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1 Introduction

We conjecture that holomorphic locally homogeneous geometric structures on complex tori are translation
invariant. Our motivation is from Ghys [10]: holomorphic nonsingular foliations of codimension one on any
complex torus admit a subtorus of symmetries of codimension at least one. Let us briefly recall Ghys’s classifi-
cation of holomorphic codimension one nonsingular foliations on complex tori. The simplest are those given
by the kernel of some holomorphic 1-form w. Since w is necessarily translation invariant on the complex torus
T, the foliation will be also translation invariant.

Assume now that T = C"/A, with A a lattice in C" and there exists a linear form 7: C" — C sending A
to a lattice A’ in C. Then 71 descends toamap 71: T — T’ := C/A’. Pick a nonconstant meromorphic function
u on the elliptic curve T’ and consider the meromorphic closed 1-form Q = " (udz) + w on T. It is easy to see
that the foliation given by the kernel of Q extends to all of T as a nonsingular holomorphic codimension one
foliation. This foliation is not invariant by all translations in T, but only by those which lie the kernel of 7.
They act on T as a subtorus of symmetries of codimension one.

Ghys’s theorem asserts that all nonsingular codimension one holomorphic foliations on complex tori are
constructed in this way. In particular, they are invariant by a subtorus of complex codimension one. Moreover,
for generic complex tori, there are no nonconstant meromorphic functions and, consequently, all holomor-
phic codimension one foliations on those tori are translation invariant.

Our aim is to generalize Ghys’s result to other holomorphic geometric structures on complex tori and
to find the smallest amount of symmetry those geometric structures can have. In particular, using a result
from [7, 8] we prove here that on complex tori with no nonconstant meromorphic functions (algebraic dimen-
sion zero), all holomorphic geometric structures are translation invariant.

Notice that there are holomorphic Cartan geometries (see section 10 for the precise definition) or holomor-
phic rigid geometric structures in Gromov’s sense (see [8]) on complex tori which are not translation invariant:
just add any holomorphic affine structure (the standard one for example) to one of the previous holomorphic
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foliations of Ghys. Then the subtorus of symmetries is of codimension one: all symmetries of the foliation
preserve the affine structure.

There are holomorphic rigid geometric structures on complex tori without any symmetries. For example,
any projective embedding of an abelian variety into a complex projective space is a holomorphic rigid geo-
metric structure. There are no symmetries: any symmetry preserves the fibers of the map; since the map is an
embedding the only symmetry is the identity.

Nevertheless, we conjecture that all holomorphic locally homogeneous geometric structures on tori are
translation invariant. Locally homogeneous geometric structures naturally arise in the following way. Start
with a holomorphic rigid geometric structure in Gromov’s sense ¢ on a complex manifold M; think of a holo-
morphic affine connection or of a holomorphic projective connection. Assume that the local holomorphic
vector fields preserving ¢ are transitive on the manifold: they span the holomorphic tangent bundle TM at
each point m € M. The rigidity of ¢p implies that those local vector fields form a finite dimensional Lie alge-
bra (associated to a connected complex Lie group G). Under these assumptions, M is then locally modelled
on a complex G-homogeneous space X and, consequently, we get a holomorphic locally homogeneous geo-
metric structure on M locally modelled on (X, G), also called a holomorphic (X, G)-structure (see the precise
definition in section 2).

For various types of complex homogeneous spaces (X, G), we develop some general techniques below to
demonstrate that all holomorphic (X, G)-structures on complex tori are translation invariant. We will prove
this below for all (X, G) in complex dimension 1 and 2, by running through the classification of complex
homogeneous surfaces following [16, 18, 19]. We also prove it for G nilpotent.

We further conjecture that holomorphic locally homogeneous geometric structures on compact quotients
P/n, with 7 a discrete cocompact subgroup of a complex Lie group P, lift to right invariant geometric struc-
tures on P. This will be proved here only for those quotients which are of algebraic dimension zero. For
P = SL(2, C) this generalizes a result of Ghys about holomorphic tensors on SL(2, C)/m [9].

Notice also that these results do not hold in the real analytic category. For example, there are real analytic
flat affine structures on two dimensional real tori (constructed and classified by Nagano and Yagi) which are
not translation invariant [3].

2 Notation and main result

A complex homogeneous space (X, G) is a connected complex Lie group G acting transitively, effectively and
holomorphically on a complex manifold X. A holomorphic (X, G)-structure (also known as a holomorphic lo-
cally homogeneous structure modelled on (X, G)) on a complex manifold M is a maximal collection of local
biholomorphisms of open subsets of M to open subsets of X (the charts of the structure), so that any two
charts differ by action of an element of G, and every point of M lies in the domain of a chart. Every holomor-
phic (X, G)-structure on a complex manifold M has a developing map 6: M — X, a local biholomorphism on
the universal covering space of M, so that the composition of § with any local section of M — M is a chart of
the structure. There is a unique developing map, up to post composition with elements in G. Any developing
map is equivariant for a unique group morphism h: (M) — G, the holonomy morphism of the developing
map. The reader can consult [11] as a reference on locally homogeneous structures.

Throughout this paper, we take an (X, G)-structure on a complex torus T = V/A, the quotient of V = C"
with a lattice A c V, with holonomy morphism h: A — G and developing map 6: V — X. Let xo := 6(0).
Denote by H = G* C G the stabilizer of the point xo € X and let n = dim¢ X.
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Among interesting (X, G)-structures on tori we note:

X G (X, G)-structure

C" GL(n,C) x C" complex affine structure

P" PSL(n+1,C) complex projective structure

C" 0(n,C)x C" flat holomorphic Riemannian metric
(> 22 = 0) C P™1 PO(n+2,C) flat holomorphic conformal structure

The main theorem of our article is the following:

Theorem 1. Suppose that (X, G) is a complex homogeneous curve or surface. Then every holomorphic (X, G)-
structure on any complex torus is translation invariant.

For tori T of higher dimension, we prove that the translation invariant (X, G)-structures on T form a union of
connected components in the deformation space of (X, G)-structures (see Theorem 5).

3 The symmetry group

Suppose that M is a manifold with an (X, G)-structure with developing map 6: M — X and holonomy mor-
phism h: m1(M) — G. Let Z;; be the group of all pairs (f, g) so that f: M — M is a diffeomorphism equivari-
ant for some automorphism a € Aut(mry(M)), i.e. f o v = a(y) o f with quotient f: M — M and g € G and
6of = gb. Let f+ .= a. We can see the fundamental group as a discrete normal subgroup of Zj; through the
map v € 1 (M) — (v, h(v)) € Zj.

The automorphism group of the (X, G)-structure is the quotient

ZM = ZM/T[I(M)

Thus, a diffeomorphism of M is an automorphism just when, lifted to i, it reads through the developing map
6 as an element of G.

We extend the holonomy morphism from 771(M) to Z;; by defining h: Z;; — G, h(f, g) = g.

Let Zy C G be the image of this extended h. The universal covering map M — M is equivariant for
Zjiy — Zy, while the developing map 4: M — X is equivariant for Z i1 — Zx-

The notation Zy is explained by the following lemma.

Lemma 1. The identity component Z3 C Zy is the identity component of the centralizer Zgh(m) in G of the
image of i := 1 (M).

Proof. Let Z .= Zsh(m). For any (f, g) in the identity component Z%I of Zy, f+ is the identity. Since the action
of Z?\’/r on M commutes with the action of 771 (M) and § is equivariant, Z$ = h(Z%I) commutes with h(7). Hence,
79 lies in the centralizer Z.

Conversely, every vector field z in the Lie algebra of Z is a complete vector field on X commuting with
h(7r). Pull back z by 6 to become a complete vector field on /M, invariant under the action of 77 by deck trans-
formations, i.e. the vector field descends to M. The corresponding flow is an one-parameter subgroup in Z%I
whose image under h is the flow of z. Therefore the identity component of Z lies in Z% = h(ZI%I). O

For a complex homogeneous space (X, G), let G be the closure of G in the biholomorphism group of X, in the
topology of uniform convergence on compact sets. A complex homogeneous space (X, G) is full if G = G. If
G is a complex Lie group acting holomorphically on X, then the complex homogeneous space (X , G) is the
fulfillment of (X, G). It turns out that every complex homogeneous space of complex dimension 1 or 2 has a
fulfillment, i.e. G is a finite dimensional complex Lie group acting holomorphically on X. It does not appear to
be known if there are complex homogeneous spaces which do not have a fulfillment. A locally homogeneous
structure is full if its model is full.
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Take complex numbers A1, A, .. ., A, algebraically independent, define the diagonal matrix

A
A

An

and consider the morphism of complex Lie groups
p:zeCwr e eC™,

Take a faithful representation p: C" — GL(N, C), and let X = CY and G := CN x C with action (v, z)x =

p o u(z)x + v. Then (X, G) is a complex homogeneous space with fulfillment (X , G) where G = CN x C™.

Lemma 2. Every algebraic homogeneous space (X, G) is full.

Proof. Let X () be the set of all k-jets of local holomorphic coordinate charts on X (also called the k-frame
bundle of X). The G-action on X lifts to a holomorphic G-action on X¥. For sufficiently large k, every orbit of
G on X is a holomorphic immersion of G as a complex submanifold of X® [2] p. 4, Thm. 2.4. In other words
this result asserts that the G-action is free on X (for k large enough) as soon as the stabilizer of any point in
X has finitely many connected components (which is always true for algebraic actions).

Moreover, the G-action being supposed algebraic, all G-orbits of minimal dimension in X® are closed in
the algebraic Zariski topology [21] p. 28 Lemma 2.3.3 (ii). Since the G-action is free on X% all orbits have the
same dimension and they are all closed in the algebraic Zariski topology of X ),

Therefore the orbits of the G-action on X® define an algebraic foliation on X* such that each leaf is an
embedded algebraic subvariety biholomorphic to G. Recall now that the Lie group G has its Maurer-Cartan
one-form with values in its Lie algebra (defining a holomorphic parallelization of the holomorphic tangent
bundle of G) and elements of G are precisely those biholomorphisms of G preserving the Maurer-Cartan one-
form.

Hence our algebraic foliation on X®¥ admits a holomorphic section of its cotangent sheaf with values
in the Lie algebra of G which coincides on each leaf with the Maurer-Cartan one-form. Elements in G are
precisely those biholomorphisms of X which (when lifted to X)) preserve a leaf (and hence all leafs) of this
foliation and its Maurer-Cartan one-form. Consequently, G is a closed subgroup in the biholomorphism group
of X, for the topology of uniform convergence on compact sets. O

The elements of Z,; are precisely the diffeomorphisms of M that lift to elements of Z i If the model (X, G) is
full then the groups Z;, Zx and Zy, are closed subgroups of the appropriate biholomorphism groups, as limits
of symmetries are symmetries. Even if the model is not full, Z% is a closed subgroup of the biholomorphism
group by lemma 1 on the preceding page. Denote by 3 the Lie algebra of Zx C G, which is also the Lie algebra
of Zy and of Z .

For a complex torus T = V/A, the previous notations become Zy; = Zy and Z;; = Zy. Every element
v =(f,8 € Zy has f: V — V dropping to an automorphism of the torus, so f(v) = b + av where b € V and
a = f« € GL(V) and aA = A. As above, the holonomy morphism h extends from the fundamental group A to
a complex Lie group morphism h: Zy — Zx so that 6(yv) = h(v)6(v), forallv € Vand v € Zy.

The following lemma characterizes those (X, G)-structures on complex tori which are translation invari-
ant.

Lemma 3. For any complex homogeneous space (X, G) and any holomorphic (X, G)-structure on a complex
torus T, with notation as above, the identity component Z?( of Zx is an abelian group, acting locally freely on the
image of the developing map. The Lie algebra 3 C V is a complex linear subspace acting on V by translations.
The subgroup Zx C G is a closed complex subgroup and has a finite index subgroup lying inside Z;h(A). If (X, G)
is full then the identity component of the Lie group Zr is a subtorus Z% C T covered by Z3 = 3. The following are
equivalent:
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The (X, G)-structure on T is translation invariant.

dll’n(cé = dll’l’l(c T.

The morphism h extends to a Lie group morphism h: V — G for which the developing map is equivariant.
There is a morphism of complex Lie groups h: V — G with image transverse to H so that the local biholo-
morphism 6: v € V ~ h(v)xo € X is the developing map.

N WN =

Proof. Every holomorphic vector field on T is a translation, and translations commute, so Z% is a complex
abelian subgroup in (the translation group) T. If (X, G) is full, then Z7 is a closed complex subgroup of G. No
vector field on T can vanish at a point without vanishing everywhere: 3 N h = 0, with h the Lie algebra of the
stabilizer H of the point x( in the image of the developing map. Since 3 C V is a complex linear subspace,
dimcj < dimc V, with equality exactly when 3 = V and then the (X, G)-structure is translation invariant.
The map (f, g) € Zy — f'(0) € GL(V) has finite image, because f'(0)A = A. So the kernel of this map is a
finite index subgroup of Zy, consisting of those pairs (f, g) € Zy for which f is a translation, and therefore
commutes with the translations A, and so g commutes with h(A). So this finite index kernel maps to Zgh(A).
But it maps to a finite index subgroup of Zx. So, using Lemma 1, Zy is a finite extension of an open subgroup
of Zgh(A). Since Zgh(A) is a closed complex subgroup, its components are closed in the complex analytic
Zariski topology, and disjoint. Therefore the open subgroup is also a closed analytic subvariety, and so Zx is
also a closed analytic subvariety. O

Hence, to prove translation invariance of an (X, G)-structure on a complex torus T = C"/A, one needs to
prove that the centralizer of h(A) in G is of complex dimension n. We will see in section 4 that, at least for
(X, G) algebraic, this centralizer is always of positive dimension.

Example 1. If we have a translation invariant (X, G)-structure on T = C"/A, the same holonomy morphism
h and developing map & defines a translation invariant (X, G)-structure on any complex torus T’ = C"/A’ of
the same dimension.

Example 2. Take X = C? and G the complex special affine group. The generic 1-dimensional subgroup of G
has centralizer also 1-dimensional, so it is thus far possible that Zx is one dimensional. We need something
more to decide translation invariance.

Example 3. Pick a positive integer k. Let X := C? and let G be the set of pairs (¢, f) for t € C and f a complex-
coefficient polynomial in one variable of degree at most k, with multiplication

(to, fo) (t1, f1) = (to + t1, fouw) + f1(u - to))
and action on X
tH,v)=u+t,v+fu+t).
As we vary k we obtain all of the complex algebraic homogeneous surfaces of class Bf1, in Sophus Lie’s
notation [18]. One checks easily that all 1-dimensional subgroups of G have 2-dimensional centralizer, so our

group Zx must have dimension at least 2. Therefore for this particular (X, G), every (X, G)-structure on any
complex 2-torus is translation invariant.

4 Finite holonomy

Pick a complex vector space V and lattice A ¢ V. Let X == G = V/A’ for some (possibly different) lattice
A cVandleté: ze Vi z+ A’ € X, so that
h(A)= A/ (AnA).

The tori V/A and V/A’ are isogenous just when h(A) C V/A’ is a finite set, and then the Zariski closure is just
h(A), finite. Since G is abelian (and connected), lemma 1 on page 3 implies Zy = G, so the (X, G)-structure
with developing map 6 and holonomy morphism h is translation invariant.
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Lemma 4. A holomorphic (X, G)-structure on a complex torus V /A has finite holonomy group just when it is
constructed as above. In particular, it is translation invariant.

Proof. If h(A) is finite, then we can lift to a finite covering of T to arrange that h(A) is trivial, and then, by
lemma 1, Zy = G. In particular, the (X, G)-structure is translation invariant. Lemma 3 on page 4 implies that
G is an abelian group acting locally freely on X, meaning that X is a quotient of G by a discrete subgroup.
The developing map descends to T. Its image is open and closed in X, so the developing map is onto: it
is a finite cover of X, by T. Consequently, X is also a complex torus. Since G is connected and acts transitively
and effectively on the complex torus X, G is the translation group X. O

Corollary 1. Suppose that (X, G) is a complex algebraic homogeneous space. Any holomorphic (X, G)-structure
on a complex torus has positive dimensional symmetry group.

Proof. Assume, by contradiction, that dimc3 = 0. Then Z;h(A) is finite, being a discrete algebraic subgroup
of G. But h(A) C Zgh(A), since A is abelian. Therefore h(A) is finite. Lemma 4 implies that Zyx = G: a contra-
diction. O

Corollary 2. If a smooth compact complex curve has genus at most 1, then every holomorphic locally homoge-
neous structure on the curve is homogeneous. If the curve has genus more than 1, then no holomorphic locally
homogeneous structure on the curve is homogeneous.

Proof. Every complex homogeneous curve (X, G) is algebraic [14] p. 14 Theorem 2. By Corollary 1, any holo-
morphic (X, G)-structure on any elliptic curve has positive dimensional symmetry group, with identity com-
ponent consisting of translations, so is translation invariant. Any locally homogeneous structure on a simply
connected compact manifold is identified with a cover of the model by the developing map, so there is only
one locally homogeneous structure on P!. Higher genus Riemann surfaces have no nonzero holomorphic
vector fields. O

5 Discrete stabilizer

Lemma 5. Suppose that (X, G) is a complex homogeneous space and that dim¢ X = dimc G. Then every holo-
morphic (X, G)-structure on any complex torus is translation invariant.

Proof. Here X = G/H, with H a discrete subgroup in G. Lift the developing map uniquely to a map to G, so
that §(0) = 1, and then
80+ A) (h()6()) " € H,

i.e.
S(x + D)) thV) 1 ¢ H

is constant, because the stabilizer H has dimension zero. Plug in x = 0 to find 6(x + A) = §(1)6(x), i.e. we can
arrange that H = {1} and h = §|,.

Consider the universal covering group G — G. The developing map 6: V — G lifts uniquely to a map
§: V = G so that 5(0) = 1. By the same argument, 8(x+1) = 8(M)é(x) forallx € Vand A € A, ie. isa
developing map for a (G, G) -structure. So without loss of generality, we can assume that X = G and that G
is simply connected.

Consider the map

A: (x,y) € Vx V= 6(x)18(y) 16(x +y) € G.

Clearly A(x,y + A) = A(x,y)if A € A.SoA: Vx T — G is holomorphic. Fixing x, y — A(x,y) € Gis a
holomorphic map from a complex torus to a simply connected complex Lie group, and therefore is constant
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[13, p. 139, theorem 1]. So A(x, y) = A(x, 0) = 1 forall x, y,i.e. 6: V — G isaholomorphic Lie group morphism,

hence, by Lemma 3 point (3), a translation invariant (X, G)-structure. O
Example 4. From the classification of complex homogeneous surfaces (X, G) [18], thesurfaces D1, D14, ..., D15
and D2, D24,...,D2q, are the smooth quotients of 2-dimensional complex Lie groups by various discrete

groups, i.e. they are precisely the complex homogeneous surfaces (X, G) with 2 = dim¢X = dim¢G. By
lemma 5 on the preceding page, all (X, G)-structures on complex tori, with (X, G) among the surfaces
D1,D14,...,D15and D2, D2,,..., D24, are translation invariant.

6 Enlarging the model and its symmetry group

A morphism (X, G) — (X’ ,G' ) of complex homogeneous spaces is a holomorphic map X — X’ equivariant for
a holomorphic group morphism G — G’. If moreover X — X' is a local biholomorphism, then every (X, G)-
structure induces an (X', G')-structure by composing the developing map with X — X’ and the holonomy
morphism with G — G’, and any (X', G’)-structure is induced by at most one (X, G)-structure.

Lemma 3 on page 4 together with lemma 5 on the preceding page lead to the following corollary:

Corollary 3. For any complex homogeneous space (X, G), an (X, G)-structure on a complex torus is translation
invariant just when it is induced by an (X, Go)-structure, where Gy C G is a connected complex subgroup acting
transitively and locally freely on an open set Xo C X and if this occurs then G is abelian.

In the statement above X, is the image of the developing map of the (X, G)-structure, seen as a homogeneous
space of the Lie group G = Z%.

Proposition 1. Suppose that (X, G) — (X’ ,G' ) is a morphism of complex homogeneous spaces for which X —
X' isalocal biholomorphism and G — G’ has closedimage G C G'. Suppose that there is no positive dimensional
compact complex torus in G' /G acted on transitively by a subgroup of G'. For example, there is no such torus
when G’ is linear algebraic and G — G’ is a morphism of algebraic groups. Every translation invariant (X’ , G ) -
structure on any complex torus with holonomy contained in G is induced by a unique (X, G)-structure, which is
also translation invariant.

Proof. Denote the developing map and holonomy morphism of the (X', G')-structure by §" and h’. Since the
structure is translation invariant, extend h’ to a complex Lie group morphism h’: V — G’ sothat§’: V — X
is just 6'(v) = h’(v)xy. Denote the morphism G — G’ as p: G — G’. The holonomy morphism h’ descends to
a complex Lie group morphism T — G'/G.

By hypothesis, this is constant: h’ has image in G = p(G). The developing map is §'(v) = h'(v)x{, so
has image in the image of X — X’. On that image, X — X’ is a covering map, by G — G’ equivariance, so
8 : (V,0) — (X', xo) lifts to a unique local biholomorphism 6: (V,0) — (X, xo). Similarly, the morphism
h': V — p(G) lifts uniquely to a morphism h: V — G. By analytic continuation §(v) = h(v)x, forallv € V, so
that the (X, G)-structure is translation invariant.

Suppose that G’ is linear algebraicand p: G — G’ is amorphism of algebraic groups. The quotient of a lin-
ear algebraic group by a Zariski closed normal subgroup is linear algebraic [4] p.93 theorem 5.6, so Zy/ /p(Zx)
is a linear algebraic group and therefore contains no complex torus subgroup. O

Example 5. If G is the universal covering space of the group of complex affine transformations of C,and X = G
acted on by left translation, then the center of G consists in the deck transformations over the complex affine
group. The surface (X, G) is not algebraic, but the quotient (X’ , G’ ) by the center is algebraic; any (X, G)-
structure induces and arises uniquely from an (X', G’)-structure.

Example 6. The classification of the complex homogeneous surfaces [18] yields unique morphisms A2 — A1,
A3 — A1, A3 — A2, BB1 — BB2, BB1BO — BB2’, Byl — B64, By2 — B&4, By3 — B84, By4 — Bé4,
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B61 — B62, B61’ — B62', B63 — B64,C2 — C7,C2' — C5',C3 — C7,C5 — C7,C6 — C7, C8 — A1,
D1 — A1,D1, — C7,D1, — C7,D13 — C5', D1, — C5',D2 — A1, D3 — Al. For each of these
morphisms (X, G) — (X', G'), G’/ G contains no homogenenous complex torus. Below we will prove that all
(X’, G’) -structures on complex tori are translation invariant.

It follows that all (X, G)-structures on complex tori are translation invariant, for each of these morphisms
(X,G) — (X’ , G’ ) This reduces the proof of translation invariance of (X, G)-structures on tori for most of the
transcendental surfaces (X, G) to the same problem for algebraic surfaces (X e )

7 Normalizer chain of the holonomy

Continue with our notation as in section 2: (X, G) is a complex homogeneous space, xo € X some point,
H C G the stabilizer of xg, T = V/A is a complex torus, §: (V,0) — (X, xo) is the developing map and
h: A — G the holonomy morphism for an (X, G)-structure on T. Extend h as above to a morphism of Lie
groups h: Zy — Zx.Let S_1 := {1}, Sp := Z?( and let S;,; = (NGS,-)0 with Lie algebras s;. Recall that (NGSI-)O
is the identity component of the normalizer of S; in G. Call the sequence S_; < S¢ <. .. the normalizer chain
of the structure. Since Sy is Ad h(A)-invariant, so are all of the S;.

Lemma 6. Consider an (X, G)-structure on a complex torus T. The groups Sy < Sy < ... in the normalizer
chain of that structure are solvable connected complex Lie groups with abelian quotients S;.1/S;. Each of these
groups acts locally freely on the image of the developing map of the (X, G)-structure.

Proof. Lemma 3 on page 4 proves that Sy = Z3 is abelian and acts locally freely at every point in §(V). Each
element of 51 C g is a vector field on X, whose flow preserves the Lie subalgebra sqy. Such a vector field pulls
back via the local biholomorphism § to a vector field on V, whose flow preserves the translations so = 3 C V.
The s, vector fields on V locally descend to T, but globally they only do so modulo transformations of A,
which add elements of sq. The Lie brackets of the s vector fields are only defined on T modulo the sq vector
fields. The part of the bracket lying in the quotient s;/so is a holomorphic map T — A% (sq /50)* ® (s1/50),
so constant. This constant gives the structure constants of the Lie algebra s;/s¢. The normal bundle of the
foliation inherited in T by the Sp-action admits an So-invariant integrable subbundle with fiber isomorphic
to s1/s0: it is a partial transverse structure to the foliation modelled on S1/S,.

Split the tangent bundle of T by some linear splitting V = so & sg . Since Sy acts by translations, this
splitting is preserved. The normal bundle to the foliation sits inside the tangent bundle of T, and every vector
field from s1/s¢ is represented as a vector field on the torus, hence a translation field. The brackets of these
vector fields on the torus agree, modulo the constant translations in so, with those of s1/so. But Lie brackets
of holomorphic vector fields on the torus are trivial, so s1/s¢ is abelian.

Each of the vector fields arising from this splitting is translation invariant, so has vanishing normal com-
ponent at a point in T just when its normal component vanishes everywhere on T, i.e. just when the associated
element in s; belongs to s¢. An element of s; pulls back by the developing map to V to agree with an element
of 5¢ at some point just when they agree at every point of V, and so they agree at every point of §(V). In other
words, s; acts locally freely on §(V). The same argument holds by induction for the successive subgroups
S$i C Siy1- O

Proposition 2. Suppose that (X, G) is a complex homogeneous space and that T is a complex torus with a
holomorphic (X, G)-structure. As above, let S_.1 C So C S1 C +-+ C G be the normalizer chain of the holonomy
morphism and let S = | J; S;, i.e. S be the terminal subgroup in the chain of connected complex subgroups. Then
dim¢S < dime X with equality if and only if the (X, G)-structure is translation invariant.

Proof. By lemma 6, S acts locally freely on §(V). Consequently, dim¢S < dimcX. If dimeS < dime X, then
dimcSg = dimg¢ Z?( < dim¢ X and thus the (X, G)-structure is not translation invariant.
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Assume now that dim¢S = dim¢ X. Replace G by S (modulo any elements of S acting trivially on 6(V))
and X by 6(V) to arrange that G acts on X locally freely, so dim G = dim X and apply lemma 5 on page 6. [

Theorem 2. If (X, G) is a complex homogeneous space and G is nilpotent then every holomorphic (X, G)-
structure on any complex torus is translation invariant.

Proof. The normalizer chain always increases in dimension until it reaches the dimension of G [4] p. 160. [

Example 7. For the surfaces (X, G) in example 3 on page 5, and even for transcendental BB1-surfaces and
Bp2-surfaces [18], G is nilpotent. The nilpotent complex homogeneous surfaces (X, G) are Bf1, Bf2, D1,
D14,...,D15,D2,D24,..., D24 [18]. Therefore for all of these surfaces (X, G), all (X, G)-structures on com-
plex tori are translation invariant.

8 Algebraic dimension

If (X, G) is a complex algebraic homogeneous space then any holomorphic (X, G)-structure is a holomorphic
rigid geometric structure in Gromov’s sense [6] and also a (flat) Cartan geometry (see the definition in section
10).

Recall that the algebraic dimension of a complex manifold M is the transcendence degree of the field of
meromorphic functions of M over the field of complex numbers. A generic torus has algebraic dimension zero,
meaning that all its meromorphic functions are constant [22].

Lemma 7. Theidentity component of the symmetry group of any holomorphic geometric structure on a complex
torus T acts as a subtorus T of dimension at least the algebraic codimension of T (i.e. n — x, where n = dim¢ T
and x is the algebraic dimension of T).

The quotient of T by the subtorus Ty is an abelian variety (which coincides with the algebraic reduction of
T if and only if Ty is of complex dimension n — ) .

Proof. The pair of the holomorphic geometric structure and the translation structure (the holomorphic par-
allelization) of T is a holomorphic rigid geometric structure on T. The symmetry pseudogroup of any such
structure acts transitively on sets of codimension k [7, 8]. Therefore near each point there are locally defined
holomorphic vector fields preserving both the holomorphic geometric structure and the translation structure
(the holomorphic parallelization), acting with orbits of dimension > k. Each of these vector fields preserves
the translation structure, so is a translation. Translations on T extend globally, and give global symmetries.
The family of symmetries is Zariski closed in the complex analytic Zariski topology, so forms a subtorus. [

Corollary 4. Suppose that (X, G) is a complex algebraic homogeneous space and T is a complex torus of alge-
braic dimension zero. Every holomorphic (X, G)-structure on T is translation invariant.

Proof. Here the holomorphic geometric structure in the previous proof is the (X, G)-structure. If T is of alge-
braic dimension zero, then the subtorus of common symmetries of the (X, G)-structure and of the translation
structure of T acts transitively. Consequently, the (X, G)-structure is translation invariant. O

The results from [7, 8] that we used in the proof of lemma 7 hold not only for tori, but for all complex mani-
folds: any holomorphic rigid geometric structure (or holomorphic Cartan geometry modelled on an algebraic
homogeneous space) on a complex manifold of algebraic dimension zero is locally homogeneous on a dense
open set (away from a nowhere dense analytic subset of positive codimension).

With the same method we can then prove the following:

Theorem 3. Let M := P/m be a compact quotient of a complex Lie group P by a lattice n1. If M is of algebraic
dimension zero, then any holomorphic geometric structure ¢ on M pulls back to a translation invariant geometric
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structure on P. Consequently, for a complex algebraic homogeneous space (X, G), any (X, G)-structure on M pulls
back to P to a right invariant (X, G)-structure.

Proof. We add together the geometric structure ¢ and the holomorphic parallelization of TM to give a holo-
morphic rigid geometric structure ¢’. Then Corollary 2.2 in [8] shows that ¢’ is locally homogeneous on an
open dense setin M, in the sense that the local holomorphic vector fields preserving both the holomorphic par-
allelization and ¢ are transitive in an open dense set in M. But the local holomorphic vector fields preserving
the holomorphic parallelization (which is given by global right invariant vector fields) are those vector fields
which are left invariant (they are locally defined on M and their pull back is globally defined on P). Hence,
all left invariant vector fields on P must preserve the pull back of ¢; if not ¢’ is not locally homogeneous on
any open set. Left invariant vector fields generate right translation: consequently, the pull back of ¢ on P is
invariant by right translation.

If ¢ is defined by an (X, G)-structure with (X, G) a complex algebraic homogeneous space, then the pull
back of the (X, G)-structure to P is right invariant. O

Theorem 3 generalizes a result of Ghys dealing with holomorphic tensors on SL(2, C)/m [9].

Theorem 4. Consider a compact complex manifold M of complex dimension n, algebraic dimension zero and
Albanese dimension n. Then M admits a holomorphic rigid geometric structure (or a holomorphic Cartan geom-
etry modelled on an algebraic homogeneous space) if and only if M is a complex torus and the holomorphic rigid
geometric structure (the Cartan geometry) is translation invariant.

Proof. Since M is of algebraic dimension zero, it is known that the Albanese map M — 7 is surjective, with
connected fibers and the Albanese torus .7y contains no closed complex hypersurface (i.e. divisor) [22] lem-
mas 13.1, 13.3, 13.6. Here, .7 is of the same dimension as M, so the Albanese map M — ./, is a modification
(see lemma 13.7 in [22]).

Let H be the locus in M on which the Albanese map drops rank. The image a(H) of H through the Albanese
map a is a nowhere dense analytic subset of .7 of complex codimension at least two.

The Albanese map is a biholomorphism between the open sets M \ a™*(a(H)) in M and <7y \ a(H) in .7
. This implies that the holomorphic rigid geometric structure of M drops down to a holomorphic geometric
structure ¢ on o7 \a(H). Now we put together ¢ and the translation structure (holomorphic parallelization) of
ay together to form a holomorphic rigid geometric structure ¢’ on .7\ a(H). The complex manifold .27, \a(H)
being of algebraic dimension zero, the geometric structure ¢’ is locally homogeneous on an open dense set
in < \ a(H) [7, 8]. The local infinitesimal symmetries are translations, because they preserve the translation
structure. They extend to global translations on %, preserving ¢’. Consequently, ¢’ is the restriction to 27 \
a(H) of a translation invariant geometric structure defined on all of .27j,.

Consider a family of linearly independent translations on ;. They pull back to commuting holomorphic
vector fields k1, ..., kn on M \ a”*(a(H)) which preserve the initial geometric structure and parallelize the
holomorphic tangent bundle TM over M\ a~* (a(H)) . Since they are symmetries of an analytic rigid geometric
structure, they extend to all of M [1, 20].

Pull back a holomorphic volume form by the Albanese map: a holomorphic section vol of the canoni-
cal bundle of M which vanishes on the branch locus H. Plug x4, ..., k, into the volume form and get the
holomorphic function

vol(K1, ..., Kn)

which is constant and nonzero on M \ a~(a(H)), since it corresponds to a constant nonzero function on the
Albanese torus, so constant and nonzero on all of M.

This implies that the holomorphic vector fields k1, ..., kn holomorphically parallelize TM on all of M.
Since they commute, M is a complex torus and x4, . . ., kn are translation vector fields. The initial geometric
structure on M is translation invariant. O
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9 Deformation space of (X, G)-structures

Consider an (X, G)-structure on a manifold M and the corresponding holonomy morphism h : 7;(M) — G.
The deformation space of (X, G)-structures on M is the quotient of the space of (X, G)-structures on M by the
group of diffeomorphisms of M isotopic to the identity.

By the Ehresmann-Thurston principle (see, for instance, [11] p. 7), the deformation space of (X, G)-
structures on M is locally homeomorphic, through the holonomy map, to an open neighborhood of h in
the space of group homomorphisms from 77, (M) into G (modulo the action of G on the target G by inner
automorphisms).

In other words, any group homomorphism from 771 (M) into G close to h is itself the holonomy morphism
of an (X, G)-structure on M close to the initial one. Also, two close (X, G)-structures with the same holonomy
morphism are each conjugated to the other by an isotopy of M.

For any finitely generated group 7 and any algebraic group G, Hom(7, G) is an algebraic variety (a sub-
variety of GX, if  can be generated by k elements). If G is a complex Lie group, the space Hom(mx, G) is a
complex analytic space. A family of (X, G)-structures on M parametrized by a complex reduced space S is
called holomorphic if the family of the corresponding holonomy morphisms lifts as a complex analytic map
from S to Hom(r, G).

Notice that, in our case, the G-action preserves a complex structure on X and hence any (X, G)-structure
on a manifold M induces an underlying complex structure on M (for which the (X, G)-structure is holomor-
phic). In particular, when deforming the (X, G)-structure on M, one also deforms the complex structure on
M.

Let us make precise how the complex structure varies under the deformation of a holomorphic (X, G)-
structure on a complex torus.

Lemma 8. Consider a complex homogeneous space (X, G). Suppose that we have a holomorphic (X, G)-
structure on a complex n-torus T = V/[A, with holonomy morphism h: A — G. If hs € Hom(A, G) is a
holomorphic family of group morphisms for s in some reduced complex space S, with hs, = h for some sg € S,
then there is a holomorphic family of (X, G)-structures on a holomorphic family of complex tori Ts with holonomy
morphism hs, for s in an open neighborhood of s.

Proof. By the Ehresmann-Thurston principle, there is a unique nearby (X, G)-structure on the same under-
lying real manifold with holonomy morphism hs. Since G preserves a complex structure on X, this (X, G)-
structure is holomorphic for a unique complex structure on Ts. Being a small deformation of a complex torus,
Ts is a complex torus by Theorem 2.1 in [5]. O

The following result deals with the deformation space of translation invariant (X, G)-structures on complex
tori. Notice that the condition of the symmetry group Zx being of dimension n is closed under deformation
of (X, G)-structures, since a limit of (X, G)-structures could have smaller holonomy group (i.e. some gener-
ators of A landing in some special position), but that would only decrease the collection of conditions that
determine the centralizer Z?(, so make Z?K larger. Hence limits of translation invariant (X, G)-structures are
translation invariant, as the centralizer of the holonomy can only increase in dimension.

Theorem 5. Let (X, G) be a complex algebraic homogeneous space. If a holomorphic (X, G)-structure on a
complex torus T = V/[A is translation invariant, then so is any deformation of that structure. Consequently,
translation invariant (X, G)-structures form a union of connected components in the deformation space of (X, G)-
structures on the (real) manifold T.

Proof. Start with a translation invariant (X, G)-structure on T. The holonomy morphism extends from A to a
complex Lie group morphism h: V — G. For any other complex torus T’ = V/A’, restrict h to the period lat-
tice A’ of that torus and take the same developing map to construct a (translation invariant) (X, G)-structure
on T’. In particular, we can deform the starting translation invariant (X, G)-structure to another (translation
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invariant) (X, G)-structure on a complex torus of algebraic dimension zero (by choosing a generic lattice A”).
Moreover, by corollary 4 on page 9, all nearby (X, G)-structures are translation invariant, since the underly-
ing complex structure of the torus T remains of algebraic dimension zero under small perturbation of the
complex structure T’. Hence, the translation invariant (X, G)-structures on T form an open dense set in our
connected component of the deformation space of (X, G)-structures. In particular, we proved that the natural
map associating to an (X, G)-structure the underlying complex structure on T is surjective on the Kuranishi
space of V/A.

All of these deformations of the (X, G)-structure merely perturb the holonomy morphism h through a
family of complex Lie group morphisms h: V — G and the developing map is 6(v) = h(v)xo, with xo € X.

But, we have seen that the translation invariant (X, G)-structures always form a closed set. Therefore in
that connected component of the deformation space of (X, G)-structures, all (X, G)-structures are translation
invariant. O

Let us give an easy argument implying, for various complex homogeneous surfaces (X, G), that all (X, G)-
structures on complex tori of complex dimension two are translation invariant.

Lemma 9. Suppose that (X, G) is a complex algebraic homogeneous space. If there is a holomorphic (X, G)-
structure on a complex torus T, and that structure is not translation invariant, then there is another such struc-
ture on another complex torus nearby to a finite covering of T, also not translation invariant, with holonomy
morphism having dense image in Zg’(. Any connected abelian subgroup near enough to Zg’( is the identity compo-
nent of its centralizer and arises as the Zariski closure of the image of the holonomy of a nearby (X, G)-structure
on a nearby complex torus.

Proof. Since Zy is the centralizer of h(A) in G, it is an algebraic subgroup in G. Therefore it consists of a
finite number of connected components. After perhaps replacing T by a finite cover of T, we can assume that
h(A) c Z%. By lemma 3 on page 4, Z% is abelian. Since A is free abelian, morphisms A — Z% are precisely
arbitrary choices of where to send some generating set of A. Since A has rank 2n and dimCZ?{ < n, we can
slightly deform the holonomy morphism to have Zariski dense image in Z?(. If we can perturb Z?( slightly to
an abelian subgroup with larger centralizer, we can repeat the process. Since we stay in the same connected
component in the deformation space of (X, G)-structures, theorem 5 on the preceding page implies that none
of these (X, G)-structures are translation invariant. O

Example 8. Suppose that dimcX = 2 and the Levi decomposition of G has reductive part with rank 2 or more.
Suppose we have a holomorphic (X, G)-structure on a complex 2-torus. The generic connected 1-dimensional
subgroup of G is not algebraic, because the characters on a generic element of g have eigenvalues with ir-
rational ratio. After perhaps a small perturbation of the (X, G)-structure, Z?( has complex dimension 2 or
more: the (X, G)-structure becomes translation invariant. Every holomorphic (X, G)-structure of this kind on
a complex 2-torus must be translation invariant (because of lemma 9). From the classification of the complex
homogeneous surfaces (X, G) [18], this occurs for the complex homogeneous surfaces A1, A2, B2, By4, B62,
Bé4,C2, C3, C5, C6, C7 and D1.

10 Reductive and parabolic Cartan geometries

Pick a complex homogeneous space (X, G), with H C G the stabilizer of a point xg € X, and with the groups
H C G having Lie algebras h C g. The space (X, G) is reductive if H is a reductive linear algebraic group,
rational if X is compact and birational to projective space and G is semisimple in adjoint form.

Recall that a Cartan geometry (or a Cartan connection) is a geometric structure infinitesimally modelled
on a homogeneous space. The curvature of a Cartan geometry vanishes if and only if the Cartan geometry is an
(X, G)-structure. A holomorphic Cartan geometry modelled on (X, G) is a holomorphic H-bundle B — M with
a holomorphic connection w on Bx G so that the tangent spaces of B are transverse to the horizontal spaces
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of w. A Cartan geometry or locally homogeneous geometric structure is reductive (parabolic) if its model is
reductive (rational).

If a compact Kahler manifold has trivial canonical bundle and a holomorphic parabolic geometry then
the manifold has a finite unbranched holomorphic covering by a complex torus and the geometry pulls back
to be translation invariant [15] p. 3 theorem 1 and p. 9 corollary 2.

Example 9. Among complex homogeneous surfaces (X, G) [18], the rational homogeneous varieties are A1 =
(P2, PSL(3,C)) and
c7 = (P'xP', PSL(2,©) x PSL(2, ).

Therefore any holomorphic locally homogeneous structure on a complex torus modelled on either of these
surfaces is translation invariant.

Theorem 6. If a compact Kahler manifold has a holomorphic reductive Cartan geometry, then the manifold
has a finite unbranched holomorphic covering by a complex torus and the geometry pulls back to be translation
invariant.

Proof. Holomorphically split g = W @ h for some H-module W; this H-module is effective [17] p. 9 lemma
6.1. At each point of B, the Cartan connection splits into a 1-form valued in W and a connection 1-form, say
w = 0 + ~. At each point of the total space B of the Cartan geometry, the 1-form ¢ is semibasic, so defines a
1-form & on the corresponding point of the base manifold, a coframe. Because H acts effectively on W, the
map 0 identifies the total space of the Cartan geometry with a subbundle of the frame bundle of the base
manifold [17] corollary 6.2. Hence the Cartan geometry is precisely an H-reduction of the frame bundle with a
holomorphic connection. The tangent bundle admits a holomorphic connection, so has trivial characteristic
classes [12]. Therefore the manifold admits a finite holomorphic covering by a complex torus [12]; without
loss of generality assume that the manifold is a complex torus T. The trivialization of the tangent bundle
pulls back to the H-bundle to be a multiple go for some g € GL(W), transforming under H-action, so defining
a holomorphic map T — GL(W)/H. But GL(W)/H is an affine algebraic variety, so admits no nonconstant
holomorphic maps from complex tori, so T — GL(W)/H is constant, hence without loss of generality is the
identity, i.e. gis valued in H, so there is a holomorphic global section of the bundle on which g = 1, trivializing
the bundle. The connection is therefore translation invariant, and so the Cartan connection is translation
invariant. O

Example 10. Among complex homogeneous surfaces (X, G) [18], the reductive homogeneous surfaces are A2,
A3,C2,C2',C3,C9,CY, D1, D14, D1,, D15, D1, and D3. Therefore any holomorphic locally homogeneous
structure on a complex torus modelled on any one of these surfaces is translation invariant.

Proposition 3. Suppose that (X, G) is a product of a reductive homogeneous space with a rational homoge-
neous variety. Then every holomorphic Cartan geometry modelled on (X, G) on any complex torus is translation
invariant.

Proof. Write (X, G) = (X1 x X2, G1 x G,) as a product of a reductive homogeneous space (X;, G1) and a ratio-
nal homogeneous variety (X3, G,). The splitting of X into a product splits the tangent bundle of the torus into
a product and the canonical bundle into a tensor product. Since the canonical bundle of the complex torus is
trivial, the determinant line bundles of the two factors in our splitting are dual. The reductive geometry gives
a holomorphic connection on the first factor of the splitting of the tangent bundle, so that the determinant
line bundle of that factor is trivial. Therefore the determinant line bundle of the second factor is trivial. Taking
a holomorphic section reduces the structure group of the parabolic part of the geometry to a reductive group
[15] p. 3, and so the geometry is now reductive so the result follows from theorem 6. O

Example 11. Among complex homogeneous surfaces (X, G) [18], those which are a product of a reductive ho-
mogeneous curve and a rational homogeneous curve are C5, C5’ and C6. Therefore any holomorphic locally
homogeneous structure on a complex torus modelled on any one of these surfaces is translation invariant.
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11 Lifting

If a complex homogeneous space (X, G) has underlying manifold X not simply connected, take the universal
covering space X — X, lift the vector fields that generate the Lie algebra g of G to X and generate an action of
a covering group, call it G, acting on X. Caution: this process neither preserves nor reflects algebraicity. The
developing map & of any (X, G)-structure lifts to a local biholomorphism & to X. If all of the deck transforma-
tions of 71 (X) arise as elements of G, then the (X, G)-structure is induced by a unique (X, G)-structure. An
(X, G)-structure on a complex torus is then translation invariant just when the associated (5( s G) -structure
is translation invariant.

Example 12. From the classification of complex homogeneous surfaces [18], (X, G) has universal covering
space (X, G) with deck transformations carried out by elements of G for any (X, G) among B1A1, BB1D,
BB1E, BB2', By2', B62', C2/, C5’, D14, D1,, D13, D1, and D1s. Therefore the proof of translation invari-
ance of holomorphic (X, G)-structures on complex 2-tori, for these (X, G), reduces to the proof of translation
invariance of holomorphic (X, G)-structures on complex tori, for their universal covering spaces.

A slight modification of this procedure, using proposition 1 on page 7:

Lemma 10. Suppose that we have a morphism (5( s G) — (X’ ,G' ) of complex homogeneous spaces from the
universal covering space (5( , G) — (X, G) of a complex homogeneous space (X, G). Suppose that X — X' is

a local biholomorphism and that G — G’ has closed image G C G'. Suppose that there is no positive dimen-
sional compact complex torus in G’/ G acted on transitively by a subgroup of G'. Suppose that all of the deck
transformations of 11 (X) arise as elements of G'. Then the developing map of any (X, G)-structure lifts uniquely
to the developing map of a unique (X', G')-structure. An (X, G)-structure on a complex torus is then translation
invariant just when the associated (X', G')-structure is translation invariant.

Example 13. Take any complex homogeneous surface (X, G) with universal covering space (5( , G) = BfBlin
the notation of [18] (see example 3 on page 5 for the definition). The inclusion B81 — BB2 puts the deck trans-
formations of every quotient (5( , G) — (X, G) into the transformations of a group G’ containing G. Therefore
for all complex homogeneous surfaces (X, G) covered by Bf1, every holomorphic (X, G)-structure on any
complex torus is translation invariant.

12 Complex tori of complex dimension 0,1 or 2

Theorem 7. Every holomorphic locally homogeneous geometric structure on a complex torus of complex di-
mension 0, 1 or 2 is translation invariant.

Proof. Corollary 1 on page 6 covers any complex torus of dimension 1. The tricks in examples 3 to 13 prove
translation invariance of all (X, G)-structures for all of the complex homogeneous surfaces (X, G), from the
classification [18]. O

13 Conclusion

It seems that our methods are unable to prove the translation invariance of holomorphic solvable (X, G)-
structures on complex tori. We conjecture that all holomorphic locally homogeneous geometric structures on
complex tori are translation invariant.
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Moreover, suppose that a complex compact manifold M homeomorphic to a torus admits a holomorphic
(X, G)-structure. Then we conjecture that M is biholomorphic to the quotient VV/A of a complex vector space
V by a lattice A. In other words, nonstandard complex structures on real tori do not admit any holomorphic
(X, G)-structure and, more generally, do not admit any holomorphic rigid geometric structure.
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