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Abstract: We introduce a flow of Riemannian metrics and positive volume forms over compact oriented man-
ifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in
our previous work. We still call this new flow, the Soliton-Ricci flow. It corresponds to a forward Ricci type flow
up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new
Soliton-Ricci flow exist for all times. It represents the gradient flow of Perelman’s W functional with respect to
a pseudo-Riemannian structure over the space of metrics and normalized positive volume forms. We obtain
an expression of the Hessian of the W functional with respect to such structure. Our expression shows the
elliptic nature of this operator in the orthogonal directions to the orbits obtained by the action of the group of
diffeomorphism. In the case that initial data is Kahler, the Soliton-Ricci flow over a Fano manifold preserves
the Kahler condition and the symplectic form. Over a Fano manifold, the space of tamed complex structures
embeds naturally, via the Chern-Ricci map, into the space of metrics and normalized positive volume forms.
Over such space the pseudo-Riemannian structure restricts to a Riemannian one. We perform a study of the
sign of the restriction of the Hessian of the W functional over such space. This allows us to obtain a finite
dimensional reduction of the stability problem for Kahler-Ricci solitons. This reduction represents the solu-
tion of this well known problem. A less precise and less geometric version of this result has been obtained
recently by the author in [28].
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1 Introduction and statement of the main result

In this paper we provide a caracterisation of the second variation of Perelman’s W more precise and more ge-
ometric that the one described recently in [28]. Indeed here we detect the kernel of the second variation. We
represent also the second variation in terms of a Riemannian structure over the space of compatible complex
structures. This structure is crucial for the computation of the kernel of the second variation. Indeed it al-
lows a fundamental triple decomposition of the tangent cone of the space of compatible complex structures
(embedded in the space of Riemannian metrics and positive normalised volume forms via the Chern-Ricci
map).

This is the first of a series of papers whose purpose is the study the following problem.

Let (X, Jo) be a Fano manifold. We remind that the first Chern class c1 (X, [Jo]) € H (ZI(X , R) depends only
on X and the coboundary class [Jo] of the complex structure J.

Let also w € 2mcy (X, [Jo]) be an arbitrary Jo-invariant Kdhler form over X. We want to find under which
conditions on Joy and w there exists a smooth complex structure J € [Jo] and a smooth volume form Q > O
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over X such that
w = Ricj(Q) ,

o1y, (w’ldlog %") =0,

i.e. the Riemannian metric g := —w], is a J-invariant Kédhler-Ricci soliton.

This set up represents a particular case of the Hamilton-Tian conjecture with a stronger conclusion.
Namely we avoid the singularities in the solution of the Kdhler-Ricci soliton equation.

Proofs of the Hamilton-Tian conjecture have been posted on the arXiv server in (2013) by Tian-Zhang [38]
in complex dimension 3 and quite recently by Chen-Wang [6] in arbitrary dimensions.

Our starting point of view is Perelman’s twice contracted second Bianchi type identity introduced in [29].

We remind first what this is about. Let Q > 0 be a smooth volume form over an oriented compact and
connected Riemannian manifold (X, g). We remind that the Q-Bakry-Emery-Ricci tensor of g is defined by the

formula
dVg

3
A Riemannian metric g is called a Q-Shrinking Ricci soliton if g = Ricg(Q). We equip the set of smooth Rie-
mannian metrics M with the scalar product

Ricg(2) := Ric(g) + Vgdlog

(u,v)H/.<u,v>gQ, (1.1)
X

forall u,v € 3 := L2(X, S} Ty). Let P be the formal adjoint of some operator P with respect to a metric g.
We observe that the operator

P = B ().

with f := log % , is the formal adjoint of P with respect to the scalar product (1.1). We define also the Q-
Laplacian operator

Ag = V;QVg =Ag+ng—'Vg.
It is also useful to introduce the Q-divergence operator acting on vector fields as follows:

div?e = d(f{;!)) = ¢ divg (e*f {) =divg& - g (&, Vef).

(We denote by - the contraction operator). We infer in particular the identit div? Veu = —-A%uy, for all func-
Y p p y g g
tions u. We observe also the integration by parts formula

—/udivoé’() = /g(Vgu,f)_Q.

X X

We define now the following fundamental objects

h = hgq:=Ricg(Q)-g,
2H = 2Hgg:=-AZf +Trgh+2f,
. avg
f = log 0

An elementary computation made by Perelman [29] (see also [22]) shows that the maps h and H satisfy Perel-
man’s twice contracted second Bianchi type identity

Vehg o+ VgHg g =0, 1.2
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where h;’ Q= g’lhg, o is the endomorphism associated to hg o. We remind now that for any symmetric 2-
tensor u the tensor R¢ * u, defined by the formula

Re*w)(§,m) = -Trg[u(Rg (&, -)n, ),

is also symmetric (see section 3). For any smooth symmetric 2-tensor u we define the Q-Lichnerowicz Lapla-
cian A7 ; as

Afqu = AQu-2Rg* u+ uRicg(Q) + Ricg(Qug.
This operator is self-adjoint with respect to the scalar product (1.1) thanks to the identity

(Rg*u,v), = (u, Rg *v) (1.3)

g g’

for all symmetric 2-tensors u and v (see section 3). We define also the set of normalized volume forms V; :=
{Q>0] [, Q=1}. From now on we consider the maps h and H over M x V;. Notice that the tangent space
of M x V1 is Toyeey, = C(X, S*Ty) @ C=(X, A™Ty)o, where m = dimp X and

C(X, A" T} = Ve =X, AT | /V= 0
X

We denote by Endg (Tx) the bundle of g-symmetric endomorphisms of Ty and by Cg(X, R)o the space of
smooth functions with zero integral with respect to Q. We will systematically use the fact that for any (g, Q) €
M x V; the tangent space Ty.y, (g,0) identifies with C=(X, Endg (Tx)) & C5 (X, R)o via the isomorphism

v, V) —s (v;, V;)) = (g‘lv, V/Q).

With these notations holds the fundamental variation formulas

2Dg oh (v, V) = AP gv - Loy iv,v,8 = 2V (1.4)
and .
_ Qs _ X _ * _
2Dy oH (v, V) = AZ Vg (ngﬂv;%v;:)) . 2V - (v, hga), (1.5)

where L, denotes the Lie derivative in the direction §. (We will give a detailed proof in section 3). We infer
that the variations of the non-linear operators h and H are strictly elliptic in restriction to the space

]Fg’_() = {(V, V) c TMXV1 | V;QV;+VgV;2 =0} .
This fact strongly suggests that the following flow represents a strictly parabolic system.

Definition 1. The Soliton-Ricci flow is the smooth curve (g¢, Q¢)¢>0 C M x V1 solution of the evolution system

gt = _hgr,-Qt’
Qt = _Hgt’QtQt’
with
Eg,.Q = Hg’Q—/Hg’QQ.
X

Indeed this is the case. We show the strict parabolic statement in the proof of the following basic fact.
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Lemma 1. Forevery (§o, Qo) € MxV; there exists a unique smooth solution (g¢, Q¢)t>0 C MxV1 of the Soliton-
Ricci flow equation with initial data (o/A, Qo), for some A > 0. In the case (X, ]o) is a Fano variety and gy is Jo
invariant Kdahler such that §oJo € 2mc1(X), we can choose A = 1. In this case the Soliton-Ricci-flow represents a
smooth family of Kdhler structures and normalized positive volumes (J1, ¢, Q¢)¢>o uniquely determined by the
evolution system

gt = _hgt,QH

Q= —Hg, 0,0t

2je=[Je. &) -
We call the latter the Soliton-Kdhler-Ricci flow.

Let Ric;(Q) be the Chern-Ricci form associated to the volume form Q with respect to the complex structure J.
We will show in section 3 that, if the initial data (Jo, go, Qo) satisfies

w := golo = RiCjo(Qo),/Qo =1,
X

then the Soliton-Kdhler-Ricci flow equation is equivalent with the evolution system
w = RiC][(.Q() , fX .Q[ =1,

(1.6)
Je=0r,, (w-ldlog %) .

Thus the Soliton-Kahler-Ricci flow preserves the initial symplectic structure w.
Over a m-dimensional compact Riemannian manifold (X, g) we consider Perelman’s W-functional [29]

Wg,f) = / [\ng\§+8cal(g)+2f— m] e’ av,
X

= / [~Agf + Scal(g) + 2f - m)| e’fav,.
X

(We can use here the identity Age™ = ~(|Vgf|2 + Agf)e™). If we use the identifications f «— Q := e7/dV;
and W(g, f) = W(g, Q), then

W(g, Q) = / [Trg hg o +2log %] Q= Z/Hg,QQ.
X X

With these notations Perelman’s first variation formula for the functional
W : M xV; — R in [29] writes as

Dg’_QW(V, V) = _/ |:<V, hg,_()>g - ZV;)Eg,.Q} Q.
X

We consider the pseudo-Riemannian structure over the space MxV; given by the formula (g, Q) € M x V; —
G with
g’-Q ’

Gg,ou, Usv, V) = / [(u,v)g—ZU;)Vf)} Q,
X

for all (u, U), (v, V) € Ty, . We infer the identity

VeW(g, Q) = - (hg 0, Hg o Q) .
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This shows that the Soliton-Ricci flow is the gradient flow of the W functional with respect to the pseudo-
Riemmanian structure G. Perelman’s twice contracted second Bianchi identity (1.2) implies the equality

{(g, Q) e MxV1|DgoW=0} ={(g,Q2) € Mx V1| hg =0},

i.e the critical points of W are precisely the shrinking Ricci solitons. We provide at this point a geometric
interpretation of the space IFg . Let

g, Q] = Diffo(X) - (g, ),

be the orbit of the point (g, Q) under the action of the identity component Diff(X) of the group of smooth
diffeomorphisms of X. Then IF,  represents the orthogonal space, with respect to G, to the tangent space
Tig,0),(¢,0) at the point (g, Q) € M x V; of the orbit [g, Q]. In formal terms holds the equality
L -
T o0 = Fao- (1.7)
We define the anomaly space of the pseudo-Riemannian structure G at an arbitrary point (g, Q) as the vector
space

Q
/Ag = ]Fg’_() N T[g,Q],g,.Q'
In the case (g, Q) is a shrinking Ricci-Soliton then the map

Ker(Ag -2I) — Ay

u +— 2(Vgdu,-uQ),

is an isomorphism (see section 8). In the case (J, g, Q) is a Kdhler-Ricci soliton then /Ag is canonically iso-
morphic with the space of Killing vector fields of g. This is a consequence of a non trivial result (see corollary
5).

We denote by VéW(g, Q) the Hessian endomorphism of the W functional with respect to the pseudo-
Riemannian structure G at the point (g, Q) € M x V;. We show in lemma 7 that its restriction to the space
IFg q is a strictly elliptic operator for any point (g, Q). A simple consequence of Perelman’s twice contracted
second Bianchi type identity (1.2) is that the map

VeW(g, Q) : Fg g — Fgq, (1.8)
is well defined in the case (g, Q) is a shrinking Ricci-Soliton (see section 10). In this case holds also the inclu-

sion
./Ag C Fg o NKer VEW(g, Q).

(See lemma 8). In general (see section 10) for any point (g, Q) holds the fundamental and deep property
VEW(g, Q)(hg,0, Hy oQ) € Fg q. (19)

This is quite crucial for the stability of the Soliton-Kéhler-Ricci flow (see [27]). The following basic fact is a
meaningful geometric reformulation of the monotony statement for Perelman’s W functional discovered by
the author in 2006 [21] and published in 2008.

Lemma 2. Let (X, ]) be a Fano manifold, let g be a J-invariant Kdhler metric with symplectic form w = gJ ¢
2mc1(X, [J]) and let Q > O be the unique smooth volume form with fx Q = 1 such that w = Ric;(Q). Then Perel-
man’s W functional is monotone increasing along the Soliton-Kdhler-Ricci flow with initial data (Jo, g0, Qo) =
(J, g, Q). The monotony is strict unless (J, g) is a Kahler-Ricci soliton.
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From now on we will refer to the Soliton-Kédhler-Ricci flow only if the initial data are as in the previous lemma.
Let J;nt be the space of smooth integrable complex structures over X. We consider the space of w-compatible
complex structures

Jo = {J€din|l-w]eM}.

Over a Fano manifold, the Chern-Ricci map provides a natural embedding of J, inside M x V;. The image
8w C M x V1 of this embedding is

Sw = {(g’ Q) e My xV1 | w=Ricj(Q),] = gilw} )

with My := —w-Ju» C M. The fact that the Soliton-Kahler-Ricci flow preserves the symplectic form w strongly
suggests the study of the restriction of Perelman’s W functional over 8.

The space J» may be singular in general. This implies that also the space 8, may be singular. We denote
by TCg,, (¢,0) the tangent cone of 8., at an arbitrary point (g, Q) € 8. This is by definition the union of all
tangent vectors of 8, at the point (g, Q). We notice that (see for example [23]) the tangent cone TCy, ¢ of Mgy
at an arbitrary point g € My, satisfies the inclusion

]
TChr,.g € D o) (1.10)

with
LATES {V €C” (X’ 51121T§) | v=-JV], Or,,vg = O} .

The first variation of the Chern-Ricci form (see lemma 17) shows that for any (g, Q) € 84 hold the inclusion
TCs, .00 € T} 0> (1.12)
with
T} o = {(v, V) e ]DQ’[O] x Ty, | Lv;ﬂvéwgva w= 0} )
We consider also its sub-space
Fololi= {0, V) e Py lve D] ).
In the case (X, J, g) is a compact Kahler-Ricci soliton then the map
VEW(e, Q) : T ,[0] — T}, ,[0], (1.12)
is well defined. Furthermore for any (g, Q) € 84 the fundamental property (1.9) implies
VeW(g, Q)(hg 0, Hy o Q) € F} ,[0], (113)

This is precisely the key statement needed for the study of the stability of the Soliton-K&hler-Ricci flow in [27].
For any point (g, Q) € 84 we denote by

g, 0], := Symp°(X, w) - (g, Q) C Su,

the orbit of (g, 2) under the action of the identity component Symp°(X, w) of the group of smooth symplec-
tomorphisms of X. With these notations hold the property
L J _mJ
T[g’GQ]W(g,Q) N ’Jl‘g’Q = IF‘ng [0]. (1.14)

This combined with (1.11) implies directly the geometric identity

L _m
T[g,GQ]w,(g,.Q) n TCSw,(g,.Q) = ]Fg,.() [O] N TCS,,,,(g,.Q)’ (115)
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for any (g, Q) € Sw. An other remarkable fact is that for any (g, Q) € 8y the restriction of the symmetric
form G4  over the vector space 'Jl‘é o» With J := g 'w, is positive definite. This implies the G-orthogonal
decomposition (see corollary 6 and the sub-section 18.2)

TQ’Q = Tal,.@0 6 Féyg[o]. (1.16)

The vector space of Q-harmonic Ty j-valued (0, 1)-forms 9{2:}; (Tx,;) embeds naturally inside IF]g, ol0] via the
map A € ﬂ{g”}) (Tx,y) — (gA, 0). By abuse of notations we still denote by 9{2:}2 (Txy) C IFi,’ ol0] the image
of this embedding. There exists an infinite dimensional vector space IE)é’ olol € ]Fé, ol0], (see the sub-section
18.2 for its definition) such that the G-orthogonal decomposition holds true

0,1
Fg,g[o] = EQQ[O] @6 3o (Txy) -

We can explain now a more precise property of the tangent cone TCg (¢ o). For this purpose we consider the
Kuranishi space X ; C 9{2:}2 (Tx,), 0 € Kjg of X. (See theorem 3 in the sub-section 21.4.4 of appendix B
for its definition and properties.) In the sub-section 21.4.5 we define also the Kuranishi space of w-polarized
complex deformations Ky C X ¢ of the Fano manifold (X, J, w). (See the definition 2). Then holds the inclu-
sions

Tig.01,.5.0) 6 Ef [0] &6 TCxcs o

N

TCs,, (g.0) (1.17)

N

Tie, 01,0 ©6 Eé’ ol0] &6 TCx, 0 - (1.18)

Let F := f - [, f Q. We define the non-negative cone of Q-harmonic variations

Hh (Tas)so = S A€IGh (Tuy)| [IAFFR> 0,
X
and the sub-cone
0,1 o 0,1 2 _
ng,Q (TX’])O = A Gj‘cg’_o (TX,]) |/‘A|gF.Q—O
X

In the Kdhler-Einstein case holds the obvious identities
0,1 _ 0,1 _ 0,1
Heo (Txg)so = Hea (Txa)o = Heo (Txg) -

In the Dancer-Wang Kihler-Ricci soliton case 9{2’}) (Tx.s), # {0}, thanks to a result in Hall-Murphy [16]. Let
Hr, , be the L2-projector over the space J{g:}) (TX, 7). We define also the non-negative cone

J,20  _ J * 0,1
T30 = {0 V)€ Ty g | Hryyvg € 304 (Txy)so )
and in a similar way T/2 . An interesting non-negative cone from the geometric point of view is also
g"(‘)
=20 - J,20
TC5, o) = TCsuie Mgy -

Let now KRS, be the set of all Kdhler-Ricci solitons inside 8, . We observe that Perelman’s twice contracted
second Bianchi type identity implies

KRSy = {(g,g)eswmgﬂ:o}.
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Notice also that for any (g, Q) € KRS, holds the inclusions [g, Q], C KRS, and
Tig,01,.6.2)  TCkrs,, (5,0) © Ker Dg oH NTCs, (5,0 -

The following statement provides a finite dimensional reduction of the stability problem for Kahler-Ricci soli-
tons. This reduction represents a different and more sharp formulation of the solution of this well known
problem obtained recently in [28].

Theorem 1. (Main result. The stability of Kdihler-Ricci solitons)

Let (X, ], g) be a compact Kéhler-Ricci soliton and let Q > 0 be the unique smooth volume formwith [, Q = 1
such that w := gJ = Ricy(Q). Then for all (v, V) € Tg;’io the Hessian form of Perelman’s W functional with
respect to the pseudo-Riemannian structure G at the point (g, Q), in the direction (v, V) satisfies the inequality

VeDW (g, Q) (v, V;v,V) < O, (1.19)
with equality if and only if
(v,V) € KerDgoHNTY, (1.20)
0,1
Tig.01,..0 P6 Hgo (Tx1), (1.21)
2 TCI(RS(,,,(g,Q) . (122)

In more explicit/classic terms the previous statement shows that for any smooth curve (g¢, Q¢)¢cr C M xV;
(not necessarily in 8,!) with (go, Qo) = (g, 2) a Kdhler-Ricci soliton and with (g9, Qo) = (v, V) € T]g’zo holds
the inequality

d2

at,
with equality if and only if (v, V) € Ker Dg oH N T]g”%. (This is precisely the statement obtained in [28]). The
identity (1.21) and the inclusion (1.22) are part of the statement in the main theorem 1. We deduce in particular
that the second variation of W is istrictly negative in the directions E]g, olOl.

In section 17 we obtain also a quite sharp second variation formula for Perelman’s W functional with
respect to more general variations (v, V) € F, o over a Kdhler-Ricci soliton point (g, Q). These variations
arise from variations of Kahler structures preserving the first Chern class of X.

This formula provide a precise control of the sign of the second variation of Perelman’s W functional
over a Kihler-Ricci soliton point. This can be of independent interest for experts. (In particular we will see
below some general consequences for the classical stability of Kdhler-Einstein metrics.) For our geometric
applications the most striking particular case is the one corresponding to the main theorem 1.

The highly geometric nature of the Soliton-Kdhler-Ricci flow combined with the main theorem 1, suggest
to the author the following version of the Hamilton-Tian conjecture (compare with the statements made in
[38] and [6]).

W(g:, Q) < 0,

Conjecture 1. Let (X, Jy) be a Fano manifold and let w € 2mcy(X, [Jo]) be an arbitrary Jo-invariant Kdhler form.
Then there exists an analytic subset X C X of real codimension greater or equal to 4, which is empty for generic
choices of ] inside [Jo] and w inside 2mc,(X, [Jo]), there exists a smooth complex structure J € [Jo] outside &
and a smooth volume form Q > 0 outside X such that;

w = Rig(Q),

o1y, (a)‘ldlog %") = 0,

outside X, i.e. the Riemannian metric g := —w], is a smooth J-invariant Kdhler-Ricci soliton outside X. The triple
U, g, Q) is obtained as the limit in the smooth topology of X \. 2, as t — +oo, of the Soliton-Kdhler-Ricci flow
with initial data (Jo, g0, Qo) Where go := ~w]o and w = Ric;,(Qo), with [, Qo = 1.
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We explain now a very particular consequence of our study of the stability problem. This consequence pro-
vides a result on the stability in the classical sense of Kahler-Einstein manifolds. We introduce first a few basic
notations.

Let (X, J) be a compact Kdhler manifold and let ¢c; = ¢1(X, [J]) € Hﬁ(X, R). We denote by X8 the space
of Kahler structures over X and we set

KSane, = {U,8) €XK8|gJe2mcy}.

We define also the set ]KK\/é(chl) of symmetric variations of Kahler structures preserving the first Chern
class of X. The latter is defined as the set of elements v € C*° (X, S & T;() such that there exists a smooth curve
Us» 86)¢ € KSane, with (Jo, 8o) = U, 8), £0 = vand J, = (J,)i. In section 14 we show the inclusion

KV}(2mcy) C D}, (1.23)
with
Djo = {ve ™ (X, ShTx) | o, W) = 0,31, () = 0, {v}J}, = 0} ,

where v} and v}’ denote respectively the J-invariant and J-anti-invariant parts of v and {a},4 denotes the De
Rham cohomology class of any d-closed form a. We introduce also the classical stability operator (see [2])

Lg = Ag - ijg* 5

acting on smooth symmetric 2-tensors. With these notations we can state the following stability (in the clas-
sical sense) result.

Theorem 2. Let (X, ], g) be a Fano Kdhler-Einstein manifold. Then for any v € Ker Vg N D/, ,, holds the in-

8,0’
equality

/ (Lgv, V>ngg > 0,
X

with equality if and only if vg € 33" (Tx ;).

(See sub-section 17.1 for the proof). A similar result in the case of negative or vanishing first Chern class has
been proved in the remarkable paper [9] (see also [8]). The statement about the equality case holds also un-
der more general assumptions (see lemma 29 in the appendix B). We wish to point out to the readers that
the sections 4 and 5 are not needed for the proof of the main result. However section 4 is crucial for the gen-
eral gradient flow picture explained in this paper. In the next section we enlighten the results obtained by
other authors in the long standing problem of the stability of Kdhler-Ricci solitons and on the Hamilton-Tian
conjecture.

2 Other works on the subject

A question of central importance in complex differential geometry is the Hamilton-Tian conjecture.

Solutions of this conjecture have been posted on the arXiv server in (2013) by Tian-Zhang [38] in complex
dimension 3 and quite recently by Chen-Wang [6] in general.

Since we have learned about this conjecture in 2004 we immediately asked ourself which one is the pre-
cise notion of gauge needed for the convergence. (The Kihler-Ricci flow ( Jo, gt) £>0 needs to be modified since
its formal limit (]o, gw) as t — +oo is a is a Kdhler-Einstein metric, but Fano manifolds do not always admit
such ones!)

It turns out that the Soliton-Kdhler-Ricci flow introduced in this paper corresponds to a modification of

the Kdhler-Ricci flow via the gauge provided by the gradient of the Ricci potentials.
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To the very best of our knowledge the Soliton-Kéhler-Ricci flow with variable volume forms introduced
in this paper does not appear nowhere in the literature.

In our previous works [24] and [25], we introduced also the notion of Soliton-Kihler-Ricci flow with fixed
volume form. This leads to a complete different approach which conducts naturally to the study of the exis-
tence of ancient solutions of the Kihler-Ricci flow and their modified (according to [24] and [25]) convergence
as t — —oo. This approach requires some particular geometric conditions (which imply some strong regu-
larity) on the initial data. The key point in [24] and [25] is that these conditions represent a conservative law
along the Soliton-Kahler-Ricci flow with fixed volume form. These conditions imply good convexity properties
for the convergence of this flow.

We review now the modifications of the Kahler-Ricci flow made by other authors. We can find two fre-
quent approaches in the literature. One is based on the gauge transformation generated by a holomorphic
vector field with imaginary part generating an S*-action on the manifold (see [34] and [31] for a very elegant
construction). A Kahler-Ricci-soliton vector field provides such example.

The second approach, which has been used quite intensively in the last years is based on the gauge
modification constructed via the minimizers of Perelman’s W functional (see [36] and [33]). As far as known
the minimizers are unique only in a small neighborhood of the Kahler-Ricci soliton. Therefore the "modified
Kéhler-Ricci flow” in [36] and [33] exists only in such small neighborhood.

For historical reasons it is important to remind that Hamilton [17] pointed out first that to any flow of
Kahler structures with fixed complex structure corresponds an other flow of Kdhler structures which preserves
the symplectic form (see also Donaldson [10] for the same remark). He suggested this approach for the study
of the Kahler-Ricci flow. As far as we know he did not pursuit on this idea.

As explained in the introduction our definition of the Soliton-Ricci flow with variable volume forms was
inspired to us from Perelman’s twice contracted second Bianchi type identity and from the strict ellipticity of
the first variation of the maps h and H in the directions .

It was surprising for us to discover that the corresponding Soliton-Kahler-Ricci flow with variable volume
forms (from now on we will refer only to this flow) preserves the symplectic structure.

We realized quickly the power of this fact. It allows indeed the application of Futaki’s weighted complex
Bochner identity and the uniform lower bound on the first eigenvalue of the complex weighted Laplacian
[13]. The main feature of the Soliton-Kéhler-Ricci flow in this paper is the jumping of the complex structure at
the limit when ¢t — +oo. This phenomenon is necessary for the existence of Kdhler-Ricci solitons in general.
We learned for the first time about this key phenomenon in the Pioneer work of [30]. In this fundamental
work the authors introduce a condition on stability (is the condition (B) in [30]) witch is the key phenomenon
occurring in the convergence of the Kéhler-Ricci flow. We refer also to [32] for further developments.

We remind now that by definition, the stability of a critical point of a functional corresponds to determine
a sign of its second variation in determinate directions.

The stability of critical metrics for natural geometric functionals was naturally born with differential ge-
ometry (see [2]). The main classic example is the Einstein metric. In the case of this metric the corresponding
functional is the integral of the scalar curvature.

In 2003 Grigory Perelman astonished the mathematical community with his spectacular proof of the
Poincaré conjecture. In this celebrated paper [29] he introduced various entropy functionals for Ricci-solitons.
Shrinking Ricci-solitons correspond to critical points of his W functional or his entropy functional v.

Since then, the second variation of Perelman’s functionals W and v has been studied quite intensively. It
started in 2004 with the works of Cao-Hamilton-Imlanen [3], [4] and Tian-Zhu [35] independently. It continued
with [5] and [15], [16].

We wish to point out that the results in this paper and in [23] are of completely different nature with
respect to the previous works. The reason is that in our work we compute the second variation of Perelman’s
'W functional with respect to the pseudo-Riemannian structure G. (The work [23] is a particular case.)

An important fact about Kahler-Ricci solitons is that once they exist, one can obtain the Einstein condi-
tion by proving the vanishing of the Futaki invariant [12]. From our point of view they provide a natural and
necessary generalization in order to control the Einstein condition.
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The stability of Kahler-Ricci solitons is important in order to understand the convergence of the Kahler-
Ricci flow. The first work on the subject is due to Tian-Zhu, see [35].

In 2009 Sun-Wang [33] posted on the arXiv server a stability result for the Kdhler-Ricci flow basing on
the Lojasiewicz inequality (see [7]). In this paper the authors use the modified flow in [36]. The same method
was used in Ache [1], where a uniform bound assumption on the curvature is made. We report finally a quite
recent work on the same subject by Kroncke [19]. This author combines the technical details in [33], [1] and
[7] in the Riemannian set up.

The statements made in this section are based on the very best of our knowledge and understanding of
the subject. We sincerely apologize to other authors in case of inaccuracies or omissions in the claims of this
section.

3 Proof of the first variation formulas for the maps h and H

3.1 The first variation of the Bakry-Emery-Ricci tensor

We remind (see [23]) that the first variation of the Bakry-Emery-Ricci tensor with fixed volume form Q > 0 is

given by the formula
d

2t

where Dy := Vg - 2V, with V4 being the symmetrization of V¢ acting on symmetric 2-tensors. Explicitly

Rngt (-Q) = _V;? Dg(gt, (3-1)

p
Ve(éo,oer &p) 1= D> V(& &osever Gy oy &),

j=0
for all p-tensors a. Fixing an arbitrary time T and time deriving at ¢ = T the decomposition
. . Q¢
Ricg,(Q:) = Ricg,(Qr) - Vg dlog .
T
we deduce, thanks to (3.1), the general variation formula
Q

Ricg, (Qf) =~V Dg, &t - 2vgtdﬁi. (3.2)

d
2t

This formula implies directly Perelman’s general first variation formula for the W functional (see appendix
A). We define the Hodge Laplacian (resp. the Q-Hodge Laplacian) operators acting on g-forms as

* *
ATX,g = VTX!ng + ngTX,gr
Q — *0 *0
ATX,g = VTX,ng + Vg vTX,g'

We remind also the following Weitzenb6ck type formula proved in [24]

Lemma 3. Let (X, g) be a orientable Riemannian manifold, let Q > 0 be a smooth volume form and let A ¢
C*=(X, End(Ty)). Then

A A = AJA-Rg*A+ARicg(Q),
Where (Rg * A) & := Trg [(§-Rg) A] for all ¢ € Ty.
In analogy to the Q-Hodge Laplacian we can define the Laplace type operator

A = VPVg - VgV : C (X, SPTy) — C(X, S*T).
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Using this notation we observe that for any u € C>(X, S*Ty) hold the identities

~Vg Dgu (Zé\g - ﬂg) u-VgVglu

Q A0
(248 -48) u- Lo, 8

The last one follows from the equalities Vgu = gV,°ug and Vg(gé) = Lsg, £ € C=(X, Tx). We observe now
that for any symmetric 2-tensor u the tensor Rg * u is also symmetric. In fact let (e;), be a g(x)-orthonormal
base of Ty . Then

_(:Rg * u)({! rl) = Rg(‘f’ €k u;’ek’ )'1) = Rg(ny u;ekr €k ‘f)

Furthermore if we choose the g(x)-orthonormal base (e;); such that u is diagonal with respect to this one,
then

Rg(n, u;eka ek’ 5) = Rg(rl, ek’ u;ek’ {) = _(:Rg*u)(rls '{)'
We observe also that the previous computation shows the identity

Reg *w)(&,n) Rg(£, ex, 1, ugey)

= 8(Rg(&, e)ugey, n)
= & ((Rerus) £im).
ie
(Rg * u)g = Rg * Ug. (33)
We deduce in particular the equality
* * T
Re *ug = (Re *ug) - (3.4)
g

We remind that the Q-Lichnerowicz Laplacian Aﬁg is self-adjoint with respect to the scalar product (1.1)
thanks to the identity (1.3) that we show now.

We pick a g(x)-orthonormal base (e;), C Ty, such that v is diagonal with respect to this one at the point
x. Using (3.3) we infer

(Rg*u,v), Trr [(iRg * ué) v;}
= Rg(V;el, ek, €1, u;ek)
= Rgley, e, V;el’ U;ek)
= Rq(ey, e, ugey, vge))

= <Rg*v’ Ll>g,

since these identities are independent of the choice of the g(x)-orthonormal base (e;)x C T .
Lemma 4. Foranyg € Mandu € C(X, S? T}) holds the Weitzenbdock type formula

_vle = A% u-IL_.
VDgu = Afgu ngﬂu;g.
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Proof. The required formula follows from the identity
AP gu = (248 - 48 ) u. (3.5)
In order to show this identity we expand AZu = V¢°Vgu - V¢ V2 u. We observe first

VEVeu,m) = VeVeu(E,n) + Veu(Vef, £, m).

We fix an arbitrary point xo € X and we choose the vector fields ¢ and 1 such that 0 = Vgé(xo) = Vegn(xo).
Let (e;)x be a g-orthonormal local frame such that Vgey(xo) = 0. Then at the point x, hold the identities

VeVeu(£,n) = -VgeVeuley, & n)

~Vg.er [@gu(ek, §, n)}

~Vg,e, [Vauler, & 1) + Veul€, e, n) + Vgu(n, ey, &)]

Vg, Ve u(&, ) = Vg,e Vg culer, 1) — Vg,e, Vg nule, &),

and

Veu(Vef, &,m) = Veu(Vef, &, n)+Veu(é, Vef, n) + Veu(n, Vef, £).

Moreover
@gv‘;ﬂu({, rl) = ﬁgv;u(f, rl) + ﬁg (vgf"u) (5’ rl)’

and at the point xo hold the identities

VegVgu(£,n) Vg Vgl 1+ VgnVall - &
= Vgr {V;u . 11} +Vgn {V;u . .{}

= Vg [Vg,ek“(ek’ '1)] ~ Ve [Vg,ek”(ek’ 5)]

= _vgyfvg’eku(ek’ rl) - vg,flvg,eku(eky ";:)’

and

Ve (Vef-u) (&, 1) V& (Vef-u)-n+Vgn(Vef-u)-§

Ve, [u(Vef,m)] + Ve [u(Vef, )]

Vu(§, Vef,n) + (uVif) (. m) + Veu(n, Vf, §) + (Vadfug ) (¢ n).
Let now A € C(X, End(Tx)). We denote by A-u the 2-tensor defined by the formula
(A-w)(&,n) = u(A&, n)+ulé, An).

We observe that if u, { are two germs of vector fields near xo such that [y, {] (xo) = O then holds the identity
at the point xo

Vg,ng’(u - Vg’{Vg,yu = —:Rg(ll; ()ﬂu'
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Using this identity we infer the equalities at the point xq

(Vg,;vg,eku - vg,ekvg,gu) (eka rl) = -u (iRg(£3 ek)ek’ rl) -u <6k, :Rg(é‘, ek)rl)

- (u Ric*(g)) (&, n)+Rg*uw)(&, n),

(Vs Vst - Vea Van) (e §) = - (Ric®uz) € m) + R * w(E. 1),

by obvious symmetries. Combining the identities obtained so far and simplifying we obtain the identity
ﬂgu = A?u +2Rg*u-u Ric;(_()) - Ricg(!))u;,

which in its turn implies the required identity (3.5). O

The Weitzenbdck type identity in lemma 4 combined with the variation formula (3.2) implies directly the
variation formula (1.4).

3.2 Proof of the first variation formula for Perelman’s H-function

We show now the variation formula (1.5). For this purpose let 0 < (g¢, Q¢)¢ C M x V1 be a smooth family and

set as usual f; := log dgg‘ . We start time deriving the identity

t
~Af = div? Vg fr.

We compute first the variation of the Q-divergence operator. Set u; := Q; and time derive the definition iden-
tity

d(¢-Q) = div?" Q..
We infer
d@E-wQ) - (% div® .f) Q1 + u(div® 9.
Moreover expanding the left hand side we obtain

d(&-ueQy) = (EudQr+ued(§-Qp),

which implies the formula
d .. o _ o x
<ad1v )5 = g(vgnt,s) .

We observe also the variation formulas

d .
T (Ve ft) = Ve ft - 8t Ve fts (3.6)
and )
ft= Engf gt - Q. (3.7)

Combining all these formulas we obtain
d d .. . d
- Eﬂgff t = (E dlvﬂ‘) Ve fe +div™ 7t VeSO

' * 1 . . oK
St (Vgrﬂt’ Vg[ft) +A§f (Qt ) Trg, gt) — div® (gtvgtft) .
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We expand last term using the identity

div? & = TR (Ved) -8 (&, Vef).

We obtain with respect to a g¢(x)-orthonormal basis (ey), C T,y at an arbitrary space-time point (x, t)

div* (§iVaft) = 8(Vee (8Vaft), e -8 (8 Vaft Vafi)
= g (Vg,ek§: Veft+ 8 Ve Vaft ek) -8t (g:vgtff’ ngt)
= g (Vgtft, Vee St - ek) + 8¢ (Vﬁ,ekft,g?ek) -8t (ngft: g;ngft)

= g0 (Ve'gh Vafe) + (Vadfis g0,
We infer the variation formula
- 1 . *0, o % sk .
dtﬂg‘ft = A?f (-Qt -3 Trg, gt) + 8t <ngrgt + Vg Q, ngft) —(&t; Vg dft)g, - (3.8)

We observe next the identity

d

dtht = 2h;-2gih;

*

”&—H%ﬁgm+§m@ﬂM+méﬂM5—(v #mngJaé—@ML

thanks to the variation formula (1.4). We deduce the formula

d . * ok . %
a5 Trg, he = Agt Trg, 8¢ - (&t Rlc(gt)> - divg, (Vg‘[’fgt + Vg[Qt> , (3.9)
thanks to the identities
Trg (Rg*v) = (v, Ric(g)}g , (3.10)
Trg(Leg) = 2Trr(Veé) = 2divgé. (3.11)

In order to show the identity (3.10) we expand with respect to a g(x)-orthonormal basis (e;)x C T, the term

Trg Rg*v) = (Rg*v)(exex)

= -v(Rg(ex, epex, e

g (v;el, Ric*(g)e,)

= (v, Ric(g)>g .
The first equality in (3.11) follows from the elementary identity
(Legds = Vg&+(Vede,

where A ; denotes the transpose of an endomorphism A of Tx with respect to g.
In conclusion combining the variation formulas (3.8), (3.9) and (3.7) we infer the variation identity

2D oH (v, V) = A2V, - div? (v;ﬂv; + vgvg) ~2Vh - (v, hga), s

and thus the required variation formula (1.5).
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4 The Soliton-Kdhler-Ricci Flow with variable volume forms

4.1 Existence of the Soliton-Kdhler-Ricci flow

We prove in this sub-section lemma 1.

Proof. From now on we will set for notation simplicity h¢ = hg, o,, Ht = Hg, o, and H; = H,, . We observe
that for any smooth curve (g, Q¢);>0 C M x V1 the identity

— dVgt
fe = log 0,
is equivalent to the evolution equation
2f¢ = Trg, &¢ - 20;. (4.0)

with initial data f; := log dgj" . Along the Soliton-Ricci flow, the equation (4.1) rewrites as

th = —Trg[ ht+2H[

~AQ e + 2f - Z/Ht()t.
X

We infer that the Soliton-Ricci flow equation is equivalent to the evolution system

&t = g« - Ric(gy) - Vg df:,
(4.2)

2fr =-Agfi— Ve filz, + 2f = Wige, fo),

with fj :=log dgio . We consider now the flow of diffeomorphisms (¢¢);>0 solution of the equation

2¢¢ = (Vef)oopr,
with o = Idy and we define (gt,ft) := (gt ). We observe the evolution formulas

d. e 1L
Egt = ¢t gt+§ Ve fi8t

¢ [g¢ - Ric(gy)]

= 8¢ —Ric(gy),
and

2ft 0 ¢ + 2dg,fi -

N
X
=
=
I

= thO(Pt+d<Ptft'[(Vgtff)oq)t]

(2fe+ dfe- Vafi) o e

(th + \Vgrft\ét) ° Pt,

We deduce thanks to the diffeomorphism invariance of the W functional that the evolution system (4.2) is
equivalent to
48, =8 -Ric(gy),
(4.3)
Zd%ft = —Agft + 2 - W&, fo),
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with initial data (2o, fo) := (g0, fo). Notice indeed that we can obtain (4.2) from (4.3) by performing the inverse
gauge transformation (g, f;) := ¥} (&:, fo) with ¢ = @; ! being characterized by the evolution equation

2 = - (ngt) o,
Yo = Idy. In order to show all time existence and uniqueness of the solutions of the evolution system (4.3)
we consider a solution of the Ricci flow (§¢);c[0,1)»

d .
dtgl
with initial data §, and 0 < T < +oo. Then (§¢)¢>( defined by

= -2 Ric(gt)’

. el .

8t = ﬁgT(l—e")’
satisfies the evolution equation relative to the metrics in (4.3). Then we set A := 2T. In the case (X, Jp) is a Fano
variety and goJo € 27cq(X) we can choose A = 1 since the the evolution equation of g; in (4.3) represents a
solution of the Kdhler-Ricci flow equation.

The existence and uniqueness of the solutions of the evolution equation for ft in (4.3) follows directly
from standard parabolic theory with respect to Hélder spaces. Notice indeed that the presence of the integral
term W(g;, 1) (we consider the expression involving the H'(X) norm of f) does not produce any issue in this
theory.

In the Fano set up we define the complex structures J; := l,b: Jo. Then the family (J¢, g¢)>0 represents a flow
of Kéhler structures since (Jo, §¢)>0 is also a flow of Kdhler structures. The identity @]t = Jo is equivalent to
the equality

o = L

* . 1
= ¢t (]t 5 ngtf[]t)
= ¢ (]t + Jt STX,,[Vg[ft) ,
i.e to the equation
Jo = It ETX,,[ Vg ft.
This combined with the J;-linearity of the first two terms in the right hand side of the complex decomposition

Ricg,(Q) = Ric'(g)+ 0t Vg fi+ 01y, Vafie,

implies the required characterization 2 Ji = [] ts g;] of the evolution of the complex structures J;.

4.2 Monotony of Perelman’s W-functional along the Soliton-Kadhler-Ricci flow
We observe first the following elementary fact.

Lemma 5. Let (X,]) be a Fano manifold and let g be a J-invariant Kdhler metric with symplectic form w :=
gJ] € 2mci(X, [J]). Then (J, g) is a Kdhler-Ricci soliton if and only if there exists a smooth volume form Q > 0
with [, Q = 1 such that
w = Rigy(Q),
S)

n

Af-2f+2 [, fQ=0,f :=log 45.
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Proof. We assume first that (J, g) is a Kédhler-Ricci soliton. Then Perelman’s twice contracted Bianchi type
identity (1.2) implies Hy , = 0. The latter is equivalent to the second equation of the system (S) thanks to
the identity Trg hy o = 0. We show now that the solution of the system (S) implies that (J, g) is a K&hler-Ricci
soliton. Indeed multiplying by V¢f both sides of the identity (1.2) and integrating by parts we obtain the
general formula

/<h;,9, v§f>g9 - —/ﬂg’QAng. (4.4)
X X
In our case this rewrites as 5
2 / ‘STX‘,vgf‘ Q- / (A2 - 2m)fAdfQ, (4.5)
X ¢ X
thanks to the condition w = Ric;(Q) and the complex decomposition of the Bakry-Emery-Ricci tensor. We
infer the required conclusion. O

We provide now a proof of the monotony statement in lemma 2.

Proof. STEP1. Let (J, g¢) ¢>0 be a solution of the Kéhler-Ricci flow and observe that this equation rewrites in
the equivalent form

%(Dt =1 615] IOg %;:,
(4.6)
@¢ = Ricy(Qy), Ix Qr=1,
with @; := &/J, and @¢ := w. We define the function
]
fo = log -,
tn!
and we observe the analogue of (4.1)
d; d. da\
zitft = Tr(;,td—twt—z (dtQt>[
This combined with the first equation in (4.6) implies
d 5 da\
X (dtQt>t . (4.7)

On the other hand time differentiating the identity @; = Ric ](f)t) in (4.6) we obtain

d . d . /2 s [ da
Zawt = Za RIC](.Q[) =-2i a]a] <dt.Qt)t s

which combined with (4.7) implies
LT 2 N d - -
21 a]a]ft = 1 a]a] (2aft +A§tft> ’

i.e.

d ..
2Eft = A fe+2ft+Ce,

for some time dependent constant C; which can be determined time deriving the integral condition [ Q= 1.

Indeed using (4.7) we obtain
n d R * R
O = _2 / (E.Qt) . .Qt
X

/ {2%ft + Agft} o

X

Ct + Z/ftf).t
X
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We infer the evolution formula

d ~ ~ ~ ~ 7
24 = -ty e+ 2hi-2 [ fre vy, (4.8)
X

with initial data
A wn
f() = ].Og m .
We observe now that the identity @; = Ric ](Qt) in (4.6) implies
8¢ = —Ric)(Q))] = Ricgt(f)t) - gtSTX,,ngt, (4.9)

and thus Try, hém o= 0. We deduce the equality
W&, fo) = 2/fteff[dVgt- (4.10)
X

We infer by Cauchy’s uniqueness that the evolution equation (4.8) is equivalent with the second evolution
equation in (4.3). We obtain, as in the proof of lemma 1, a Soliton-K&hler-Ricci flow (J¢, w¢, Q¢)¢>o with initial
data (Jo, wo, Qo) = (J, w, Q). We observe that thanks to (4.9) and (4.10) the Soliton-Ricci flow evolution system
(4.2) writes in our case as
8t =801y, Valts
(4.11)

2f; = —Ag'ft +2ft - fofte_f‘dng

Time deriving the identity w; = g¢J; and using the evolution formula for the complex structure 2J; = [] ts g;]
in the Soliton-Kahler-Ricci flow equation we infer

@ = Zdi+8de
1 L% L *
= 38 (gt]t +]tgt)
1 L * L x
= 5w (gt —]tgt]t)
= wi@)°

= 0,
thanks to the first equation in (4.11). We deduce w; = w and thus the identity in time
w = RiC]t(.Qt). (412)

STEP Ila. We provide now a first proof of the monotony statement for the Soliton-Kahler-Ricci flow. The equal-
ity (4.10) rewrites as

"
Wi(gt, Q) = Z/fte ffﬁ =2 /ftQt, (4.13)
X X
thanks to the invariance by diffeomorphisms of W. Let

Fe = fi— | ftQ,
/

and observe that the second evolution equation in (4.11) rewrites as

Zf[ = —AgtFt + 2F;. (414)
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Time deriving the expression (4.13) and using the evolution equation (4.14) we infer

%W(&,Qt) = 2/(ft—ftft)9t

X
-2 [ fife Q¢
/

/ (4gFe-2F ) Fe >0,
X

thanks to the estimate Al(Ag) > 2 for the first eigenvalue )ll(Ag) of the weighted Laplacian Ag in the case
gJ = Ricj(Q). (See the estimate (13.15) in the section 13.) Indeed by the variational characterization of the first
eigenvalue holds the estimate

2 < 11(49) = inf /Aguua |u e C5(X, R)o : /uZQ -1}, (4.15)
X X
which implies
0< / (agF-2F) Fa, (4.16)
X

with

F := f—/f.Q, f = log%.
X

We assume now equality in (4.16). We assume also F # O otherwise g will be a J-invariant Kidhler-Einstein
metric. Equality in (4.16) implies 2 = Al(Ag) and
-1/2
uy = F / F2Q ,
X

attains the infinitum in (4.15). Thus we can apply the method of Lagrange multipliers to the functionals

Dd(u) := Aguu.(),
/
YY) := uQ,
/

over the space Cg5 (X, R)o. We have the equalities

2 = min® = ®(ugp),
-1

which imply Dy, @ = uDy, ¥, i.e. Aguo = Uug, with y = 2. The latter is equivalent to the equation AgF = 2F.
Then the required conclusion follows from lemma 5.

STEP IIb. We give here a different proof of the monotony statement. We remind first that Perelman’s first
variation formula for the W functional [29] writes as

Dg,QW(V, V) = —/ |:<V; hg,Q>g - ZV;)Hg,.Q} Q.
X

Thus along the Soliton-Ricci flow holds the identity

d 2
aw(gt’ -Qt) = / Uhgz,ﬂt|gt - Zﬂét’gt} Qt'
X

Then the conclusion follows from the identity (4.12) combined with the elementary lemma below. O
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Lemma 6. Let (X, ]) be a Fano manifold, let g be a J-invariant Kdihler metric with symplectic form w := gJ €
2nc1(X, [J]) and let Q > 0 be a smooth volume form with fx Q =1 such that w = Ric;(Q). Then

/|hg,o|§9 > Z/Eﬁ,gﬂ, (4.17)
X X

with equality if and only if (J, g) is a Kihler-Ricci soliton.

Proof. The condition w = Ric;(Q) and the complex decomposition of the Bakry-Emery-Ricci tensor in [25]
imply

hg,.O gng,]vgf,

and thus Trg hg o = 0. We deduce

2H, —~(4¢ - 2DF. (4.18)

Then

/ [}hg,9§ - zg;g} Q /[ISTXngfE - % |(A§? - 2]I)F’2]Q
X X

/(Ag - 2I)F - FQ,
X

thanks to the integral identity (4.5). The conclusion follows from the variational argument at the end of step
Ila. O

Remark 1. We observe that the elementary identities
Vef = Jo df = 207 dff,
with 2d5f := -df - ], allow to rewrite the Soliton-Ricci flow evolution system (4.11) as

Je=0r,, (w'df:),
(4.19)

e = Tro (dd§ i - dfe £ d5 i) + 26 =2 [y fre .

We notice also that the Soliton-Kdhler-Ricci flow evolution system with initial data (Jo, 8o, Qo) = J, g, Q) such
that w := gJ = Ric;(Q) is equivalent to the system (1.6). Indeed the argument in step I of the proof of lemma
2 shows that our Soliton-Kdhler-Ricci flow is equivalent to the Kdhler-Ricci flow equation (4.6) via the gauge
transformation given by the diffeomorphisms ;. But (1.6) is also equivalent to (4.6) via the same gauge trans-
formation. Notice in fact the identities

%d}t = %(p: (ngtf[w) = @; (i a,té,[ft) =i 0,0,f:.

The corresponding identities for the transformation of the complex structure have been considered at the end of
the proof of lemma 1. We infer the equivalence of our Soliton-Kdhler-Ricci flow with (1.6).

Remark 2. Let (g¢, Q¢);>0 be the Soliton-Ricci flow and set for notation simplicity W := W(g¢, Q¢), ht := hg, 0,
H :=H 20,0 Perelman’s twice contracted differential Bianchi identity (1.2) implies

Vgt + Vg Qf = 0. (4.20)
Then the fundamental variation formula (1.5) implies the evolution equation along the Soliton-Ricci flow

d .
2 H, = ~(Ag! - 2DH, + |h¢[;, - Wy (4.21)
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This combined with the monotony statement in lemma 2 or in [21] implies the inequality

d

25 Hy < ~(Ag ~2DH, + |helg, (“.22)

along the Soliton-Kdhler-Ricci flow.

The following section is not needed for the proof of the main result.

5 The second variation of the W functional along the
Soliton-Kahler-Ricci flow

Let (J¢, g¢, Qt)=0 be the Soliton-Kéahler-Ricci flow. In the proof of step I of lemma 2 we obtained the identity
n
Wy = -2 /ftfteff’%-
b'¢
Time deriving this we obtain
We = _z/ftzgt_z/ft <ft_ft2) Q.
X X

Time deriving the identity

o
|

. o . _ftwn
/ft-Qt = /fte e
X X

0 - [(f-i?)on
X

we deduce

and thus the evolution formula
Wt=—2/ft29t—2/Ft <ft‘ftz) Q. (5.1
X X

We observe now that the second evolution equation in the system (4.11) rewrites as
th = —Ag'ft +2fp =Wy,

thanks to (4.13). Time deriving this we infer

. d .

~2f; = Eag;ft —2ft + Wy (5.2)
Plugging the identity (4.20) in the variation formula (3.8) and using the first equation in the system (4.11) we
obtain

d . q
aAg[ft

Q 3 2
Ag[ ﬂt - ‘aTx,/[ Vgtft‘g
t
= AgH, - |hil},
with 2H, = —(Ag[‘ - 2I)F;. Thus f; = H ¢ thanks to (4.14). Using (5.2) we infer

=2fr = (A - 2DH, - e[}, + W
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(This last follows also from the general evolution formula (4.21).) Integrating by parts we obtain the identity

_2/th,_0t = —/[2ﬂf+mht\§t} Q,

X X

(since [, FQ; = 0). Plunging this identity in the evolution formula (5.1) we deduce the simple second varia-

tion formula
_/ 487 + (12, - 2H?) F] 0

X

W

= - / UST’”‘ vgtft]; For 2| -om[ - Ft)} o
X

6 The Levi-Civita connection of the
pseudo-Riemannian structure G
In this section we compute the Levi-Civita connection of the pseudo-Riemannian structure G. This is needed

for the computation of the second variation of the W functional with respect to such structure. We set for
notations simplicity T := Ty.y, and we compute the first variation of G at an arbitrary point (g, Q),

DeG:TxT —T.

In a direction (6, ©) € T this is given by the identity

d
Dg,.QG(G’ @; u, V)(Va V) = ah:o th,.Q[(ui U; v, V);
where (g¢, Qt)c(_e,e) € M x V1 is a smooth curve with (go, Qo) = (g, 2) and (o, Qo) = (8, O). For notation
simplicity let denote u; := g;'u and U} := U/Q;. Then holds the equality

Dya06, 05, V) = G | [Twivia-2 [ U:VI
L% X
d * % * " d *
= mhzo TI']R(th Vt) .Q[ + TrR(ut Vt @ 2 E t
X X

Using the identity & u; = -g; u;, which follows from the formula
d _ 1. -
dt gl =g gigl’

we obtain

d *  * d d
ETI]R(U[ Vt) TI'IR (dtut Ve + ut dt Vf)

Lk X K * .k *
= -Trr(§r ur ve + Ue & Vi)

- 2Teg(Ge ur Vo),
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since g; is also symmetric. Indeed we observe the elementary identities

Trg [(u? g’[)v’[] Trr [V?(u? gﬁ)}

Trs [vi; )]

Trg, (uf 807 V]

= TrR(g u; vo),
where A} denotes the transpose of A with respect to g;. Time deriving the identity U = U; Q; we infer

au;
0 = dt‘Qt+Ut.Qt,

and thus

au;

i - -U{ ;.

Summing up we infer the expression of the variation of G at the point (g, Q) in the direction (8, ©)
Dy oG, 6;u, U)(v, V) = /{TrR[(@}) ~ 203 ug vel + 200U Vp} Q.

We can compute now the Levi-Civita connection V; = D + I'; of the pseudo-Riemannian structure G. At a
point (g, Q) the symmetric bilinear form

Io(g,Q) :TxT — 7,

is identified by the expression

ZGg,Q (FG(g’ Q)(us U; V’ V); 65 @) [Dg,QG(u, U; V’ V) + Dg,Q G(V, V; u’ U)] (9’ @)

- Dg,.QG(G, @’ u, U)(Va V)'

Expanding and arranging the terms of the right hand side we obtain

ZGg,Q (FG(g, Q)(uy U; v, V); 0’ @)

/ {TrR [(U}) o A 9;] 12U, V})@})} Q

+

/ Trg [(V;) — viuy 9;} + ZV}ZU;)@;)} Q
X

N B R R

{
{Tr]R [(9}) — 20))u; v;} +20,U; vg} Q
{

Trg [(U;) UV 0y + Vouy 0 - Opuj v;} + 2U*QV5@*Q} 0

Trr [(u;(V;) - v;) + v;(U;Q - u;)) 9;} (0]

[TIR(u; ve) - 2Uf V})] 05, 0
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= <u(VQ vg)+v(UQ ug) 9>g Q
1 *
- 2/ [ ~UgVh -3 g,Q(u: Usv, V)} 0, Q,
X
since [, © = 0. We infer the expression
W, ¥) = I8 QW Usv, V),
1 * * * *
Y = 3 {u(VQ -vg) +v(Uq - ug)} s
1 * * . Q
v o= ({4, v)g = 2Ua Vi = G o, Us v, V)]

This concludes the computation of the Levi-Civita connection V.

7 The second variation of the W functional with respect to the
pseudo-Riemannian structure G
We iustify ﬁrst the geometric interpretation of g  provided by the identity (1.7). We observe indeed that

v,V e T 0.0 if and only if
Gg,Q(L{g: LfQ; v, V) = 0’

forall ¢ € C=(X, Ty), i.e

[(Lgg,v), - 20D Va| Q

o
I
M

1
N

N N

(Vsti), - @ v;] @

2 <.{, Vitvg + ng;;> Q,
g

which shows the required conclusion. We introduce now the operator
£ : C=(X, End(Tx)) — C™(X, End(Tx)),

defined by the formula

LgA = AZA-2Rg*A.
By abuse of notations we define also

L3 C=(X, S*Ty) — C(X, S*Ty),

defined by the same formula

Lgv = Agv-2Rg*v.

We observe that (3.3) implies the identity (£§v)g = £LZvg. We show now the second variation formula for the
W functional.
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Lemma 7. The Hessian endomorphism VéW(g, Q) of the W functional with respect to the pseudo-Riemannian
structure G at the point (g, Q) € M x V1 in the directions (v, V) € Fq q is given by the expressions

W) = ViWg O, 1),
1 1.
u = 5 (Lg +H )V—EVth’_Q,
* 1 0 * 1 1
Up = -5 (48 +Hgq—-21) Vo+ 5 (hga,v),+ 3 DgaW, V).

In particular if hg o = O then
u = —%Lgv,

*

Uy, = _%(Ag - 2D)Vy,.

Proof. We consider a smooth curve (g¢, Q¢)ier € M x V1 with (go, Qo) = (g, Q) and with arbitrary speed
(8o, Qo) = (v, V). We observe that the G-covariant derivative of its speed is given by the expressions

01,00 = V&, Q)& Q) = Br, Q) + T(ge, Q0)(&t, Qts &1, Qo),
o = & (0.
o 171,. .2 s %\ NP
Or = O+ 4 [|g1|t = 2(Q¢)" - Gg,0,(&t, Q3 81, Q) | Q.
We infer
* d LK kLK
0 = agt + Q8¢
* d )
O = dt (‘Qt) |gt‘gr Gg,,0,(&t, Qi 81, Q).

Using this expressions and Perelman’s first variation formula we expand the Hessian form

Lo d?
VeDW(ge, Q)(&e, Qe386, Q1) = dT‘ZW(gt’ Q¢) - Dg, 0, W(O:, 6¢)
= d |:TI']R (gth ) - ZQ:H{| Qt
Tdt
X

[Tr]R (GZhZ) - 292Ht} o)

+
N

* d d PRE R
= /|:Tr]R <dtgtht+gt dth ) dtQ H[ ZQ[H[ Q[
X

[TI]R (g;h;) - Zf)th} Q¢

+

N N

[TrR (B:h:> - 2@§H[] Q

/Tr]R (ht sh; )} 20 Ht}Q

X
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/ [\gt@, -2(00)* - Gg,.0,&t, Q; &1, Qt)} H: Q.
X

1
2

Using the variation formulas (1.4) and (1.5) and evaluating the previous identity at time t = O we obtain the
expression

Q

1
VeDW(g, Q)(v, V;v, V) -3 / [<Lgv - LV;QV,JrVgV;)g, v>
g
g
X

1 * * . * * *
5 /{—ZVQ[(Ag -2V, - div®? (Vgﬂvg + VgVQ) - (v, hg,g>g]}()
X

1 *
3 [V - 2P 1H 00,
X

since [y, Hg oQ = 0. Arranging symmetrically the integrand terms via the identity

VeDW(g, Q(v, V;v, V) = Ggou,U;v, V),

W) = VeWg O, V),

we infer the general expressions

1 Q 1 1«
u = -3 (Lg * Hgﬁ) v iLv;ﬂv;wgvgg ~ 5 Vohg,0
. 1/.0 .1 " 1
UQ = —E (Ag +Hg,Q - 2]:[) VQ + E (LV;QV;+VgVéQ>Q + Z <hg’Q, V>g + ZDg’QW(V’ V).

Then the required expression of the Hessian of W follows from the assumption (v, V) € Fq .1f hg o = O then
the required conclusion follows from Perelman’s twice contracted second Bianchi identity (1.2) which implies
H,,=0. O
28,0

8 The anomaly space of the pseudo-Riemannian structure G
Let Isomg, o be the identity component of the group
Isomg o := {cv e Diff(X) | p'g =35, 9 Q= Q} ,
and let
Kill,, := Lie (Isomg’g) = {¢e€C™(X, Tx) | L;g =0,L,Q =0}.

We define the anomaly space of the pseudo-Riemannian structure G at an arbitrary point (g, Q) as the vector
space

o _
Ag = FgoNTpgqga-

We will study some properties of this space. It is clear by definition that this space is generated by the vector
fields ¢ € C*(X, Tx) such that

0 = [vgﬂﬁg + ddivg} (g8) = 42(gd).
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More precisely there exists the exact sequence of finite dimensional vector spaces

0 —Kill, g — Kerd? — A? —o0

§ g8=a — (@ga, (divy (x)_Q) .

We observe that if a = du € Ker Z\g then the function u satisfies the equation

ZAngu - VgAgu = O,
which is equivalent to the equation
AZ - Ricg(Q)| Vgu = 0, (8.1)
thanks to the general identity
VeAZu = A2V gu + Ricg(Q)Vgu. (8.2)

We set

{(x c KerZ\é2 | a = du}

<
%
b

i

1%

{ue s R | [4g - Ricy(0)| Veu=0}.
We observe that in the soliton case hg o = 0 we have

Vg0 = Ker(4g - 21) € C5(X, R)o, (8.3)
thanks to the identity (8.2). By duality we can consider Kill, , C Ker Z\g and we observe the inclusion

Vg, C Kill %7, (8.4)

where the symbol L ; indicates the orthogonal space inside Ker ﬂg with respect to the scalar product (1.1)
at the level of 1-forms. The previous inclusion holds true for any (g, Q) since

/(du,ﬁ)gQ _ —/<u,div§ﬁ>go=o,

X X

for any B € Kill, o. We infer that in the soliton case the previous exact sequence can be reduced to the se-
quence

0 — Ker(A? -21) — AY

u +— 2(Vgdu,-uQ).

In order to show that the previous map is also surjective we need to show a few differential identities. We
show first the Weitzenbock type formula

Aga = A a - aRicy(Q). (8.5)
(This implies in particular the identification of Vg ¢ in terms of functions). We decompose the expression
Afa=[Vve-avy] a. (8.6)
We decompose first the term

V;Q@ga . f = v;@ga * 'f + @ga(vgf, {)'
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We fix an arbitrary point p and we choose the vector fields ¢ and 7 such that 0 = Vg&(p) = Vgn(p). Let (ep)x
be a g-orthonormal local frame such that Vgey(p) = 0. Then at the point p hold the identities

VeVga-§ = -Vge Vgaley, &)

Vs, | Vaaler, &)

= —Vg,ek [Vg,eka . nf + Vg’ga . ek]

—Vg,eVged§—Vge Vgt ey.
We infer the expression
VeVea & = Ada-Vge Vg ea- e+ Vgalf, Vf).
Moreover
dVLal) = -VgiVged-ex+ Ve Vef +a- Véff.

Summing up we deduce

Ada-¢& Ada- &+ (Vg Vg e @~ Vg e Vg ) - ex—a- Ve f

Agtx E—a-Rg(& ep)er—a- Vg,ff,
thanks to the dual identity
Vg,eVen@ = VgnVg @ =Vg e ma—a-Rg(§,n), (8.7)

and to the fact that [£, ;] (p) = 0. We infer the required formula (8.5). We deduce that in the soliton case
hg o = 0 holds the equality
KerAg = Ker(Ag - 1) ¢ C=(X, T). (8.8)

We define now the Q-Hodge Laplacian acting on scalar valued differential forms as the operator
Ag, = dVE+VLd.
At the level of scalar valued 1-forms we observe the identities

(Ag’g + ﬂg) a

\% (d + @g) a

ZV;QVga

= 24 g a.
We infer thanks to the identity (8.5) that for any scalar valued 1-form a holds the Weitzenb6ck type formula
Aga = Af ;a — aRicg(Q). (8.9)

Applying the V;" -operator to both sides of this identity and using the fact that (V;“)2 = 0 at the level of scalar
valued differential forms we obtain

VPAga = AgVLa- Vg [(x Ric;(_())} .
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In the soliton case h, o = 0 this implies the formula
VeAa=A7Vea-Va. (8.10)
Then the identity (8.8) implies that the map

KerAg — Ker(Ag - 2I) C C5 (X, R)o

a o~ divg a,
is well defined. More precisely there exists the exact sequence of finite dimensional vector spaces

0 —Kill, g — Kerd? — Ker(Ag-2I) —0

&~ gé=a Hdivga.
Indeed the surjectivity follows from the isomorphism (8.3). The injectivity follows from the fact that
Kill, o = {a € Ker A | divy a = 0} .

This hold true thanks to the identity

2 .2
/\divga\ Q - 1/)vga) Q,
g 2 g
X X
which follows from the expression
"Q _ 1 A*OA d *Q
Aga = Evg Vg—-dVg | a.

For dimensional reasons we conclude the existence of the required exact sequence

0 — Ker(A?-21) — AZ —0

u +— 2(Vgdu,-uQ).

(We observe also that for dimensional reasons (8.4) is an equality.)

9 Properties of the kernel of the Hessian of W

Lemma 8. In the soliton case hg ¢ = 0 holds the inclusion

Ag CFg o NnKer VEW(g, Q).

We start with a few notations. For any tensor A ¢ C=(X, (T ;()@p*l ® Tx) we define the divergence type oper-
ations

diveA(uy, ..., up) Trg [VgA(: U1, ..., up, )],

divgAQuy, ... up) = diveA(ui,...,up) - Alus, ..., up, Vef).

The once contracted differential Bianchi identity writes often as div,Rg = -V, o Ricg. This combined with
the identity Vr, ¢Vaf = Rq - V¢f implies

divgRg = -V, ¢ Ricg(Q). (9.1)
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We define the Q-Lichnerowicz Laplacian Af, ¢ acting on g-symmetric endomorphisms A as
AP A = LZA+Ricg(Q)A + ARicg(Q).

We fix a point p € X and we take an arbitrary vector field ¢ such that Vgé(p) = 0. Let also (e)y be a g-
orthonormal local frame such that Vge,(p) = 0. We expand the identity at the point p

QViWE = -Vge, Vauley, &)+ Vau(Vef, &).
Commuting derivatives at the point p we obtain

VeaViulen§) = Vae |Viulew §)]
= Ve [vg,ekvg,fvgu ~Viu- Vel
= Vge [Vg’£Vg,engu + Rgley, E)Vau - Vﬁu Vg c€k
= Vg.eVge Ve Vel +2Rg(ex, §)Veg,e, Vgu

+ VgeRglex, Vgt - Vau- Ve, Vg sey,
since [ey, €] (p) = 0. Taking a covariant derivative of the identity
AgVgl = ~-VgeVgeVgll+Vall-Vge ey,
we infer
Vg iAgVg = —Vg¢VgeVee Vel +Val- Vg Vel
at the point p. Combining with the previous expression we obtain
Vg,ekvgu(ek, &) =-2 (ng * V§u> &~ Vg AgVgu + Vg,u -Ric"(g)¢ + Vg,e, Relex, &)Vgu.

On the other hand deriving the identity

A9Veu = AgVgu+ Viu-Vef,
we infer
Ve eA§Veu = Vg AgVeu+ Vg Vau-Vef + Vau- Vg of,
and thus
VeeViule, &) = -2 (ng * vgu) £~ Vg (AVgu + Vg ViU Vef

+ V2u-Ricy(Q)¢ - div,Re(£, Vgu) - (vguﬂvgﬂzg) 3
thanks to the algebraic Bianchi identity. We obtain

@2vine = 2 (ng * vgu) £ - Vi, gV2U(E, Vef) + divgRe(€, Vgu) + (vguﬂvgﬂzg) I3

+ vg,sAngu - Vau - Ricg(Q)¢.
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The identity V1, o Vau = Rg - Vgu implies

~Vr,,gVau(é, Vf) Re(Vef, §)Vgu

~Rg(&, Veu)Vef + Rg(Vef, Vgu)s,
thanks again to the algebraic Bianchi identity. We infer

(CEVEWE = [ Vaun (VRe - divgRe ) | § + V¢4 Vsu - Viu - Ricg(@)§

[Vau~ (ViRe + V1 g RicG(@)] & + (V3ATWE - ¥, ¢[RicG(@)Veu] - VEu - Ricy()¢,
thanks to (9.1) and (8.2). Thus

A7 gV3u = V3AGU+ Vg [V Rg + Vi Ricg(0)] - 2V Ricg(@)Vu, 9.2)
We observe now that the endomorphism section Vguﬂv;() Rg is g-anti-symmetric thanks to the identity

:Rg(‘f, )’l) = - (:Rg(f, ’1)); ’

which is a consequence of the alternating property of the (4, 0)-Riemann curvature operator. Notice indeed
that the previous identity implies

VeuRe(&,m) = —(VeuRgld, '1));,

for all vector fields ¢, n7, u. Combining the g-symmetric and g-anti-symmetric parts in the identity (9.2) we
infer the formulas

* * T
APgVEU = V3AGu+ Veu-Vr, ¢ Ricg(@) - [Ve Ricy()Vsu|
g
* R . * T
E-V2Rg = VgRicg(Q)¢ - [Vg R1cg(_())f}g ,

forall & € Ty since the function u is arbitrary. In the case Vg Ricg(2) = 0 we deduce the identities A gvéu =
V2Agu and V;" Rg = 0. More in particular in the soliton case hg o = 0 the first formula reduces to the differ-
ential identity

LIVEu = V(AT - 2Du. 9.3)

We infer the conclusion of lemma 8. This formula will be also quite crucial for the study of the sign of the
second variation of the W functional at a Kdhler-Ricci soliton point.

10 Invariance of IF under the action of the
Hessian endomorphism of W

We observe that Perelman’s twice contracted second Bianchi type identity (1.2) rewrites as;
Vghg o +dHg g = 0.
If we differentiate this over the space M x V; we obtain
[(Dg,gvi-) W, V)} he.o+ Vi [Dg.oh (v, V)] +d [Dg oH (v, V)] = 0.
We deduce using the fundamental variation formulas (1.4) and (1.5)

Ve [£8V+vhgo+ hgave| + d[(4F - 2V - (v, hga) ] = =2 [DgaVe (v, V)] g0
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in the directions (v, V) € Fg o. We infer that in the soliton case hg o = O the map
VéW(g, Q) : IFg,.Q — IFg,.Q’

is well defined. In order to investigate the general case we use a different method which has the advantage
to involve less computations. Let (e;); be a g-orthonormal local frame of Tx. Forany u, v € C*° (X ,S? T}}) we
define the real valued 1-form

Mg(u,v)(&) = 2Vgv(ey, u;ek, &)+ Vaul(é, v;ek, el
for all £ € Tx. One can show that the operator
Te(u,v) := Mg(u,v)-Mg(v,u),
is related with the torsion of the distribution IF. We observe now that by lemma 3 holds the identity
AQvg —VgVvy = VgV, gVe + Rg * Vg — Vg Ricg(Q).
Applying the V;" -operator to both sides of this identity we deduce the commutation formula
[V;", Ag} v; = V;‘) [V;”VTX,gv; + Rg * v; - V;h;’g - v;} .

We observe now that for any 1 € C=(X, ATy ®g Tx) and & € C=(X, Tx) hold the equalities

[(zrp.) 0

X

Ve, Ved) O

Il
N X S—
/\

1
-1 / V. Vet
X
- 5 [ g,
X
and
W, Rg- &)y = (Ylew e, Rgley, €)8), = = (Rglex, epley, e)), &), -
We infer

* * 1 * *
(Ve Vi gVe = _img(ek’ er) [ngg(ek, e;) - Vgvgl(ey, ek)}

= Reley, e)Vgvele, e).
This combined with the expression
V;“ (Rg * v;) = V*g"ng(ek)v;ek + Rgley, ek)ng;(ek, ey,
implies the identity
VP Lgvg = (A3 ~DVLvg + Vgvgley, hy ner) - vgVehg o - Vi Re(er)vger,
which rewrites also under the form

VELgv = (A8 ~DVPv + Vgv(er, hg ek, ®) - VWt hg g +v (ek, V;“Rg(ek)-) ,
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thanks to (3.3) and the anti-symmetry property
* * T
ek—'vgﬂj{g = - (ek—'vgﬂj{g) .
g
On the other hand the once contracted differential Bianchi type identity (9.1) rewrites as
Vi gRicg(Q) = Alt(VyRe),
thanks to the algebraic Bianchi identity. Therefore for any ¢ € C*°(X, Tx) hold the identities

v(ek,V;“Rg(ek)f) = V(V;"Rg(ek)f, ek>

v (V;“Rg({)ek, ek) +v ([fﬂvTx,g Ric;(Q)} €k ek)

- Trg {v;V?Rg(f)} + Trg {v (.{ﬂVTX,g Ric;(Q))]

Trg {V (fﬂVTx,gh;,Q)} g

since the endomorphism section V;" Rg(&) is g-anti-symmetric. Notice indeed thatif A, B € C* (X , End(TX))
satisfy A = A} and B = -B] then

Trr(AB) = Trg(BA)
= Trr(BA)f
= Trr(AsB;)

= -Trr(4B),
i.e Trr (AB) = 0. We deduce in conclusion the formula
VLGV = (A8 ~DVEV - vV hy o + Vgvle, hy gex, ®) + Trg [v (oﬂVTX,gh;,Q)} .

Using the general formula
Ve (pv) = -VVgp + oV,

with ¢ € C=(X, R) we infer

V;" {ﬂgygv + V;)hgy_():l = _VVgHg’Q +ﬂg’QV§“v - hg’QVgV;) + V;)V*g“hg,g

*

= VWehg o+ H, o Vv -dVq-hy g - VodH, g,

thanks to Perelman’s twice contracted differential Bianchi type identity (1.2). Using the identity (15.1) we ex-
pand the term

Q « 1
d [(Ag +Hg = 21) Vo -5 (v, hg),
o) * * . * * * * 1
=AgdVq +dVq - Ricg(Q) + VodH, o + Hg qdV - 2dV, - §d<v, hg’9>g

* * * * 1
= (A + Hg o -DdVg +dVy - hy g+ VodHg o - 5d (v, hga), -
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Summing up we infer
V;ﬂ [(Lg +ﬂg,g> v+ V;)hg,g} +d [(Ag +H - 2]I) VQ <v hg Q>

= (Aé2 +Hg g - I) (V;ﬂv + dV;))

* * 1
+ vgy(ek, hg,!)ek’ 0) + Tl'g |:V (._'VTX,ghg,-Q)} - Ed <V, hg’9>g .
We observe now the identity
* * 1 1
Vevlew hgaei ®) + Tt [V (Vi ghga)| - 5d (Vo hga), = 5 Tslhgo,v).

We deduce the formula

Ve [ (€€ + Hgo) v+ Vohgo| +d [(Ag +Hyg - 21) Vo - % w, hg@g}

* * 1
= (A% +H,o-1) (vgﬂv + dVQ) + 5 Ts(hg0,V).

Setting (v, V) = (hg o, H g,QQ) € I, o in the previous identity we infer

0=V (4§ +2Hg o) hgo +d {(Ag +Hg-21)Hy o~ % |hg,9|;} :

This shows the fundamental property (1.9) of the Soliton-Ricci flow.

11 The K&hler set up

In this section we introduce a few basic notations needed in sequel. Let (X, J, g) be a compact connected
Kahler manifold with symplectic form w := gJ. Let h := g —igJ = 2g71]1’° be the hermitian metric over Tx ;
induced by g. We remind that in the Kdhler case the Chern connection

ag

Tx,

Dg

Tx; ~ +5Tx,] 2 C(Txy) — Cw(T;( Or Tx,p),

of the hermitian vector bundle (T j, h) coincides with the Levi-Civita connection Vg. We set CTx := Tx @R C
and CT} = T} ®Rr C. We observe further that the sesquiliner extension of g

gc € C7(X, CTy ®¢ CTx), g (€, n) == 8§, 1), V¢, n € CTy,
is a hermitian metric over CTx and the C-linear extension of the Levi-Civita connection V¢
Vg : C°(CTx) — C™(CTx ®¢ CTy),

is a g-hermitian connection over the vector bundle Ty @g C. We will focus our interest on the sections of
the hermitian vector bundle
((@T})W Q¢ Tx,, 8¢ ® h) ,

and we will denote by abuse of notations Vg = Vg ® Dg the g¢ ® h-hermitian connection over this vector
bundle. Still by abuse of notations we will use the 1dent1ﬁcat10n (*, )y = &c ® h. With these notations we
define the operators

Vel € (€T &0 Tyy) — € (47 Tyoe (TN 0 Tx)) »

Ver 1€ (@I 0c Tyy) — € (47 Ty 90 (CTY™ o0 Tyy)
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by the formulas
2Vy?) i= Vg-JVgjes
2Vy; = Vg+JVg.

Then the formal adjoints of the operators agm and ETX, , acting on Ty j-valued differential forms satisfy the
identities (see [26])

*g _ 0,1
aTXJa = qTrg Vg,] a,
g 1,0
org, @ = —-qTrgVra,

forany a € C=(X, A4 T;( ®¢ Tx 7). We remind now that with our conventions (see [23]) the Hodge Laplacian
operator acting on Tx-valued g-forms satisfies the identity

1 * 1 *
ATX,g = EVTX’gVTX,g + 7q 1 vTx,gvTX,g'

We define also the holomorphic and antiholomorphic Hodge Laplacian operators acting on Tx-valued g-
forms as

J . 1 g *g 1 *s NG
ATx!g o q TX’] Txy] + q + 1 TX,/ TX,]’
PSR P A S K

Txe q Tx;%Txy g+1 Tx;%Tx,>

with the usual convention oo - 0 = 0. This Hodge Laplacian operators coincide with the standard ones used
in the literature. We remind that in the Kahler case holds the decomposition identity

- J -J
Ar,, = ATX,g + A

Txg*

We observe now that the formal adjoint of the agm operator with respect to the hermitian product

(w0 = /(-,%,Q, (11.1)
X
is the operator
o = oy (e7e).

In a similar way the formal adjoint of the ETX’ , operator with respect to the hermitian product (11.1) is the
operator

of = of, (ee).
With these notations we define the holomorphic and anti-holomorphic Q-Hodge Laplacian operators acting
on Tx-valued g-forms as

Q] ._ 1 g *2.0 1 *2.0 N8
AR = COf, 0SS0k

-1 ._ 15 %o 1 S*s03
A . aaTXJaTXJ + 7q T 1 aTX’]aTXJ.
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12 The decomposition of the operator Lg in the Kahler case

For any A € End(Tx) we denote by A} and by A}’ the J-linear, respectively the J-anti-linear parts of A. We
observe that the operator
Lg : C(X, End(Tx)) — C=(X, End(Ty)),

defined by the formula
LZA = AZA-2Rg*A,
restricts as;
£f.c (x Ty, ® TX,,) — (X, Ty ® Tx)), (12.1)
€8+ ¢ (X, Ty y @ Ty ) — Co(X, Ty, © Ty, (12.2)

Indeed these properties follow from the identities

(Rg * A)y = Rg * Ay, (12.3)
(Rg * A)}/ = :Rg * A}/, (12.4)

for any A € End(TY). In their turn they are direct consequence of the identities

J(Rg * A) = Rg * (JA), (12.5)

(Rg * A)] = Rg * (A)), (12.6)

In order to see (12.5) and (12.6) let (e ), be a g-orthonormal real basis. Using the J-invariant properties of
the curvature operator we infer

J(Rg * A)§

JRe(, ex)Aey = Rg(&, e)]Aey = [Rg * JA)] &,

Rg*A)JE = RgUE, ep)Aey = —Rg(&, Jey)Aey = Rg(&, ni)AIny.,

where 1, := Jey. The fact that (1;); is also a g-orthonormal real frame implies (12.6). By (12.1) and (12.2) we
conclude the decomposition formula

/<L§A,A>g9=/<L§A},A}>g9+/<L§A}’,A}’>g9. (12.7)
X X X

We observe that the properties (12.1) and (12.2) imply also that A € Ker £ if and only if A} € Ker £ and
A}’ € Ker Lg. We observe further that the identity (9.3) combined with the properties (12.1) and (12.2) implies
the formulas
o) 0
Lgof, Vgu=0% Vg(ly -2Du, (12.8)

Lg0r,,Vgu = or,, Vg(4g - 2Dy, (129)

in the Kédhler-Ricci soliton case. The properties (1.8) and (1.9) combined with (12.2) imply (1.12) and (1.13).
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13 Basic complex Bochner type formulas

We need to review in detail now some fact from [12], (see also [21]). Most of the formulas in this section will be
intensively used in the rest of the paper. Let (X, J, g) be a compact connected Kdhler manifold with symplectic
form w := gJ. We remind that the hermitian product induced by w over the bundle A}’0 Ty satisfies the identity

2(a,B), = Trw(ianp).

Let Q > 0 be a smooth volume form and set as usual f := log %. We define the Q-weighted complex Laplace
type operator acting on functions u € C=(X, C) as

A = e Tr, [151 (e_faf”)}
= Agu+2 <a]u, alf>w

= Agu+205u- Vgf.
We notice the identities A f = AZf and AZ' = Re(Ag ). The complex operator Ag is self-adjoint with respect

to the the L} -hermitian product

(U, vyg = / uvQ. (13.1)
X
Indeed integrating by parts we obtain

/1’5] (e‘fa]u) VA"

X

/ ojunieTdv AW
X

—/uia] (e’fﬁﬁ) Aw"

X

(Notice the equality Q = e w™"/nl.) We observe in particular the identity

/Ag]u-VQ = /2<a]u,a]v>w.(),
X X

which implies that all the eigenvalues satisfy /Ij(Ag ;) = 0. For any function u € C=(X, C) we define the
J-complex g-gradient as the real vector field;

Vgju := VgReu+JVgImu e C7(X, Ty).
With these notations hold the complex decomposition formula
Vg ju~g = OjU + Oju. (13.2)
We consider now the linear operator

Bg;: C™(X,R) — CF(X,R)o,

Bg’]u = diVQUVgu).

This is a first order differential operator. Indeed

Bg,]u Tr]R (]V;u) - df']Vgu

g(vgu’]vgf)y
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since J is g-anti-symmetric. We extend Bg jover C*° (X, €) by complex linearity. Let also
2dju = i(0j-9p)u=-du-].

Then the identity 20; = d + 2idj implies the decomposition

A; = AF +2iVgf-d5.
In other terms

Q Q _ :p0
Agy = Ag —iBg.

The following lemma is needed for the study of the operator Ag I (Compare also with [12].)

Lemma9. Let (X, ], g) be a Kdhler manifold with symplectic form w := gJ and let Q > 0 be a smooth volume
form. Then for allu ¢ C=(X,R) and v € C>(X, C) hold the complex Bochner type formulas

205708 Vgl = Vg Ag u - 207, Vef Veu, (13.3)
207,01y, VgV = Vg A% v -2 Ric;(Q)w Vg V. (13.4)

Proof. Let & € C>(X, Tx) and observe that for bi-degree reasons hold the identity

5,0 38
26;;:;6“‘]{

*a 38
2Vgior, §

AGE- Ve (JVg aé)

= A8 -Vg (IVgyed) — Vg v L.

Let (e;)2", be alocal g-orthonormal frame over a neighborhood of an arbitrary point p such that Vge,(p) = 0.
Then at the point p hold the equalities

—V;(]ng]..f) = ]vg,ekvg,]ek‘f

1
= 2 (]Vg,ekvg,]ekf—]Vg,]ekvg,ek{) ,

since (Je)?", is also a local g-orthonormal frame. Then the fact that
[ex, Jex] (p) = O implies

Vi (Vg ef) = JIReler, Jeo)§ = Ric'@)F.

We infer the complex Bochner type formula

204005 &= AZE+RIc (9)E - JVg v g8 (13.5)
In a similar way we obtain
2075507, = Ag € ~Ric (Q)¢ + JVg yv s¢ . (13.6)
Using formulas (13.5) and (8.2) we deduce the expressions
208705 Veu = Vghdu-VifVeu-JVauJVef

Vedgu - (V3f +JV3f]) Vu~J (VawVsf - VifVau)

VeAgu - 201, ,Vef Vet - JVg[g(Veu, JVf)).
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Using the first order expression of Bfg we obtain

20208

Q Q N
1908 Veu = [ngg - ]vngJ}u—zaTX',vgfvgu.

We infer the complex differential Bochner type formula (13.3). In a similar way using formulas (13.6) and (8.2)
we deduce

ZEEiETXJVgu VeASu — 2 Ricg(Q)Veu + Vaf Veu + JVEUJVef

VeAZu - 2 Ricg(Q)Vgu + (Véf +]V§f]) Veu+] (V§UIng - Véf]Vgu)

= VgAgu -2 Ricg(Q)Vgu + 207, ,Vef Veu + JVglg(Vgu, JVef).

Using the first order expression of Bfg we obtain

207,01, Vsu = |VsA§ +IVeBgy| u-2Ric)(QuVeu.
We infer the complex differential Bochner type formula
207,91, Ve = Vg ;A2 u - 2 Ricj(Q)0 Vgu. (13.7)
More in general for all v € C*(X, C) this writes as (13.4). O

Notice that for bi-degree reasons the identity (8.2) decomposes as
207" aé}x’] Vel + 207,01, Vell = Ve A2 u+ Ve A2 u - 207, ,VefVgu - 2 Ricj (2w Vgu.
Then we can obtain (13.7) from (13.3) and vice versa. We observe also that the complex Bochner identities
(13.3), (13.4) write in the Kdhler-Ricci-Soliton case as
*e, Q
20450%, Veu = Vg Agsu, (13.8)

255},75&,/ VeV = Vg,fw, (13.9)

forallu € C*(X,R) and v € C*=(X, C). Obviously the identity (13.9) still hold in the more general case
Ric;(Q) = w. We observe now an other integration by parts formula.

Let¢ € C= (X, Tx), A € C= (X, T}}’_J ® Tx,7) and observe that the comparison between Riemannian and
hermitian norms of Tx-valued 1-forms (see the appendix in [22]) implies

/<5TXJ§,A>g.Q %/ [<5TXJ‘$’A>W+<A,5TXJ§'>M} Q

X X

(e, @50 )

X

/<§, 5}i;fjA>gQ.

X

Using this and multiplying both sides of (13.9) by V¢ ;v we obtain the identity

— 2 g -
2 / ‘aTX,vgJV) Q-= / (Vg (@2, -2Dv,Vg)v) 0, (13.10)
' g ’ g
X X
in the case Ric;(Q) = w. We consider now the J-anti-linear component of the complex Hessian map;

Hy 1 CRX, o — C™(X, AD' Ty @¢ Tx,))

u — or,, Vg ju.

We observe that Hé (X, ©) = 0in the case of Fano manifolds and we remind the following well known fact
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Lemma 10. Let (X, ], g) be a compact connected Kdhler manifold such that Hé (X, ©) = 0. Then the map
Ker3(y) — HO(X, Tx,)

u — Vgju,

is an isomorphism of complex vector spaces.

Proof. We observe first the injectivity. Using the complex decomposition (13.2) we infer the formula
d(Vg,]u—-g) = 615](11 —ﬂ),

which in the case Vg ju = 0 implies Im u = 0 and thus Re u = 0. In order to show the surjectivity we consider
an arbitrary £ € H°(X, Ty, 7). Then the identity (13.11) below implies

5](({]1’0—-60) = 0.

By Hodge decomposition hold the identity Hg’l(X , C) = 0. We deduce the existence of a unique function
u € Cy (X, C)o such that

iou = &%w=ifl-g.
Thus & = V, ju thanks to the complex decomposition (13.2). O

Lemma 11. Let (X,]) be a complex manifold and let w € C>(X, A]l’lT}), & e C(X, T}(’O). Then hold the
identity
5](5{-‘0}) = ET}(,(I) {-'(U - »f-'E](U. (13.11)
Proof. Letn, u € C=(X, Ty'") and observe the identities (see [20])
0j(6-w)m, 1) = nw,pw-pwiE,n)-wl,n, ),

Jwn, &, 1) = nwl, w+pwh,d)-o(ln, 10w+ w(n, b, &) - o€ ", n
= 30010 - w (3306, 1) + @ (3730800, m)
= yl-wn, W -w (57;(,;5('2),#) -w (11,5@,;{(11))

= [9/(§-w) - 3py06-0| (1. ),
which implies the required identity. O
On the other hand the identities (13.9) and (13.10) show that in the case Ric;(2) = w hold the identity
o) _ 0,1
Ker(A o 21) = Ker }Cg, iz (13.12)

We infer the following well known result due to Futaki [12]. (See also [14] and the sub-section 21.2 in appendix
B for a more more complete statement.)

Corollary 1. Let (X,]) be a Fano manifold and let g be a J-invariant Kihler metric such that w := gJ €
2ntc1(X, [J]). Let also Q > 0O be the unique smooth volume form witth Q = 1 such that Ric;(Q) = w. Then
the map

Ker(Ag]—Z]I) —  H°x, Tx,j)

u — Vgju,
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is well defined and it represents an isomorphism of complex vector spaces. The first eigenvalue /Il(Ag 7) of the

operator Ag ; satisfies the estimate Al(Ag ;) = 2, with equality in the case H(X, Tx,j) # 0. Moreover if we set
Killg := Lie(Isomg) and
Kerp(dg;-2I) := Ker(dg;-2I)N C5 (X, R)o,

then the map
JVyg : Kerg (Ag ) - 2I) — Killg, (13.13)

is well defined and it represents an isomorphism of real vector spaces.

Proof. We only need to show the statement concerning the map (13.13). Let ¢ € Killg and let (¢¢);er C Isomg
be the corresponding 1-parameter sub-group. The Kahler condition Vg = 0 implies A3 ,w = 0 and thus
A4¢(p;w) = 0. Time deriving the latter at t = 0 we infer

AggLiw =0, (13.14)
But Lyw = d(¢-~w) and (13.14) rewrites as d ¢ d(£-w) = 0. We infer
0 = Liw=gLg=2wor,,¢,
and thus

Kill, = {{ € H'(X, Tx,) | Lew = 0}
- {¢e B®, Ty ) | d¢-w) - 0}

- {g’ € HOX, Ty)) | 3u € C3(X, R)o : &~w = du} ,
thanks to the fact that H;(X , IR) = 0. But the latter identity rewrites as
Kill, = {{ e HOX, Tx) | 3u € C5(X, R)o : & =ngu} ,

which shows that the map (13.13) is well defined thanks to the first statement of corollary 1. The surjectivity
of the map (13.13) follows from the identity (13.9) applied to the function v := —iu, with u € C5(X, R)o such
that JVgu € Killg. The injectivity of the map (13.13) is obvious. O

Using the variational characterization of the first eigenvalue we observe;
Q —
Jx Ag uuQ

Q .
/\1(Ag,]) = lnf{ f \u|2.Q
X

lue CoX,C)o ~ {0}}

/N

2
inf{w lu e C3(X, R)o ~ {0}}
X

A2uuQ
- mf{%‘;wecmx,m)o\m}}
X

A (Ag) ,
thanks to the identity 2 |a u ]i =|Vgu \;. We deduce that in the set-up of corollary 1 hold the estimate

A(Ag) = 2. (13.15)



84 =—— Nefton Pali DE GRUYTER OPEN

14 Symmetric variations of Kahler structures

We show a few fundamental facts about the space of symmetric variations of Kahler structures ]Kvé given by
the elements v € C> (X, 5112& T}*{) such that there exists a smooth family (J;, g¢)¢ € X8 with (Jo, g8o) = (J, 8),
%o =vand J, = (Jo)I. One can observe (see [23]) that KV} C D} with

Df = {ve ¢ (X, ShTx) | 9, (v)° = 0,31, ()" = 0}, (14.1)

where (v;)}’o and (v;)?’1 denote respectively the J-linear and J-anti-linear parts of the endomorphism vg. We
remind here some lines of this basic fact. We define

1,0 . .
VL0 = V-V
2V = Ve+iVgy

Let v} and v}’ be respectively the J-invariant and J-anti-invariant parts of v and set for notation simplicity

A= ()% = (Vg
A// _ (V‘;)?,l _ (V}/);.

The identity A” = —JJ, (see [23]) implies directly wo = vjJ = wA’. We infer
0 = diy=d})).

The fact that the (1, 1)-form v}/ is real implies that the identity d(v;J) = 0 is equivalent to the identity 0;(v}]) =
0. In its turn this is equivalent to the identity a%x [A’ = 0. We observe indeed that forall &, n, u € C*(X, Tx®Rr
C) hold the equalities

a](wA/)(fl, rll, HH)

Vi @AY 1, 1) = Vg A, & i) + Vgd AN, & ')
- w ([V;;S,A’(€’, n)-vg, A, -f’)} ,u”)
- w (V;;?, AW, n’)
- w ([V;;?A’(f', n) -V A, é”)} ,M")
= w(0f,4C Mu").
In order to continue the study of the space ]Dé, we need to show a few general and fundamental facts. We start

with the following weighted complex Weitzenbdck type formula obtained in [28]. (We include the proof for
readres convenience).

Lemma 12. Let (X, J, g) be aKdhler manifold, let Q > 0 be asmoothvolume formandletA € C= (X, T )*(’_ ;@ Ty, 7)-
Then hold the identity
A%Z A=VgVg A-Rg* A+ ARic)(Qw (14.2)
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Proof. We observe that for bi-degree reasons hold the identities

Let

Then

APTA = ETXJaTX]A+ aTX,aTX,

Txg

= * 1_+ =
= aTXJVT{;(’gA + EVT‘;’gaTXJA

= ETX,]V;HA-'—V;DSTXJA
v“A(f n = Vg A, ).

20774 = VgVPA+]Vg VA + 2V VA -2V ﬂvo JA.

We fix an arbitrary point p and we choose an arbitrary vector field & such that Vgé(p) = 0. Let (ep)y be a
g-orthonormal local frame such that Vgey(p) = 0. We observe the local expression

VEVIIAE = Vo VoIl §) + VA, Ve,

At the point p hold the identities

and thus

24,0 VOTAler, &) = 2Vge, [vg;}A(g, ek)}

2V ﬂvo JA-E

= Vg,ekvg’fA * €k +JVg,ekvg’]§A * €l

= —Vg,ekvg,fA * €k —]Vg,ekvgylfA c et ngé'A . ng +]Vg,]fA . ng.

We obtain the identity at the point p,

Q,-]
20874 ¢

+

—Vg’ng,ekA c €t vg,{ (A . ng) —]vg,]‘s‘Vg,ekA % +]Vg,]5 (A . ng)
QVLVYIA - §+ Ve Vg A e +]Vge Vg A ey

vg’{A * ng —]Vg’]fA * ng.

We remind that for any A € C* (X, End(Tx)) and &, n € C=(X, Tx) hold the general formula

Ve VenA - VenVe A = [Rg(€,m), A] + Vg g A (14.3)

Using (14.3) and the fact that in our case [e, ¢] (p) = [ex, J€] (p) = O we obtain

Q,-]
20874 ¢

thanks to (12.4).

Relex, E)A - ey — ARg(ey, &) - ex + ] [Relex, JE)A - ex — ARg(ey, J) - ex]
QVEVUIA - &+ AV of +JAV g 1 Vef

~(Rg* A)- &+ ARiC'(g) - & - J(Rg * A) - JE +JARIC (g) - J&

VLV A+ Ad§ Vf -&

[v ov0LA - Rg* A +AR1c](.Q)w} £,
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Multiplying both sides of (14.2) by A and integrating by parts we infer

/<A!T);;]A,A>g[) - /[<vg;}A,ng>g+<ARic}(Q)w—ﬂzg*A,A>g] 0.
X X

Using the fact that <V;’?A}’ , Vg’}A}’ > = 0 we obtain the integral identity
’ ’ g
Q,-] _ 0,1 4,2 s *
/<ATXyg A, A>g() - / [\vg’,A\g + (ARic) (@) - R *A,A>J Q. (14.4)
X X

We observe also the following corollary.

Corollary 2. Let (X, J, g) be a Kdhler manifold, let Q > 0 be a smooth volume formandlet A € C* (X s T}’,j ® Ty, ]).
Then hold the identities
LgA = 2407 A+divg Vg 1.UA) - 24Ric) (o, (14.5)

divy Vg ;. (JA) = Ric"(g)A + A Ric'(g) - UVf)-(VA). (14.6)

Proof. 1t is obvious that the identity (14.2) rewrites as (14.5). In order to show (14.6) let (1;)}_, be a local
complex frame of Ty ; in a neighborhood of a point p with Vgni(p) = 0 such that the real frame (e,)lzfl,
e =n,l=1,...,nand e, = Jni, k=1,...,nis g-orthonormal. Then at the point p hold the equalities

2n

Z vg,ezvg,]e,UA},)

=1

dng Vg’]o (]A}/)

n

= Z [vg’ﬂkvg,]ﬂkUA}/) - vgJ'IkVS”’Ik(]A}/)}
k=1

n

= > [Relu, Jnids JAT]
k=1
thanks to the general formula (14.3) and thanks to the fact that [y, Jn,] (p) = 0. Using the J-linear and J-anti-
linear properties of the tensors involved in the previous equality we obtain

n

> RO, INiAT + A JRg (s Tni)]
k=1

dng Vg,]. (]A}/)

Ric'(g)A] + A} Ric'(g).

Notice indeed the identities

2n

2Ric’(g) = Z]ng(el, Jer)

=1

n

= > URelnx, ) ~JRg Ui m)]
k=1

= ZZ]ng(rlk’]nk)-

k=1

We conclude the required formula (14.6). O
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We define now the vector spaces

#OL (Tx,) Kera, /0™ (X, Ty y @ Txy)

0,1 . 0,1 _ AT
Hoh (Tx)gm = {A€30G (Tx)) | A=AF}.
The follwing result as also been obtained in [28]. We include the proof for readres convenience.

Lemma 13. Let (X, ]J) be a Fano manifold, let g be a J-invariant Kdiihler metric with symplectic form w := gJ €
2mc1(X, [J]) and let Q > O be the unique smooth volume form with [, Q = 1 such that w = Ric;(Q). Then hold
the identity

Hoo (Txy) = Hog (Txy)gm-

Proof. We consider the decomposition A = Asm + Aas, Where A,s and Ags are respectively the g-symmetric
and g-anti-symmetric parts of A. We observe the symmetries

Rg * Asm = (jzg * ASIII);’

:Rg * Aas = —(ng * Aas)g~

The fact that A € C= (X, Ty _; ® Tx,j) implies Asm, Aas € C (X, Ty _; ® Tx,) and thus

* * T
ViVgiAm = (ViVgiAm) .
*0v0,1 *00,1 T
VeVoids = - (Vi vg;]Aas)g,

Then the identity (14.2) implies the equalities

T *

(A%;;]Asm)g - 2487 Asn = [Ri¢j (), Asu (14.7)
T *

(A%L:Aas)g + A%;,]Aas = {Aas, RiC](Q)w} . (14.8)

We deduce that in the case Ric;(Q) = Aw, with A = £1, 0, the condition A € }Cg:}) (TX, ]) is equivalent to the
conditions Asm, Aas € 9{2’!1) (Tx,y). We focus now on the Fano case A = 1. We remind the identity Rg * Aas = O.
(See (20.9) in the appendix.) Thusif A € 3{2’}) (TX, ]) and Ric;(Q) = w then the integral formula (14.4) reduces
to

0 = / |:|vg:]1Aas‘§ + |Aas|§:| Q,
X

which shows Azs = 0 and thus the required conclusion of the lemma. O

We obtain also the following statement (the case c; < 0 has been proved in [9]).

Lemma 14. Let (X, ], g) be a compact non Ricci flat Kdhler-Einstein manifold. Then hold the identity

Kt (Txy) = 9" (Txy)

sm *

Proof. Using the identities (14.7) and (14.8) with Q = CdVg we deduce that in the Kéhler-Einstein case Ric(g) =
Ag, with A = 1, 0, the condition A € Q"' (T ;) is equivalent to the conditions Asm, Aas € H'' (Tx;). On
the other hand the identities (14.5) and (14.6) imply in the case Q = CdV; the formula

LgA =247 A+ [Ric"(g), Al, (14.9)
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forany A € C= (X, T _; ® Tx,s). The fact that Rg * Aas = O implies the formula
Aghas = 247 A +[Ric'(g), Aas].

We conclude that in the Kihler-Einstein case Ric(g) = Ag, with A = 21,0, any A ¢ 5{2’1 (TXJ) satisfies
VgAas = 0. Then the formula (14.6) with Q = CdV, implies

0 =divg Vg je(JAas) = Ric (g)Aas + Aas Ric'(g) = 2AAas.
We deduce Aas = 0 in the case A = +1. This shows the required conclusion. O
We denote by
Agy=Ker(Ag;-2D) c CF(X,Co,
and by
At = [Ker(ag) - 21) " Crx, O,

its Lé-orthogonal inside C3 (X, C)o. We obtain as corollary of lemma (13) the following fundamental fact
obtained in [28]. (We include the proof for readres convenience).

Corollary 3. (Decomposition of the variation of the complex structure)

Let (X,]) be a Fano manifold, let g be a J-invariant Kdhler metric with symplectic form w = gJ <
2rc1(X, [J]) and let Q > O be the unique smooth volume form with [, Q = 1 such that w = Ricy(Q). Then
forallv e ]Dé there exists a unique i € Ag”]L and a unique A € %g:}) (TX, ]) such that

(V;)(])’l = ETX,] Vg’]$ +A.
Proof. We observe that the identity
o, (Vo)) = 0,
combined with the Q-Hodge isomorphism

Ho'g (Txy)

R

HY(X, Tx )

{B € (X, A%' Ty @ Txy) | Oy, B = 0}

{Or,¢ 1§ € c(x, T}

implies the decomposition
(v;)?’1 = or,¢+A,

with & € C*(X, Tx) and unique A € 9{2’(1) (Tx,y). Then the fact that the endomorphism (v;)?’1 is g-symmetric
combined with lemma 13 implies that ETXJf is also g-symmetric. Then formula (13.11) implies that for all
1N, 1 € C=(X, T¥") holds the identity

0;(¢}%-w), ) = w(ETX,,s’ -n,u)+w(n,5rx,,€ -u)

= g (IETX,,s”- n, M) +g (Irz, o, &+ u)

= g([(ETX_,f)gT—ETx,,f} ']%H)

= 0.
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Then the argument showing the surjectivity of the map in lemma 10 in the section 13 implies the existence of
a function ¥ € C35 (X, C)o such that

¢ = Vg ;¥. This combined with the identity (13.12) implies the existence and uniqueness of i € Agf,”’]l such
that

ETX,]'{ = ETX,I ng]i'
We infer the required conclusion. O

We show now the inclusion (1.23). Time deriving the condition w; := gJ; € 2mc; we infer {@o},; = 0. Then
(1.23) follows from the complex decomposition identity

Vg = g lg0=w w0 -JJo=())g+ V).

15 The decomposition of the space IF'¢ , in the soliton case

Lemma 15. Let (X, g, Q) be a compact shrinking Ricci soliton. Then the linear map

Tgo: CEUGLR) @ [Ker Ve N C™(X, 8'Ty)|  — Fyo

(p,0) — (ng(p +0,(p- Ag(p)ﬂ) ,
is an isomorphism of vector spaces.

Proof. STEP 1. We observe first that in the compact shrinking Ricci soliton case the first eigenvalue Al(Ag )
of Ag satisfies the inequality )ll(Ag) > 1. Indeed multiplying both sides of the identity (8.2) with Vgu and
integrating we infer

/<Vgﬂgu,Vgu>g.Q = /|:<Angu,Vgu>g+Rng(Q)(Vgu,Vgu):| Q
X X

2

/“Vﬁu‘ +Rng(Q)(Vgu,Vgu):| 0.
g

X

Let now u € C5 (X, R)o be an eigen-function corresponding to /Il(Ag) > 0. By definition w/= 0. Thus by the
previous integral identity we deduce
/ <VgA§u, Vgu> Q
g

X

2
/[’Vﬁu‘ +|Vgu|§} Q
g

X

2
/\Vgu|g(2 >0,
X

M (a9) / Veul2 0
X

A\

which implies the required estimate.
STEP II. Multiplying both sides of the the identity (8.2) with g we obtain

dAgu = Agdu +du- Ric;(.Q). (15.1)
Let now (v, V) := Tg (¢, 6) and observe the equalities

VY = V'Vgde = Agdp = d(Agp - ).
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The last one follows from (15.1). We infer that the linear map T, (, is well defined. The fact that in the soliton
case hg o = O the differential operator Ag - I is invertible over C3 (X, R)o implies the injectivity of the map

Tg 0-
In order to show the surjectivity of the map T, g let (v, V) € Fg  and define the function

o = [@-49)'Vj e CHX, R).
Then the identity
VEVede = d(Age- ),

implies that the tensor 8 := v — Vgd¢ satisfies V;"O = 0. We deduce the orthogonal decomposition with
respect to the scalar product (1.1)
V=Vgedop +0, (15.2)

with V;f’ 0 = 0. We deduce the required surjectivity statement. O

We need to introduce a few notations. From now on we assume Hé(X ,R) = 0 (this is the case of any Fano
manifold) and we observe that the first projection map

P1:Fgq — Sgqi= {v € C™(X, $2Ty) | dV;Pv = o} ,

is an isomorphism. Over a compact Kiahler manifold we define the real vector spaces

J .
$io0 = Sgan D},
$’g,9(0) = SgonD,,
J —— J
$g,0 [0] = Sg,.Q n ]Dg,[O]’
and
Q Q, L Q Q A0 (AQ AT,
By = {$eagy 142,48, - 20y = 42,42, - 2Dy }

With the notations introduced so far we can state the following decomposition result.

Lemma 16. Let (J, g) be a Kdhler-Ricci-Soliton and let Q > 0 be the unique smooth volume form such that
gJ = Ric;(Q) and [, Q = 1. Then the linear map

CS(X, R)O@E‘g’,,@%‘g);})(TXJ) — $’g,g(o)

(o, P, A) — v,

(v;)]l,o = OS}X’]Vg&p +7),
V)" = O, Vesl@+ ) +A4,
with T € C3 (X, R)o the unique solution of the equation
A2 T = (A) - 2Dy, (15.3)

is an isomorphism of real vector spaces. In particular the linear map

Q 0,1
Eg; @ gy (Txy) — $£,.Q [0]
(l/), A) — v,

(V;)?’l = 5T,(,,Vg,]((P +P) +A,
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with ¢ € C5 (X, R)o the unique solution of the equation
A2, = (4g) - 2Dy, (15.4)

is also an isomorphism of real vector spaces.

Proof. Letfirstv € $4 o and observe that the decomposition formula (15.2) rewrites as

*

vg = 0% Vep+0r, Vep+6.

This implies that v € D} if and only if 6 € D, and also v € I/, ; if and only if 6 € D] ,
Letnow v € $£,y o(0). Then the decomposition of the variation of the complex structure in corollary 3
implies the existence of unique 7 € C5(X, R)o, ¢ € Ag’f‘ and A € 5{2’}) (Tx,y) such that

O = 0%, VeT +0r,, Vg b+ A. (15.5)
For bi-degree reasons the condition V;“ 0 = 0 is equivalent to the identity
* —%* 0~ —
0 = 204705 VT +207, 01, Vg y.
The latter is equivalent to the equation
0 = Vgyl|Ag;T+(A2-2Dy|,

thanks to the complex Bochner identities (13.8) and (13.9). We remind that ifu € C3 (X, C)o satisfies Vg ju = 0
then u = 0. (See the proof of the injectivity statement in lemma 10 in the section 13.) We conclude that the
condition V;“ 0 = 0 is equivalent to the equation (15.3) via the decomposition (15.5) of 6.

Then the required decomposition statement concerning the space S{g’ o(0) follows from the fact that the
condition 7 real valued is equivalent to the equation defining ¢ € Eg ;- Inorder to see this we show first the
commutation identity

[Ag ,BS ,} - 0. (15.6)

Indeed using an arbitrary g-orthonormal local frame (e); we obtain

AGBGu = AZ [8(Veu, JVef)]

g(AZVgu, JVef) - 28(Vau - ey, JVEf - e)) + g(Vgu, JAZVf)

g(Angu +Vgl, JVgf) - 2Trg (Véufvgf)

thanks to formula (8.2) applied to f and thanks to the fact that (Ag - 2I)f = 0. Moreover the endomorphism
J Véf is g-anti-symmetric since in the soliton case [] , Véf] = 0. We deduce

AGBu = g(VgAdu,JVef) = By jAGu,
thanks to formula (8.2) applied to u. We infer the identity (15.6) which implies
|42),42,| = 2i [BZ;, 48] - 0. (157)
Multiplying both sides of (15.3) with A2 ¢, We obtain
- (4242)) 7 = 48,88, - 2. (15.8)
The invertible operator

AGjA2 : C5(X,C)y — CH(X, T,



92 —— Nefton Pali DE GRUYTER OPEN

is real thanks to (15.7). We deduce that the condition 7 real valued is equivalent to the left hand side of (15.8)
being real valued, thus equivalent to the equation defining i € IEQ

We observe finally that a variation v € $é’ ol0l C s/ 2.0(0) corresponds to ¢ = -1, i.e.to (¢, Y) solution of
the equation (15.4). O

Remark 1. If we write ) = 11 + iy,, with Y1, P2 € C5 (X, R)o, then (15.3) is equivalent to the system

-AgT = (AF - 2Dy + B2 s,
(15.9)
-Bg ;T = (A3 - 2y, - B ;1.

Moreover separating real and imaginary parts in the equation defining i € E? s and using the commutation
identity (15.6) we obtain

gy = {w e A2} 1 [a8(ag - 21 - (BE )| 2 - 2048 - B ypn | (15.10)
Using (15.10) and the complex Bochner formula (13.9) we obtain also the identity
gy = {W € Agy" |-div 07, Vet = (AF ~DBZ i | .
Remark 2. We observe that the linear map
Agy: AQ — Ad, (15.11)

is well defined and it represents an isomorphism of complex vector spaces. In fact this follows from the iden-

tity
Z/uVQ = /AQ]qu

X X

forallv e Ag ;- Thus the linear map

Agy-20: AQ — A, (15.12)

is also well defined and represents an isomorphisms of complex vector spaces The surjectivity of the latter
follows from the finiteness theorem for elliptic operators. By definition of E2 ¢ We deduce the existence of the
isomorphism of real vector spaces

Ag(A) - 21) : EY; — AZ5H 0 CF (X, R)o.
We notice also the inclusion

AZFNCEX,R) 2 (Ag;-2D)(A2, - 2D)CF (X, R)o.

16 The geometric meaning of the space IE"g’Q [0]

We define the subspaces

. 4(0) {(v, V)eFyqnlve ssfg’g(o)} ,

¥/, ,[0] {(v, V)eFgqlves,, [O]} .

In the previous section we gave a parametrization of the space ${g, o (0), and thus of IF{g’ ( (0), which is fun-
damental for the computation of a general second variation formula for the W functional at a Kdhler-Ricci
soliton point. In this section we give a simpler parametrization of the sub-space IF]g, o [0] and a useful geo-
metric interpretation of it. We show first a quite general variation formula for the Chern-Ricci form.
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Lemmal17. Let (8¢, J0) C X8, (Q)¢ C Vi be two smooth families such that J; = (J;)},. Then hold the first
variation formula

z% Ricy,(Q¢) = -d (gtv;ff Je+ 2dft('):) . (16.1)
Proof. In the case of a fixed volume form Q > 0 we have the variation formula (see [26])
2 &Ry (@) = -d(givih).
For an arbitrary family (Q;); C V; we fix an arbitrary time T and we time derive at t = T the decomposition
Ric;,(Q:) = Ricy,(Qr) - ddj, log -%
We obtain the required variation formula. O

We show now that for any point (g, Q) € 8, hold the inclusion (1.11). Indeed for any smooth curve (g, Q¢)¢ C
Sw, with (g0, Qo) = (g, Q) we have &} = —JJ; and thus

0 = 2% Ric, Q) =-d [(v;‘ffghvg[o;) ﬂw} ,

i
thanks to the variation formula (16.1). Then the inclusion (1.11) follows from (1.10) and Cartan’s formula for
the Lie derivative of differential forms.

We can provide at this point the geometric interpretation of the sub-space IF{g, o 0]

Lemma 18. For any point (g, Q) € 8 hold the identities (1.14) and (1.15).

Proof. We remind that by the orthogonal decomposition in corollary 3 any element v € ]Dé 0] decomposes as

Vg = aTx,/vngpv+AV’

with unique ¥, € Ag”]l and A, € J—((g):}) (Tx,7). Moreover the weighted complex Bochner identity (13.9) implies
the equality

—* ) * * 1 0 ~~N 7 *
Of Ve + VeVa = 5 Ve |82, - 2Dy + 275, (16.2)
for any (v, V) € ]D]g’[O] x Ty,. Thus
F/, ,[0] = {(v, V) € DL, oy % Ty, | (42 - 2Dy = —2V5} . (16.3)
Let
Ry = Re|(ag;-20y], (16.4)
I, = Im|ag,-2Dy), (16.5)
(for any z € C we write z = Rez + i Im z) and observe that (16.2) implies the identity
(Veve+VeVa)-w = %dllpv +df (Ry, +2V3),
forany (v, V) € ]D;,[O] x Ty,. Thus
T, o= {0, V) D] g x Ty, | Ry, =-2Va}. (16.6)
We notice now the equalities
T[g,_()]w’(g’_()) = {(ng, L{Q) I 5 S Coo(X, Tx) : L{CU = 0}

(v g Liva?) lu e C5X, R)o}

{(ngETX,,vgu, div?(Jveu)Q) | u € C(X, ]R)O} ,
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indeed
(L]Vgug)jg(r = ]Véu - Vﬁu] = 2]5TXJVgu.
We deduce that (v, V) € TX¢ if and only if for all u € C5 (X, R)o hold the equalities

8.9],.(8.Q)

0

2/ |:<]5TXJVgu,V;> - div?(JVgu) - V;)} Q
g
X

2 [ (vaws (3 +veVa), 0

g
X
- z/u.divQ 7 (375ve + vsva)| 2.
X
If we assume (v, V) € Té o then
—=* * * 1
aTgx!; Vg + VgV = ‘51 Vely,, (16.7)
. 1 J
thanks to (16.2) and (16.6). Thus if (v, V) € T[g’GQ]w’(g’ oNTeq then
0 = —/u <A1y, 0,

X

forallu € C5 (X, R)o, i.e. Agllpv = 0, which is equivalent to the condition I, = 0. We infer

L J J
T[g,!)]w,(g,ﬂ)ng,Q € Fgo [0].

The reverse inclusion is obvious. We deduce the identity (1.14). Then the identity (1.15) follows from the inclu-
sion (1.11). O

17 The sign of the second variation of the W functional at a
Kdhler-Ricci soliton point

Proposition 1. Let (X, J, g) be a compact Kdhler-Ricci-Soliton and let Q > 0 be the unique smooth volume form
such that gJ = Ric;(Q) and fx Q = 1. Let also (g¢, Qp)ier C M x V1 be a smooth curve with (go, Qo) = (g, Q)
and with (g9, Qo) = (v, V) € IFi,’ o(0). Then with the notations of lemma 16 hold the second variation formula

d2

— W Q
dt2|t=o (g[9 [)

VeDW(g, Q)(v, V;v, V)

1
= 5/(A§—JI)(A§—21I)<p-(A§—2]1)<pQ
X
- %/[(Ag—]I)Agr-AgT+PgJIm1/)-Imxp+|A|§F} Q,
X

where

P2, = (Ag,—zn)(Ag,—zn),
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is a non-negative self-adjoint real elliptic operator with respect to the L -hermitian product. In particular if
v,V e IF{D, o [0] then

2
S, WEn ) = VDWW, Vv, V)
t=0
= 2 (4l -mel + P2 my -1 AZF | Q
) ‘ g~ ‘P) +Pg;Imy - Imy + [Af, .
X

Proof. STEP 1. Let (X, g, Q) be a compact shrinking Ricci soliton point and let (g¢, Qt)¢cr € M x V1 be a
smooth curve with (g0, Qo) = (g, Q) and with arbitrary speed (g9, Qo) = (v, V) € Fg 0. We know from lemma
7

d2

WlhOW(gt’ Q4)

VeDW(g, Q)(v, Vv, V)

-%/ [<L§v,v>g-z(A§-zn)V})-Vg 0.
X

By the considerations in the beginning of section 10 we deduce that in the soliton case hg o = 0 holds the
identity

VP Lgv+d(Ag Vg -2Vg) =0, (17.1)
for all (v, V) € Fg . Applying the operator V;“ to both sides of this identity we infer
(V) Ldv + AAg - 2DV = 0. 7.2)

For any function ¢ € C5(X, R)o let (v, V) := Tg o(¢, 0). Integrating by parts and using the identity (17.2) we
infer the equalities
1 *
2 / (V32687 - 9+ 2048 - 24g - D - @- 4] 0
X

1
-5 /A?(Ag - 2I)(A2 -T)p - O
X

/ 242 - 2122 - D - (1 - 4202
X

: / (42 - 20)(A2 - D - (A2 - 2D)pQ
X

VeDW(g, Q)(v, V;v, V)

1
2

_ % / (A2 - (42 - 2D - (42 - 2D)p0.
X

Remark 1. We can also compute the integral

[{<tv30.920) 0.
g
X
in the previous expansion via the formula (9.3). Indeed

/<L§v§<p, v§<p>go /<v§(A§ - 2)g, v§<p>g9
X X

/ (4848 - 2, Vgg0>g Q
X

/<vg(A§ - 1)(4¢ - 21)g, vg<p> Q,
¥ g
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thanks to the identity (8.2). We conclude integrating by parts

/<L§v§<p,v§<p>go - /A?(A‘g)—zﬂ)(é\g—ﬂﬁp-(pﬂ-
X X

Remark 2. We set @ := (Aé2 -2D¢ € C5(X, R)o. Then the previous variation formula rewrites also as

2

Wl W(gt’ Qt) = VGDW(g, Q)(V, V; v, V)
t=0

_ %/[wgcp@—cpz}fmo.

b'¢
the last inequality follows from the variational characterization of the first eigenvalue of AZ,

JxIVeul; @

Mg = inf{ [0
X

lue CoX,R)o ~ {0}} )

which satisfies the inequality Al(Ag) > 1.
STEP II. Let (v, V) € F, . Using the L?-orthogonal decomposition (15.2) in the proof of lemma 15, we
expand the integral term

/ <L§v, v>g Q = / KLngd(p + Lge, ng<p>g + <L§ng<p + Lge, 6>J Q.
X X

We observe that
/<L§e, ng(p> Q =
J g

since V2 ££6 = 0 thanks to the identity (17.1) applied to (8, 0) € F, . On the other hand formula (9.3) implies
g~ g

/<Lgvgd<p,e>go - /<d(Ag—z11)<p,v;ﬂ >g9=o

X X

N

(veg, dgo>g9 -0,

We conclude the decomposition identity

/ (v, v>g.() - / [<Lgvgd<p,vgdgo>g+<L§9, e>g] Q.

b'¢ X
Then step I implies
dZ
Wl W(gl’) Qt) = VGDW(g) Q)(V’ V; v, V)
t=0
1 1
- 3 /(Ag -4 - Mg - (47 - 22 - 5 / (€49, 9>g Q.
X X

On the other hand using the decomposition (15.5) of 6 and the decomposition formula (12.7) we infer

[(cf0.0) @ = [(cg0f, ver.of, ver) 0
X X

/<Lg5TXJVgJ$,5TXJVg’]$+A>gQ+/<L§A,ETX’IVg,]$+A>gQ.
X X

+
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Using the identities (12.8), (12.9) and the property (12.5) we deduce

Q Q Y Q Y I
/ (28, e>go - / (95,,Vs(ag - 2D, agTXngr>gQ ¥ / (Or, Ve (48 - 200, 31, V1 +A>gQ
X

X X
/Rarx,L?A vg,1p> <L§A,A>J a.
X

By bi-degree reasons V;"A = 0, which means (g4, 0) € Fg o. We infer V;QLgA = 0 thanks to the identity
(17.1). Then the property (12.2) implies

+

afecla = o, (17.3)

by bi-degree reasons. Integrating by parts further and using the weighted complex Bochner identities (13.8),
(13.9) we obtain

/ (29, 9>g9

X

[ (veta? - 200, 0205, wir) 0+ [ (V008 - 20,870, V) 0
X
(cda,a) 0
Q 1 0
/ (vatag -20r, vg’Ang> 0+3 /<Vgl(4 - 20y, V, (42, 211)l/’>
X X

+
N| N\ >

<L§A,A>g 0.

+
e

Using the integration by parts formulas (20.4) and (20.3) in the subsection 20.2 of the appendix A, we deduce

/<L§9, 9>go %/ 2.2 - 2m)r-A ,m+4/ 2 (48 - 20742 70

X X X
1 e 1 [
+ Z/A?J(Ag—2]I)1/)~(Ag’]—2]l)l,b[2+Z/AQ](AQ 2Dy - (A2, - 2Dy0
X X
+ £24,4) Q.
[ (stan),

We observe now that the commutation identity (15.6) implies

/ (<36, e>g9

X

%/mg - 2]I)A£ﬂ-A£,TQ+%/(A -21)A8 749 70
X

; / (4g - 242y - (4, - 20p0 + / (48 - 2047 - (42 - 200
X

/<L§A,A>g9.

X

+
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Completing the square we obtain

/<L§9, 9>g9 - /(AQ AL - 4270+ - /(AQ 2D)A2 7. A2 70
X

. / (A2 - 2)(A2; - 21 - (A2, — 212 + © / (A2 - 2142, ~ 2D - (A2, - 2102

. /(AQ 2Dy - (A7, ~ 2090 + /(AQ 203 - (42, - 2mp0

/<L§A,A>g9.

X

+

Using the equation (15.3) we infer

/<Lge,9>g0 /(AQ 2m) (agyr+42,7) - (a8 7+ 48,7) @
X

+

/|(Ag,—211)1p|29+%/[Bg,zp-(AQ,—2]1)¢—B§,$-(Ag,,—zn)up}Q

X

+
\

<QAA

[(Ag 20AGT- AfT+ |Ag T + (LZA, A) }Q

I
Co—

i -
- / ]lp Ag JjT — Bg ]l/) . Ag,]Ti| Q0

X

We observe now that the operator BY o) is L2 g-anti-adjoint. This implies in particular

/AQT B'Q]T.Q = 0,
X

and

i

Q po 0 nQ -~
Y- AgBgT-P-A2 BI 7| 0

o/
/ A!g),fﬂ B0
X
i

L Bg - AT -Bg - A2 7] Q
I

N[ ~.

A2y, + B ,zpl) B ,0.

thanks to the commutation identity (15.6). Thus

/<L§9, 6) 0 /[(A?—H)Agr-A‘g)THBng\Z+<L§A,A> ]Q
X £ X £

- / (Aglliz + Bg,ﬂl’l) BT

X

/[(A?—I[)A?r-Agr+<L§A,A> ]Q—2/(Ag—1[)¢2-3g{{,r9,
g
X X
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thanks to the second equation in (15.9). Using again the second equation in (15.9) we expand the term

-2 / (4g -T2 - BgyrQ = 2 / (48 - D, - (45 - 2D, Q - 2 / (48 ~ T2 - By 1.0

X X X
2
X X
= / [(Ag -2 + (Bg('),])z} Y2 -0,
X
thanks to the expression (15.10). We observe further that the formula
Pg; = (A¢-21)% +(Bg))?, (17.4)

hold thanks to the commutation identity (15.6). We conclude

/<L§9, 6) 0 - /{(Ag-n)z\gr-z\gnpg,zpz-¢2+<L§A,A> }Q
g g
X X

which implies the required formula for the variations (v, V) IF]g Q(0).
STEP III. We compute now the stability integral involving A. The trivial identity

LIA = LgA+Vef-VeA,
combined with the formula (14.9) implies
LA = 201,,07,,A+ [Ric'(g), A| + Vef-Via,
since ETX, ,A = 0. Integrating by parts we deduce

/ <L§A,A>go / [2 <5TXY]5*T§JA,A>g " <vgfﬂng,A>g} Q
X

—* —* . 1
/ [z (37,4, afxfjA>g + 5 Vef. |A|§} Q

1
- E/A‘g’f|A|§Q
X

/F\A|§, Q,

X

since E;gx’f;A = 0 and (J, g) is a Kédhler-Ricci-Soliton. (This last identity has been obtained by Hall-Murphy [16]
using a different integration by parts method.)

We show now the second variation formula corresponding to the particular case (v, V) € IFi,, o [0]. With
this assumption hold the relation ¢ = —7. Thus we rearrange the expression

1 1
E := 5/(4\2—H)(A?—zn)w-mg—zn)w—5/(4\?—11)4\?40-4?@
X X
1
= 5/[—4(4\‘;—I[)A‘g’w-<p+4(A‘g)—1D<p'<P}Q
X

= —2/(A§—]I)2go-(p.()

X
= 2 /]a2-1 ZQ,
[ s -n
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which implies the required formula in the particular case (v, V) € Fé’ o [0l

Let A := AQ; - 2T and observe that [4, A] = -2i[AZ, Bg;] = 0, thanks to (15.6). Then the statement

concerning the operator Pg ; follows from the elementary lemma below. O

Lemma19. LetH := Lé(X ,C)oand A, B : D C H — H be closed densely defined linear operators such that
0<A=A"0<B=B8H, [A, B] = 0. If A and B are differential operators of same order with A elliptic then
AB > 0. In particular if [A, A] = O then AA > 0.

Proof. Let E), (A) C H be the eigenspace of A corresponding to an eigenvalue Ay € Rx,. Then the identity
[A, B] = 0 implies that the restriction B : E, (A) — E,,(A) is well defined and represents a non-negative
self-adjoint operator. We deduce by the spectral theorem in finite dimensions the existence of an orthonormal
basis (ey 1)ic;, C Ej (A) such that Bey ; = py jey 1, with g ; € R>o. Moreover Aey; = Aiey ;. We consider a
strictly monotone increasing parametrization (A). Then any u € H writes as

u = Z Z Ck,1€k,15
k>0 1€l
k.1 € C.In particular for u € C*(X, C)o hold the expressions

Au = > Ncrers

k>0 1€l
Bu = Y mickiens
k>0 1€l

and

(ABu,u)g = (Bu,Aw)g=> Y Ay ’Ck,l|2 > 0.
k>0 le];

The inequality in the general case u € D follows from the density of the smooth functions in the graph
topology of A. In order to see that A > 0 we observe the trivial equalities

0 < /Au-ﬁQ=/u-HQ=/Aa-uQ=/Av-m,

X X X X

with v := u. In order to show its self-adjointness we observe also the trivial equalities

/Au-V.Q - /v-ﬁo:/m-m:/wﬁg.
X X X

X

We deduce the following corollary of proposition 1.

Corollary 4. In the setting of proposition 1 assume (v, V) € IFQ o [0] with Ay = 0. Then

d2
R <
a0 |[:OW(gt, Q) < 0,

with equality if and only if (v, V) = (0, 0).

We notice indeed that the equality hold if and only if ¢ = 0.

17.1 The Kdhler-Einstein case

Q

7 reduces to the real operator AZ. Let

In the Kdhler-Einstein case the complex operator A

Ag = I(er]R(Ag - ZI[) C COQ(X, R)O,
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andletA é C C=(X, R)o be its L*-orthogonal with respect to the measure d V. We observe the decomposition
A} = Ag @ iAg , which implies the decomposition
QL _ Al igal
A2 = A7 widg,
and thus the identity Eg ; = Ag. With the notations of lemma 16 let @ := (4g - 2I)¢, and ¥ := (4g - 2D)i.

Then the second variation formulas in proposition 1 reduces to

d2
a2,

W(gl’: Qt) VGDW(g, -Q)(Va V; v, V)

1
= W/[(Ag—ﬂ)@'@—mg—]l)l{l.lp]dvg,
X

in the case (v, V) € IFé(O) and to

d2

WIr:oW(gt’ Q4)

VeDW(g, Q)(v, V;v, V)

2 o 2
_ = - >
Volg(X)/‘Ag (g ]I)‘P‘ dVg >0,
X

in the case (v, V) € ]Fé [0], with equality if and only if vg, € 9{2’1 (Tx,)-
Proof of step II in the Kihler-Einstein case.
The most difficult part in the proof of proposition 1 is the computation of the stability integral

X/<L§9, 0) .

in step II of the proof. In the K&hler-Einstein case the argument is much more simple. We include the details
for readers convenience.
We remind first the isomorphism g™* : S]ﬁ Ty ~ Endg(Tx). We have the g-orthogonal spiting

Endg(TX) = Elg’] @g Eg’],
E,; := Endg(Ty)NC (X Ty ® TXJ> ,
Egy = Endg(Tx)NC™ (X, Tx @ Tx ) -

We observe that if a € A% Ty then holds the identity a;, = —Jag, where a;, := w™'a. We define also the vector
bundle
Ay = AP'TyNAR Ty,

and we notice the isomorphism w™! : AL ~ E’

7'r = Eg ;- Moreover the identity (3.4) combined with the properties
(12.1) and (12.2) implies that the maps

Lg:C= (X, Epj) — C (X, Ey ), (17.5)
Lg:C= (X, Ey)) — C (X, EY)), (17.6)

are well defined. We observe also that by (12.5) and (20.7) we deduce the formula

wL?a; = Aga +2Rg * a, 17.7)
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forall a € C(X, A},’ﬁ)- Notice indeed that the endomorphism Ja}, is g-anti-symmetric thanks to the J-
linearity of a,. We deduce using (17.7) and the identity Try, a = Try, ay,

Tro (Aga +2Rg * a) = Trgy (Lga:,,) .
This combined with the identity (3.10), which in our case rewrites as
Trr (Rg * a:,,) = Trg [Ric*(g)a:,,} s
implies that in the Einstein case hold the trace formula
Tro (Aga + 2Rg * a) = (Ag — 2I) Tty a. (17.8)

We observe also the identity

(@ B)g = (@i Ba) (179)

forall a, § € AlL. Indeed we consider the equalities
@By = (b))
= Tre a8y
- - Trg [ogfy]
- Trn [JaglB)
- Tr [@uBy]
= (@nh) -

We deduce by the identity (20.6) in the appendix and by the Stokes theorem that over a compact Kdhler man-
ifold if a, B € C=(X, A}*y), da = d = O satisfy {a}, = 0, or {8}, = O then

2 [ (a,p)gdVg = | Trw aTry BdVs. (1710)
[peene]

(Notice ilzdeed the identity (a, B), = (a, B),, for all a, B € A}’.) We decompose now the endomorphism
section 8 = A} + A and we estimate the integral

/<Lge, 0>go /<L§0;, 9;>g9

X X
/[<L§A},A}> +(£gaf, A7) }Q
g g
X

The last equality hold thanks to the identity (12.7). Let a := wA} and assume {a},; = 0. Using the identity
(20.10) we obtain

A§a+23%g*a = (Aff,g—Z]I)a=dV§“a—2a,
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and thus {Ag a+2Rg* a}d = 0. Then the identities (17.9), (17.7), (17.10) and (17.8) imply

/<LgA},A}>gdvg = /(Aga+291g*a,a>gdvg
X X
= %/(Ag—ZH)Trwa’Tr(uadVg>0,
X

since A1(Ag) > 2 in the Kahler-Einstein case. (Notice that the condition [, Try adVg = 0 hold thanks to the
assumption {a}, = 0.) In the set up of lemma 16 we have a = i9;0;7 and

A = 0r, Ve +A,
with i € Az and A € 3" (T ;). Thus by the previous computation
/<LgA},A}>ngg = %/(Ag—ZH)AgT 'AgTdVg.
X X

On the other hand formula (14.9) implies in the Kihler-Einstein case
LeA] = 247 LAY =201,,07, 4],
since or, ,AJ = 0. Integrating by parts we deduce

% 2 o, 2
/<LgA}’,A}'>gdvg - z/’anJA}'gdvg=z/‘aﬁ,,an,,vglpgdvg.
X X X

In the Kdhler-Einstein case the complex Bochner type formula (13.9) combined with the equation (15.3) im-
plies
zgj'gXJETXJVgl/) = Vg(Ag - Z]I)l/) = —VgAgT.
We obtain
1 2 1 2

/<LgA}/,A}/>ngg = 5/|VgAgT‘ngg = E/AgT'AgTdVg,

X X X
and thus the required formula

/ <£/g9, 9>ngg = /(Ag—]I)AgT'AgTdVg 2 0.
X X

We notice also that the latter implies the statement of theorem 2. Indeed in the equality case holds Ag7 = 0
since 11(4g) > 2. Then the equation (15.3) implies i) = 0. The conclusion follows from the decomposition
identity (15.5).

Remark 3. We consider the particular case of a smooth curve (g¢, Q¢); C 8w with go Kdihler-Einstein metric.
Time deriving twice the expression

n
W(ge, Q) = 2/log (%) Q;-2logn!,
t
X

we infer

d? . )2 Q) =
Wlf=oW(gt’Qt) = —ZX/‘QO‘ QO—ZX/lOg (ﬁ) Qo

- —2/’(25

X

2
Qo,

thanks to the Kdhler-Einstein condition. Then a trivial change of variables allows to deduce our previous second
variation formula in the particular case (o, Qo) € ]Féf; Q [0].
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17.2 The case of variations in the direction UI‘L,Q

The first part of the following result has been obtained in [28]. We provide here a new proof of the crucial case
of the variations inside IFé olO]. For readers convenience we include also the general proof explained in [28].

Proposition 2. Let (X, ], g) be a compact Kdihler-Ricci-Soliton and let Q > 0 be the unique smooth volume form
such that gJ = Ric;(Q) and fx Q = 1. Let also (g¢, Qt)ter C M x V1 be a smooth curve with (go, Qo) = (g, Q)
and with (g9, Qo) = (v, V) € T]g’ o- Then with respect to the decomposition

vg = ory, Ve P +A4,

with unique ¥ € Ag’f‘ and A € 3{2’}) (Tx,y), hold the second variation formula

d2
WI W(gt!Q[) = VGDW(grQ)(V’ V;Va V)
t=0
1
- —5/[Pg,Re¢-Re¢ +|A|§,F]Q
X
where
Pg; = (4g;-2D(4%, - 2D,

is a non-negative self-adjoint real elliptic operator with respect to the Lf)-hermitian product. Moreoverif (v, V) €
IF]g 0] then the previous formula writes as

dZ

ﬁltzow(gt»gt)

VeDW(g, Q)(v, V;v, V)

L A I AZF| Q
) 4’ Q‘ + Pg; my-Imyp +]| |g
X

Proof. Step L. Reconsidering a computation in the poof of step II of the proposition 1 we see that for all vari-
ations v € ]D{g (o) holds the identity

/<L§v, v>g.() =/<L§257X’,Vg,]$,ETXJVgJ$+A>g[)+/<L§A,5TXJV§J$+A>gQ.

X X X

Using the identity (12.9) and the property (12.5) we deduce

/<L§v,v>g9=/<5Txy,vg,,(4‘g’—211)$,ETXng,,$+A Q+/[ aTX,LgA vg,¢> <L‘;A,A>g] Q.
X X

X

Using the identity (17.3), integrating by parts further and using the weighted complex Bochner identity (13.9)

we obtain
/ <Lgv, v>g Q

X

(V0088 20 ,55237, V0, 9) 0+ [ (284,4) 0

X

_ %/ (Ves(af - 20 9, Ve, g, -209) @
X

Il
x\

<L§A,A>g9.

+
M
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Using the integration by parts formula (20.3) in the subsection 20.2 of the appendix A we infer

1 e B s
/ <L§v, v>g Q= ; /Ag,(ag 2Dy - (42, - 2P0+ 4 /Ag,mg - 2Dy - (A2; - 2Dy Q
X X X

/ <L§A,A>g9 (17.11)

X

+

forallv e ]Dé [o]°
STEP II. We show first the variation formula in the case (v, V) € IF{D,’ ol0] since the proof is simpler. Using

the expression (16.3) for the space ]Fé’ ol0] inside the identity (17.11) we deduce the equalities

/ (v, v>gQ

X

-/(Ag-zﬂ)Re(A§,¢)-VQQ+/<L§A,A> 0
g
X X

= —/(Ag—zﬂ)(agzpl+B§{,zpz)-v})g+ /<L§A,A> Q.
. g
X X

Let write 1 = 1 + i), with ; real valued functions. Then the condition in the expression (16.3) rewrites as

(Ag - 2I) Y1 + Bg  pr = -2V, (1712)

(4¢ -21) ¢, - Bg ;1 = 0. (17.13)
We use now the condition (17.12) in the formula

d2

_ZWI(ZOW(g“ Q)

-2VzDW(g, Q)(v, V;v, V)

/ KL‘g’v, v>g - 2042 - 2V, - V})} o

-2/(A§-211)¢1-V59+/<L§A,A> 0.
g
X

X

Using again the condition (17.12), we expand the integral

-2 /(Ag -2y, - Vo Q
X

/(Ag 2Dy - [(Ag - 21) ¢, + B, zpz} Q
X

- / Yr [(4F - 2091 + B (48 - 2Dy | ©
x

2
X/ | 0f 20+ (82) 0 0

thanks to the identities (15.6) and (17.13). Using the formula (17.4), we infer

d2

Wltzow(gb Q)

VGDW(g) Q)(Va V; v, V)

- _%/ [pg,¢1.¢1 +<L§A,A>J Q.
X
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Using again the condition (17.12) and the commutation identity (15.6) we expand the integral

|2
/4’% Q

X

_ /U(AQ 2111/)1’ ’Bg]l/)2’ +2(42 - 21y - g,¢2]9
X

/ [(Ag - 2D%Y1 - 1 - (BE ) 2 - o + 241 - BE (45 - 2]1)1/:2} 0

X

thanks to the fact that the operator Bg ;is Lé—anti—adjoint. Using again this fact and the condition (17.13) we
deduce

/21/’1 - Bg (43 - 21,0 /1P1 - (B Q- /Bg,] 1 - (Ag - 21,0

X X X
- [ [ - @ -20y: - aF - 20 o) 0,
X

and thus

[alvil 0 = [P s 0

X X
We infer the second variation formula

d2
a2,

cht’ Q[) VGDW(gy Q)(Vy V; v, V)

_ _;X/HVQZ

The conclusion follows from the computation in the beginning of step III in the proof of the proposition 1.

STEP III. We show now the second variation formula in the more general case of variations (v, V) € ”_II‘Q’ 0
We observe first that the general expression of VZW(g, Q) obtained at the end of the proof of lemma 7 implies
that over a shrinking-Ricci-Soliton point holds the variation formula

R <L§A,A>J Q.

d2

_Zﬁlt . _2VGDW(g, Q)(V, V; v, V)

p— Q f— *
- /<Lgv ngﬂ"§+vgv§2g’v>g9

X

W(gt, Q)

vy Q

-2 / {(AQ - 2DV}, - div? (V;ﬂ Vg + vgvg)

Lgv v - z(Ag ~2M)Vy, - V})} Q
X

- 2 <Vg V vg+VgVQ) ,v;> Q
g

X
- z/ v vg+ngQ,ngQ> Q
g
X

* * * * * 2
/ Kagv, v) -2(a8 - 20V, - Vp -2 ’vgﬂvg + vgvg‘ ] Q,
g g
X
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for arbitrary directions (v, V) € Tyxv,. Using now the fact that in the case (v, V) € T{g’ o hold the expressions
Ry =-2 V}z, (we use here the definitions (16.4), (16.5)) and (16.7) we obtain

~2VDW(g, Q)v, V3v, V) = / KLQV, v) - %(Ag ~2DRy Ry - % [Vely2| €
¥ g

forall (v, V) € T{g o- Thanks to the commutation identity (15.6) we can rewrite the identity (17.11) as

/ [<L§V,V>g—<LgA,A>} /(AQ 2048, - @7 2090
X

% /(Ag - 2140 - (A2, - 2Dy

Adding and subtracting 2 to the factor A2 ¢/ and respectively 21 to the factor A2 ]1/) we infer

X/ Kagv, v>g - (£ga, A>J Q

/ (42 - 2142, - 21 - (42, - 200

X

- / (42 - 2142, ~ 20 - (A2, - 210
X

v 2 /(Ag -2y - (47, 2090
X

+ /(AQ 2Dy - (A2, - 2Dp0.

X

We deduce the equalities

-2VsDW(g, Q)(v, Vv, V)

+
N N—

0 — 1,0 1 2
[(A - 2D)(Agy - 2D - P + 5@ -2DI, - Iy - 5 \vgllpyg} Q
(cga,4) 0

g

{[P ~iBg(Ag 21 | Y- P-Ty- Iy + <L‘;A,A>g}o.

]
N

Using the expression
Iy = (A¢-2D)y,-Bg; 1,
we find the formula

-2vsDW(g, Q)(v, V;v, V) [P;’J iBg (A3 - 2I) - (B J)MJ@Q

Il
N\

U(A” 2111/)2\ ]Bgﬂ/)l] - 2(A% - 21) ¥, - BE 1| @

<L§A,A>g9.

+
M —
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The fact that the operator Bg, s is L3-anti-adjoint combined with the commutation identity (15.6) implies that
BZ (A¢ - 21) is also L-anti-adjoint. We deduce in particular the identity

/Bg,(Ag—zn)¢j-¢jo _ o,
X

and thus the equality

[ +
Mo R —

~2VDW(g, Q)(v, Vv, V) [pgjwl.wl + P2, 9)] 0
[B2,(4€ - 21) gz - s - BEY(4E - 2001 - 2| 0

[(Bg])2¢1 P+ (B?,;)lez . l/)z] Q

/ U(A? - 20|+ [BE | - 248 - 21 ~B§,fw1} 0
X

+
N

<L§A,A>g9.

Using the fact that the operator Bg ;is L2-anti-adjoint and the commutation identity (15.6) we can simplify
in order to obtain the required variation formula. O

18 Positivity of the metric G4 o over the space T{J,Q

Lemma 20. For any (g, Q) € 8y the restriction of the symmetric form G o to the vector space T{g’ o» With
J := g w, is positive definite.

Proof. Let (u,U), (v,V) e "Jl‘]g’ o- Using the expression (16.6) for the space T]gy o We have

Ug = 5TX,]VgJ¢ +A,

*

U, - Re(ag;-2m],

and
ve = Or,VgsP+B,
2Vl = Re [(Ag, - 2]1)1,0} ,
with unique @, ¥ € Ag’f‘ and A, B € 9{2’}) (Tx,;). We decompose now the term
Geolw, Usv, V) = / (), 203 V]
X
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Integrating by parts and using the weighted complex Bochner formula (13.9) we transform the integral

Il = /<aTXJVgJ (p,aTXJVng/)>gQ
X
= / (32501, Ve . Vg,1$>g9
X
1 — _
= 5 / <vg,,(AgJ - 2D, vg,,zp> [0)
¥ g
Using the integration by parts formula (20.4) in the subsection 20.2 of the appendix we deduce
1 e
L = Z/ [Ag,(Ag, 2D - + 42,42, - 2D)gp - n,b} Q
X

= %/[(Ag]—Z]I)QD A2 + (A7, - 2D - A ﬂ#}
X

Adding and subtracting 21 to the factor Ag ;¥ and respectively 2y to the factor Ag 7Y, we infer
1 . -
no= 5 / [(Ag]—Z]I)(p % + (@2, -2Dp - y| 0

X

/[(Ag,—n)(p (A2, 2D + (A2, - 2D)p - (A2, - 211)1/;}

=

(g, -2Dp -9 +9- (4, - 20y | 0

N| -

[(Ag] -2D¢p - (AgJ -2y + (Ag] - 2D - (Ag,] - 2Dy } 0

D=

M N— X

We deduce the general formula

Ggou,Us;v,V) = /{% g]—2]I)<p P +(Ag]—2H)¢ ~¢}+<A,B>g}9
X
1
2

¥ /Im | @) - 29| m | (a7, - 2] €.
X

In particular

Gg.o(u, Usu, U) = / 4, -2mp -9 +|A|§]Q+%/{Im[(Ag,]—Z]I)(p”zQ > 0,
X

with equality if and only if ¢ = 0 and A = 0, i.e. (u, U) = (0, 0), thanks to the variational characterization of
the first eigenvalue A, (Ag, ]) > 2 of the elliptic operator A . O

Corollary 5. For any (g, Q) € 84 hold the identity
Kerg, (¢ - 21) = Kerg (A3 - 2I), (18.1)

with] := g"tw.
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Proof. Letu € C5(X, R)oand (¢¢)¢cr C Symp°(X, w) the 1-parameter sub-group generated by the symplectic
vector field & := (du), = -JVgu. We set J; := @], gt = @;g, Q¢ := ¢;Q and we compute &, = Lgg and

Qo = L Q. The expression of the tangent space to the symplectic orbit [g, Q], in the proof of lemma 18
implies

8o -2Jor,,Vgu,

Q 6 = —B‘g ]u .
Then the weighted complex Bochner formula (13.9) implies

Or080+Veo = -2J0r 07, Vel + Velo

_]Vg(Ag - 2]1)11 + VngJu + VgQB

= —JV(Ag - 2Du.
We deduce that (g9, Qo) € F{g’ o [0] if and only if (Ag - 2Mu = 0. On the other hand the (strict) positivity of

the metric G¢ o over T{g, a 2 Tg.a,.5.0 implies

1
Tig.01,.6.0 N Tigloy, ey = O
Then lemma 18 implies
1 _ J -
Tg,01,.69 N Tigloy, @0 = Tisal,. 60N Fgol0l={0},
Soif (g0, Qo) € Fég [0] then (g0, Qo) = (0, 0). We infer the inclusion
Kerg(4g -21) C Kerg By,

and thus the required identity (18.1). O

18.1 Double splitting of the space ’]I"g’Q

Let H* , with H° = L2, be a Sobolev space of sections over X. For any subset S of smooth sections over X we
denote with HXS its closure with respect to the H k-topology. The pseudo-Riemannian metric G g, is obviously
continuous with respect to the L?-topology. At the moment we are unable to say if the topology induced by
Gg, q over LZTQ, o is equivalent with the L?-topology. Nevertheless we can show the following basic decom-
position result

Corollary 6. For any (g, Q) € 8, holds the decomposition identity

2] _ 72 2mJ
LT, o = LT 0y, (g,0) @6 LTy 5[0,

with ] := g7 'w.

Proof. We set
Agr = Kerg(4g - 2D),

and let Ag ’ﬁ_ - Lé(X ,IR)o be its L?-orthogonal with respect to the measure Q. Then corollary 5 and its proof
shows that the map

Q,1 oo
X: Ag’]R NCRX,R)y — T[g,Q]w,(g,Q)’

o — (Za) o1y, Vo, (B?),(p) Q) ,
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is an isomorphism. We notice also that the expression of the metric G, o obtained at the end of the proof of
lemma 20 hold true for arbitrary functions @ and ¥. So we put (u, U) := y(¢) and @ = ¥ = -2i¢ in this
formula. Using the fact that the operator Bg ;is Lé-anti-adioint and the expression

Im| (g, -20@| = -2(a¢ -2De,
we infer
0 2 0
Ggolu, Usu,U) = 2/ U(Ag -2Dp| +2(a§ - 209 - | 0
X

= g0 (p,p) =2 O,

(with equality if and only if ¢ = 0). We remind now that the proof of the weighted Bochner formula (13.9)
shows the identity

~2div? 0701, Ve = AZ(AF - 21) - (BS)>.
Thus the operator
— *e.0 — . 0~<*s0<
(01, Ve ) " Or,, Ve = -div? 37 dr,, Ve,
is elliptic. This implies (see for example [11]) that the immage

Or, Ve [H2 (X, R) | € HY,
is closed in the H-topology, for all integers k > 0. We infer that the map
Or,, Ve i g NHW(GR) — 3, Vg [HP(XR) | € HY, (18.2)
is a topological isomorphism. We deduce that the extension in the sense of distributions
X:Agr "HXX,R) — LTy (c.0)»
of the map y is also a topological isomorphism and a (g o, G4, o)-isometry. The fact that the map
A -21: AQy NHY(X,R) — Agy,
is a topological isomorphism provides the estimate

2
Ye.0(@,0) > 2/‘(A‘g’—211)<p‘ Q
X

> 2(ag - 20712 - (||| Fe

Then the Lax-Milgram theorem implies that the map
o AgR NHP(GR) —  [AgR nH(GR) |
is a topological isomorphism. (The sign * here denotes the topological dual). We infer that the restricted map

*

2 2
Geo: L' Tig 0,000 — [L T[g,mw,(g,o)} ;

is also a topological isomorphism thanks to the fact that the extended map y is a (74,0, Gg,0)-isometry. Ap-
plying the elementary lemma 21 below to the spaces E := L* (X, S°Ty) @ L3 (X, R)gand V := L*Tg g (5.0
we deduce the G-orthogonal decomposition

2 2 2 2 20l
L (X,s TX> OLAKR)y = LTigay,.00® L T% @ o
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and thus
2 ) 25l 2]
L Tgig =L T[g’Q]w’(g’Q) ® |:L T[g,GQ]w,(g,.Q) N L Tg’9:|
_ 2 2 [l J
= LTga, 0oL [T[g,G_Q]w,(g,_Q)ﬂ Tg,o}-
Then the conclusion follows from the identity (1.14). O

Lemma 21. Let E be a real Banach space, E" its topological dual and G : E x E —; R be a topologically non
degenerate bilinear form, i.e. G : E —s E" is an isomorphism. If there exists a closed subspace V C E such that
the restriction G : V x V. —s R is also topologically non degenerate then E = V & V-6,

Proof. Letj: V——E be the canonical inclusion and notice the trivial identity
Vi = {acE|a-v=0,vv e V}=Kerj.

By assumption for any element e € E there existsaunique v € V such thatj" (e-G) = j* (v-G). Thus (e-v)-G ¢
V. By definition the restriction G : V-6 —» V- provides an isomorphism. We concludee - v € V6, [0

We notice that the condition V n V+¢ = {0} is equivalent to Ker(G : V — V") = {0} but in general not
sufficient to insure the surjectivity of G : V — V™.

18.2 Triple splitting of the space T}, ,

By abuse of notations we will denote by G, , the scalar product over Ag,’f C C* induced by the isomorphism

Q,1 0,1
n :Ag,] ij{g,.Q (TX,]) — Té,ﬂ

W,4) —s (g(ETXJVgJ$+A),—%Re [(Ag,—zu)zp} Q)

Explicitly
1 — _
Ceo@ W) = 5 [ [@fy-20p B +af;-209 7] 0
X
1
+ E/Im [ (4g;-2p| m | (a7, -21y) 0.
X
We introduce the vector space
Blo = {ueaft (g -mue gyt ncs X m,},

and we observe that the expression (16.3) for the space IFé o [0] shows that the map 7 restricts to the isomor-
phism

n: Eé,.() @ j‘fg:!l) (TX,]) — ]Fé,ﬂ [0] .

The subspaces ]E{g, ol0] := r[IEé’ o and J{g:}) (TX, ]) C ]F{g, o [0] (embedded via the previous isomorphism) are
G-orthogonal thanks to the expression of the restriction of G over IFQ o [0] computed in the proof of lemma
20. We deduce the G-orthogonal decomposition

IFé’Q[O] = ]EQ,’Q[O]@GIJ{E:})(TXJ).
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Let now

Le
J 0,1
(IEg’Q> nA

;
Og.0 Y

and observe that the decomposition in corollary 6 implies

Le
2 2 >
L'Tga,.e0 = [L IF{,,,Q[O]} nL*m}

F{g’Q[O]lG ﬂLZT{g’Q,

and thus
- J L J
Tig0, 0 = Fgolol™NTg .

We deduce that the map 7 restricts to a G-isometry

.0
1:0g9 — Tigo,.60
We show now the smooth G-orthogonal decomposition (1.16).

Proof. . The decomposition in the statement of corollary 6 implies that for any (u, U) € T]g o there exists
0, 0) e L? Tig, 01,60 and (v, V) € LZIF]g’Q[O] such that (u, U) = (8, ©) + (v, V). On the other hand, the fact
that the map (18.2) is a topological isomorphism implies the existence of p € Aﬁ’ﬁ N H%(X, R) such that

*

9g = —ZIETXJVgp.

Thus ), = -Bg;p € H' (X,R) and V;, € H' (X, R). Then the identity (Ag - 2I)ipy = -2V, implies ), €
Agﬁ N H? (X, ©) by elliptic regularity. We deduce (v, V) € HllFlg’Q[O] and thus (6, 0) € H' Tjg o) (g,0)- The
conclusion follws by induction.

We provide also a second argument. Combining formula (16.7) with a computation in the proof of corollary
5we deduce the identity Iy, = Z(Llé2 —2I)p. On the other hand we observe that 14 -2ip € Ag ;- In more explicit
terms

(Ag;-2Dy = 2Bg;p+2i(A8 -2Dp € AJ} NL* (X, C).
We infer
(g -2y = [Bg,(4F-2D" - i1 1y,

(Notice that I, € Agﬁ for any y € H? (X, C) thanks to corollary 5). The fact that I e = Iy, is smooth implies
that

Q -1 [pQ (40 1
Yo = (Ag;-207" B¢ - 207 -l Iy,
is also smooth. We infer the required smooth decomposition. O
We deduce the G-orthogonal triple splitting
T} o = Tig.0,.6.0) F6 Bl [0 &6 3o (Tx ) - (18.3)
We infer in particular the G-orthogonal decomposition
Ad =0 g a6 B g, (18.4)

thanks to the fact that the map 7 is a topological isomorphism. We observe now the following elementary
lemma.
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Lemma22. LetT: D c L? (X, C) — L* (X, C) be a closed densely defined L3-self-adjoint operator such that
[T, T] = 0. Then

Ker(TT) NL*(X,R) = {Reu|ucKerT}.
Proof. The assumption [T, T] = 0 implies that the restriction
T:KerT — KerT,
is well defined. This combined with the fact that T is also L3-self-adjoint implies that the restriction
T:DNnKer )X — (KerT)™,

is also well defined. The inclusion Ker(TT) D Ker T+Ker T is obvious. In order to show the reverse inclusion let
u € Ker(TT), i.e. Tu € Ker T, and consider the decomposition u = u; + u, with u; € Ker T and u, € (Ker T)™*.
Then Tu € Ker T if and only if Tu, € Ker T since Tu; € Ker T. But Tu, € Ker T if and only if Tu, = 0 since
Tu, € (Ker T)*. We infer the reverse inclusion. Thus

Ker(TT) = {u+v|u,vecKerT},
which implies the required conclusion. O

We remind that if (g, Q) € 8, is a Kdhler-Ricci-Soliton with J := gl w then
[AQ - 21, A2 —2]1} =0
8] * g ’
which allows to apply the previous lemma to the L} -self-adjoint operator Pg, ;- Thus
KerPg;NC3 (X, R), = {ReulueAgs}=iRea).
The finiteness theorem for elliptic operators implies
Q oo Q + 0o Q, 1L oo
P2,C3 (X, R), = (ReAgJ) NCF (X, R)y 2 A% N CF (X, R, -
The last inclusion is obvious. The inclusion Pg’ 1Co (X, R)g C Ag”f NCy (X, R), is also obvious. We conclude
1L
P2,C5 (X, R)g = A2 N €5 (X, R), = (Re A2 ,) NCS (X, R), . (18.5)
Lemma 23. If (g, Q) € Sy is a Kdhler-Ricci-Soliton then holds the identity
] _ Q,1 | pQ _
Dpo = {$eagy 1P Rep =0},
with ] := g7lw.
Proof. We notice that for any ¢ € ]E]g’ gand P € (D]g’ o holds the identity

0 = Gg,o(%l/J)=/(A§,,—211)<p-Resz.
X

We infer

Q
C\!q\
b

I

iR
{z/) €AJ |Reyp € [Ag]l NnCy (X, R)O} }

{zp € A% [Rey e ReAgJ},

thanks to (18.5). O
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19 Infinitesimal properties of the function H

By abuse of notations also we will consider from now on Ag”ﬁ‘ C C*=. We observe that lemma 5 implies;
(8, Q) € v is a Kdhler-Ricci-Soliton if and only if Hg = 0. Furthermore the identity (4.18) rewrites as

2Hy o = -(Ag) - 2IF € AJ}" 0 C5 (X, R),
forall (g, Q) € 8. We show now the following fact.
Lemma 24. If (g, Q) € 8y is a Kdhler-Ricci-Soliton then the linear map
DgoH : B o[0] — AZy" N CF (X, R),, (19.1)
with ] := g 'w, is well defined and represents an isomorphism of real vector spaces.
Proof. The identity 2H, o = 2Hg o — W (g, Q) combined with the basic variation formula (1.5) implies
2Dy oH (v, V) = (A -2D)Vp,

for all (v, V) € g o over a shrinking Ricci soliton point (g, Q). In our Kéhler-Ricci soliton set up the latter
rewrites as 1
2Dy oH (v, V) = _5(1\;2 - 2D)(Ag; - 2Dy, (19.2)

for all (v, V) € I} , [0]. The commutation identity
4¢ - 21,48, -21] = 0,

implies the inclusion

4g -20A7; C Ag), (19.3)
and thus
(A8 - 2DAZT C Ady . (194)

Then the identity (19.2) shows that the map (19.1) is well defined. We will deduce that it is an isomorphism if
we show that the map
Ag - 21: AQy N CF (X, R)y — Agyt N CH (X, R), (19.5)

g,J

is an isomorphism. Indeed this is the case. The injectivity of (19.5) follows from the inclusion
CAgR € Agy,
which holds thanks to the identity (18.1). This inclusion implies also
CAgR = (CAGR)" 2 AGF, (19.6)

and thus

Q,L Q,1 . oo

AZg D AZ N CE (X, R), -
We use now the obvious fact that
o) 0,1 Q,1
Ag - 21 :Ag,]R — Ag,]R’

is an isomorphism. Thus for any f € Ag”f‘ N Cy (X, R), there exists a unique u € Ag’ﬁ‘ such that

(A2 - 2mu =f.
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We decompose u = ug + up, with u; € Ag yjand u; € Ag,’f. Then the inclusions (19.3) and (19.4) imply the
L} -orthogonal decomposition

(A2 - 2Du; + (AF - 2Du; = f.
We deduce u; € (DA?’ Rr-Butu; € (DAg”ﬁ‘ thanks to the inclusion (19.6). We infer u; = 0 since u € Ag”ﬂi. Thus
u=u, € AJ7 N CF (X, R, .
We obtain the surjectivity of the map (19.5) and thus the required conclusion. O
Lemma 25. If (g, Q) € 8w is a Kdhler-Ricci-Soliton then hold the identity
KerDg oHN'T, o = Tig 01 6,00 D6 Hogy (Tx) » (19.7)
with ] := g7'w.

Proof. With the notations in the proof of lemma 18, the basic variation formula (1.5) combined with the iden-
tities (16.6) and (16.7) implies that for all (v, V) € T]gy o over a Kdhler-Ricci-Soliton point (J, g, Q) hold the
equalities

*

1,.0 1
_Z(Ag - Z]I)Rw + i (L]ngxI)Q )_Q

2Dg 0H (v, V)

1. .0 1,0
= —E(Ag - Z]I)RIIJ + EBgJI!/J

_% Re [(Ag - 21) (A2, - 2Dy }

1. [0
- —SRe[PY |

1.0
- EPg’ jRey,
since Pg ; is a real operator in our Kahler-Ricci-Soliton case. Then lemma 23 implies
KerDg oHN'T) o =~ O} o@6HYH (Txy)
i.e. the required conclusion. O
Proof of the main theorem 1
Proof. The inequality in the statement follows immediately from proposition 2. If equality holds then obvi-
0,1

ously A € 3y, (Tx,), and

/Pg,Relp.Relp Q = o.

X

Then the spectral theorem applied to the non-negative L3-self-adjoint real elliptic operator Pg ; implies
P2 Re = 0. Thus the conclusion

v, V) € Tig.0,,6,0 ®6 Hga (Txy)o = KerDg,oH N TG,

follows from lemma 23 and the identity (19.7). In order to show the inclusion (1.22) we observe that if
(86> Q0)ier C KRSy is a smooth curve with (g9, Qo) = (g, Q) and with (go, Qo) = (v, V) then holds the
identity Hg o, = 0 and thus

0,1
(vs V) € RerDg oH NI, = Tig 1. 000 B6 Hory (Txy) »
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thanks to the identity (19.7). On the other side if we set W; := W (g¢, Q) then W; = 0 and thus

0=W = / AZFQ,
X
thanks to proposition 2 and lemma 23. We conclude the required inclusion. O

20 Appendix A

20.1 The first variation of Perelman’s W functional

We give a short proof of Perelman’s first variation formula [29] for the W functional based on the identity (3.2).
Let (g¢, Q¢)¢ C M x V1 be a smooth family and set f; := log dQLf‘. Then

d d _
aw(gt,-ot) o /[Tr]R(gtlht) + th} Q;
X

_ / [T (-gini + )+ Treg-207] 0
X

/[Trg,ht + 2ft]-(2t

X
. d .. .
—{86: he)g, + (86 g5 Ricg,(Q0) ) -20Q;

X 8t

/[Tl‘gtht + th].Q[.

X

+

Q;

+

Using the variation formula (3.2) and integrating by parts we infer

d . 1 * . x
/<gt, dt Rlcgr(Qt)> Q¢ / {‘ 3 <gtsvg?Dgfgt>g +Agr9t} Qy
8t t
X X

1 . .
= —/ [5 (Ve8t: Dgi8t)g, + <Vg19t, Vgtf[>gt:| Q;
X
_/Q:Agfftﬂh

X

which implies Perelman’s first variation formula

d
Ew(gt,-@t) = -

[(gt, he)g, — 207 (H; - 1)} Q

(80 ho)g, — 20¢H, | Q0.

N

since [, Q¢ =0.

20.2 Basic complex identities

We provide a useful expression of the hermitian product (-, ), on T % ®r C, which is the sesquilinear exten-
sion of the dual of g. We observe first that for any ¢ € Tx @ C and any @ € Ty ®y C hold the elementary
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equalities
0 = &(arnwM)=(a-OHw" -an(E-w").
We obtain the formula
(a-&w" = na A (E-w) Aw™?, (20.1)
and thus
20§ =Try [a A (§-w)]. (20.2)

Using (20.2) we deduce that for all a, § € Ty @R C hold the equalities
2(a,B), = 2a-Pg=Try [a A (B;ﬂcu)} ,
where B; := g~!B. Then the identity ] = -Bg-w implies the formula
2(a,B), = -Trw[an(B))].
Thus in the case a, 8 € A}’O T;( we deduce the identities

2(a, By, = Tiw(ianp),

(@, B),

(@,py,, -
We show now the following integration by parts formulas

Lemma 26. Forany u,v € C>(X, C) holds the integration by parts identity
/ [Ag,u V+42u- v} Q- Z/g(VgJﬂ, Ve MQ. (20.3)
X X

Ifu € C>(X, R) then holds also the integration by parts identity
/ [agyu-v+agu-v] 0= 2/g(vgu, Ve V)0 (204)
X X

Proof. Using the complex decomposition (13.2) and the fact that hermitian product (-, -) , on Ty ®r Cis the
sesquilinear extension of the dual of g, we deduce

g(VgJu, Vg’]V) <a]ﬂ+5]u, a]V+5]V>g

<a]ﬂ +0juU, OjV + 5]v>w

(o, oyv),, + <5]u,51v>w

<a]ﬁ, a]V>w + W
Integrating by parts and taking the conjugate we infer the identity
2/g(vg,,u, Ve V)Q = / [agu-v+agu-v] 0. 20.5)
X X

Replacing u with i, v with v in (20.5) we obtain (20.3). In the case u € C*°(X, R) formula (20.5) implies directly
(20.4). O
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We show now that for all a, 8 € A}*! Ty N Af; Ty holds the identity

anBAw?
wn

4n(n-1) =TryaTtw f-2(a, ), . (20.6)

Indeed we consider the local expressions

i * —% . * —* . * —%
w=§;(k/\(k’ a=1;ak7(k/\(l, ﬁ=l;ﬁk7(k/\(l’

and we set
* * >k >x
VYi=anp = Z 1, Biot, Sk A G, A G A G
ki,ka,11,1
= Z WL (kAL
|K|=|L|=2

where K = (ky, k3), 1 < k; < k; < nand the same holds for L. Explicitly the coefficients Yk ; are given by the
expression

lIIK’L = ak171ﬁk272 + akzizﬁklh B akﬂzﬁkzh B akzilﬁkﬂz'
We conclude the identity

YA w2
4}'1(” - 1)7 16 Z WL’L = 162(1']()'([31] = 162(1,&[3”‘(

a)Yl
|L|=2 k1 k1

= TryaTref-2(a,B), .-

20.3 Action of the curvature on alternating 2-forms

We observe that as in the symmetric case we can define an action of the curvature operator over alternating
2-forms as follows

Rg*a)(§,m) = -Trgla(Rg (&, -)n, ),

for any a € A?Ty. The tensor Rg * a is anti-symmetric. In fact let (e;); be a g(x)-orthonormal base of Ty, and
consider the local expression a; = A ke; ® ey, with A; j = -Ay ;. Then

Rg* )& n) = -g (azRe(E em, ex)

= g (Rel&, e, azer)
= Re(§. ex. ager, m)
= Rg(&, e, Apenn)
= —Rg(&, Apex, e, n)
= —Rq(&, agey, e, 1)

= —Rg(n, e, agey, )

= -Rg*a)(n, ),
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thanks to the symmetry properties of the curvature form. We observe also that the previous computation
shows the identity

(Rg * a)(&, 1) ~Rg(&, ex, 1, agey)

-8(Rg(¢, ek)a;ekr n

= —g((Re*ag) &),

(Rg * a); = —Rg * a;. (20.7)

On the other hand using the algebraic Bianchi identity we obtain the equalities

i.e.

(Rg * a)(§, 1)

~g (o Re(&, en, ex)

= g (@Ralew W &) + 8 (@Rsln, e, e )
- g (@Ren, €8, i) - g (Reln, Dex azer )
- Re* 0, &) +8 (Reln, Dagers )

= -(Rg* (& m) - Tr |Re(§, g

and thus the formula L
(Rg * a)(§, 1) =~ Trm [ Re(§, )] - (20.8)

We assume further that (X, J, g) is Kédhler and a is J-anti-invariant. In this case a; = A is J-anti-linear and so
is the endomorphism Rg(¢, rl)a;. We deduce

Reg*a=0, ie. Rg*A=0. (20.9)
thanks to the identity (20.7).

20.4 Weighted Weitzenbdck formula for alternating 2-forms

We show the weighted Weitzenbdck type formula
A ga = Aga+ 2R * a + aRicg(Q) + Ricg(Q)atg, (20.10)

for any alternating 2-form a over a Riemannian manifold. For this purpose we fix an arbitrary point xo and we
choose the vector fields ¢ and n such that 0 = Vgé(xo) = Vgn(xo). Let (ex) be a g-orthonormal local frame
such that Vgey(xo) = 0. Then at the point x, holds the identities

dvga(¢,n)

Ve Ve 1= VgnVea- &
= Vg |Vea-n| - Ven [Vea-¢]
= Vg [Veealer, n)] + Ven [Vgeale, &)

= —VgeVgealer, n)+ VenVgealeg, §),
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and

V;da(tf, 1’[) _Vg,ekda(ek, é” rl)

~Vg,e, [daley, &, 1)]

= Ve [Vaea(é,n) - Vg raler, n) + Vg nale, &)

~Vg,eVee, (&, n) + Vg,e, Vg caler, ) = Vg,e, Vgnaley, &).
We remind now that for any vector fields u, { such that [u, {](xo) = 0 holds the identity at the point xq
Vg,yvg’(a - vg’(Vg,ya = Rg((: I‘l)_‘a’

where the contraction operation T- : A>Ty — A% Ty associated to an endomorphism T € End(Ty) is defined
by the formula

(T-a)(&,n) := a(T&, n)+alé, Tn).
We deduce

(Ve,eu Vet = Ve i Vee) (e, n) = a(Rg(é, ep)er, n) +a(ex, Rg(£, exn)

[a Ric'(g) + (Rg * a)} &, n),

and also

(VenVg,ed = Vg, Vgna) (e, &) - {(X Ric'(g) + (Rg * a)} (n, %)
- g (R @0, §) + (Rg * )&, 1)

g(n, Ric"(g)agd) + (Rg * a)(&, 1)

[Ric()ag + (Re * @)] (€, ).

Summing up the terms dvga(f ,n)and V;da(f , ) and using these last identities we infer the formula (20.10)
in the case Q = Cd V. In order to obtain the general case we observe the decompositions

dvgf’a = dV§a+d(ng—.a),
Vgda = Vgda+ Vef-da,

and the identities at the point xg,

d(Vef-a)(&, n)

Ve,t(Vef-a) - = Vg n(Vef-a)- &

= Ve [a(Vef,n)] - Ve [a(Vef, §)]

Ve,ea(Vef, 1)+ a(V;“rf, n)
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~ Vena(Vef, &) - a(Vgf, &)
= Vg ea(Vef,n)+a(Vyg ¢f, 1)
— Vgna(Vef, &) - Vedfag(é, n),

(ng"da)(é‘, ’1) = (ng"vga)(g, 71) - Vg,ga(vgf, ’1) + Vg,rza(vgf, f)

Summing up we infer the required formula (20.10).

21 Appendix B

21.1 Reformulation of the weighted complex Bochner identity (13.9)

We define the complex operator
Q . a0
Agy = AZ).
With this notation the weighted complex Bochner type identity (13.9) rewrites also as
Q,- Q
20777V u = Vg, (AL -2y,

forall u € C*(X, C). We show now that the fundamental identity (13.9) implies an other important formula.
We need a few preliminaries.

Lemma 27. Forany u,v € C*(X, C) holds the integration by parts identity

/Ag{,,u-m = 2/<vg,,u,vg,]v>w Q.
X X

Proof. We define the complex components of the g-gradient as

1,0
Vel

(Vew);® € C=(X, Ty)),

Vg:}u (Vgu)?’1 € C=(X, Tg’} .

With these notations holds the decomposition formula
Vi = Vg u+ Vo . (21.1)
We observe that for all £, n € Tx holds the identity
(4, Mo = h,nm) = 21"0('1?’1, 6]1’0 .
This combined with (21.1) implies

(Vegu, Vg vy, = 2iw(Vyv, v, u).

We observe now that the complex spiting of the g-gradient

_ 1,0 0,1
Veu = Vo u+Vou
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implies the identities

1,0 _ i3
Vg’] Uu-w ioyu,

Vg:}uﬂw —ioju.
Using this and the identity (20.2) we deduce

<Vg,]u, VgJV>w

20V Vgiu
= Try [la]V A 5]11i|

= 2(ov,05u), -

We infer the equalities

z/ (oyu, 0v), Q

/(Vg,]u, VgJV>w Q
X

A2 1 -vQ

- 8J
= [ A2 ju-vQ.

N N~

O

We equip C (X, C)o with the Lé-product (13.1) and the space
Cc=(X, A?’l Ty ®¢ Tx,j) with the L2 ,-hermitian product (11.1). Then the formal adjoint of %g:} with respect
to such products

(HY}) 001 C™(X, AP Ty @ Tx)) —  C5(X, C)o,

0,1 _ . 0,1 *
/<}fg,ju,A>w.Q - /u (00 waAQ,
X X
satisfies the identity
0,1\* 00  _ *0.075 80
(g{g,l yes = VgJ!2 0 TgX.l :
Moreover lemma implies the identity
Q *lLI,
Agj = Vg ]ﬂ Ve

Then the complex Bochner type identity (13.9) implies

0,1y*w,0q00,15; _ *0,03 62 —
2(3{&]) ﬂj{gJV = ZVgJ”aTXJaTXJVng

Q (AQ _
Ag’](AgJ 2D)v,
or in other terms

0,1\*y.0 10,1 a0 Q
Z(Hg’]) ﬂj‘(g’]u = Ag,_](Ag,_]—Z]I)u,

forallu € C=(X, C).
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21.2 APoisson structure on the first eigenspace of Ag’ J

For any complex valued function u and symplectic form w we define the complex vector field
(dw;, := w'ldu= -JVgu,
and the Poisson bracket
{u,v}, = dv-(du)y, = -w((du)y, (@v)y).

We define the Poisson bracket over the space C5 (X, C) as
{u,viyo = H{u,vi, - / {u,v}, Q
X

With these notations holds the following lemma (see also [12], [14]).

Lemma 28. Let (X,]) be a Fano manifold and let g be a J-invariant Kdhler metric such that w := gJ ¢
2mtc1(X, [J]). Let also Q > 0 be the unique smooth volume form with [, Q = 1 such that Ric;(Q) = w
A) Then the map

X:(m,i{"'}w,g) — (HO(X,TX,]),["'D

u — Vgju,

is well defined and it represents an isomorphism of complex lie algebras.

B) The first eigenvalue Al(A 1) of the operator AY o) Satisfies the estimate /11(A 1) = 2, with equality in the
case H (X, TX,]) # 0.
C) If we set Killg := Lie(Isomg) then the map

JVg : Kerg (Ag - 2T) — Killg, (21.2)

is well defined and it represents an isomorphism of real vector spaces.
D) The hermitian form

w,v) — /i{u,f/}w.()

X

over Ker(A9 ey 21) is non-negative and let (y])] “o C R>0, Mo = 0, beits spectrum with respect to the L2 -product.
Ifgisa]- mvarlant Kdihler-Ricci soliton then holds the decomposition

HO(X,TX,]) = @VH;"

Vi = {£€ B Tx)I[Vef, €= ¢},

Vo = Killg@JKillg.

Proof. Step A. In this step we show the statement A. The fact that y is an isomorphism follows from corollary
1. We show now that y is also a morphism of complex Lie algebras. Let

K. := I(er(Ag+] 20).
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Forany ¢ € HO(X, T@we denote u® := y"1(¢) € K- and we decompose u’ = u'i( + iug, with uf € C5 (X, R)o.
Forany u,v € K- = K; weset & := V, ju,  := Vg ;v and as in [14] we observe the identities

L[‘m]w = Léana) —Lana)

ZLSI'()]EIMI} - 2Lnia]5]uf

2i9;9; ({.u'f - n.ui) ,

since ¢, n are holomorphic. We infer that for some constant C; € R holds the identities

ublicy = Eul-nadd
= &vi-nu

= g(Vgvy, Veuy +JVsiy)

- 8(Vgui, Vgvi +JVgvs)

= 8(Vgv1,JVguy) - 8(Vgus, JVgvy)

= w(VgUz, Vgv1) - w(Vgvz, Vgu1)

= w(Vguz, JVgv1) + w(JVgui,JVgVs)

= o (i, @1} ) + ()i, (dv)y)

= —{uy,va}, —{uz,vi}, -
On the other hand

u[z«:',n] _ _ufl[f,nlz_u[f,m]’

since ¢ is holomorphic. We infer that for some constant C, € R holds the identities

ublec, = &+ mad
=l vl
= {va+nuy
= g8(Vgva, Veuy +JVsuy)
+ g(Vguy,JVgvi — Vgv2)

= g(Vszy ]Vguz) +8(Vgu1,JVgvi)
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= w(Vguy, Vgvi) +w (Vgvi, Vgui)
= w(Vguy,JVgvy)-w(JVgui,JVgvi)
= ()i (@v2)l) - o ((dur)iy, (@va); )

= {ul!vl}(u _{uz’VZ}a)'

We conclude that for all u, v € IK- holds the identity

Vesi{u, v, o = [Vg,I“’VgJV]’

which shows that i {-, -}, ; is a complex Lie algebra product over K- and that the map y is a morphism of
complex Lie algebras.

Step B,C. The statements B and C follow from corollary 1 and the remarkable identity (18.1).

Step D. We show now the statement D. We observe first that for all u, v € C*(X, C) holds the identity

/i{u,v}w.() = —/iBgJu-vQ.

X X
Indeed thanks to the computations in step A we deduce

/i{u,v}w() —/[{u1,V2}w+{u2,V1}w]~Q

X

+ 0 [{ur,vi}, —{uz,v2},] Q
(

VgV1,JVglz), + (Vgli, ]Vsz>g} Q

]

+ 1 |:<VgV2,IVguz>g + <VgU1,]VgV1>gi| Q.
X

b'¢
X
Integrating by parts we infer

X/i{u,v}wQ

|:V1 . Bg,]llz —Uuz- Bg’]Vzi| 0]

I
N

+ 1 [vz -Bg]uz + Uy -Bg]vl} Q

—

|:Bg,]l11 V) +Bg]u2 . V1i| 0

Il
N\ b

! [Bg,ul “ V1 —Bg]uz -vz} Q

N

iBgJu -vQ,

1
e

thanks to the fact that Bg ; is Ly-anti-adjoint. Thus if u € K-

/i{u,a}wQ = /(Ag—zn)u-a9>o.
X

X
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The Kahler-Ricci-Soliton assumption implies the commutation identity

Q ,0
[AgJ’Ag,—I} = 0.
We infer that
Agy -2 K- — K, (21.3)

is a well defined non-negative L3-self-adjoint operator and let (Aj)il‘io C R0, Ao = 0 be it’s spectrum. Notice
also that by definition of IK_ this operator coincides with the operator

-2iBY; K. — K-

Thus u € K- is an eigen-vector corresponding to the eigenvalue A; if and only if u € K- satisfies

UvVeflu = ﬁiu.

This rewrites as

l{f’ u}aj,_() = Eua

and is equivalent to the equation

A
[Vef, Vgyu] = %Vg,lu-
Notice also that the kernel of (21.3) is given by the identity

KiNK- = Kg&JKRg,

Kgr := KerR(Ag’t] - Z]I)

We deduce the required conclusion with p; = A;/2. O

21.3 Consequences of the Bochner-Kodaira-Nakano formula

The holomorphic and antiholomorphic Hodge Laplacian operators are related by the Bochner-Kodaira-
Nakano identity. At the level of Tx-valued 1-forms it reduces to the identity

. 1 .
A7 A=0p A+ 5 URg N A) (@ o), (21.4)

where w” = w™! € C™(X, Ap' Tx N AR Ty) is the dual element associated to w. If in holomorphic coordinates
w writes as

i _
Ewkjdzk A le,
then

* Lk 0 0

1
N
§.
>

|

w

The factor 1/6 in front of the last term on the right hand side of (21.4) is due to the convention

ViA...ANVp = ZE’UVol@"'@VUP.
0ES)

We explicit the latter term. For this purpose we observe first that for any a € A}’l Ty ®¢ E holds the identity

Tra) (44 = - Trg [a(]', . )] .
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We infer the expressions

SURAAW AE = (RgAA) <2iwl’kaizl(, aizl g)

_ _% Tro[JRg A A, -, &)

= %(]Rg NA)(Jey, ey, &),

for an arbitrary g-orthonormal real frame (e;);. We explicit the exterior product using the J-invariant proper-
ties of the curvature operator. We obtain

URg A A)Jey, e, &) JRg(Jey, e)AE — JRg(Jey, E)Aey + JRg(ey, &)AJex

= ~Try(JRg)AE — Rg(Jey, E)JAey + Rgley, E)JATey
= -2Ric'(9)AE + Re(&, Je)JAey - [Rg * UA))] &

= -2Ric'(§)AE - Rg(&, n)JAIny - [Rg * UAD)] &,
where 1 := Jey. But () is also a g-orthonormal real frame. We infer
URg A A)Jey, ex, &) = -2Ric’ (9)A& -2 [Rg* JA))] &.
We deduce that the Bochner-Kodaira-Nakano identity rewrites at the level of Tx-valued 1-forms as
A7 A=Nh A-Ric(9)A-Rg* (A] - 4)), (21.5)

where A} and A} are respectively the J-linear and J-anti-linear parts of A. Using the Weitzenhdck type formula
in lemma 3 with Q = CdVg we infer

LIA = AgA+Vgf-VeA-2Rg* A

Ary A - Rg* A—ARIC'(g) + Vgf-VgA

= (8], +47,) A-Re* A= ARIC'(8) + Vgf-VeA.
Using the Bochner-Kodaira-Nakano identity (21.5) we deduce the formulas

£2A

2A’TX’gA ~Ric(g)A - ARIc(g) - 2Rg * A} + Vgf-VgA,

LgA = 247 A+Ric'(9)A - ARiC (g) - 2Rg * A] + Vf-VieA,

and thus the identities

LgA] = 207, Aj-Ric'(9)A] - AjRic’(g) + Vef VA, (21.6)
LgA] =247, A] +Ric'()A] - A] Ric'(g) + Vef-VgA]. (217)

We point out that one can obtain directly these formulas by using the methods in the proof of identities (14.2),
(14.5) and (14.6). We remind now that the properties (12.1) and (12.2) imply that A € Ker L if and only if
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Aj € Ker Lg and A} € Ker £g. Thus if A € Ker £g we infer thanks to the identity (21.6) with Q = Cd Vg,

0 /(LgA},A}>ngg

X
- 2 / KAJTMA},A}L —<Ric*(g)A},A}>J dvs.
X

Using the identity between Riemannian and hermitian norms of Tx-valued forms we obtain

z/'<Afong},A}>ngg - 2/<A]TX,gA},A}>deg

X X
= 2o arl” o+ fos at’ | av
B Tx; |, Tx; |, g
X
= 2ot arl® 4 o5 atl’|av
- TX,] ]g TX,] jg 8-
X
We deduce i R ,
*g I g I _ PN !oal _
)/ [2]aTXJA,g ¥ ‘aTXJA,g 2 (Ric (g)A],A]>J dVg = 0. (21.8)

Assume from now on the Kahler-Einstein condition Ric(g) = Ag, A = 1, 0. The identity (21.7) with Q = CdV,
implies in this case

- -J
LgA] = 24 TX’gA}’,
and thus
Ker Lg N C™ (X, Ty ; ® TX,,) = HQ (Txy) .
Let now A € Ker Vg and observe that for be-degree reasons holds the decomposition

0=VgA = Vp Aj+Vr Af
* -y "
OF A7+ A

Thus if A € Ker Vg N Ker Lg then E;iJA}’ = 0 and thus a*TgXIA; = 0 which implies

[l
X

thanks to (21.8). We will still denote by £ the analogue operator over C> (X s Sﬁ T}) We infer thatif A # O
then holds the identity

2 *
- 2(Ric'(8)4}, 47 ) }dvg - o,
g g

Ker vV nKer £g nD} = {v e € (X, S3Tx) | v=vf, v; € 3G (Tx)) ).
i.e. there exists an isomorphism

KerVgnKerLynDy — 32! (Txy)

sm
*
V. — Vg

But 59! (Tx). =Hg' (Tx,), thanks to lemma 14. We conclude the following fact.

sm
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Lemma 29. Over any compact non Ricci flat Kéhler-Einstein manifold (X, ], g) there exists the canonical iso-
morphism

KerVgnKerLg Dy — HY'(X, Tx;) ~ H'(X, O(Tx,))
v L)

This result was proved by [9] in the negative Kédhler-Einstein case Ric(g) = —g.

21.4 Polarized deformations of Fano manifolds

In this subsection we review a few basic facts on deformation theory which clarifies the Fano set up in the
paper. In particular we wish the readers would avoid the frequent inaccuracies we found in the application
of this theory to Kdhler geometry.

21.4.1 The Maurer-Cartan equation

Let (V, Jo) be a complex vector space of dimension n. We remind that the data of a complex structure J over
V is equivalent with a n-dimensional complex subspace dataI’ ¢ CV := V@R CsuchthatI'nT = {0}. A
complex structure J over V is called Jo-compatible if the projection map

0,1, y70,1 0,1
y; .V] — V]O ,

is surjective, i.e. a C-isomorphism. This is equivalent to the condition V?’l N V}O’O = {0}, which in its turn is
equivalent to the existence of a C-linear map 6 : V' — V> such that

vpto= @+evpyt

Ifwesety:=(0+ 9)|V € End_;, (V) then the condition V;)’l N V}”l = {0} is equivalent to say I + 4 € GLR (V).
Notice that we can obtain 6 by the formula 6 = u¢ - n?o’l, with ug € Endg(CV) the natural complexification
of u. If we denote by J(V, Jo) the set of Jo-compatible complex structures over V and if we set

C(V,Jo) = {pueEnd (V)|I+pueGLr(V)},
we infer the existence of a bijection, called the Caley transform (see [14])

X : C(V’]O) — B(Vij())
po— J=@+wh@+p

ui=Uo+ N Uo-D «— J.

Notice indeed that J(V, Jo) is the sub-set of the complex structures such that Jo + J € GLr(V). We observe
that for any u € C(V, Jo) as above I - u € GLg (V). Indeed

~JoJ = (L - )@+ p)~".
Thus p € End_j (V) satisfies I + u € GLg (V) if and only if
(I-p%) = (I- W)@+ p) € GLy (V)
This last condition is equivalent with

1,0+ (L) = (I - 660) € GLe(V},°).
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We assume from now on that (X, J) is a compact complex manifold and let J(X, Jo) be the set of Jo-compatible
smooth almost complex structures. For any J € J(X, Jo) let

0=06; € CX,AD' Ty ®¢ Ty)), (Iyzo —66) € GLc(Tx),

be the corresponding inverse Caley transform. We show that the subset J;,:(X, Jo) of integrable almost com-
plex structures is given by the Maurer-Cartan equation

ET;(,? 0+ % [6,0] =0, (21.9)

where for any a, 8 € C>(X, A?O" Ty ¢ T}(’?O) we define the exterior differential Lie product

[a,8] € C(X, A} Ty ®c Ty))s
of degree d = deg a + deg § by the formula
[@,B1) = D er[al&), B&))]

|I|=deg a
forall £ € O(Ty} ). Notice that this formula defines a priori only an element

d (4 ,1 Y, oo ,
[@,8] € Al3O(TY] ) C=(Tx9)).

However we can define pointwise the section [a, 8] as follows. For any v € (Tg’}o X)Xd

[, BI(v) = [a, B] ()

with & € O(T%} ) such that & = v. This is well defined by the O-linearity of [a, 8]. Indeed the coefficients
of & with respect to the local frame ()7, ¢ O(U, T?(’,}o)’ with § = aiz,»’ and Jy-holomorphic coordinates
(z1, ..., 2n), are Jo-anti-holomorphic functions which value at the point x is uniquely determined by v. The
section [a, f] is smooth since its coefficients with respect to the frame ({});_, are smooth functions.

Notice now that (I + 8)({), k = 1, ..., n, is a local frame of the bundle T?(”} over an open set U. Then the
integrability of ] is equivalent to the condition

[(T+6)(G), (T+6)()] € C=(U, Ty, (21.10)
since the torsion form 1; € C(X, A?O’Z Ty ®¢ T}(”?O) of J satisfies

7 (@40, @+ @) = [+, @+ O],

We observe also the identities

@+ 0, @+ (D)

(k> 6D] + [6(8), &) + [6(8k), 6(Z)]

(G 0G)]2° - (5 0G0, + 5 16,01 Gir T

— 1 > 3 oo
<()T}1(1(])09 + 2 [9’ 9]) ((k’ (l) e C=(U, T)lfy,?o .

We have T?(’,} N T)l(”?o = Oy by the Jo-compatibility of J. We infer that if (21.10) holds then also (21.9) holds true
and

[(@+60)G), @+6)(E)] = o.

On the other hand if (21.9) is satisfied then the previous identity is satisfied and thus (21.10) holds true.
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Remark 4. Forany a, € C=(X, A?o" Ty ®¢ Tx, 1,) we define the exterior differential Lie product
[@,B] € C™(X,A)"Tx®c Txy,),
of degree d = deg a + deg B by the formula

[a’ﬁ] = n}yo'ac’ﬂ}’o'ﬁc}+{ﬂ/1’0'ac’n71’o'ﬂq: .
Then the Maurer-Cartan equation (21.9) can be rewritten in the equivalent form

5 1
Orys B+ 5 Ml = 0,

since

ETX,]O H = 5T1,0 9+5T1,0 0,

X.Jo XJo

[0, 6]+, 0].

(M, 1]

Let now B C CP be the unitary open ball and observe that, by a refinement of Ehresmann theorem for any
proper holomorphic submersion 7 : X — B of a complex manifold X onto B with central fiber (X, Jo) =
7 1(0) there exists a smooth map ¢ : ¥ — X such that the map

(p,m): X — XxB,

is a diffeomorphism with ¢, = Ix and with @ 1(x) C X complex sub-variety for all x € X.
Let now 6 := (6¢);ep C C(X, A})O’l Ty ¢ T)l(’,?o) with 6 = 0 and

det(]IT;(,? —etét) # 0,

be a smooth family of Jo-compatible complex structures. We observe that the almost complex manifold

x = 0 = | &6,

teB

is a complex one if and only if 6, satisfies the Maurer-Cartan equation (21.9) for all t € B and the map
teB +— 6:(0) € A} Ty @c Ty o

is holomorphic for all x € X. Indeed the distribution T%le is integrable if and only if its local generators

Ty = % ,r=1,...,p, @+0)(), k=1,...,n,satisfy the conditions
[Tr, (T+ 6] € C™(U, T p)s (21.11)
and
[@+6)(&), @+ 6)(()] € C(U, T?(’,é[). (21.12)

The latter is equivalent with the Maurer-Cartan equation (21.9). Let 6; = Gf’lf ©+ © { be the local expression of
0;. Then the identity

[fr, @+ 00G)] = 760G € Co(U, TY)),

combined with the property T?(’,let N T}(”?O = Oy, shows that (21.11) holds true if and only if the map ¢t — 6; is
holomorphic.

For any p € X a coordinate chart of X in a open neighborhood U, x B of (p, 0) is given by a smooth
function f : U, x B — C™ x CP such that

Elof + a,of-Ht =0,

o0f = 0

det (df) # 0.

In order to produce such family 6 we need to remind a few basic facts about Hodge theory.
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21.4.2 Basic facts about Hodge theory and 0-equations

Let w be a hermitian metric over X and let (E, dg, h) be a hermitian holomorphic vector bundle over it. We
define the anti-holomorphic Hodge Laplacian

A = 3pdg+ 3o,
acting on the sections of Af’qT;( ®¢ E. Let EP4(E) := C=(X, A;”qT} ®¢ E) and set
HPY(E) := KerAgn&Pi(E).
We remind the L2-Hodge decomposition
EPIE) = IPUE) @ 3pEP T (E) @ 0pE I (E).
We observe that if there exists two subspaces L, V C C>°(X, E) such that the Lz-decomposition
C°(X,E) = LoV,

holds then L and V are closed subspaces of C*(X, E). Indeed L = V* and V = L by the L?-decomposition.
The same consideration holds fo*r the Sobolev spaces WX(X, E). Thus the L?-Hodge decomposition implies
that the spaces 0;&P*91(E) and 0g&P*9"1(E) are closed in the smooth topology. We infer the L2-decomposition

eP4(E) = [Kerdgn ePI(E)] @ opeP i (E),
and thus
Kerop N EPUE) = HPI(E) @ 0peP T\ (E).
An other way to see this decomposition is the following. Let
Hg:&P9E) — HPUE),

be the L2-projection operator over H?*(E). For any a € &P*9(E) there exists § € EP4"1(E) and v € EPI*L(E)
such that

a = Hpa+ogP +5*Efy.
Now if 0ga = O then 5}55;57 =0,i.e 5;7 = 0. Let
WPA(E) = WHX, APITy ¢ E).
We remind that the Green operator
Gg: WYUE) — AgWEI(E),

is defined by the identity I = H + Az Gg. The latter implies Ker G = Ker A and the L2-orthogonal decompo-
sition

a = Hpa+ 555;‘65(1 + 5;5}5650(.
We show now the identity 0zGg = Gg0g. Indeed 0g-differentiating the identity defining G we infer
Opa = O0pApGra=ARoEGra.
Applying the same identity to 0t we obtain dgat = A% Grdga, since Hpdg = 0 by orthogonality. Thus

Af <5EGE(1 - GE55a> = 0.
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The fact that by definition Gg Wf(’ 4(E) = A%’Wf ;Z(E) implies the existence of 8 € Wf;‘f‘ (F)and v € Wﬁ’gl(E)
such that

Gga = Ag s
Gpopa = Ap
EOgA = Adg7.

We deduce
EEGEQ - GESE(X = A/E/' <5EB - ’y) =0,

thanks to the orthogonality of the Kernel and image of A%.
We observe finally that the equation dga =  admits a solution if and only if 9z = 0 and Hgf = 0. In this
case the unique solution of minimal L2-norm is given by a = 0 Ggf.

21.4.3 The equation of holomorphic maps

For any smooth map f : (X, Jx) — (Y, Jy) we define the operators

20, f = df=Uyof)-df -Jxe C (X, AL Ty 0y f Ty, ),

20,,,f = df+Uyof)-df -Jxe C (X, A) Ty @ f Ty, ),
and we notice the elementary identities

1,0 1,0 , 0,1 0,1
a,x,,yf = qm, -df ey 4y df ey,

1,0 0,1, 0,1 1,0
a,X_,Yf = m -df-ny +my -df emt.

The map f is called holomorphic if (Jy o f) - df = df - Jx. We deduce that the map f is holomorphic if and only
ifo, , f = 0, thusifand only if

ml.df - 7% = o.

We infer thatamap f : (X, Jp) — (Y, Jy) is holomorphic if and only if

1,0
, dflT?(}q, = 0.
The identity
5 - (2ee)er

implies that f : (X, Jo) — (Y, Jy) is holomorphic if and only if
0. df - (ng’l +go> = 0.

This last condition rewrites as

0,1
a,o,,yf ST+ a,o,,yf .
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We explicit the latter condition in the case of a smooth map
f:(X,Jp) — (X, ]p). Indeed

0 = 29,,f-m+29,,f ¢
= [M-i(go - (df -m)t +df - @)
= [[-iUgo Nl 7% (df -t +df - p)
+ [1-iUgoNl-myt - (df -7t +df - )
= [M-iUgo N1 0 (O f+93,f-¢)

+ [M-iFgoNl-m)t - (3, f +0,f-¢)
We explicit at this point the expression of J. For this purpose let u := 6 + 6 and decompose the identity

Jo = Jo@-w@+w™
- Jo(ﬂ—;u)z(ll—uzf1
= Io(H—2y+u2) (H—uz)_l

o -1
= Jo(1-26-20+66+06) (1-60-69) .
Decomposing in types we infer

]9 = i (Hl,O + 9?) (]Il,O - 95)_1 + 21.5(1[1’0 - 95)_1

- 2i0(p1 - 00)! —i(Ip,1 + 60)(To1 - 66) .
Let A := 60. Using the trivial identity
T+ A)T-A)1 =TI+24@1- A",
we conclude the expression

Jo = ily0+2i00(T10 - 60) " +2i0(1, 0 - 66)"

co10(113) core(1,)
— 2i6(o 1 - 06) ! —illy 1 - 2i66(Ty 1 - 66) L.
eeot (k5 ) ceot (1], )

For notation simplicity we identify J4 = Jg o f and thus 6 = 6 o f. Using the previous expression we infer the
equalities

1,0+ 66(T1,0 - 00) + 6(T1 0 - 66) "

S =iGgo - "

(T1,0 - 60)" +0(11,0 - 60) ",

SI-ilpof-nd = -6(T,1 - 06)" - 06(To,; - 06) ",

|
1
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The second equality follows from the trivial identity
I+AT-A)7"=@a-4)7".
We deduce that the holomorphy condition for f writes in the form

3 0,1
0 = 6,0Jof-ﬂ]0 +6,Oy,0f-(p

(I1,0-60)" - (0, f +90,f - @) - 6(Io,1 - 66)" - 0, f+0,f )

+

01,0 -60)" (0, f+0,f @) - 60,1 -60)" (0, f+0,f )

The fact that the second line is composed by elements in £%* (T}l{’f])o) and the third by elements in £%1 (Tg’,}())
implies that the holomorphy condition for f is equivalent to the equations

(I1,0-660)"- (0, f+0,f-9) = 0o -060)"-(0,f+0,f- ),

01,0 -60)" (0, f+0,f- ) 06(To,1 — 06) - (9, f + 9, f - ®).

But the last one is obtained multiplying both sides of the first with 6. We infer that the holomorphy condition
for f writes as

00, f+0,f-9 = (I,0-00)0o1-660)"-(3,f+9,f )
We notice now the identity
6 = (I1,0-66)0(Ip1 -606)7 .
The latter follows decomposing the trivial identity
oo (o)
We conclude finally that the map f : (X, Jo) — (X, J) is holomorphic if and only if
m0 3, f+0,f 9 = (B0f)-(9,f+0,f 9

For any f € Diff (X) sufficiently close to the identity in C L_norm, the almost complex structure f~ Jo is Jo-
compatible, i.e. det (]o +f*]9) # 0. Thus there exists a unique form Gf such that f*]e = ]gf.

By definition the map f : (X i ef) — (X, Jp) is holomorphic. We conclude that Gf is given by the formula

1,03, f ~(00f)- 0, f =~ [8,f~ (@) 3,f] -6y, (113)
and thus
O = =[ouf-©en -0, 103 -@on-0,1].
as long as

[a,of-(eof)-E,of} . € Gl (T}(’,?()).

1,
|TXJ()

Adding the complex conjugate we infer
O f ~(uof) -0, f = =[0f (oD 3,f] uy, (21.14)
and thus
S
W= = [0 f-wef) 00| [0,/ -won 0,1],
as long as

3,f~(of)-3,f € GL(Ty).
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21.4.4 The Kuranishi space of a compact complex manifold

Let (X, J) be a complex manifold and consider

Ef = Ty ©Txy
v; = Endg(Tx)NEf,
5 1
VRS {u € &(Ey) | (1+ ) € GLg (Tx), Oy, 1+ 5 1 1] = 0} :

Then the Caley transform (see [14]) provides a bijection

Cal]O : (‘310 — 8]0 = {] S 3int | ﬂ?o’l(T?(”}) = T?(:}o}
po— J= @+ @+t

ui=Uo+N'UJo-1) +— .

For notations convenience we will restrict our considerations to the Fano case even if the result that will follow
and its argument holds for a general compact complex manifold. For any polarized Fano manifold (X, J, w)
we define also the sub-set of Q-divergence free tensors in €,

efy = {neelagiu=0}.

We denote by H° (Tx,) Wy (Tx,j) the L ,-orthogonal space to the space of holomorphic vector fields
inside Wy (Tyx,y). For any & € & (Tx) of sufficiently small norm the map e (§) : X — X defined by

e ({)X = €XPg (éx),

is a smooth diffeomorphism. For readers convenience we provide a proof (in the Fano case) of the following
fundamental result due to Kuranishi [18].

Theorem 3. (The Kuranishi space X; ;.) For any polarized Fano manifold (X, ], w) and any integer k > 2(n+
1) with n := dimg, X, there exists;

(A) ,6 € Rso, a complex analytic subset X; , C ﬂ{g”}) (Tx,;) N B$(0), 0 € X, and a holomorphic
embedding

0,1
B j{g’:}) (Tx,s) N B§ 0 — BZVk (Tx.)) ),
with uo = 0, which restricts to a bijection

. 0,1
kg — (‘3‘]1,‘;’ N Bgvk (Tx)) 0,

with the property dop (v) = v, for all v € TCy, _ o :=the tangent cone of X . at the origin.
(B) &9 € R0, &9 < &, and a smooth map

W2 LT, 1
B M0y —  HO(Ty))" n Wy (Txy)
¢ — &,
with &y = 0, such that 5;3;;(/) e(&,) = 0 which restricts to an application

BYY ) () g0:1 (Tx)) — H°(Tx;)" né(Txy),
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and such that the map

0,1 . 0,1
e;nBat ") — el ) ()

P U(P) =P,
is well defined.

Proof. We divide Kuranishi’s proof in a few steps.
STEP A1. We show first that the system

Ory, M+ 3 [, U] =0,
(S1)

is equivalent to the system

U+ %E*Tg,}ﬁGTx,, [, 4] = Hry ) 1,
(S2)
Hry, [u, 1] =0,
provided that y is sufficiently close to 0. Indeed let u be a solution of (S;). Then the considerations about the
resolution of the 9-equation imply the second equation in (S,). Moreover if we set

145,
¢ = —507,Gry, [ ul,

Q

then a := y - ¢ satisfies 07, @ = 0 and 5}?1

a=0.Thusa }(g:})(TXJ) and Hr, ,u = a since

Q
J

Hr,, o7, 0,

by orthogonality. This shows that also the first equation in (S,) holds. Assume now that y is a solution of (S;).
It is clear that the second equation in (S;) holds true. We set

- 1
Y = O, M+t 5 [ ml,

and we observe the equalities

1o % 1
_iaTX,]aTi(f;GTX,] [}1, H] + E [.u’ }l]

<
[

17* o<

= Eaﬁ(iaTX,] GTX,] [I,l, l’l]
17*&0 —

= 501y,Gry, 01y, [ H]

= 0r7,,Gr,, [ETX‘/y,y} .
We deduce the identity

l/) = STg);,(;GTx,j [l/)’ .u] .

The assumption k > n + 1 implies that the Sobolev embedding W* c C¥! holds true. Using the standard
estimates on the Sobolev norms of W,*:

HGTX,/ §0Hk+2 < COHQDHI(’

e ¥l < Callolll$lle
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we obtain

Pl < Coll s 1] i1 < CLCol [Pl 1l

Thus if ||u||x < €/(C1C5) for some € € (0, 1) then (1 - )|y || < 0, which holds true if and only if 3 = 0.
STEP A2. We remind that the previous discussion shows that the first equation in (S,) is equivalent to
the condition

1<%,
Fu) :=p+ iaTgxi Gry, [M,H] € 9{2,’})(71)(,1)-
Let =, C W,?’I(T x,7) be the subset of the elements satisfying this condition. We notice that the map
F:WyNTx) — WyNTx)),
is well defined and continuous thanks to the estimate

1975, Gr, s M1l < Cull [y Ml k-1 < CaCallmllg-

We infer that F is also holomorphic since F - I is a continuous quadratic form. The fact that the differential
of F at the origin is the identity implies the existence of an inverse holomorphic map F! in a neighborhood
BY(0) of the origin. Restricting this to 5{2: })(TX, N BY«(0) we deduce the existence of a holomorphic map

a e HYL(Tx)NBIHO) —  pa e WN(Tx,),
such that

1<%,
Ha + iaTgX?GTX,, [Ma, pa] = a.

By construction Im (@ — pa) represents a neighborhood of the origin inside =. It is clear that uq is of class
C*" by the Sobolev embedding. We show further that U is smooth for a sufficiently small choice of €. Indeed
applying the Hodge Laplacian A‘T));’g] to both sides of the previous identity and using the equalities

Q,-] g0 _ 380 20,-] _ 3N 8@
AL T3 G, = 01507, Gy, = 375,

Tx,; J5Txe 2 Txg

(notice that ngx,i Hr,, = 0)we obtain the equation

_ 1<%,
A?,},g]lla + EaTii [Mas Ma] = O,
which rewrites also as
A% 1 * 72 _ 1 * 1 * *
Ty Ha + 5 Ma*Vgha = SVgla* Vgla+ 5 Ha* Vgha Vef s

where * denotes adequate contraction operators. The fact that the C°-norm of 4 can be made arbitrary small
for sufficiently small € implies that the operator

o 1 2
ATX.g * 5 Ha*vg ’

is elliptic. Then the smoothness of j4 follows by standard elliptic bootstrapping. We denote by X . the zero
set of the holomorphic map

X:Heo(Tx ) NBIHO) —  HYH(Tx )

a +— Hry [Ma, pa]

Then the set {ya | @ € K 4 } covers the set of the solutions of the system (S,) in a neighborhood of the origin.
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STEP B. We observe first that 5;’3;jgo = Oifand onlyif G, ﬁ%}"j(p = 0. Indeed

Im 5}8;3 L KerGry,,

since Ker G, , = Ker A%‘g’ . Thus in order to construct the application ¢ — &, we need to find the zeros of
the map ’

R: Wt (Txy)  [H (Txy) " nBE @] — HO (Txy) " 0 Wi (Txy)

(@,8) — Gr,, 075 Pee)s

(0,00 — O.
For notations simplicity we denote ¥ : (i, f) — py. With these notations the formula (21.14) writes as
de(td) = -o,e(te)- ¥ (0,e(td).

Time deriving this identity at ¢ = 0 and using the fact that %I o€ (t§) =&, ¥ (0,1dx) = O and e (0) = Idx we
obtain

5Tx,] € = _DflP(O’ IdX) . {y

where D ¥ denotes the partial Frechet derivative of ¥ in the variable f. We observe now that for any & <
Wy (Tx,7) holds the decomposition formula

{ = HTX,] é‘ + GTXJEY%;?ETX,Ig'
Thus if § € H* (Tx ;)" N Wy (Ty;) then holds the identity

{ = GTX,]ETgXJETX,/ 5‘

We conclude the identity DR (0,0) = I and the existence of the map ¢ ~— &, by the implicit function
theorem. In local coordinates we can consider the expansion

e(§) = Idg+&+0(¢P).
Then the formula (21.14) implies the local identity

Pery = —O1y 8+ 0+ Q. 9),
with Q an analytic function (depending on the local coordinates). Then the condition 5;?‘; Pe(e,) = 0 implies
—08 78 + 350 +31,5Q(9, &) = 0.

Thus &, is smooth if ¢ is smooth by elliptic regularity. O

21.4.5 Parametrization of a sub-space of the w-compatible complex structures

Let (X, J, w) be a polarized Fano manifold and consider the set

= 1
Cuy = {y € 8(Eg,]) lg(1+pu)>0,0r,, u+ 5 [u, u] = 0} ,
with g := —w]/. Then the Caley transform restricts to a bijection (see [14])
Cal, : Gw,] — Jw.

We define also the sub-set of Q-divergence free tensors in C,, ;

elv .= {y €Cuy IETg;jy:O}.
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Definition 2. (The Kuranishi space of polarized deformations) For any polarized Fano manifold (X, ], w)
we define the Kuranishi space of w-polarized complex deformations as the complex analytic subset

KY o= {a € Koy | pa = (ya)gT} .
With these notations the map y in theorem 3 restricts to a bijection
. 0,1
p:ky — el ) gy,

For any a € X7 we define Ja := Calj pua. Let also Uy C Cg (X, C), be an open neighborhood of the origin
such that w + ddfn u; >0foralla 9(}" and u = uj +iuy € Uy, with u; real valued. We define the real vector
field

-1 1
o= - (w+ tdd; ug) (dfaul + iduz) ,

forallt € (-¢, 1 + €), for some small € > 0. We define also the family of diffeomorphisms ((Dﬁ"”) over

X given by 0,@7"" = & o @F"¥, with @f* = Idy. We set finally

te(-g,1+¢)

Jau = (Gj(f’”)* Ja.
With these notations holds the following lemma.
Lemma 30. The map

j{;‘) Xua) — 3(11’

(a, u — Jau,
is well defined and its differential at the origin is given by the fiberwise injection

Q,1
TCj{;J’O ®Ag,] — TCy, s

(Av) > |31,V v+24].
Proof. Let denote for simplicity w; := w + tdd; u; and we observe the elementary identities
W = ddfaul = —d(.ff””—-w[) = —L{;x,uwt.

We infer

%{ (@) 0] = (@) (@c+ Lgaw) =0,

and thus (cD’{"“)* w1 = ((D%’“)* wo = w, i.e.
(@9") (w+ddSuy) = .

The fact that the complex structure J, is integrable implies that the form w1 is Jo-invariant. (This is no longer
true in the non-integrable case!) We conclude Ja,u € Jw.

We compute now the differential at the origin. We consider for this purpose a smooth family (u (s)); € Uw
such that u (0) = 0 and i (0) = v. We denote for simplicity & s := f?’”(s) and @5 := @>“C). Then deriving
with respect to s at s = 0 the identity

0

&@t,s = éyt,so‘pt,s,
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and using the fact that & o = 0, (which implies in particular @; ¢ = Idy) we obtain

0 0 0 0
951,00 70 T s S T b0t ogy P
0
- &lsﬂ){tﬁ.

On the other hand deriving with respect to s at s = 0 the identity

&t s (a) +tdd{u, (s)) = - (dful (s) + %duz (s)) ,
we obtain
(%Is=o€t’s) —w o= - (dfvl + %dvz) ,
and thus
%gﬁ’s - lvw

Commuting the derivatives in s and t we infer the identity

00 1 _
a&ls:()@t’s _EVgJV.
Integrating in t from O to 1 we deduce
Io) 1 _
= @ -= ,
1 0S 520 s 2 VeV
since @ s = Idy. We infer
d ~ _
%lszojo,u(s) = LyJ= _]aTX‘,vg,]V-

Assume now (« (s)); C Xj,, is a smooth curve with a (0) = 0 and & (0) = A. Then

d d d
£|s:o]a(s)’u(s) - %ls:oja(s) + %IS:OJO’M(S)’
with
d
a5 Jao = YA
thanks to the properties of the differential of the Caley transform (see [14]). .

Lemma 31. For any point ] € J holds the inclusions

(01, V€™ (X, ©) | 0 TCxcy 0

N

TCy,.7

N

(01, Vg € (X, ©) | @0 TCxc, 0.

Proof. The first inclusion is a direct consequence of lemma 30. In order to show the second one let (¢¢), C

0,1
Crn B?gk (Tx) (0) with o = 0 and set for notation simplicity e; := e ({y,). With these notations, the identity
(21.14) writes as

9ec—(proer)-der = - {a,et—@ptoet)-é,et} S ACHE
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Time deriving this at t = 0 and using the obvious equality &y = D& (0) ¢ we deduce the equality
< . . d
aTx,/ [D §(0) (PO] ~—Po = T u(Pe).
|[:0
This combined with the identity E;g;; U (¢¢) = 0 implies
5Té;;,I;ETX.J [D { (0) ‘pO} - 5Tgx!; (l"O = 0.
Thus if 37" o = 0 then D £ (0) o = 0 and

. d
Po = Eh:oy((pt)'
We infer the equality

{4 €3Q4(Tx) 1300, C G Jo =T, Jo= A}

= {A € %(g)j})(TX,}) | 3 (o), C e}ﬁ; 2o =0, @o= A} = TCx;,.0-

B

By gauge transformation we deduce

{A€3QUTx) 1200, du:To =], Hry o= A}

c {AerQhTx) 1300, Cdn:lo=], Jo=A},
and thus the required inclusion. O

This result combined with the existence of the isomorphism 7 and with the triple decomposition identity
(18.3) implies the inclusions (1.17) and (1.18) in the introduction of the paper.
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