj · ψj Ω = 0,

and thus the equality

−2∇GDW(g, Ω)(v, V; v, V) =
∫︁
X

[︁
PΩg,Jψ1 · ψ1 + PΩg,Jψ2 · ψ2

]︁
Ω

+
∫︁
X

[︁
BΩg,J(∆Ωg − 2I) ψ2 · ψ1 − BΩg,J(∆Ωg − 2I)ψ1 · ψ2

]︁
Ω

−
∫︁
X

[︁
(BΩg,J)2ψ1 · ψ1 + (BΩg,J)2ψ2 · ψ2

]︁
Ω

−
∫︁
X

[︂⃒⃒⃒
(∆Ωg − 2I)ψ2

⃒⃒⃒2
+
⃒⃒⃒
BΩg,Jψ1

⃒⃒⃒2
− 2(∆Ωg − 2I) ψ2 · BΩg,J ψ1

]︂
Ω

+
∫︁
X

⟨
LΩg A, A

⟩
g
Ω.

Using the fact that the operator BΩg,J is L2Ω-anti-adjoint and the commutation identity (15.6) we can simplify
in order to obtain the required variation formula.

18 Positivity of the metric Gg,Ω over the spaceTJ
g,Ω

Lemma 20. For any (g, Ω) ∈ Sω the restriction of the symmetric form Gg,Ω to the vector space TJg,Ω, with
J := g−1ω, is positive definite.

Proof. Let (u, U) , (v, V) ∈ TJg,Ω. Using the expression (16.6) for the spaceT
J
g,Ω we have

u*g = ∂TX,J∇g,Jφ + A,

−2U*Ω = Re
[︁
(∆Ωg,J − 2I)φ

]︁
,

and

v*g = ∂TX,J∇g,Jψ + B,

−2V*Ω = Re
[︁
(∆Ωg,J − 2I)ψ

]︁
,

with unique φ, ψ ∈ ΛΩ,⊥g,J and A, B ∈ H0,1
g,Ω

(︀
TX,J

)︀
. We decompose now the term

Gg,Ω(u, U; v, V) =
∫︁
X

[︁
⟨u, v⟩g − 2U

*
Ω · V*Ω

]︁
Ω

=
∫︁
X

[︂⟨
∂TX,J∇g,J φ, ∂TX,J∇g,Jψ

⟩
g
+ ⟨A, B⟩g

]︂
Ω

− 1
2

∫︁
X

Re
[︁
(∆Ωg,J − 2I)φ

]︁
Re

[︁
(∆Ωg,J − 2I)ψ

]︁
Ω.
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Integrating by parts and using the weighted complex Bochner formula (13.9) we transform the integral

I1 :=
∫︁
X

⟨
∂TX,J∇g,J φ, ∂TX,J∇g,Jψ

⟩
g
Ω

=
∫︁
X

⟨
∂*g,ΩTX,J ∂TX,J∇g,J φ,∇g,Jψ

⟩
g
Ω

= 1
2

∫︁
X

⟨
∇g,J(∆Ωg,J − 2I)φ ,∇g,Jψ

⟩
g
Ω.

Using the integration by parts formula (20.4) in the subsection 20.2 of the appendix we deduce

I1 = 1
4

∫︁
X

[︁
∆Ωg,J(∆Ωg,J − 2I)φ · ψ + ∆Ωg,J(∆Ωg,J − 2I)φ · ψ

]︁
Ω

= 1
4

∫︁
X

[︁
(∆Ωg,J − 2I)φ · ∆Ωg,Jψ + (∆Ωg,J − 2I)φ · ∆

Ω
g,Jψ

]︁
Ω.

Adding and subtracting 2ψ to the factor ∆Ωg,Jψ and respectively 2ψ to the factor ∆Ωg,Jψ, we infer

I1 = 1
2

∫︁
X

[︁
(∆Ωg,J − 2I)φ · ψ + (∆Ωg,J − 2I)φ · ψ

]︁
Ω

+ 1
4

∫︁
X

[︁
(∆Ωg,J − 2I)φ · (∆Ωg,J − 2I)ψ + (∆Ωg,J − 2I)φ · (∆

Ω
g,J − 2I)ψ

]︁
Ω

= 1
2

∫︁
X

[︁
(∆Ωg,J − 2I)φ · ψ + φ · (∆Ωg,J − 2I)ψ

]︁
Ω

+ 1
4

∫︁
X

[︁
(∆Ωg,J − 2I)φ · (∆Ωg,J − 2I)ψ + (∆Ωg,J − 2I)φ · (∆

Ω
g,J − 2I)ψ

]︁
Ω.

We deduce the general formula

Gg,Ω(u, U; v, V) =
∫︁
X

{︂
1
2

[︁
(∆Ωg,J − 2I)φ · ψ + (∆Ωg,J − 2I)ψ · φ

]︁
+ ⟨A, B⟩g

}︂
Ω

+ 1
2

∫︁
X

Im
[︁
(∆Ωg,J − 2I)φ

]︁
Im

[︁
(∆Ωg,J − 2I)ψ

]︁
Ω.

In particular

Gg,Ω(u, U; u, U) =
∫︁
X

[︁
(∆Ωg,J − 2I)φ · φ + |A|2g

]︁
Ω + 1

2

∫︁
X

{︁
Im

[︁
(∆Ωg,J − 2I)φ

]︁}︁2
Ω > 0,

with equality if and only if φ = 0 and A = 0, i.e. (u, U) = (0, 0), thanks to the variational characterization of
the first eigenvalue λ1

(︁
∆Ωg,J

)︁
> 2 of the elliptic operator ∆Ωg,J .

Corollary 5. For any (g, Ω) ∈ Sω hold the identity

KerR(∆Ωg − 2I) = KerR(∆Ωg,J − 2I), (18.1)

with J := g−1ω.
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Proof. Let u ∈ C∞Ω (X,R)0 and (φt)t∈R ⊂ Symp0(X, ω) the 1-parameter sub-groupgeneratedby the symplectic
vector field ξ := (du)*ω = −J∇gu. We set Jt := φ*t J, gt := φ*t g, Ωt := φ*tΩ and we compute ġ0 = Lξ g and
Ω̇0 = LξΩ. The expression of the tangent space to the symplectic orbit [g, Ω]ω in the proof of lemma 18
implies

ġ*0 = −2J∂TX,J∇gu,

Ω̇*0 = −BΩg,Ju.

Then the weighted complex Bochner formula (13.9) implies

∂*g,ΩTX,J ġ
*
0 +∇gΩ̇*0 = −2J∂*g,ΩTX,J ∂TX,J∇gu +∇gΩ̇

*
0

= −J∇g(∆Ωg − 2I)u +∇gBΩg,Ju +∇gΩ̇*0

= −J∇g(∆Ωg − 2I)u.

We deduce that (ġ0, Ω̇0) ∈ FJg,Ω [0] if and only if (∆
Ω
g − 2I)u = 0. On the other hand the (strict) positivity of

the metric Gg,Ω overTJg,Ω ⊃ T[g,Ω]ω ,(g,Ω) implies

T[g,Ω]ω ,(g,Ω) ∩ T
⊥G
[g,Ω]ω ,(g,Ω)

= 0.

Then lemma 18 implies

T[g,Ω]ω ,(g,Ω) ∩ T
⊥G
[g,Ω]ω ,(g,Ω)

= T[g,Ω]ω ,(g,Ω) ∩F
J
g,Ω [0] = {0} ,

So if (ġ0, Ω̇0) ∈ FJg,Ω [0] then (ġ0, Ω̇0) = (0, 0). We infer the inclusion

KerR(∆Ωg − 2I) ⊆ KerR BΩg,J ,

and thus the required identity (18.1).

18.1 Double splitting of the spaceTJ
g,Ω

Let Hk, with H0 = L2, be a Sobolev space of sections over X. For any subset S of smooth sections over X we
denotewithHkS its closurewith respect to theHk-topology. The pseudo-Riemannianmetric Gg,Ω is obviously
continuous with respect to the L2-topology. At the moment we are unable to say if the topology induced by
Gg,Ω over L2TJg,Ω is equivalent with the L2-topology. Nevertheless we can show the following basic decom-
position result

Corollary 6. For any (g, Ω) ∈ Sω holds the decomposition identity

L2TJg,Ω = L2T[g,Ω]ω ,(g,Ω) ⊕G L
2
F
J
g,Ω[0],

with J := g−1ω.

Proof. We set

ΛΩg,R := KerR(∆Ωg − 2I),

and let ΛΩ,⊥g,R ⊂ L
2
Ω(X,R)0 be its L2-orthogonal with respect to the measure Ω. Then corollary 5 and its proof

shows that the map

χ : ΛΩ,⊥g,R ∩ C
∞
Ω (X,R)0 −→ T[g,Ω]ω ,(g,Ω),

φ ↦−→
(︁
2ω ∂TX,J∇gφ,

(︁
BΩg,Jφ

)︁
Ω
)︁
,
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is an isomorphism. We notice also that the expression of the metric Gg,Ω obtained at the end of the proof of
lemma 20 hold true for arbitrary functions Φ and Ψ . So we put (u, U) := χ (φ) and Φ = Ψ = −2iφ in this
formula. Using the fact that the operator BΩg,J is L2Ω-anti-adjoint and the expression

Im
[︁
(∆Ωg,J − 2I)Φ

]︁
= −2(∆Ωg − 2I)φ,

we infer

Gg,Ω(u, U; u, U) = 2
∫︁
X

[︂⃒⃒⃒
(∆Ωg − 2I)φ

⃒⃒⃒2
+ 2(∆Ωg − 2I)φ · φ

]︂
Ω

=: 𝛾g,Ω (φ, φ) > 0,

(with equality if and only if φ = 0). We remind now that the proof of the weighted Bochner formula (13.9)
shows the identity

−2divΩ ∂*g,ΩTX,J ∂TX,J∇g = ∆Ωg (∆Ωg − 2I) − (BΩg,J)2.

Thus the operator (︁
∂TX,J∇g

)︁*g,Ω
∂TX,J∇g = −divΩ ∂*g,ΩTX,J ∂TX,J∇g ,

is elliptic. This implies (see for example [11]) that the immage

∂TX,J∇g
[︁
Hk+2(X,R)

]︁
⊂ Hk ,

is closed in the Hk-topology, for all integers k > 0. We infer that the map

∂TX,J∇g : Λ
Ω,⊥
g,R ∩ H

k+2(X,R) −→ ∂TX,J∇g
[︁
Hk+2(X,R)

]︁
⊂ Hk , (18.2)

is a topological isomorphism. We deduce that the extension in the sense of distributions

χ : ΛΩ,⊥g,R ∩ H
2(X,R) −→ L2T[g,Ω]ω ,(g,Ω),

of the map χ is also a topological isomorphism and a (𝛾g,Ω , Gg,Ω)-isometry. The fact that the map

∆Ωg − 2I : ΛΩ,⊥g,R ∩ H
2(X,R) −→ ΛΩ,⊥g,R ,

is a topological isomorphism provides the estimate

𝛾g,Ω (φ, φ) > 2
∫︁
X

⃒⃒⃒
(∆Ωg − 2I)φ

⃒⃒⃒2
Ω

> 2‖(∆Ωg − 2I)−1‖−2 · ‖φ‖2H2 .

Then the Lax-Milgram theorem implies that the map

𝛾g,Ω : ΛΩ,⊥g,R ∩ H
2(X,R) −→

[︁
ΛΩ,⊥g,R ∩ H

2(X,R)
]︁*
,

is a topological isomorphism. (The sign * here denotes the topological dual). We infer that the restricted map

Gg,Ω : L2T[g,Ω]ω ,(g,Ω) −→
[︁
L2T[g,Ω]ω ,(g,Ω)

]︁*
,

is also a topological isomorphism thanks to the fact that the extended map χ is a (𝛾g,Ω , Gg,Ω)-isometry. Ap-
plying the elementary lemma 21 below to the spaces E := L2

(︀
X, S2T*X

)︀
⊕ L2Ω (X,R)0 and V := L2T[g,Ω]ω ,(g,Ω)

we deduce the G-orthogonal decomposition

L2
(︁
X, S2T*X

)︁
⊕ L2Ω (X,R)0 = L2T[g,Ω]ω ,(g,Ω) ⊕ L

2T⊥G
[g,Ω]ω ,(g,Ω)

,
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and thus

L2TJg,Ω = L2T[g,Ω]ω ,(g,Ω) ⊕
[︁
L2T⊥G

[g,Ω]ω ,(g,Ω)
∩ L2TJg,Ω

]︁
= L2T[g,Ω]ω ,(g,Ω) ⊕ L

2
[︁
T⊥G
[g,Ω]ω ,(g,Ω)

∩ TJg,Ω
]︁
.

Then the conclusion follows from the identity (1.14).

Lemma 21. Let E be a real Banach space, E* its topological dual and G : E × E −→ R be a topologically non
degenerate bilinear form, i.e. G : E −→ E* is an isomorphism. If there exists a closed subspace V ⊂ E such that
the restriction G : V × V −→ R is also topologically non degenerate then E = V ⊕ V⊥G .

Proof. Let j : V −˓→E be the canonical inclusion and notice the trivial identity

V⊥ := {α ∈ E* | α · v = 0, ∀v ∈ V} = Ker j*.

By assumption for any element e ∈ E there exists a unique v ∈ V such that j* (e¬G) = j* (v¬G). Thus (e−v)¬G ∈
V⊥. By definition the restriction G : V⊥G −→ V⊥ provides an isomorphism. We conclude e − v ∈ V⊥G .

We notice that the condition V ∩ V⊥G = {0} is equivalent to Ker(G : V −→ V*) = {0} but in general not
sufficient to insure the surjectivity of G : V −→ V*.

18.2 Triple splitting of the spaceTJ
g,Ω

By abuse of notationswewill denote by Gg,Ω the scalar product over ΛΩ,⊥g,J ⊂ C
∞ induced by the isomorphism

η : ΛΩ,⊥g,J ⊕H0,1
g,Ω

(︀
TX,J

)︀
−→ T

J
g,Ω

(ψ, A) ↦−→
(︂
g
(︁
∂TX,J∇g,Jψ + A

)︁
, −12 Re

[︁
(∆Ωg,J − 2I)ψ

]︁
Ω
)︂
.

Explicitly

Gg,Ω (φ, ψ) = 1
2

∫︁
X

[︁
(∆Ωg,J − 2I)φ · ψ + (∆Ωg,J − 2I)ψ · φ

]︁
Ω

+ 1
2

∫︁
X

Im
[︁
(∆Ωg,J − 2I)φ

]︁
Im

[︁
(∆Ωg,J − 2I)ψ

]︁
Ω.

We introduce the vector space

E
J
g,Ω :=

{︁
u ∈ ΛΩ,⊥g,J | (∆

Ω
g,J − 2I)u ∈ ΛΩ,⊥g,J ∩ C

∞
Ω (X,R)0

}︁
,

and we observe that the expression (16.3) for the space FJg,Ω [0] shows that the map η restricts to the isomor-
phism

η : EJg,Ω ⊕H0,1
g,Ω

(︀
TX,J

)︀
−→ F

J
g,Ω [0] .

The subspaces EJg,Ω[0] := ηE
J
g,Ω andH0,1

g,Ω
(︀
TX,J

)︀
⊂ FJg,Ω [0] (embedded via the previous isomorphism) are

G-orthogonal thanks to the expression of the restriction of G over FJg,Ω [0] computed in the proof of lemma
20. We deduce the G-orthogonal decomposition

F
J
g,Ω [0] = E

J
g,Ω[0]⊕G H0,1

g,Ω
(︀
TX,J

)︀
.
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Let now

O
J
g,Ω :=

(︁
E
J
g,Ω

)︁⊥G
∩ ΛΩ,⊥g,J ,

and observe that the decomposition in corollary 6 implies

L2T[g,Ω]ω ,(g,Ω) =
[︁
L2FJg,Ω[0]

]︁⊥G
∩ L2TJg,Ω

= F
J
g,Ω[0]

⊥G ∩ L2TJg,Ω ,

and thus

T[g,Ω]ω ,(g,Ω) = F
J
g,Ω[0]

⊥G ∩TJg,Ω .

We deduce that the map η restricts to a G-isometry

η : OJ
g,Ω −→ T[g,Ω]ω ,(g,Ω).

We show now the smooth G-orthogonal decomposition (1.16).

Proof. . The decomposition in the statement of corollary 6 implies that for any (u, U) ∈ TJg,Ω there exists
(θ, Θ) ∈ L2T[g,Ω]ω ,(g,Ω) and (v, V) ∈ L

2
F
J
g,Ω[0] such that (u, U) = (θ, Θ) + (v, V). On the other hand, the fact

that the map (18.2) is a topological isomorphism implies the existence of ρ ∈ ΛΩ,⊥g,R ∩ H
2(X,R) such that

θ*g = −2J∂TX,J∇gρ.

Thus Θ*Ω = −BΩg,Jρ ∈ H1 (X,R) and V*Ω ∈ H1 (X,R). Then the identity (∆Ωg,J − 2I)ψv = −2V*Ω implies ψv ∈
ΛΩ,⊥g,J ∩ H

3 (X,C) by elliptic regularity. We deduce (v, V) ∈ H1
F
J
g,Ω[0] and thus (θ, Θ) ∈ H

1T[g,Ω]ω ,(g,Ω). The
conclusion follws by induction.

Weprovide also a secondargument. Combining formula (16.7)with a computation in theproof of corollary
5we deduce the identity Iψθ = 2(∆Ωg −2I)ρ. On the other handwe observe thatψθ−2iρ ∈ ΛΩg,J . Inmore explicit
terms

(∆Ωg,J − 2I)ψθ = 2BΩg,Jρ + 2i(∆Ωg − 2I)ρ ∈ ΛΩ,⊥g,J ∩ L
2 (X,C) .

We infer

(∆Ωg,J − 2I)ψθ =
[︁
BΩg,J(∆Ωg − 2I)−1 − iI

]︁
Iψθ .

(Notice that Iψ ∈ ΛΩ,⊥g,R for any ψ ∈ H2 (X,C) thanks to corollary 5). The fact that Iψθ = Iψu is smooth implies
that

ψθ = (∆Ωg,J − 2I)−1
[︁
BΩg,J(∆Ωg − 2I)−1 − iI

]︁
Iψu ,

is also smooth. We infer the required smooth decomposition.

We deduce the G-orthogonal triple splitting

T
J
g,Ω = T[g,Ω]ω ,(g,Ω) ⊕G E

J
g,Ω[0]⊕G H0,1

g,Ω
(︀
TX,J

)︀
. (18.3)

We infer in particular the G-orthogonal decomposition

ΛΩ,⊥g,J = OJ
g,Ω ⊕G E

J
g,Ω , (18.4)

thanks to the fact that the map η is a topological isomorphism. We observe now the following elementary
lemma.
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Lemma 22. Let T : D ⊂ L2 (X,C) −→ L2 (X,C) be a closed densely defined L2Ω-self-adjoint operator such that
[T, T] = 0. Then

Ker(TT) ∩ L2 (X,R) = {Re u | u ∈ Ker T} .

Proof. The assumption [T, T] = 0 implies that the restriction

T : Ker T −→ Ker T,

is well defined. This combined with the fact that T is also L2Ω-self-adjoint implies that the restriction

T : D ∩ (Ker T)⊥ −→ (Ker T)⊥,

is alsowell defined. The inclusionKer(TT) ⊇ Ker T+Ker T is obvious. In order to show the reverse inclusion let
u ∈ Ker(TT), i.e. Tu ∈ Ker T, and consider the decomposition u = u1 + u2 with u1 ∈ Ker T and u2 ∈ (Ker T)⊥.
Then Tu ∈ Ker T if and only if Tu2 ∈ Ker T since Tu1 ∈ Ker T. But Tu2 ∈ Ker T if and only if Tu2 = 0 since
Tu2 ∈ (Ker T)⊥. We infer the reverse inclusion. Thus

Ker(TT) = {u + v | u, v ∈ Ker T} ,

which implies the required conclusion.

We remind that if (g, Ω) ∈ Sω is a Kähler-Ricci-Soliton with J := g−1ω then[︂
∆Ωg,J − 2I, ∆Ωg,J − 2I

]︂
= 0,

which allows to apply the previous lemma to the L2Ω-self-adjoint operator PΩg,J . Thus

Ker PΩg,J ∩ C∞Ω (X,R)0 =
{︁
Re u | u ∈ ΛΩg,J

}︁
=: ReΛΩg,J .

The finiteness theorem for elliptic operators implies

PΩg,JC∞Ω (X,R)0 =
(︁
ReΛΩg,J

)︁⊥
∩ C∞Ω (X,R)0 ⊇ Λ

Ω,⊥
g,J ∩ C

∞
Ω (X,R)0 .

The last inclusion is obvious. The inclusion PΩg,JC∞Ω (X,R)0 ⊆ Λ
Ω,⊥
g,J ∩C

∞
Ω (X,R)0 is also obvious.We conclude

PΩg,JC∞Ω (X,R)0 = Λ
Ω,⊥
g,J ∩ C

∞
Ω (X,R)0 =

(︁
ReΛΩg,J

)︁⊥
∩ C∞Ω (X,R)0 . (18.5)

Lemma 23. If (g, Ω) ∈ Sω is a Kähler-Ricci-Soliton then holds the identity

O
J
g,Ω =

{︁
ψ ∈ ΛΩ,⊥g,J | P

Ω
g,J Reψ = 0

}︁
,

with J := g−1ω.

Proof. We notice that for any φ ∈ EJg,Ω and ψ ∈ OJ
g,Ω holds the identity

0 = Gg,Ω (φ, ψ) =
∫︁
X

(∆Ωg,J − 2I)φ · ReψΩ.

We infer

O
J
g,Ω =

{︂
ψ ∈ ΛΩ,⊥g,J | Reψ ∈

[︁
ΛΩ,⊥g,J ∩ C

∞
Ω (X,R)0

]︁⊥}︂

=
{︁
ψ ∈ ΛΩ,⊥g,J | Reψ ∈ ReΛ

Ω
g,J

}︁
,

thanks to (18.5).
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19 Infinitesimal properties of the function H
By abuse of notations also we will consider from now on ΛΩ,⊥g,R ⊂ C∞. We observe that lemma 5 implies;
(g, Ω) ∈ Sω is a Kähler-Ricci-Soliton if and only if Hg,Ω = 0. Furthermore the identity (4.18) rewrites as

2Hg,Ω = −(∆Ωg,J − 2I)F ∈ ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0 ,

for all (g, Ω) ∈ Sω. We show now the following fact.

Lemma 24. If (g, Ω) ∈ Sω is a Kähler-Ricci-Soliton then the linear map

Dg,ΩH : EJg,Ω[0] −→ ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0 , (19.1)

with J := g−1ω, is well defined and represents an isomorphism of real vector spaces.

Proof. The identity 2Hg,Ω = 2Hg,Ω −W (g, Ω) combined with the basic variation formula (1.5) implies

2Dg,ΩH (v, V) = (∆Ωg − 2I)V*Ω ,

for all (v, V) ∈ Fg,Ω over a shrinking Ricci soliton point (g, Ω). In our Kähler-Ricci soliton set up the latter
rewrites as

2Dg,ΩH (v, V) = −12(∆
Ω
g − 2I)(∆Ωg,J − 2I)ψv , (19.2)

for all (v, V) ∈ FJg,Ω [0]. The commutation identity[︁
∆Ωg − 2I , ∆Ωg,J − 2I

]︁
= 0,

implies the inclusion
(∆Ωg − 2I)ΛΩg,J ⊆ ΛΩg,J , (19.3)

and thus
(∆Ωg − 2I)ΛΩ,⊥g,J ⊆ Λ

Ω,⊥
g,J . (19.4)

Then the identity (19.2) shows that the map (19.1) is well defined. We will deduce that it is an isomorphism if
we show that the map

∆Ωg − 2I : ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0 −→ ΛΩ,⊥g,J ∩ C

∞
Ω (X,R)0 , (19.5)

is an isomorphism. Indeed this is the case. The injectivity of (19.5) follows from the inclusion

CΛΩg,R ⊆ ΛΩg,J ,

which holds thanks to the identity (18.1). This inclusion implies also

CΛΩ,⊥g,R = (CΛΩg,R)⊥ ⊇ ΛΩ,⊥g,J , (19.6)

and thus

ΛΩ,⊥g,R ⊇ Λ
Ω,⊥
g,J ∩ C

∞
Ω (X,R)0 .

We use now the obvious fact that

∆Ωg − 2I : ΛΩ,⊥g,R −→ ΛΩ,⊥g,R ,

is an isomorphism. Thus for any f ∈ ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0 there exists a unique u ∈ Λ

Ω,⊥
g,R such that

(∆Ωg − 2I)u = f .
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We decompose u = u1 + u2, with u1 ∈ ΛΩg,J and u2 ∈ Λ
Ω,⊥
g,J . Then the inclusions (19.3) and (19.4) imply the

L2Ω-orthogonal decomposition

(∆Ωg − 2I)u1 + (∆Ωg − 2I)u2 = f .

We deduce u1 ∈ CΛΩg,R. But u2 ∈ CΛΩ,⊥g,R thanks to the inclusion (19.6). We infer u1 = 0 since u ∈ ΛΩ,⊥g,R . Thus

u = u2 ∈ ΛΩ,⊥g,J ∩ C
∞
Ω (X,R)0 .

We obtain the surjectivity of the map (19.5) and thus the required conclusion.

Lemma 25. If (g, Ω) ∈ Sω is a Kähler-Ricci-Soliton then hold the identity

KerDg,ΩH ∩TJg,Ω = T[g,Ω]ω ,(g,Ω) ⊕G H0,1
g,Ω

(︀
TX,J

)︀
, (19.7)

with J := g−1ω.

Proof. With the notations in the proof of lemma 18, the basic variation formula (1.5) combined with the iden-
tities (16.6) and (16.7) implies that for all (v, V) ∈ TJg,Ω over a Kähler-Ricci-Soliton point (J, g, Ω) hold the
equalities

2Dg,ΩH (v, V) = −12(∆
Ω
g − 2I)Rψ +

1
2

(︁
LJ∇g IψΩ

)︁*
Ω

= −12(∆
Ω
g − 2I)Rψ +

1
2B

Ω
g,J Iψ

= −12 Re
[︂
(∆Ωg − 2I) (∆Ωg,J − 2I)ψ

]︂

= −12 Re
[︁
PΩg,Jψ

]︁
= −12P

Ω
g,J Reψ,

since PΩg,J is a real operator in our Kähler-Ricci-Soliton case. Then lemma 23 implies

KerDg,ΩH ∩TJg,Ω ≃ O
J
g,Ω ⊕G H0,1

g,Ω
(︀
TX,J

)︀
,

i.e. the required conclusion.

Proof of the main theorem 1

Proof. The inequality in the statement follows immediately from proposition 2. If equality holds then obvi-
ously A ∈ H0,1

g,Ω
(︀
TX,J

)︀
0 and ∫︁

X

PΩg,J Reψ · Reψ Ω = 0.

Then the spectral theorem applied to the non-negative L2Ω-self-adjoint real elliptic operator PΩg,J implies
PΩg,J Reψ = 0. Thus the conclusion

(v, V) ∈ T[g,Ω]ω ,(g,Ω) ⊕G H0,1
g,Ω

(︀
TX,J

)︀
0 = KerDg,ΩH ∩TJ,0g,Ω ,

follows from lemma 23 and the identity (19.7). In order to show the inclusion (1.22) we observe that if
(gt , Ωt)t∈R ⊂ KRSω is a smooth curve with (g0, Ω0) = (g, Ω) and with (ġ0, Ω̇0) = (v, V) then holds the
identity Hgt ,Ωt ≡ 0 and thus

(v, V) ∈ KerDg,ΩH ∩TJg,Ω = T[g,Ω]ω ,(g,Ω) ⊕G H0,1
g,Ω

(︀
TX,J

)︀
,
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thanks to the identity (19.7). On the other side if we setWt := W (gt , Ωt) then Ẇt ≡ 0 and thus

0 = Ẅ0 =
∫︁
X

|A|2g F Ω,

thanks to proposition 2 and lemma 23. We conclude the required inclusion.

20 Appendix A

20.1 The first variation of Perelman’sW functional

Wegive a short proof of Perelman’s first variation formula [29] for theW functional based on the identity (3.2).
Let (gt , Ωt)t ⊂M × V1 be a smooth family and set ft := log dVgt

Ωt . Then

d
dt W(gt , Ωt) = d

dt

∫︁
X

[︁
TrR(g−1t ht) + 2ft

]︁
Ωt

=
∫︁
X

[︁
TrR

(︁
− ġ*t h*t + ḣ*t

)︁
+ Trgt ġ − 2Ω̇*t

]︁
Ωt

+
∫︁
X

[Trgt ht + 2ft] Ω̇t

=
∫︁
X

[︃
− ⟨ġt , ht⟩gt +

⟨
gt ,

d
dt Ricgt (Ωt)

⟩
gt
− 2Ω̇*t

]︃
Ωt

+
∫︁
X

[Trgt ht + 2ft] Ω̇t .

Using the variation formula (3.2) and integrating by parts we infer∫︁
X

⟨
gt ,

d
dt Ricgt (Ωt)

⟩
gt
Ωt =

∫︁
X

[︂
− 1

2

⟨
gt ,∇*Ωgt Dgt ġt

⟩
gt
+ ∆gt Ω̇*t

]︂
Ωt

= −
∫︁
X

[︂
1
2 ⟨∇gtgt ,Dgt ġt⟩gt +

⟨
∇gt Ω̇*t ,∇gt ft

⟩
gt

]︂
Ωt

= −
∫︁
X

Ω̇*t∆Ωtgt ftΩt ,

which implies Perelman’s first variation formula
d
dt W(gt , Ωt) = −

∫︁
X

[︁
⟨ġt , ht⟩gt − 2Ω̇

*
t (Ht − 1)

]︁
Ωt

= −
∫︁
X

[︁
⟨ġt , ht⟩gt − 2Ω̇

*
tH t

]︁
Ωt ,

since
∫︀
X Ω̇t = 0.

20.2 Basic complex identities

We provide a useful expression of the hermitian product ⟨·, ·⟩ω on T*X ⊗R C, which is the sesquilinear exten-
sion of the dual of g. We observe first that for any ξ ∈ TX ⊗R C and any α ∈ T*X ⊗R C hold the elementary
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equalities

0 = ξ¬(α ∧ ωn) = (α · ξ )ωn − α ∧ (ξ¬ωn).

We obtain the formula
(α · ξ )ωn = nα ∧ (ξ¬ω) ∧ ωn−1, (20.1)

and thus
2α · ξ = Trω

[︀
α ∧ (ξ¬ω)

]︀
. (20.2)

Using (20.2) we deduce that for all α, β ∈ T*X ⊗R C hold the equalities

2 ⟨α, β⟩ω = 2α · β̄*g = Trω
[︁
α ∧ (β̄*g¬ω)

]︁
,

where β̄*g := g−1 β̄. Then the identity β̄J = −β̄*g¬ω implies the formula

2 ⟨α, β⟩ω = −Trω
[︀
α ∧ (β̄J)

]︀
.

Thus in the case α, β ∈ Λ1,0J T*X we deduce the identities

2 ⟨α, β⟩ω = Trω
(︀
iα ∧ β̄

)︀
,

⟨α, β⟩ω =
⟨︀
α, β̄

⟩︀
ω .

We show now the following integration by parts formulas

Lemma 26. For any u, v ∈ C∞(X,C) holds the integration by parts identity∫︁
X

[︁
∆Ωg,Ju · v + ∆Ωg,Ju · v

]︁
Ω = 2

∫︁
X

g(∇g,Ju,∇g,Jv)Ω. (20.3)

If u ∈ C∞(X,R) then holds also the integration by parts identity∫︁
X

[︁
∆Ωg,Ju · v + ∆Ωg,Ju · v

]︁
Ω = 2

∫︁
X

g(∇gu,∇g,Jv)Ω. (20.4)

Proof. Using the complex decomposition (13.2) and the fact that hermitian product ⟨·, ·⟩ω on T*X ⊗R C is the
sesquilinear extension of the dual of g, we deduce

g(∇g,Ju,∇g,Jv) =
⟨
∂Ju + ∂Ju, ∂Jv + ∂Jv

⟩
g

=
⟨
∂Ju + ∂Ju, ∂Jv + ∂Jv

⟩
ω

=
⟨︀
∂Ju, ∂Jv

⟩︀
ω +

⟨
∂Ju, ∂Jv

⟩
ω

=
⟨︀
∂Ju, ∂Jv

⟩︀
ω +

⟨︀
∂Ju, ∂Jv

⟩︀
ω .

Integrating by parts and taking the conjugate we infer the identity

2
∫︁
X

g(∇g,Ju,∇g,Jv)Ω =
∫︁
X

[︁
∆Ωg,Ju · v + ∆Ωg,Ju · v

]︁
Ω. (20.5)

Replacing uwith u, vwith v in (20.5) we obtain (20.3). In the case u ∈ C∞(X,R) formula (20.5) implies directly
(20.4).
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We show now that for all α, β ∈ Λ1,1J T*X ∩ Λ2RT*X holds the identity

4n(n − 1)α ∧ β ∧ ω
n−2

ωn = Trω α Trω β − 2 ⟨α, β⟩ω . (20.6)

Indeed we consider the local expressions

ω = i
2
∑︁
k

ζ *k ∧ ζ̄ *k , α = i
∑︁
k,l
αkl̄ ζ

*
k ∧ ζ̄ *l , β = i

∑︁
k,l
βkl̄ ζ

*
k ∧ ζ̄ *l ,

and we set

Ψ := α ∧ β =
∑︁

k1 ,k2 ,l1 ,l2

αk1 l̄1βk2 l̄2 ζ
*
k1 ∧ ζ

*
k2 ∧ ζ̄

*
l1 ∧ ζ̄

*
l2

=
∑︁

|K|=|L|=2

ΨK,L ζ *K ∧ ζ̄ *L ,

where K = (k1, k2), 1 ≤ k1 < k2 ≤ n and the same holds for L. Explicitly the coefficients ΨK,L are given by the
expression

ΨK,L = αk1 l̄1βk2 l̄2 + αk2 l̄2βk1 l̄1 − αk1 l̄2βk2 l̄1 − αk2 l̄1βk1 l̄2 .

We conclude the identity

4n(n − 1)Ψ ∧ ω
n−2

ωn = 16
∑︁
|L|=2

ΨL,L = 16
∑︁
k,l
αkk̄βll̄ − 16

∑︁
k,l
αkl̄βlk̄

= Trω α Trω β − 2 ⟨α, β⟩ω .

20.3 Action of the curvature on alternating 2-forms

We observe that as in the symmetric case we can define an action of the curvature operator over alternating
2-forms as follows

(Rg * α)(ξ , η) := − Trg [α (Rg (ξ , · )η, ·)] ,

for any α ∈ Λ2T*X. The tensorRg * α is anti-symmetric. In fact let (ek)k be a g(x)-orthonormal base of TX,x and
consider the local expression α*g = Al,ke*k ⊗ el, with Al,k = −Ak,l. Then

(Rg * α)(ξ , η) = −g
(︁
α*gRg(ξ , ek)η, ek

)︁
= g

(︁
Rg(ξ , ek)η, α*gek

)︁
= Rg(ξ , ek , α*gek , η)

= Rg(ξ , ek , Al,kel , η)

= −Rg(ξ , Ak,lek , el , η)

= −Rg(ξ , α*gel , el , η)

= −Rg(η, el , α*gel , ξ )

= −(Rg * α)(η, ξ ),
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thanks to the symmetry properties of the curvature form. We observe also that the previous computation
shows the identity

(Rg * α)(ξ , η) = −Rg(ξ , ek , η, α*gek)

= −g(Rg(ξ , ek)α*gek , η)

= −g
(︁(︁

Rg * α*g
)︁
ξ , η

)︁
,

i.e.
(Rg * α)*g = −Rg * α*g . (20.7)

On the other hand using the algebraic Bianchi identity we obtain the equalities

(Rg * α)(ξ , η) = −g
(︁
α*gRg(ξ , ek)η, ek

)︁
= g

(︁
α*gRg(ek , η)ξ , ek

)︁
+ g

(︁
α*gRg(η, ξ )ek , ek

)︁
= −g

(︁
α*gRg(η, ek)ξ , ek

)︁
− g

(︁
Rg(η, ξ )ek , α*gek

)︁
= (Rg * α)(η, ξ ) + g

(︁
Rg(η, ξ )α*gek , ek

)︁
= −(Rg * α)(ξ , η) − TrR

[︁
Rg(ξ , η)α*g

]︁
,

and thus the formula
(Rg * α)(ξ , η) = −

1
2 TrR

[︁
Rg(ξ , η)α*g

]︁
. (20.8)

We assume further that (X, J, g) is Kähler and α is J-anti-invariant. In this case α*g = A is J-anti-linear and so
is the endomorphism Rg(ξ , η)α*g. We deduce

Rg * α = 0, i.e. Rg * A = 0. (20.9)

thanks to the identity (20.7).

20.4 Weighted Weitzenböck formula for alternating 2-forms

We show the weighted Weitzenböck type formula

∆Ωd,gα = ∆
Ω
g α + 2Rg * α + α Ric*g(Ω) + Ricg(Ω)α*g , (20.10)

for any alternating 2-form α over a Riemannianmanifold. For this purpose we fix an arbitrary point x0 andwe
choose the vector fields ξ and η such that 0 = ∇gξ (x0) = ∇gη(x0). Let (ek)k be a g-orthonormal local frame
such that∇gek(x0) = 0. Then at the point x0 holds the identities

d∇*gα(ξ , η) = ∇g,ξ∇*gα · η −∇g,η∇*gα · ξ

= ∇g,ξ
[︁
∇*gα · η

]︁
−∇g,η

[︁
∇*gα · ξ

]︁
= −∇g,ξ

[︀
∇g,ekα(ek , η)

]︀
+∇g,η

[︀
∇g,ekα(ek , ξ )

]︀
= −∇g,ξ∇g,ekα(ek , η) +∇g,η∇g,ekα(ek , ξ ),
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and

∇*gdα(ξ , η) = −∇g,ekdα(ek , ξ , η)

= −∇g,ek
[︀
dα(ek , ξ , η)

]︀
= −∇g,ek

[︀
∇g,ekα(ξ , η) −∇g,ξα(ek , η) +∇g,ηα(ek , ξ )

]︀
= −∇g,ek∇g,ekα(ξ , η) +∇g,ek∇g,ξα(ek , η) −∇g,ek∇g,ηα(ek , ξ ).

We remind now that for any vector fields µ, ζ such that [µ, ζ ](x0) = 0 holds the identity at the point x0

∇g,µ∇g,ζ α −∇g,ζ∇g,µα = Rg(ζ , µ)¬α,

where the contraction operation T¬ : Λ2T*X −→ Λ2T*X associated to an endomorphism T ∈ End(TX) is defined
by the formula

(T¬α)(ξ , η) := α(Tξ , η) + α(ξ , Tη).

We deduce (︀
∇g,ek∇g,ξα −∇g,ξ∇g,ek

)︀
(ek , η) = α

(︀
Rg(ξ , ek)ek , η

)︀
+ α

(︀
ek ,Rg(ξ , ek)η

)︀
=

[︁
α Ric*(g) + (Rg * α)

]︁
(ξ , η),

and also

(∇g,η∇g,ekα −∇g,ek∇g,ηα) (ek , ξ ) = −
[︁
α Ric*(g) + (Rg * α)

]︁
(η, ξ )

= −g
(︁
α*g Ric*(g)η, ξ

)︁
+ (Rg * α)(ξ , η)

= g(η, Ric*(g)α*gξ ) + (Rg * α)(ξ , η)

=
[︁
Ric(g)α*g + (Rg * α)

]︁
(ξ , η).

Summing up the terms d∇*gα(ξ , η) and∇*gdα(ξ , η) and using these last identities we infer the formula (20.10)
in the case Ω = CdVg. In order to obtain the general case we observe the decompositions

d∇*Ωg α = d∇*gα + d(∇g f¬α),

∇*Ωg dα = ∇*gdα +∇g f¬dα,

and the identities at the point x0,

d(∇g f¬α)(ξ , η) = ∇g,ξ (∇g f¬α) · η −∇g,η(∇g f¬α) · ξ

= ∇g,ξ
[︀
α(∇g f , η)

]︀
−∇g,η

[︀
α(∇g f , ξ )

]︀
= ∇g,ξα(∇g f , η) + α(∇2

g,ξ f , η)
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− ∇g,ηα(∇g f , ξ ) − α(∇2
g,η f , ξ )

= ∇g,ξα(∇g f , η) + α(∇2
g,ξ f , η)

− ∇g,ηα(∇g f , ξ ) −∇gdfα*g(ξ , η),

(∇g f¬dα)(ξ , η) = (∇g f¬∇gα)(ξ , η) −∇g,ξα(∇g f , η) +∇g,ηα(∇g f , ξ ).

Summing up we infer the required formula (20.10).

21 Appendix B

21.1 Reformulation of the weighted complex Bochner identity (13.9)

We define the complex operator

∆Ωg,−J := ∆Ωg,J .

With this notation the weighted complex Bochner type identity (13.9) rewrites also as

2∆Ω,−JTX,g ∇g,Ju = ∇g,J(∆Ωg,−J − 2I)u,

for all u ∈ C∞(X,C). We show now that the fundamental identity (13.9) implies an other important formula.
We need a few preliminaries.

Lemma 27. For any u, v ∈ C∞(X,C) holds the integration by parts identity∫︁
X

∆Ωg,−Ju · vΩ = 2
∫︁
X

⟨︀
∇g,Ju,∇g,Jv

⟩︀
ω Ω.

Proof. We define the complex components of the g-gradient as

∇1,0
g,J u := (∇gu)1,0J ∈ C∞(X, T1,0X,J ),

∇0,1
g,J u := (∇gu)0,1J ∈ C∞(X, T0,1X,J ).

With these notations holds the decomposition formula

∇g,Ju = ∇1,0
g,J u +∇

0,1
g,J u. (21.1)

We observe that for all ξ , η ∈ TX holds the identity

⟨ξ , η⟩ω ≡ h(ξ , η) = 2iω(η0,1J , ξ1,0J ).

This combined with (21.1) implies⟨︀
∇g,Ju,∇g,Jv

⟩︀
ω = 2iω(∇0,1

g,J v,∇
1,0
g,J u).

We observe now that the complex spiting of the g-gradient

∇gu = ∇1,0
g,J u +∇

0,1
g,J u
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implies the identities

∇1,0
g,J u¬ω = i∂Ju,

∇0,1
g,J u¬ω = −i∂Ju.

Using this and the identity (20.2) we deduce⟨︀
∇g,Ju,∇g,Jv

⟩︀
ω = 2∂Jv ·∇1,0

g,J u

= Trω
[︁
∂Jv ∧ (∇1,0

g,J u¬ω)
]︁

= Trω
[︁
i∂Jv ∧ ∂Ju

]︁
= 2

⟨︀
∂Jv, ∂Ju

⟩︀
ω .

We infer the equalities ∫︁
X

⟨︀
∇g,Ju,∇g,Jv

⟩︀
ω Ω = 2

∫︁
X

⟨︀
∂Ju, ∂Jv

⟩︀
ω Ω

=
∫︁
X

∆Ωg,Ju · vΩ

=
∫︁
X

∆Ωg,−Ju · vΩ.

We equip C∞Ω (X,C)0 with the L2Ω-product (13.1) and the space
C∞(X, Λ0,1J T*X ⊗C TX,J) with the L2ω,Ω-hermitian product (11.1). Then the formal adjoint ofH0,1

g,J with respect
to such products

(H0,1
g,J )

*ω,Ω : C∞(X, Λ0,1J T*X ⊗C TX,J) −→ C∞Ω (X,C)0,∫︁
X

⟨
H0,1
g,J u, A

⟩
ω
Ω =

∫︁
X

u · (H0,1
g,J )*ω,ΩAΩ,

satisfies the identity

(H0,1
g,J )

*ω,Ω = ∇*ω,Ωg,J ∂
*g,Ω
TX,J .

Moreover lemma implies the identity

∆Ωg,−J = ∇*ω,Ωg,J ∇g,J .

Then the complex Bochner type identity (13.9) implies

2(H0,1
g,J )

*ω,ΩH0,1
g,J v = 2∇*ω,Ωg,J ∂

*g,Ω
TX,J ∂TX,J∇g,Jv

= ∆Ωg,J(∆Ωg,J − 2I)v,

or in other terms

2(H0,1
g,J )

*ω,ΩH0,1
g,J u = ∆Ωg,−J(∆Ωg,−J − 2I)u,

for all u ∈ C∞(X,C).
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21.2 A Poisson structure on the first eigenspace of ∆Ωg,J

For any complex valued function u and symplectic form ω we define the complex vector field

(du)*ω := ω−1du = −J∇gu,

and the Poisson bracket

{u, v}ω := dv · (du)*ω = −ω((du)*ω , (dv)*ω).

We define the Poisson bracket over the space C∞Ω (X,C) as

{u, v}ω,Ω := {u, v}ω −
∫︁
X

{u, v}ω Ω.

With these notations holds the following lemma (see also [12], [14]).

Lemma 28. Let (X, J) be a Fano manifold and let g be a J-invariant Kähler metric such that ω := gJ ∈
2πc1(X, [J]). Let also Ω > 0 be the unique smooth volume form with

∫︀
X Ω = 1 such that RicJ(Ω) = ω.

A) Then the map

χ :
(︁
Ker(∆Ωg,J − 2I), i {·, ·}ω,Ω

)︁
−→

(︁
H0(X, TX,J), [·, ·]

)︁
u ↦−→ ∇g,Ju,

is well defined and it represents an isomorphism of complex lie algebras.
B) The first eigenvalue λ1(∆Ωg,J) of the operator ∆Ωg,J satisfies the estimate λ1(∆Ωg,J) > 2, with equality in the

case H0(X, TX,J) ≠ 0.
C) If we set Killg := Lie(Isom0

g) then the map

J∇g : KerR(∆Ωg − 2I) −→ Killg , (21.2)

is well defined and it represents an isomorphism of real vector spaces.
D) The hermitian form

(u, v) ↦−→
∫︁
X

i {u, v̄}ω Ω,

overKer(∆Ωg,J − 2I) is non-negative and let (µj)
N
j=0 ⊂ R>0, µ0 = 0, be its spectrumwith respect to the L2Ω-product.

If g is a J-invariant Kähler-Ricci soliton then holds the decomposition

H0(X, TX,J) =
N⨁︁
j=0

Vµj ,

Vµj :=
{︁
ξ ∈ H0(X, TX,J) | [∇g f , ξ ] = µjξ

}︁
,

V0 = Killg ⊕J Killg .

Proof. Step A. In this step we show the statementA. The fact that χ is an isomorphism follows from corollary
1. We show now that χ is also a morphism of complex Lie algebras. Let

K± := Ker(∆Ωg,±J − 2I).
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For any ξ ∈ H0(X, TX,J) we denote uξ := χ−1(ξ ) ∈ K− and we decompose uξ = uξ1 + iu
ξ
2, with u

ξ
j ∈ C

∞
Ω (X,R)0.

For any u, v ∈ K− = K+ we set ξ := ∇g,Ju, η := ∇g,Jv and as in [14] we observe the identities

L[ξ ,η]ω = LξLηω − LηLξω

= 2Lξ i∂J∂Ju
η
1 − 2Lη i∂J∂Ju

ξ
1

= 2i∂J∂J
(︁
ξ .uη1 − η.u

ξ
1

)︁
,

since ξ , η are holomorphic. We infer that for some constant C1 ∈ R holds the identities

u[ξ ,η]1 + C1 = ξ .uη1 − η.u
ξ
1

= ξ .v1 − η.u1

= g(∇gv1,∇gu1 + J∇gu2)

− g(∇gu1,∇gv1 + J∇gv2)

= g(∇gv1, J∇gu2) − g(∇gu1, J∇gv2)

= ω (∇gu2,∇gv1) − ω (∇gv2,∇gu1)

= ω (J∇gu2, J∇gv1) + ω(J∇gu1, J∇gv2)

= ω
(︁
(du2)*ω , (dv1)*ω

)︁
+ ω((du1)*ω , (dv2)*ω)

= − {u1, v2}ω − {u2, v1}ω .

On the other hand

u[ξ ,η]2 = −uJ[ξ ,η]1 = −u[ξ ,Jη]1 ,

since ξ is holomorphic. We infer that for some constant C2 ∈ R holds the identities

u[ξ ,η]2 + C2 = −ξ .uJη1 + Jη.uξ1

= ξ .uη2 + Jη.u
ξ
1

= ξ .v2 + Jη.u1

= g(∇gv2,∇gu1 + J∇gu2)

+ g(∇gu1, J∇gv1 −∇gv2)

= g(∇gv2, J∇gu2) + g (∇gu1, J∇gv1)
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= ω (∇gu2,∇gv2) + ω (∇gv1,∇gu1)

= ω (J∇gu2, J∇gv2) − ω (J∇gu1, J∇gv1)

= ω
(︁
(du2)*ω , (dv2)*ω

)︁
− ω

(︁
(du1)*ω , (dv1)*ω

)︁
= {u1, v1}ω − {u2, v2}ω .

We conclude that for all u, v ∈ K− holds the identity

∇g,J i {u, v}ω,Ω =
[︀
∇g,Ju,∇g,Jv

]︀
,

which shows that i {·, ·}ω,Ω is a complex Lie algebra product over K− and that the map χ is a morphism of
complex Lie algebras.

Step B,C. The statements B and C follow from corollary 1 and the remarkable identity (18.1).
Step D. We show now the statement D. We observe first that for all u, v ∈ C∞(X,C) holds the identity∫︁

X

i {u, v}ω Ω = −
∫︁
X

iBΩg,Ju · vΩ.

Indeed thanks to the computations in step A we deduce∫︁
X

i {u, v}ω Ω = −
∫︁
X

[︀
{u1, v2}ω + {u2, v1}ω

]︀
Ω

+ i
∫︁
X

[︀
{u1, v1}ω − {u2, v2}ω

]︀
Ω

=
∫︁
X

[︁
⟨∇gv1, J∇gu2⟩g + ⟨∇gu1, J∇gv2⟩g

]︁
Ω

+ i
∫︁
X

[︁
⟨∇gv2, J∇gu2⟩g + ⟨∇gu1, J∇gv1⟩g

]︁
Ω.

Integrating by parts we infer∫︁
X

i {u, v}ω Ω =
∫︁
X

[︁
v1 · BΩg,Ju2 − u1 · BΩg,Jv2

]︁
Ω

+ i
∫︁
X

[︁
v2 · BΩg,Ju2 + u1 · BΩg,Jv1

]︁
Ω

=
∫︁
X

[︁
BΩg,Ju1 · v2 + BΩg,Ju2 · v1

]︁
Ω

− i
∫︁
X

[︁
BΩg,Ju1 · v1 − BΩg,Ju2 · v2

]︁
Ω

= −
∫︁
X

iBΩg,Ju · vΩ,

thanks to the fact that BΩg,J is L2Ω-anti-adjoint. Thus if u ∈ K−∫︁
X

i {u, ū}ω Ω =
∫︁
X

(∆Ωg − 2I)u · ūΩ > 0.
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The Kähler-Ricci-Soliton assumption implies the commutation identity[︁
∆Ωg,J , ∆Ωg,−J

]︁
= 0.

We infer that
∆Ωg,J − 2I : K− −→ K−, (21.3)

is a well defined non-negative L2Ω-self-adjoint operator and let (λj)Nj=0 ⊂ R>0, λ0 = 0 be it’s spectrum. Notice
also that by definition ofK− this operator coincides with the operator

−2iBΩg,J : K− −→ K−.

Thus u ∈ K− is an eigen-vector corresponding to the eigenvalue λj if and only if u ∈ K− satisfies

(J∇g f ).u =
λj
2 iu.

This rewrites as

i {f , u}ω,Ω =
λj
2 u,

and is equivalent to the equation [︀
∇g f ,∇g,Ju

]︀
=

λj
2 ∇g,Ju.

Notice also that the kernel of (21.3) is given by the identity

K+ ∩K− = KR ⊕ JKR,

KR := KerR(∆Ωg,±J − 2I).

We deduce the required conclusion with µj = λj/2.

21.3 Consequences of the Bochner-Kodaira-Nakano formula

The holomorphic and antiholomorphic Hodge Laplacian operators are related by the Bochner-Kodaira-
Nakano identity. At the level of TX-valued 1-forms it reduces to the identity

∆−JTX,gA = ∆JTX,gA + 1
6 (JRg ∧ A) (ω* ∧ •), (21.4)

where ω* ≡ ω−1 ∈ C∞(X, Λ1,1J TX ∩Λ2RTX) is the dual element associated to ω. If in holomorphic coordinates
ω writes as

ω = i
2ωk, l̄dzk ∧ dz̄l ,

then

ω* = 2iωl,k̄ ∂
∂zk
∧ ∂
∂z̄l

.

The factor 1/6 in front of the last term on the right hand side of (21.4) is due to the convention

v1 ∧ . . . ∧ vp :=
∑︁
σ∈Sp

εσvσ1 ⊗ · · ·⊗ vσp .

We explicit the latter term. For this purpose we observe first that for any α ∈ Λ1,1J T*X ⊗C E holds the identity

Trω α = −Trg
[︀
α(J·, · )] .
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We infer the expressions

1
6(JRg ∧ A)(ω

* ∧ ξ ) = (JRg ∧ A)
(︂
2iωl,k̄ ∂

∂zk
, ∂
∂z̄l

, ξ
)︂

= −12 Trω[(JRg ∧ A)(·, ·, ξ )]

= 1
2(JRg ∧ A)(Jek , ek , ξ ),

for an arbitrary g-orthonormal real frame (ek)k. We explicit the exterior product using the J-invariant proper-
ties of the curvature operator. We obtain

(JRg ∧ A)(Jek , ek , ξ ) = JRg(Jek , ek)Aξ − JRg(Jek , ξ )Aek + JRg(ek , ξ )AJek

= −Trω(JRg)Aξ −Rg(Jek , ξ )JAek +Rg(ek , ξ )JAJek

= −2Ric*(g)Aξ +Rg(ξ , Jek)JAek −
[︀
Rg * (JAJ)

]︀
ξ

= −2Ric*(g)Aξ −Rg(ξ , ηk)JAJηk −
[︀
Rg * (JAJ)

]︀
ξ ,

where ηk := Jek. But (ηk)k is also a g-orthonormal real frame. We infer

(JRg ∧ A)(Jek , ek , ξ ) = −2Ric*(g)Aξ − 2
[︀
Rg * (JAJ)

]︀
ξ .

We deduce that the Bochner-Kodaira-Nakano identity rewrites at the level of TX-valued 1-forms as

∆−JTX,gA = ∆JTX,gA − Ric
*(g)A −Rg *

(︀
A′′
J − A′

J
)︀
, (21.5)

where A′
J and A′′

J are respectively the J-linear and J-anti-linear parts of A. Using theWeitzenböck type formula
in lemma 3 with Ω = CdVg we infer

LΩg A = ∆gA +∇g f¬∇gA − 2Rg * A

= ∆TX,gA −Rg * A − A Ric
*(g) +∇g f¬∇gA

=
(︁
∆JTX,g + ∆

−J
TX,g

)︁
A −Rg * A − A Ric*(g) +∇g f¬∇gA.

Using the Bochner-Kodaira-Nakano identity (21.5) we deduce the formulas

LΩg A = 2∆JTX,gA − Ric
*(g)A − A Ric*(g) − 2Rg * A′′

J +∇g f¬∇gA,

LΩg A = 2∆−JTX,gA + Ric*(g)A − A Ric*(g) − 2Rg * A′
J +∇g f¬∇gA,

and thus the identities

LΩg A′
J = 2∆JTX,gA

′
J − Ric*(g)A′

J − A′
J Ric*(g) +∇g f¬∇gA′

J , (21.6)

LΩg A′′
J = 2∆−JTX,gA

′′
J + Ric*(g)A′′

J − A′′
J Ric*(g) +∇g f¬∇gA′′

J . (21.7)

We point out that one can obtain directly these formulas by using themethods in the proof of identities (14.2),
(14.5) and (14.6). We remind now that the properties (12.1) and (12.2) imply that A ∈ KerLg if and only if
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A′
J ∈ KerLg and A′′

J ∈ KerLg. Thus if A ∈ KerLg we infer thanks to the identity (21.6) with Ω = CdVg,

0 =
∫︁
X

⟨︀
LgA′

J , A′
J
⟩︀
g dVg

= 2
∫︁
X

[︂⟨
∆JTX,gA

′
J , A′

J

⟩
g
−
⟨
Ric*(g)A′

J , A′
J

⟩
g

]︂
dVg .

Using the identity between Riemannian and hermitian norms of TX-valued forms we obtain

2
∫︁
X

⟨
∆JTX,gA

′
J , A′

J

⟩
g
dVg = 2

∫︁
X

⟨
∆JTX,gA

′
J , A′

J

⟩
ω
dVg

=
∫︁
X

[︂
2
⃒⃒⃒
∂*gTX,JA

′
J

⃒⃒⃒2
ω
+

⃒⃒⃒
∂gTX,JA

′
J

⃒⃒⃒2
ω

]︂
dVg

=
∫︁
X

[︂
2
⃒⃒⃒
∂*gTX,JA

′
J

⃒⃒⃒2
g
+

⃒⃒⃒
∂gTX,JA

′
J

⃒⃒⃒2
g

]︂
dVg .

We deduce ∫︁
X

[︂
2
⃒⃒⃒
∂*gTX,JA

′
J

⃒⃒⃒2
g
+

⃒⃒⃒
∂gTX,JA

′
J

⃒⃒⃒2
g
− 2

⟨
Ric*(g)A′

J , A′
J

⟩
g

]︂
dVg = 0. (21.8)

Assume from now on the Kähler-Einstein condition Ric(g) = λg, λ = ±1, 0. The identity (21.7) with Ω = CdVg
implies in this case

LgA′′
J = 2∆−JTX,gA

′′
J ,

and thus

KerLg ∩ C∞
(︁
X, T*X,−J ⊗ TX,J

)︁
= H0,1

g
(︀
TX,J

)︀
.

Let now A ∈ Ker∇*g and observe that for be-degree reasons holds the decomposition

0 = ∇*gA = ∇*TX,gA
′
J +∇*TX,gA

′′
J

= ∂*gTX,JA
′
J + ∂

*g
TX,JA

′′
J .

Thus if A ∈ Ker∇*g ∩ KerLg then ∂
*g
TX,JA

′′
J = 0 and thus ∂*gTX,JA

′
J = 0 which implies∫︁

X

[︂⃒⃒⃒
∂gTX,JA

′
J

⃒⃒⃒2
g
− 2

⟨
Ric*(g)A′

J , A′
J

⟩
g

]︂
dVg = 0,

thanks to (21.8). We will still denote by Lg the analogue operator over C∞
(︀
X, S2RT*X

)︀
. We infer that if λ ≠ 0

then holds the identity

Ker∇*g ∩ KerLg ∩DJ
g =

{︁
v ∈ C∞

(︁
X, S2RT*X

)︁
| v = v′′J , v*g ∈ H0,1

g
(︀
TX,J

)︀}︁
,

i.e. there exists an isomorphism

Ker∇*g ∩ KerLg ∩DJ
g −→ H0,1

g
(︀
TX,J

)︀
sm

v ↦−→ v*g .

ButH0,1
g

(︀
TX,J

)︀
sm = H0,1

g
(︀
TX,J

)︀
, thanks to lemma 14. We conclude the following fact.
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Lemma 29. Over any compact non Ricci flat Kähler-Einstein manifold (X, J, g) there exists the canonical iso-
morphism

Ker∇*g ∩ KerLg ∩DJ
g −→ H0,1(X, TX,J) ≃ H1(X,O(TX,J))

v ↦−→
{︁
v*g
}︁
.

This result was proved by [9] in the negative Kähler-Einstein case Ric(g) = −g.

21.4 Polarized deformations of Fano manifolds

In this subsection we review a few basic facts on deformation theory which clarifies the Fano set up in the
paper. In particular we wish the readers would avoid the frequent inaccuracies we found in the application
of this theory to Kähler geometry.

21.4.1 The Maurer-Cartan equation

Let (V , J0) be a complex vector space of dimension n. We remind that the data of a complex structure J over
V is equivalent with a n-dimensional complex subspace data Γ ⊂ CV := V ⊗R C such that Γ ∩ Γ = {0}. A
complex structure J over V is called J0-compatible if the projection map

π0,1J0 : V0,1
J −→ V0,1

J0 ,

is surjective, i.e. aC-isomorphism. This is equivalent to the condition V0,1
J ∩ V1,0

J0 = {0}, which in its turn is
equivalent to the existence of aC-linear map θ : V0,1

J0 −→ V1,0
J0 such that

V0,1
J = (I + θ)V0,1

J0 .

If we set µ := (θ + θ̄)|V ∈ End−J0 (V) then the condition V
0,1
J ∩ V0,1

J = {0} is equivalent to say I + µ ∈ GLR(V).
Notice that we can obtain θ by the formula θ = µC · π0,1J0 , with µC ∈ EndC(CV) the natural complexification
of µ. If we denote by J(V , J0) the set of J0-compatible complex structures over V and if we set

C(V , J0) :=
{︀
µ ∈ End−J0 (V) | I + µ ∈ GLR(V)

}︀
,

we infer the existence of a bijection, called the Caley transform (see [14])

χ : C(V , J0) −→ J(V , J0)

µ ←→ J := (I + µ)J0(I + µ)−1

µ := (J0 + J)−1(J0 − J) ←→ J.

Notice indeed that J(V , J0) is the sub-set of the complex structures such that J0 + J ∈ GLR(V). We observe
that for any µ ∈ C(V , J0) as above I − µ ∈ GLR(V). Indeed

−J0J = (I − µ)(I + µ)−1.

Thus µ ∈ End−J0 (V) satisfies I + µ ∈ GLR(V) if and only if

(I − µ2) = (I − µ)(I + µ) ∈ GLJ0 (V)

This last condition is equivalent with

π1,0J0 · (I − µ2) = (IV1,0
J0
− θθ) ∈ GLC(V1,0

J0 ).
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Weassume fromnowon that (X, J0) is a compact complexmanifold and let J(X, J0) be the set of J0-compatible
smooth almost complex structures. For any J ∈ J(X, J0) let

θ ≡ θJ ∈ C∞(X, Λ0,1J0 T
*
X ⊗C T1,0X,J0 ), (IT1,0X,J0

− θθ) ∈ GLC(T1,0X,J0 ),

be the corresponding inverse Caley transform. We show that the subset Jint(X, J0) of integrable almost com-
plex structures is given by the Maurer-Cartan equation

∂T1,0X,J0
θ + 1

2 [θ, θ] = 0, (21.9)

where for any α, β ∈ C∞(X, Λ0,•J0 T
*
X ⊗C T

1,0
X,J0 ) we define the exterior differential Lie product

[α, β] ∈ C∞(X, Λ0,•J0 T
*
X ⊗C T1,0X,J0 ),

of degree d = deg α + deg β by the formula

[α, β] (ξ ) :=
∑︁

|I|=deg α

εI
[︀
α(ξI), β(ξ{I)

]︀
,

for all ξ ∈ Ō(T0,1X,J0 )
×d. Notice that this formula defines a priori only an element

[α, β] ∈ AltdŌ(Ō(T
0,1
X,J0 ); C

∞(T1,0X,J0 )).

However we can define pointwise the section [α, β] as follows. For any v ∈ (T0,1X,J0 ,x)
×d

[α, β] (v) := [α, β] (ξ )|x ,

with ξ ∈ Ō(T0,1X,J0 )
×d such that ξx = v. This is well defined by the Ō-linearity of [α, β]. Indeed the coefficients

of ξ with respect to the local frame (ζ̄k)nk=1 ⊂ Ō(U, T0,1X,J0 ), with ζj :=
∂
∂zj , and J0-holomorphic coordinates

(z1, . . . , zn), are J0-anti-holomorphic functions which value at the point x is uniquely determined by v. The
section [α, β] is smooth since its coefficients with respect to the frame (ζ̄k)nk=1 are smooth functions.

Notice now that (I + θ)(ζ̄k), k = 1, . . . , n, is a local frame of the bundle T0,1X,J over an open set U. Then the
integrability of J is equivalent to the condition[︀

(I + θ)(ζ̄k), (I + θ)(ζ̄l)
]︀
∈ C∞(U, T0,1X,J ), (21.10)

since the torsion form τJ ∈ C∞(X, Λ0,2J0 T
*
X ⊗C T

1,0
X,J0 ) of J satisfies

τJ
(︀
(I + θ)(ζ̄k), (I + θ)(ζ̄l)

)︀
=

[︀
(I + θ)(ζ̄k), (I + θ)(ζ̄l)

]︀1,0
J .

We observe also the identities[︀
(I + θ)(ζ̄k), (I + θ)(ζ̄l)

]︀
=

[︀
ζ̄k , θ(ζ̄l)

]︀
+
[︀
θ(ζ̄k), ζ̄l

]︀
+
[︀
θ(ζ̄k), θ(ζ̄l)

]︀
=

[︀
ζ̄k , θ(ζ̄l)

]︀1,0
J0
−
[︀
ζ̄l , θ(ζ̄k)

]︀1,0
J0

+ 1
2 [θ, θ] (ζ̄k , ζ̄l)

=
(︂
∂T1,0X,J0

θ + 1
2 [θ, θ]

)︂
(ζ̄k , ζ̄l) ∈ C∞(U, T1,0X,J0 ).

We have T0,1X,J ∩ T
1,0
X,J0 = 0X by the J0-compatibility of J. We infer that if (21.10) holds then also (21.9) holds true

and [︀
(I + θ)(ζ̄k), (I + θ)(ζ̄l)

]︀
= 0.

On the other hand if (21.9) is satisfied then the previous identity is satisfied and thus (21.10) holds true.
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Remark 4. For any α, β ∈ C∞(X, Λ0,•J0 T
*
X ⊗C TX,J0 ) we define the exterior differential Lie product

[α, β] ∈ C∞(X, Λ0,•J0 T
*
X ⊗C TX,J0 ),

of degree d = deg α + deg β by the formula

[α, β] :=
[︁
π1,0J · α

C
, π1,0J · β

C

]︁
+
[︁
π1,0J · α

C
, π1,0J · β

C

]︁
.

Then the Maurer-Cartan equation (21.9) can be rewritten in the equivalent form

∂TX,J0 µ +
1
2 [µ, µ] = 0,

since

∂TX,J0 µ = ∂T1,0X,J0
θ + ∂T1,0X,J0

θ,

[µ, µ] = [θ, θ] + [θ, θ].

Let now B ⊂ Cp be the unitary open ball and observe that, by a refinement of Ehresmann theorem for any
proper holomorphic submersion π : X −→ B of a complex manifold X onto B with central fiber (X, J0) =
π−1(0) there exists a smooth map φ : X −→ X such that the map

(φ, π) : X −→ X × B,

is a diffeomorphism with φ|X = IX and with φ
−1(x) ⊂ X complex sub-variety for all x ∈ X.

Let now θ := (θt)t∈B ⊂ C∞(X, Λ0,1J0 T
*
X ⊗C T

1,0
X,J0 ) with θ0 = 0 and

det(IT1,0X,J0
− θtθt) ≠ 0,

be a smooth family of J0-compatible complex structures. We observe that the almost complex manifold

X ≡ (X, θ) :=
⨆︁
t∈B

(X, θt),

is a complex one if and only if θt satisfies the Maurer-Cartan equation (21.9) for all t ∈ B and the map

t ∈ B ↦−→ θt(x) ∈ Λ0,1J0 T
*
X,x ⊗C T1,0X,J0 ,x ,

is holomorphic for all x ∈ X. Indeed the distribution T0,1
X,θ is integrable if and only if its local generators

τ̄r := ∂
∂tr

, r = 1, . . . , p, (I + θt)(ζ̄k), k = 1, . . . , n, satisfy the conditions[︀
τ̄r , (I + θt)(ζ̄k)

]︀
∈ C∞(U, T0,1X,θt ), (21.11)

and [︀
(I + θt)(ζ̄k), (I + θt)(ζ̄l)

]︀
∈ C∞(U, T0,1X,θt ). (21.12)

The latter is equivalent with the Maurer-Cartan equation (21.9). Let θt = θk,lt ζ̄ *k ⊗ ζl be the local expression of
θt. Then the identity [︀

τ̄r , (I + θt)(ζ̄k)
]︀

= τ̄r .θk,lt ζl ∈ C
∞(U, T0,1X,J0 ),

combined with the property T0,1X,θt ∩ T
1,0
X,J0 = 0X, shows that (21.11) holds true if and only if the map t ↦−→ θt is

holomorphic.
For any p ∈ X a coordinate chart of X in a open neighborhood Up × B of (p, 0) is given by a smooth

function f : Up × B −→ C
n ×Cp such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂J0 f + ∂J0 f · θt = 0,

∂B f = 0

det (df ) ≠ 0.

In order to produce such family θ we need to remind a few basic facts about Hodge theory.
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21.4.2 Basic facts about Hodge theory and ∂-equations

Let ω be a hermitian metric over X and let (E, ∂E , h) be a hermitian holomorphic vector bundle over it. We
define the anti-holomorphic Hodge Laplacian

∆′′E := ∂E∂
*
E + ∂

*
E∂E ,

acting on the sections of Λp,qJ T*X ⊗C E. Let Ep,q(E) := C∞(X, Λ
p,q
J T*X ⊗C E) and set

Hp,q(E) := Ker ∆′′E ∩ Ep,q (E) .

We remind the L2-Hodge decomposition

Ep,q(E) = Hp,q(E)⊕ ∂EEp,q−1(E)⊕ ∂
*
EE

p,q+1(E).

We observe that if there exists two subspaces L, V ⊂ C∞(X, E) such that the L2-decomposition

C∞(X, E) = L ⊕ V ,

holds then L and V are closed subspaces of C∞(X, E). Indeed L = V⊥ and V = L⊥ by the L2-decomposition.
The same consideration holds for the Sobolev spaces Wk(X, E). Thus the L2-Hodge decomposition implies
that the spaces ∂EEp,q−1(E) and ∂

*
EE

p,q+1(E) are closed in the smooth topology.We infer the L2-decomposition

Ep,q(E) = [ Ker ∂E ∩ Ep,q(E) ] ⊕ ∂
*
EE

p,q+1(E),

and thus

Ker ∂E ∩ Ep,q(E) = Hp,q(E)⊕ ∂EEp,q−1(E).

An other way to see this decomposition is the following. Let

HE : Ep,q(E) −→ Hp,q(E),

be the L2-projection operator overHp,q(E). For any α ∈ Ep,q(E) there exists β ∈ Ep,q−1(E) and 𝛾 ∈ Ep,q+1(E)
such that

α = HEα + ∂Eβ + ∂
*
E𝛾.

Now if ∂Eα = 0 then ∂E∂
*
E𝛾 = 0, i.e ∂*E𝛾 = 0. Let

Wp,q
k (E) := Wk(X, Λp,qJ T*X ⊗C E).

We remind that the Green operator

GE : Wp,q
k (E) −→ ∆′′EW

p,q
k+4(E),

is defined by the identity I = HE + ∆′′EGE. The latter implies KerGE = Ker ∆′′E and the L2-orthogonal decompo-
sition

α = HEα + ∂E∂
*
EGEα + ∂

*
E∂EGEα.

We show now the identity ∂EGE = GE∂E. Indeed ∂E-differentiating the identity defining GE we infer

∂Eα = ∂E∆′′EGEα = ∆′′E∂EGEα.

Applying the same identity to ∂Eα we obtain ∂Eα = ∆′′EGE∂Eα, since HE∂E = 0 by orthogonality. Thus

∆′′E
(︁
∂EGEα − GE∂Eα

)︁
= 0.
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The fact that by definition GEWp,q
k (E) = ∆′′EW

p,q
k+4(E) implies the existence of β ∈ Wp,q

k+4(E) and 𝛾 ∈ Wp,q+1
K+3 (E)

such that

GEα = ∆′′Eβ,

GE∂Eα = ∆′′E𝛾.

We deduce

∂EGEα − GE∂Eα = ∆′′E
(︁
∂Eβ − 𝛾

)︁
= 0,

thanks to the orthogonality of the Kernel and image of ∆′′E .
We observe finally that the equation ∂Eα = β admits a solution if and only if ∂Eβ = 0 and HEβ = 0. In this

case the unique solution of minimal L2-norm is given by α = ∂*EGEβ.

21.4.3 The equation of holomorphic maps

For any smooth map f : (X, JX) −→ (Y , JY ) we define the operators

2∂JX ,JY f := df − (JY ∘ f ) · df · JX ∈ C∞
(︁
X, Λ1,0JX

T*X ⊗C f *TY ,JY
)︁
,

2∂JX ,JY f := df + (JY ∘ f ) · df · JX ∈ C∞
(︁
X, Λ0,1JX

T*X ⊗C f *TY ,JY
)︁
,

and we notice the elementary identities

∂JX ,JY f = π1,0Y · df · π1,0X + π0,1Y · df · π0,1X ,

∂JX ,JY f = π1,0Y · df · π0,1X + π0,1Y · df · π1,0X .

The map f is called holomorphic if (JY ∘ f ) · df = df · JX. We deduce that the map f is holomorphic if and only
if ∂JX ,JY f = 0, thus if and only if

π1,0Y · df · π0,1X = 0.

We infer that a map f : (X, Jφ) −→ (Y , JY ) is holomorphic if and only if

π1,0Y · df|T0,1X,Jφ
= 0.

The identity

T0,1X,Jφ =
(︁
π0,1J0

+ φ
)︁
CTX ,

implies that f : (X, Jφ) −→ (Y , JY ) is holomorphic if and only if

π1,0Y · df ·
(︁
π0,1J0

+ φ
)︁

= 0.

This last condition rewrites as

0 = ∂J0,JY f · π
0,1
J0

+ π1,0Y · df · π1,0J0
· φ

= ∂J0,JY f · π
0,1
J0

+ ∂J0,JY f · φ.
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We explicit the latter condition in the case of a smooth map
f : (X, Jφ) −→ (X, Jθ). Indeed

0 = 2∂J0,Jθ f · π
0,1
J0

+ 2 ∂J0,Jθ f · φ

= [I − i (Jθ ∘ f )] · (df · π0,1J0
+ df · φ)

= [I − i (Jθ ∘ f )] · π1,0J0
· (df · π0,1J0

+ df · φ)

+ [I − i (Jθ ∘ f )] · π0,1J0
· (df · π0,1J0

+ df · φ)

= [I − i (Jθ ∘ f )] · π1,0J0
· (∂J0 f + ∂J0 f · φ)

+ [I − i (Jθ ∘ f )] · π0,1J0
· (∂J0 f + ∂J0 f · φ) .

We explicit at this point the expression of Jθ. For this purpose let µ := θ + θ and decompose the identity

Jθ := J0 (I − µ) (I + µ)−1

= J0 (I − µ)2
(︁
I − µ2

)︁−1
= J0

(︁
I − 2µ + µ2

)︁(︁
I − µ2

)︁−1
= J0

(︁
I − 2θ − 2θ + θθ + θθ

)︁(︁
I − θθ − θθ

)︁−1
.

Decomposing in types we infer

Jθ = i
(︁
I1,0 + θθ

)︁
(I1,0 − θθ)−1 + 2iθ(I1,0 − θθ)−1

− 2iθ(I0,1 − θθ)−1 − i(I0,1 + θθ)(I0,1 − θθ)−1.

Let A := θθ. Using the trivial identity

(I + A) (I − A)−1 = I + 2A (I − A)−1 ,

we conclude the expression

Jθ = iI1,0 + 2iθθ(I1,0 − θθ)−1⏟  ⏞  
∈E1,0

(︂
T1,0X,J0

)︂
+2iθ(I1,0 − θθ)−1⏟  ⏞  

∈E1,0
(︂
T0,1X,J0

)︂

− 2iθ(I0,1 − θθ)−1⏟  ⏞  
∈E0,1

(︂
T1,0X,J0

)︂
− iI0,1 − 2iθθ(I0,1 − θθ)−1⏟  ⏞  

∈E0,1
(︂
T0,1X,J0

)︂
.

For notation simplicity we identify Jθ ≡ Jθ ∘ f and thus θ ≡ θ ∘ f . Using the previous expression we infer the
equalities

1
2 [I − i (Jθ ∘ f )] · π1,0J0

= I1,0 + θθ(I1,0 − θθ)−1 + θ(I1,0 − θθ)−1

= (I1,0 − θθ)−1 + θ(I1,0 − θθ)−1,

1
2 [I − i (Jθ ∘ f )] · π0,1J0

= −θ(I0,1 − θθ)−1 − θθ(I0,1 − θθ)−1.
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The second equality follows from the trivial identity

I + A (I − A)−1 = (I − A)−1 .

We deduce that the holomorphy condition for f writes in the form

0 = ∂J0,Jθ f · π
0,1
J0

+ ∂J0,Jθ f · φ

= (I1,0 − θθ)−1 · (∂J0 f + ∂J0 f · φ) − θ(I0,1 − θθ)
−1 · (∂J0 f + ∂J0 f · φ)

+ θ(I1,0 − θθ)−1 · (∂J0 f + ∂J0 f · φ) − θθ(I0,1 − θθ)−1 · (∂J0 f + ∂J0 f · φ).

The fact that the second line is composedby elements inE0,1
(︁
T1,0X,J0

)︁
and the third by elements inE0,1

(︁
T0,1X,J0

)︁
implies that the holomorphy condition for f is equivalent to the equations

(I1,0 − θθ)−1 · (∂J0 f + ∂J0 f · φ) = θ(I0,1 − θθ)−1 · (∂J0 f + ∂J0 f · φ),

θ(I1,0 − θθ)−1 · (∂J0 f + ∂J0 f · φ) = θθ(I0,1 − θθ)−1 · (∂J0 f + ∂J0 f · φ).

But the last one is obtainedmultiplying both sides of the first with θ. We infer that the holomorphy condition
for f writes as

π1,0J0
· ∂J0 f + ∂J0 f · φ = (I1,0 − θθ)θ(I0,1 − θθ)−1 · (∂J0 f + ∂J0 f · φ).

We notice now the identity

θ = (I1,0 − θθ)θ(I0,1 − θθ)−1.

The latter follows decomposing the trivial identity

µ =
(︁
I − µ2

)︁
µ
(︁
I − µ2

)︁−1
.

We conclude finally that the map f : (X, Jφ) −→ (X, Jθ) is holomorphic if and only if

π1,0J0
· ∂J0 f + ∂J0 f · φ = (θ ∘ f ) · (∂J0 f + ∂J0 f · φ).

For any f ∈ Di� (X) sufficiently close to the identity in C1-norm, the almost complex structure f *Jθ is J0-
compatible, i.e. det

(︀
J0 + f *Jθ

)︀
≠ 0. Thus there exists a unique form θf such that f *Jθ = Jθf .

By definition themap f :
(︁
X, Jθf

)︁
−→ (X, Jθ) is holomorphic.We conclude that θf is given by the formula

π1,0J0
· ∂J0 f − (θ ∘ f ) · ∂J0 f = −

[︁
∂J0 f − (θ ∘ f ) · ∂J0 f

]︁
· θf , (21.13)

and thus

θf = −
[︁
∂J0 f − (θ ∘ f ) · ∂J0 f

]︁−1
|T1,0X,J0

[︁
π1,0J0

· ∂J0 f − (θ ∘ f ) · ∂J0 f
]︁
,

as long as [︁
∂J0 f − (θ ∘ f ) · ∂J0 f

]︁
|T1,0X,J0

∈ GL
C

(︁
T1,0X,J0

)︁
.

Adding the complex conjugate we infer

∂J0 f − (µ ∘ f ) · ∂J0 f = −
[︁
∂J0 f − (µ ∘ f ) · ∂J0 f

]︁
· µf , (21.14)

and thus

µf = −
[︁
∂J0 f − (µ ∘ f ) · ∂J0 f

]︁−1 [︁
∂J0 f − (µ ∘ f ) · ∂J0 f

]︁
,

as long as

∂J0 f − (µ ∘ f ) · ∂J0 f ∈ GL (TX) .
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21.4.4 The Kuranishi space of a compact complex manifold

Let (X, J) be a complex manifold and consider

E′′J := T*X,−J ⊗ TX,J ,

E′′g,J := Endg(TX) ∩ E′′J ,

CJ :=
{︂
µ ∈ E(E′′J ) | (1 + µ) ∈ GLR (TX) , ∂TX,J µ +

1
2 [µ, µ] = 0

}︂
.

Then the Caley transform (see [14]) provides a bijection

CalJ0 : CJ0 −→ JJ0 :=
{︁
J ∈ Jint | π0,1J0 (T0,1X,J ) = T

0,1
X,J0

}︁
µ ←→ J := (I + µ)J0(I + µ)−1

µ := (J0 + J)−1(J0 − J) ←→ J.

For notations conveniencewewill restrict our considerations to the Fano case even if the result thatwill follow
and its argument holds for a general compact complex manifold. For any polarized Fano manifold (X, J, ω)
we define also the sub-set of Ω-divergence free tensors in CJ

CdivJ,g :=
{︁
µ ∈ CJ | ∂

*g,Ω
TX,J µ = 0

}︁
.

We denote by H0 (︀TX,J)︀⊥ ∩ Wk
(︀
TX,J

)︀
the L2ω,Ω-orthogonal space to the space of holomorphic vector fields

insideWk
(︀
TX,J

)︀
. For any ξ ∈ E (TX) of sufficiently small norm the map e (ξ ) : X −→ X defined by

e (ξ )x := expg,x (ξx) ,

is a smooth diffeomorphism. For readers convenience we provide a proof (in the Fano case) of the following
fundamental result due to Kuranishi [18].

Theorem 3. (The Kuranishi spaceKJ,g.) For any polarized Fanomanifold (X, J, ω) and any integer k > 2(n+
1) with n := dim

C
X, there exists;

(A) ε, δ ∈ R>0, a complex analytic subset KJ,g ⊆ H0,1
g,Ω

(︀
TX,J

)︀
∩ Bgδ (0), 0 ∈ KJ,g and a holomorphic

embedding

µ : H0,1
g,Ω

(︀
TX,J

)︀
∩ Bgδ (0) −→ BW

0,1
k (TX,J )

ε (0) ,

with µ0 = 0, which restricts to a bijection

µ : KJ,g −→ CdivJ,g ∩ B
W0,1
k (TX,J )

ε (0) ,

with the property d0µ (v) = v, for all v ∈ TCKJ,g ,0 :=the tangent cone ofKJ,g at the origin.
(B) ε0 ∈ R>0, ε0 < ε, and a smooth map

BW
0,1
k (TX,J )

ε0 (0) −→ H0 (︀TX,J)︀⊥ ∩Wk
(︀
TX,J

)︀
φ ↦−→ ξφ ,

with ξ0 = 0, such that ∂*g,ΩTX,Jφe(ξφ) = 0 which restricts to an application

BW
0,1
k (TX,J )

ε0 (0) ∩ E0,1
(︀
TX,J

)︀
−→ H0 (︀TX,J)︀⊥ ∩ E (︀

TX,J
)︀
,
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and such that the map

CJ ∩ B
W0,1
k (TX,J )

ε0 (0) −→ CdivJ,g ∩ B
W0,1
k (TX,J )

ε (0)

φ ↦−→ µ (φ) := φe(ξφ),

is well defined.

Proof. We divide Kuranishi’s proof in a few steps.
STEP A1. We show first that the system

(S1)

⎧⎪⎨⎪⎩
∂TX,J µ + 1

2 [µ, µ] = 0,

∂*g,ΩTX,J µ = 0.

is equivalent to the system

(S2)

⎧⎪⎨⎪⎩
µ + 1

2∂
*g,Ω
TX,JGTX,J [µ, µ] = HTX,J µ,

HTX,J [µ, µ] = 0,

provided that µ is sufficiently close to 0. Indeed let µ be a solution of (S1). Then the considerations about the
resolution of the ∂-equation imply the second equation in (S2). Moreover if we set

φ := −12∂
*g,Ω
TX,JGTX,J [µ, µ] ,

then α := µ − φ satisfies ∂TX,J α = 0 and ∂*g,ΩTX,J α = 0. Thus α ∈ H0,1
g,Ω(TX,J) and HTX,Jµ = α since

HTX,J∂
*g,Ω
TX,J = 0,

by orthogonality. This shows that also the first equation in (S2) holds. Assume now that µ is a solution of (S2).
It is clear that the second equation in (S1) holds true. We set

ψ := ∂TX,J µ +
1
2 [µ, µ] ,

and we observe the equalities

ψ = −12∂TX,J∂
*g,Ω
TX,JGTX,J [µ, µ] +

1
2 [µ, µ]

= 1
2∂

*g,Ω
TX,J ∂TX,J GTX,J [µ, µ]

= 1
2∂

*g,Ω
TX,JGTX,J∂TX,J [µ, µ]

= ∂*g,ΩTX,JGTX,J
[︁
∂TX,Jµ, µ

]︁
.

We deduce the identity

ψ = ∂*g,ΩTX,JGTX,J [ψ, µ] .

The assumption k > n + 1 implies that the Sobolev embedding Wk ⊂ Ck−n−1 holds true. Using the standard
estimates on the Sobolev norms ofW•,•

k :

‖GTX,J φ‖k+2 6 C0‖φ‖k ,

‖ [φ, ψ] ‖k−1 6 C2‖φ‖k‖ψ‖k ,
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we obtain

‖ψ‖k 6 C1‖ [ψ, µ] ‖k−1 6 C1C2‖ψ‖k‖µ‖k .

Thus if ‖µ‖k 6 ε/(C1C2) for some ε ∈ (0, 1) then (1 − ε)‖ψ‖k 6 0, which holds true if and only if ψ = 0.
STEP A2. We remind that the previous discussion shows that the first equation in (S2) is equivalent to

the condition

F(µ) := µ + 1
2∂

*g,Ω
TX,JGTX,J [µ, µ] ∈ H0,1

g,Ω(TX,J).

Let Ξk ⊂ W0,1
k (TX,J) be the subset of the elements satisfying this condition. We notice that the map

F : W0,1
k (TX,J) −→ W0,1

k (TX,J),

is well defined and continuous thanks to the estimate

‖∂*g,ΩTX,JGTX,J [µ, µ] ‖k 6 C1‖ [µ, µ] ‖k−1 6 C1C2‖µ‖2k .

We infer that F is also holomorphic since F − I is a continuous quadratic form. The fact that the differential
of F at the origin is the identity implies the existence of an inverse holomorphic map F−1 in a neighborhood
BWk
ε (0) of the origin. Restricting this toH0,1

g,Ω(TX,J) ∩ B
Wk
ε (0) we deduce the existence of a holomorphic map

α ∈ H0,1
g,Ω(TX,J) ∩ B

Wk
ε (0) ↦−→ µα ∈ W0,1

k (TX,J),

such that

µα +
1
2∂

*g,Ω
TX,JGTX,J [µα , µα] = α.

By construction Im (α ↦−→ µα) represents a neighborhood of the origin inside Ξk. It is clear that µα is of class
Ck−n by the Sobolev embedding.We show further that µα is smooth for a sufficiently small choice of ε. Indeed
applying the Hodge Laplacian ∆Ω,−JTX,g to both sides of the previous identity and using the equalities

∆Ω,−JTX,g ∂
*g,Ω
TX,JGTX,J = ∂

*g,Ω
TX,J∆

Ω,−J
TX,g GTX,J = ∂

*g,Ω
TX,J ,

(notice that ∂*g,ΩTX,JHTX,J = 0) we obtain the equation

∆Ω,−JTX,g µα + 1
2∂

*g,Ω
TX,J [µα , µα] = 0 ,

which rewrites also as

∆Ω,−JTX,g µα + 1
2 µα *∇

2
gµα = 1

2∇gµα *∇gµα +
1
2 µα *∇gµα *∇g f ,

where * denotes adequate contraction operators. The fact that the C0-norm of µα can bemade arbitrary small
for sufficiently small ε implies that the operator

∆Ω,−JTX,g + 1
2 µα *∇

2
g ,

is elliptic. Then the smoothness of µα follows by standard elliptic bootstrapping. We denote byKJ,g the zero
set of the holomorphic map

χ : H0,1
g,Ω(TX,J) ∩ B

Wk
ε (0) −→ H0,2

g,Ω(TX,J)

α ↦−→ HTX,J [µα , µα] .

Then the set
{︀
µα | α ∈ KJ,g

}︀
covers the set of the solutions of the system (S2) in a neighborhood of the origin.
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STEP B. We observe first that ∂*g,ΩTX,Jφ = 0 if and only if GTX,J∂
*g,Ω
TX,Jφ = 0. Indeed

Im ∂*g,ΩTX,J⊥KerGTX,J ,

since KerGTX,J = Ker ∆Ω,−JTX,g . Thus in order to construct the application φ ↦−→ ξφ we need to find the zeros of
the map

R : W0,1
k

(︀
TX,J

)︀
×
[︁
H0 (︀TX,J)︀⊥ ∩ BWk(TX,J )

ε0 (0)
]︁
−→ H0 (︀TX,J)︀⊥ ∩Wk

(︀
TX,J

)︀
(φ, ξ ) ↦−→ GTX,J∂

*g,Ω
TX,Jφe(ξ ),

(0, 0) ↦−→ 0.

For notations simplicity we denote Ψ : (µ, f ) ↦−→ µf . With these notations the formula (21.14) writes as

∂J e (tξ ) = −∂J e (tξ ) · Ψ (0, e (tξ )) .

Time deriving this identity at t = 0 and using the fact that d
dt |t=0e (tξ ) = ξ , Ψ (0, IdX) = 0 and e (0) = IdX we

obtain

∂TX,J ξ = −DfΨ (0, IdX) · ξ ,

where DfΨ denotes the partial Frechet derivative of Ψ in the variable f . We observe now that for any ξ ∈
Wk

(︀
TX,J

)︀
holds the decomposition formula

ξ = HTX,J ξ + GTX,J∂
*g,Ω
TX,J ∂TX,J ξ .

Thus if ξ ∈ H0 (︀TX,J)︀⊥ ∩Wk
(︀
TX,J

)︀
then holds the identity

ξ = GTX,J∂
*g
TX,J∂TX,J ξ .

We conclude the identity DξR (0, 0) = I and the existence of the map φ ↦−→ ξφ by the implicit function
theorem. In local coordinates we can consider the expansion

e (ξ ) = IdX +ξ + O(|ξ |2).

Then the formula (21.14) implies the local identity

φe(ξ ) = − ∂TX,J ξ + φ + Q (φ, ξ ) ,

with Q an analytic function (depending on the local coordinates). Then the condition ∂*g,ΩTX,Jφe(ξφ) = 0 implies

− ∆Ω,−JTX,g ξφ + ∂
*g,Ω
TX,Jφ + ∂*g,ΩTX,JQ (φ, ξφ) = 0.

Thus ξφ is smooth if φ is smooth by elliptic regularity.

21.4.5 Parametrization of a sub-space of the ω-compatible complex structures

Let (X, J, ω) be a polarized Fano manifold and consider the set

Cω,J :=
{︂
µ ∈ E(E′′g,J) | g (1 ± µ) > 0, ∂TX,J µ +

1
2 [µ, µ] = 0

}︂
,

with g := −ωJ. Then the Caley transform restricts to a bijection (see [14])

CalJ : Cω,J −→ Jω .

We define also the sub-set of Ω-divergence free tensors in Cω,J

Cdivω,J :=
{︁
µ ∈ Cω,J | ∂

*g,Ω
TX,J µ = 0

}︁
.
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Definition 2. (The Kuranishi space of polarized deformations) For any polarized Fano manifold (X, J, ω)
we define the Kuranishi space of ω-polarized complex deformations as the complex analytic subset

Kω
J :=

{︁
α ∈ Kg,J | µα = (µα)Tg

}︁
.

With these notations the map µ in theorem 3 restricts to a bijection

µ : Kω
J −→ Cdivω,J ∩ B

W0,1
k (TX,J )

ε (0) .

For any α ∈ Kω
J we define Jα := CalJ µα. Let also Uω ⊂ C∞Ω (X,C)0 be an open neighborhood of the origin

such that ω + ddcJα u1 > 0 for all α ∈ Kω
J and u = u1 + iu2 ∈ Uω, with uj real valued. We define the real vector

field

ξ α,ut := −
(︀
ω + tddcJα u1

)︀−1(︂dcJα u1 + 1
2du2

)︂
,

for all t ∈ (−ε, 1 + ε), for some small ε > 0. We define also the family of diffeomorphisms
(︀
Φα,ut

)︀
t∈(−ε,1+ε) over

X given by ∂tΦα,ut = ξ α,ut ∘ Φα,ut , with Φα,u0 = IdX. We set finally

Jα,u :=
(︀
Φα,u1

)︀* Jα .
With these notations holds the following lemma.

Lemma 30. The map

Kω
J × Uω −→ Jω ,

(α, u) ↦−→ Jα,u ,

is well defined and its differential at the origin is given by the fiberwise injection

TCKω
J ,0⊕Λ

Ω,⊥
g,J −→ TCJω ,J

(A, v) ↦−→ −J
[︁
∂TX,J∇g,Jv + 2A

]︁
.

Proof. Let denote for simplicity ωt := ω + tddcJα u1 and we observe the elementary identities

ω̇t = ddcJα u1 = −d(ξ
α,u
t ¬ωt) = −Lξ α,ut

ωt .

We infer

d
dt

[︁ (︀
Φα,ut

)︀* ωt]︁ =
(︀
Φα,ut

)︀* (︁ω̇t + Lξ α,ut
ωt

)︁
= 0,

and thus
(︀
Φα,u1

)︀* ω1 =
(︀
Φα,u0

)︀* ω0 = ω, i.e.(︀
Φα,u1

)︀* (︀ω + ddcJα u1
)︀

= ω.

The fact that the complex structure Jα is integrable implies that the form ω1 is Jα-invariant. (This is no longer
true in the non-integrable case!) We conclude Jα,u ∈ Jω.

We compute now the differential at the origin.We consider for this purpose a smooth family (u (s))s ⊂ Uω

such that u (0) = 0 and u̇ (0) = v. We denote for simplicity ξt,s := ξ0,u(s)t and Φt,s := Φ0,u(s)
t . Then deriving

with respect to s at s = 0 the identity

∂
∂t Φt,s = ξt,s ∘ Φt,s ,
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and using the fact that ξt,0 = 0, (which implies in particular Φt,0 = IdX) we obtain

∂
∂s |s=0

∂
∂t Φt,s = ∂

∂s |s=0
ξt,s + dxξt,0 ·

∂
∂s |s=0

Φt,s

= ∂
∂s |s=0

ξt,s .

On the other hand deriving with respect to s at s = 0 the identity

ξt,s¬
(︁
ω + tddcJ u1 (s)

)︁
= −

(︂
dcJ u1 (s) +

1
2du2 (s)

)︂
,

we obtain (︂
∂
∂s |s=0

ξt,s
)︂
¬ ω = −

(︂
dcJ v1 +

1
2dv2

)︂
,

and thus
∂
∂s |s=0

ξt,s = −12∇g,Jv.

Commuting the derivatives in s and t we infer the identity

∂
∂t

∂
∂s |s=0

Φt,s = −12∇g,Jv.

Integrating in t from 0 to 1 we deduce

η := ∂
∂s |s=0

Φ1,s = −12∇g,Jv,

since Φ0,s = IdX. We infer

d
ds |s=0

J0,u(s) = LηJ = −J∂TX,J∇g,Jv.

Assume now (α (s))s ⊂ KJ,ω is a smooth curve with α (0) = 0 and α̇ (0) = A. Then

d
ds |s=0

Jα(s),u(s) = d
ds |s=0

Jα(s) +
d
ds |s=0

J0,u(s),

with
d
ds |s=0

Jα(s) = −2JA,

thanks to the properties of the differential of the Caley transform (see [14]).

Lemma 31. For any point J ∈ Jω holds the inclusions[︁
∂TX,J∇g,JC

∞ (X,C)
]︁
⊕Ω TCKω

J ,0

⊆ TCJω ,J

⊆
[︁
∂TX,J∇g,JC

∞ (X,C)
]︁
⊕Ω TCKJ,g ,0 .

Proof. The first inclusion is a direct consequence of lemma 30. In order to show the second one let (φt)t ⊂
CJ ∩ B

W0,1
k (TX,J )

ε0 (0) with φ0 = 0 and set for notation simplicity et := e (ξφt ). With these notations, the identity
(21.14) writes as

∂J et − (φt ∘ et) · ∂J et = −
[︁
∂J et − (φt ∘ et) · ∂J et

]︁
· µ (φt) .
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Time deriving this at t = 0 and using the obvious equality ė0 = Dξ (0) φ̇0 we deduce the equality

∂TX,J
[︀
D ξ (0) φ̇0

]︀
− φ̇0 = − ddt |t=0

µ (φt) .

This combined with the identity ∂*g,ΩTX,J µ (φt) ≡ 0 implies

∂*g,ΩTX,J ∂TX,J
[︀
D ξ (0) φ̇0

]︀
− ∂*g,ΩTX,J φ̇0 = 0.

Thus if ∂*g,ΩTX,J φ̇0 = 0 then D ξ (0) φ̇0 = 0 and

φ̇0 = d
dt |t=0

µ (φt) .

We infer the equality {︁
A ∈ H0,1

g,Ω(TX,J) | ∃ (Jt)t ⊂ Jint : J0 = J, J̇0 = A
}︁

=
{︁
A ∈ H0,1

g,Ω(TX,J) | ∃ (φt)t ⊂ CdivJ,g : φ0 = 0, φ̇0 = A
}︁

= TCKJ,g ,0 .

By gauge transformation we deduce{︁
A ∈ H0,1

g,Ω(TX,J) | ∃ (Jt)t ⊂ Jω : J0 = J, HTX,J J̇0 = A
}︁

⊆
{︁
A ∈ H0,1

g,Ω(TX,J) | ∃ (Jt)t ⊂ Jint : J0 = J, J̇0 = A
}︁
,

and thus the required inclusion.

This result combined with the existence of the isomorphism η and with the triple decomposition identity
(18.3) implies the inclusions (1.17) and (1.18) in the introduction of the paper.
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