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1 Introduction

We conjecture that holomorphic locally homogeneous geometric structures on complex tori are translation
invariant. Our motivation is from Ghys [10]: holomorphic nonsingular foliations of codimension one on any
complex torus admit a subtorus of symmetries of codimension at least one. Let us briefly recall Ghys’s classifi-
cation of holomorphic codimension one nonsingular foliations on complex tori. The simplest are those given
by the kernel of someholomorphic 1-formω. Sinceω is necessarily translation invariant on the complex torus
T, the foliation will be also translation invariant.

Assume now that T = Cn/Λ, with Λ a lattice in Cn and there exists a linear form π : Cn → C sending Λ
to a lattice Λ′ inC. Then π descends to a map π : T → T′ ..= C/Λ′. Pick a nonconstant meromorphic function
u on the elliptic curve T′ and consider the meromorphic closed 1-form Ω = π*(udz) + ω on T. It is easy to see
that the foliation given by the kernel of Ω extends to all of T as a nonsingular holomorphic codimension one
foliation. This foliation is not invariant by all translations in T, but only by those which lie the kernel of π.
They act on T as a subtorus of symmetries of codimension one.

Ghys’s theorem asserts that all nonsingular codimension one holomorphic foliations on complex tori are
constructed in thisway. In particular, they are invariant by a subtorus of complex codimension one.Moreover,
for generic complex tori, there are no nonconstant meromorphic functions and, consequently, all holomor-
phic codimension one foliations on those tori are translation invariant.

Our aim is to generalize Ghys’s result to other holomorphic geometric structures on complex tori and
to find the smallest amount of symmetry those geometric structures can have. In particular, using a result
from [7, 8] we prove here that on complex tori with no nonconstant meromorphic functions (algebraic dimen-
sion zero), all holomorphic geometric structures are translation invariant.

Notice that there are holomorphic Cartan geometries (see section 10 for the precise definition) or holomor-
phic rigid geometric structures in Gromov’s sense (see [8]) on complex tori which are not translation invariant:
just add any holomorphic affine structure (the standard one for example) to one of the previous holomorphic
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foliations of Ghys. Then the subtorus of symmetries is of codimension one: all symmetries of the foliation
preserve the affine structure.

There are holomorphic rigid geometric structures on complex tori without any symmetries. For example,
any projective embedding of an abelian variety into a complex projective space is a holomorphic rigid geo-
metric structure. There are no symmetries: any symmetry preserves the fibers of the map; since the map is an
embedding the only symmetry is the identity.

Nevertheless, we conjecture that all holomorphic locally homogeneous geometric structures on tori are
translation invariant. Locally homogeneous geometric structures naturally arise in the following way. Start
with a holomorphic rigid geometric structure in Gromov’s sense ϕ on a complex manifoldM; think of a holo-
morphic affine connection or of a holomorphic projective connection. Assume that the local holomorphic
vector fields preserving ϕ are transitive on the manifold: they span the holomorphic tangent bundle TM at
each point m ∈ M. The rigidity of ϕ implies that those local vector fields form a finite dimensional Lie alge-
bra (associated to a connected complex Lie group G). Under these assumptions, M is then locally modelled
on a complex G-homogeneous space X and, consequently, we get a holomorphic locally homogeneous geo-
metric structure onM locally modelled on (X, G), also called a holomorphic (X, G)-structure (see the precise
definition in section 2).

For various types of complex homogeneous spaces (X, G), we develop some general techniques below to
demonstrate that all holomorphic (X, G)-structures on complex tori are translation invariant. We will prove
this below for all (X, G) in complex dimension 1 and 2, by running through the classification of complex
homogeneous surfaces following [16, 18, 19]. We also prove it for G nilpotent.

We further conjecture that holomorphic locally homogeneous geometric structures on compact quotients
P/π, with π a discrete cocompact subgroup of a complex Lie group P, liӔ to right invariant geometric struc-
tures on P. This will be proved here only for those quotients which are of algebraic dimension zero. For
P = SL(2,C) this generalizes a result of Ghys about holomorphic tensors on SL(2,C)/π [9].

Notice also that these results do not hold in the real analytic category. For example, there are real analytic
flat affine structures on two dimensional real tori (constructed and classified by Nagano and Yagi) which are
not translation invariant [3].

2 Notation and main result

A complex homogeneous space (X, G) is a connected complex Lie group G acting transitively, effectively and
holomorphically on a complex manifold X. A holomorphic (X, G)-structure (also known as a holomorphic lo-
cally homogeneous structure modelled on (X, G)) on a complex manifold M is a maximal collection of local
biholomorphisms of open subsets of M to open subsets of X (the charts of the structure), so that any two
charts differ by action of an element of G, and every point of M lies in the domain of a chart. Every holomor-
phic (X, G)-structure on a complex manifold M has a developing map δ : M̃ → X, a local biholomorphism on
the universal covering space ofM, so that the composition of δ with any local section of M̃ → M is a chart of
the structure. There is a unique developing map, up to post composition with elements in G. Any developing
map is equivariant for a unique group morphism h : π1(M) → G, the holonomy morphism of the developing
map. The reader can consult [11] as a reference on locally homogeneous structures.

Throughout this paper, we take an (X, G)-structure on a complex torus T = V/Λ, the quotient of V = Cn

with a lattice Λ ⊂ V, with holonomy morphism h : Λ → G and developing map δ : V → X. Let x0 ..= δ(0).
Denote by H = Gx0 ⊂ G the stabilizer of the point x0 ∈ X and let n = dimCX.
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Among interesting (X, G)-structures on tori we note:

X G (X, G)-structure

Cn GL(n,C)nCn complex affine structure
Pn PSL(n + 1,C) complex projective structure
Cn O(n,C)nCn flat holomorphic Riemannian metric(︀∑︀

i z
2
i = 0

)︀
⊂ Pn+1 PO(n + 2,C) flat holomorphic conformal structure

The main theorem of our article is the following:

Theorem 1. Suppose that (X, G) is a complex homogeneous curve or surface. Then every holomorphic (X, G)-
structure on any complex torus is translation invariant.

For tori T of higher dimension, we prove that the translation invariant (X, G)-structures on T form a union of
connected components in the deformation space of (X, G)-structures (see Theorem 5).

3 The symmetry group

Suppose that M is a manifold with an (X, G)-structure with developing map δ : M̃ → X and holonomy mor-
phism h : π1(M) → G. Let ZM̃ be the group of all pairs (f , g) so that f : M̃ → M̃ is a diffeomorphism equivari-
ant for some automorphism a ∈ Aut(π1(M)), i.e. f ∘ 𝛾 = a(𝛾) ∘ f with quotient f̄ : M → M and g ∈ G and
δ ∘ f = gδ. Let f* ..= a. We can see the fundamental group as a discrete normal subgroup of ZM̃ through the
map 𝛾 ∈ π1(M) ↦→ (𝛾, h(𝛾)) ∈ ZM̃.

The automorphism group of the (X, G)-structure is the quotient

ZM ..= ZM̃/π1(M) .

Thus, a diffeomorphism ofM is an automorphism just when, liӔed to M̃, it reads through the developingmap
δ as an element of G.

We extend the holonomy morphism from π1(M) to ZM̃ by defining h : ZM̃ → G, h(f , g) ..= g.
Let ZX ⊂ G be the image of this extended h. The universal covering map M̃ → M is equivariant for

ZM̃ → ZM, while the developing map δ : M̃ → X is equivariant for ZM̃ → ZX.
The notation ZX is explained by the following lemma.

Lemma 1. The identity component Z0X ⊂ ZX is the identity component of the centralizer ZGh(π) in G of the
image of π ..= π1(M).

Proof. Let Z ..= ZGh(π). For any (f , g) in the identity component Z0M̃ of ZM̃, f* is the identity. Since the action
of Z0M̃ on M̃ commutes with the action of π1(M) and δ is equivariant, Z0X = h(Z0M̃) commutes with h(π). Hence,
Z0X lies in the centralizer Z.

Conversely, every vector field z in the Lie algebra of Z is a complete vector field on X commuting with
h(π). Pull back z by δ to become a complete vector field on M̃, invariant under the action of π by deck trans-
formations, i.e. the vector field descends to M. The corresponding flow is an one-parameter subgroup in Z0M̃
whose image under h is the flow of z. Therefore the identity component of Z lies in Z0X = h(Z0M̃).

For a complex homogeneous space (X, G), let Ḡ be the closure of G in the biholomorphism group of X, in the
topology of uniform convergence on compact sets. A complex homogeneous space (X, G) is full if G = Ḡ. If
Ḡ is a complex Lie group acting holomorphically on X, then the complex homogeneous space

(︀
X, Ḡ

)︀
is the

fulfillment of (X, G). It turns out that every complex homogeneous space of complex dimension 1 or 2 has a
fulfillment, i.e. Ḡ is a finite dimensional complex Lie group acting holomorphically on X. It does not appear to
be known if there are complex homogeneous spaces which do not have a fulfillment. A locally homogeneous
structure is full if its model is full.
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Take complex numbers λ1, λ2, . . . , λn, algebraically independent, define the diagonal matrix

A =

⎛⎜⎜⎜⎜⎝
λ1

λ2
. . .

λn

⎞⎟⎟⎟⎟⎠
and consider the morphism of complex Lie groups

µ : z ∈ C ↦→ ezA ∈ C*n .

Take a faithful representation ρ : C*n → GL(N,C), and let X = CN and G ..= CN o C with action (v, z)x =
ρ ∘ µ(z)x + v. Then (X, G) is a complex homogeneous space with fulfillment

(︀
X, Ḡ

)︀
where Ḡ = CN oC*n.

Lemma 2. Every algebraic homogeneous space (X, G) is full.

Proof. Let X(k) be the set of all k-jets of local holomorphic coordinate charts on X (also called the k-frame
bundle of X). The G-action on X liӔs to a holomorphic G-action on X(k). For sufficiently large k, every orbit of
G on X(k) is a holomorphic immersion of G as a complex submanifold of X(k) [2] p. 4, Thm. 2.4. In other words
this result asserts that the G-action is free on X(k) (for k large enough) as soon as the stabilizer of any point in
X has finitely many connected components (which is always true for algebraic actions).

Moreover, the G-action being supposed algebraic, all G-orbits of minimal dimension in X(k) are closed in
the algebraic Zariski topology [21] p. 28 Lemma 2.3.3 (ii). Since the G-action is free on X(k), all orbits have the
same dimension and they are all closed in the algebraic Zariski topology of X(k).

Therefore the orbits of the G-action on X(k) define an algebraic foliation on X(k) such that each leaf is an
embedded algebraic subvariety biholomorphic to G. Recall now that the Lie group G has its Maurer-Cartan
one-form with values in its Lie algebra (defining a holomorphic parallelization of the holomorphic tangent
bundle of G) and elements of G are precisely those biholomorphisms of G preserving the Maurer-Cartan one-
form.

Hence our algebraic foliation on X(k) admits a holomorphic section of its cotangent sheaf with values
in the Lie algebra of G which coincides on each leaf with the Maurer-Cartan one-form. Elements in G are
precisely those biholomorphisms of X which (when liӔed to X(k)) preserve a leaf (and hence all leafs) of this
foliation and itsMaurer-Cartan one-form. Consequently, G is a closed subgroup in the biholomorphism group
of X, for the topology of uniform convergence on compact sets.

The elements of ZM are precisely the diffeomorphisms of M that liӔ to elements of ZM̃. If the model (X, G) is
full then the groups ZM̃ , ZX and ZM are closed subgroups of the appropriate biholomorphismgroups, as limits
of symmetries are symmetries. Even if the model is not full, Z0X is a closed subgroup of the biholomorphism
group by lemma 1 on the preceding page. Denote by z the Lie algebra of ZX ⊂ G, which is also the Lie algebra
of ZM and of ZM̃.

For a complex torus T = V/Λ, the previous notations become ZM = ZT and ZM̃ = ZV . Every element
𝛾 = (f , g) ∈ ZV has f : V → V dropping to an automorphism of the torus, so f (v) = b + av where b ∈ V and
a = f* ∈ GL(V) and aΛ = Λ. As above, the holonomy morphism h extends from the fundamental group Λ to
a complex Lie group morphism h : ZV → ZX so that δ(𝛾v) = h(𝛾)δ(v), for all v ∈ V and 𝛾 ∈ ZV .

The following lemma characterizes those (X, G)-structures on complex tori which are translation invari-
ant.

Lemma 3. For any complex homogeneous space (X, G) and any holomorphic (X, G)-structure on a complex
torus T, with notation as above, the identity component Z0X of ZX is an abelian group, acting locally freely on the
image of the developing map. The Lie algebra z ⊂ V is a complex linear subspace acting on V by translations.
The subgroup ZX ⊂ G is a closed complex subgroup and has a finite index subgroup lying inside ZGh(Λ). If (X, G)
is full then the identity component of the Lie group ZT is a subtorus Z0T ⊂ T covered by Z0V = z. The following are
equivalent:
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1. The (X, G)-structure on T is translation invariant.
2. dimCz = dimCT.
3. The morphism h extends to a Lie group morphism h : V → G for which the developing map is equivariant.
4. There is a morphism of complex Lie groups h : V → G with image transverse to H so that the local biholo-

morphism δ : v ∈ V ↦→ h(v)x0 ∈ X is the developing map.

Proof. Every holomorphic vector field on T is a translation, and translations commute, so Z0T is a complex
abelian subgroup in (the translation group) T. If (X, G) is full, then ZT is a closed complex subgroup of G. No
vector field on T can vanish at a point without vanishing everywhere: z ∩ h = 0, with h the Lie algebra of the
stabilizer H of the point x0 in the image of the developing map. Since z ⊂ V is a complex linear subspace,
dimCz ≤ dimCV, with equality exactly when z = V and then the (X, G)-structure is translation invariant.
The map (f , g) ∈ ZV ↦→ f ′(0) ∈ GL(V) has finite image, because f ′(0)Λ = Λ. So the kernel of this map is a
finite index subgroup of ZV , consisting of those pairs (f , g) ∈ ZV for which f is a translation, and therefore
commutes with the translations Λ, and so g commutes with h(Λ). So this finite index kernel maps to ZGh(Λ).
But it maps to a finite index subgroup of ZX. So, using Lemma 1, ZX is a finite extension of an open subgroup
of ZGh(Λ). Since ZGh(Λ) is a closed complex subgroup, its components are closed in the complex analytic
Zariski topology, and disjoint. Therefore the open subgroup is also a closed analytic subvariety, and so ZX is
also a closed analytic subvariety.

Hence, to prove translation invariance of an (X, G)-structure on a complex torus T = Cn/Λ, one needs to
prove that the centralizer of h(Λ) in G is of complex dimension n. We will see in section 4 that, at least for
(X, G) algebraic, this centralizer is always of positive dimension.

Example 1. If we have a translation invariant (X, G)-structure on T = Cn/Λ, the same holonomy morphism
h and developing map δ defines a translation invariant (X, G)-structure on any complex torus T′ = Cn/Λ′ of
the same dimension.

Example 2. Take X = C2 and G the complex special affine group. The generic 1-dimensional subgroup of G
has centralizer also 1-dimensional, so it is thus far possible that ZX is one dimensional. We need something
more to decide translation invariance.

Example 3. Pick a positive integer k. Let X ..= C2 and let G be the set of pairs (t, f ) for t ∈ C and f a complex-
coefficient polynomial in one variable of degree at most k, with multiplication

(t0, f0) (t1, f1) =
(︀
t0 + t1, f0(u) + f1(u − t0)

)︀
and action on X

(t, f ) (u, v) = (u + t, v + f (u + t)) .
As we vary k we obtain all of the complex algebraic homogeneous surfaces of class Bβ1, in Sophus Lie’s
notation [18]. One checks easily that all 1-dimensional subgroups of G have 2-dimensional centralizer, so our
group ZX must have dimension at least 2. Therefore for this particular (X, G), every (X, G)-structure on any
complex 2-torus is translation invariant.

4 Finite holonomy

Pick a complex vector space V and lattice Λ ⊂ V. Let X ..= G ..= V/Λ′ for some (possibly different) lattice
Λ′ ⊂ V and let δ : z ∈ V ↦→ z + Λ′ ∈ X, so that

h(Λ) = Λ/
(︀
Λ ∩ Λ′)︀ .

The tori V/Λ and V/Λ′ are isogenous just when h(Λ) ⊂ V/Λ′ is a finite set, and then the Zariski closure is just
h(Λ), finite. Since G is abelian (and connected), lemma 1 on page 3 implies ZX = G, so the (X, G)-structure
with developing map δ and holonomy morphism h is translation invariant.
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Lemma 4. A holomorphic (X, G)-structure on a complex torus V/Λ has finite holonomy group just when it is
constructed as above. In particular, it is translation invariant.

Proof. If h(Λ) is finite, then we can liӔ to a finite covering of T to arrange that h(Λ) is trivial, and then, by
lemma 1, ZX = G. In particular, the (X, G)-structure is translation invariant. Lemma 3 on page 4 implies that
G is an abelian group acting locally freely on X, meaning that X is a quotient of G by a discrete subgroup.

The developing map descends to T. Its image is open and closed in X, so the developing map is onto: it
is a finite cover of X, by T. Consequently, X is also a complex torus. Since G is connected and acts transitively
and effectively on the complex torus X, G is the translation group X.

Corollary 1. Suppose that (X, G) is a complex algebraic homogeneous space. Any holomorphic (X, G)-structure
on a complex torus has positive dimensional symmetry group.

Proof. Assume, by contradiction, that dimCz = 0. Then ZGh(Λ) is finite, being a discrete algebraic subgroup
of G. But h(Λ) ⊂ ZGh(Λ), since Λ is abelian. Therefore h(Λ) is finite. Lemma 4 implies that ZX = G: a contra-
diction.

Corollary 2. If a smooth compact complex curve has genus at most 1, then every holomorphic locally homoge-
neous structure on the curve is homogeneous. If the curve has genus more than 1, then no holomorphic locally
homogeneous structure on the curve is homogeneous.

Proof. Every complex homogeneous curve (X, G) is algebraic [14] p. 14 Theorem 2. By Corollary 1, any holo-
morphic (X, G)-structure on any elliptic curve has positive dimensional symmetry group, with identity com-
ponent consisting of translations, so is translation invariant. Any locally homogeneous structure on a simply
connected compact manifold is identified with a cover of the model by the developing map, so there is only
one locally homogeneous structure on P1. Higher genus Riemann surfaces have no nonzero holomorphic
vector fields.

5 Discrete stabilizer

Lemma 5. Suppose that (X, G) is a complex homogeneous space and that dimCX = dimCG. Then every holo-
morphic (X, G)-structure on any complex torus is translation invariant.

Proof. Here X = G/H, with H a discrete subgroup in G. LiӔ the developing map uniquely to a map to G, so
that δ(0) = 1, and then

δ(x + λ)
(︀
h(λ)δ(x)

)︀−1 ∈ H,

i.e.
δ(x + λ)δ(x)−1h(λ)−1 ∈ H

is constant, because the stabilizer H has dimension zero. Plug in x = 0 to find δ(x + λ) = δ(λ)δ(x), i.e. we can
arrange that H = {1} and h = δ|Λ.

Consider the universal covering group G̃ → G. The developing map δ : V → G liӔs uniquely to a map
δ̃ : V → G̃ so that δ̃(0) = 1. By the same argument, δ̃(x + λ) = δ̃(λ)δ̃(x) for all x ∈ V and λ ∈ Λ, i.e. δ̃ is a
developing map for a

(︁
G̃, G̃

)︁
-structure. So without loss of generality, we can assume that X = G and that G

is simply connected.
Consider the map

∆ : (x, y) ∈ V × V ↦→ δ(x)−1δ(y)−1δ(x + y) ∈ G.

Clearly ∆(x, y + λ) = ∆(x, y) if λ ∈ Λ. So ∆ : V × T → G is holomorphic. Fixing x, y ↦→ ∆(x, y) ∈ G is a
holomorphic map from a complex torus to a simply connected complex Lie group, and therefore is constant
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[13, p. 139, theorem 1]. So ∆(x, y) = ∆(x, 0) = 1 for all x, y, i.e. δ : V → G is a holomorphic Lie groupmorphism,
hence, by Lemma 3 point (3), a translation invariant (X, G)-structure.

Example 4. From the classificationof complexhomogeneous surfaces (X, G) [18], the surfacesD1, D11, . . . , D15
and D2, D21, . . . , D214 are the smooth quotients of 2-dimensional complex Lie groups by various discrete
groups, i.e. they are precisely the complex homogeneous surfaces (X, G) with 2 = dimCX = dimCG. By
lemma 5 on the preceding page, all (X, G)-structures on complex tori, with (X, G) among the surfaces
D1, D11, . . . , D15 and D2, D21, . . . , D214, are translation invariant.

6 Enlarging the model and its symmetry group

Amorphism (X, G) →
(︀
X′, G′)︀ of complex homogeneous spaces is a holomorphic map X → X′ equivariant for

a holomorphic group morphism G → G′. If moreover X → X′ is a local biholomorphism, then every (X, G)-
structure induces an

(︀
X′, G′)︀-structure by composing the developing map with X → X′ and the holonomy

morphism with G → G′, and any
(︀
X′, G′)︀-structure is induced by at most one (X, G)-structure.

Lemma 3 on page 4 together with lemma 5 on the preceding page lead to the following corollary:

Corollary 3. For any complex homogeneous space (X, G), an (X, G)-structure on a complex torus is translation
invariant just when it is induced by an (X0, G0)-structure, where G0 ⊂ G is a connected complex subgroup acting
transitively and locally freely on an open set X0 ⊂ X and if this occurs then G0 is abelian.

In the statement above X0 is the image of the developingmap of the (X, G)-structure, seen as a homogeneous
space of the Lie group G0 = Z0X.

Proposition 1. Suppose that (X, G) →
(︀
X′, G′)︀ is a morphism of complex homogeneous spaces for which X →

X′ is a local biholomorphismand G → G′ has closed image Ḡ ⊂ G′. Suppose that there is nopositive dimensional
compact complex torus in G′/Ḡ acted on transitively by a subgroup of G′. For example, there is no such torus
when G′ is linear algebraic and G → G′ is a morphism of algebraic groups. Every translation invariant

(︀
X′, G′)︀-

structure on any complex torus with holonomy contained in Ḡ is induced by a unique (X, G)-structure, which is
also translation invariant.

Proof. Denote the developing map and holonomy morphism of the
(︀
X′, G′)︀-structure by δ′ and h′. Since the

structure is translation invariant, extend h′ to a complex Lie group morphism h′ : V → G′ so that δ′ : V → X
is just δ′(v) = h′(v)x′0. Denote the morphism G → G′ as ρ : G → G′. The holonomy morphism h′ descends to
a complex Lie group morphism T → G′/Ḡ.

By hypothesis, this is constant: h′ has image in Ḡ = ρ(G). The developing map is δ′(v) = h′(v)x′0 so
has image in the image of X → X′. On that image, X → X′ is a covering map, by G → G′ equivariance, so
δ′ : (V , 0) →

(︀
X′, x′0

)︀
liӔs to a unique local biholomorphism δ : (V , 0) → (X, x0). Similarly, the morphism

h′ : V → ρ(G) liӔs uniquely to a morphism h : V → G. By analytic continuation δ(v) = h(v)x0 for all v ∈ V, so
that the (X, G)-structure is translation invariant.

Suppose thatG′ is linear algebraic and ρ : G → G′ is amorphismof algebraic groups. The quotient of a lin-
ear algebraic group by a Zariski closed normal subgroup is linear algebraic [4] p.93 theorem 5.6, so ZX′ /ρ(ZX)
is a linear algebraic group and therefore contains no complex torus subgroup.

Example 5. If G is the universal covering space of the group of complex affine transformations ofC, and X = G
acted on by leӔ translation, then the center of G consists in the deck transformations over the complex affine
group. The surface (X, G) is not algebraic, but the quotient

(︀
X′, G′)︀ by the center is algebraic; any (X, G)-

structure induces and arises uniquely from an
(︀
X′, G′)︀-structure.

Example 6. The classification of the complex homogeneous surfaces [18] yields uniquemorphisms A2 → A1,
A3 → A1, A3 → A2, Bβ1 → Bβ2, Bβ1B0 → Bβ2′, B𝛾1 → Bδ4, B𝛾2 → Bδ4, B𝛾3 → Bδ4, B𝛾4 → Bδ4,
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Bδ1 → Bδ2, Bδ1′ → Bδ2′, Bδ3 → Bδ4, C2 → C7, C2′ → C5′, C3 → C7, C5 → C7, C6 → C7, C8 → A1,
D1 → A1, D11 → C7, D12 → C7, D13 → C5′, D14 → C5′, D2 → A1, D3 → A1. For each of these
morphisms (X, G) →

(︀
X′, G′)︀, G′/G contains no homogenenous complex torus. Below we will prove that all(︀

X′, G′)︀-structures on complex tori are translation invariant.
It follows that all (X, G)-structures on complex tori are translation invariant, for each of thesemorphisms

(X, G) →
(︀
X′, G′)︀. This reduces the proof of translation invariance of (X, G)-structures on tori for most of the

transcendental surfaces (X, G) to the same problem for algebraic surfaces
(︀
X′, G′)︀.

7 Normalizer chain of the holonomy

Continue with our notation as in section 2: (X, G) is a complex homogeneous space, x0 ∈ X some point,
H ⊂ G the stabilizer of x0, T = V/Λ is a complex torus, δ : (V , 0) → (X, x0) is the developing map and
h : Λ → G the holonomy morphism for an (X, G)-structure on T. Extend h as above to a morphism of Lie
groups h : ZV → ZX. Let S−1 ..= {1}, S0 ..= Z0X and let Si+1 ..= (NGSi)0 with Lie algebras si. Recall that (NGSi)0

is the identity component of the normalizer of Si in G. Call the sequence S−1 E S0 E . . . the normalizer chain
of the structure. Since S0 is Ad h(Λ)-invariant, so are all of the Si.

Lemma 6. Consider an (X, G)-structure on a complex torus T. The groups S0 E S1 E . . . in the normalizer
chain of that structure are solvable connected complex Lie groups with abelian quotients Si+1/Si. Each of these
groups acts locally freely on the image of the developing map of the (X, G)-structure.

Proof. Lemma 3 on page 4 proves that S0 = Z0X is abelian and acts locally freely at every point in δ(V). Each
element of s1 ⊂ g is a vector field on X, whose flow preserves the Lie subalgebra s0. Such a vector field pulls
back via the local biholomorphism δ to a vector field on V, whose flow preserves the translations s0 = z ⊂ V.
The s1 vector fields on V locally descend to T, but globally they only do so modulo transformations of Λ,
which add elements of s0. The Lie brackets of the s1 vector fields are only defined on T modulo the s0 vector
fields. The part of the bracket lying in the quotient s1/s0 is a holomorphic map T → Λ2

(︀
s1/s0

)︀* ⊗ (︀
s1/s0

)︀
,

so constant. This constant gives the structure constants of the Lie algebra s1/s0. The normal bundle of the
foliation inherited in T by the S0-action admits an S0-invariant integrable subbundle with fiber isomorphic
to s1/s0: it is a partial transverse structure to the foliation modelled on S1/S0.

Split the tangent bundle of T by some linear splitting V = s0 ⊕ s⊥0 . Since S0 acts by translations, this
splitting is preserved. The normal bundle to the foliation sits inside the tangent bundle of T, and every vector
field from s1/s0 is represented as a vector field on the torus, hence a translation field. The brackets of these
vector fields on the torus agree, modulo the constant translations in s0, with those of s1/s0. But Lie brackets
of holomorphic vector fields on the torus are trivial, so s1/s0 is abelian.

Each of the vector fields arising from this splitting is translation invariant, so has vanishing normal com-
ponent at a point in T justwhen its normal component vanishes everywhere on T, i.e. justwhen the associated
element in s1 belongs to s0. An element of s1 pulls back by the developing map to V to agree with an element
of s0 at some point just when they agree at every point of V, and so they agree at every point of δ(V). In other
words, s1 acts locally freely on δ(V). The same argument holds by induction for the successive subgroups
si ⊂ si+1.

Proposition 2. Suppose that (X, G) is a complex homogeneous space and that T is a complex torus with a
holomorphic (X, G)-structure. As above, let S−1 ⊂ S0 ⊂ S1 ⊂ · · · ⊂ G be the normalizer chain of the holonomy
morphism and let S =

⋃︀
i Si, i.e. S be the terminal subgroup in the chain of connected complex subgroups. Then

dimCS ≤ dimCX with equality if and only if the (X, G)-structure is translation invariant.

Proof. By lemma 6, S acts locally freely on δ(V). Consequently, dimCS ≤ dimCX. If dimCS < dimCX, then
dimCS0 = dimCZ0X < dimCX and thus the (X, G)-structure is not translation invariant.
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Assume now that dimCS = dimCX. Replace G by S (modulo any elements of S acting trivially on δ(V))
and X by δ(V) to arrange that G acts on X locally freely, so dimG = dim X and apply lemma 5 on page 6.

Theorem 2. If (X, G) is a complex homogeneous space and G is nilpotent then every holomorphic (X, G)-
structure on any complex torus is translation invariant.

Proof. The normalizer chain always increases in dimension until it reaches the dimension of G [4] p. 160.

Example 7. For the surfaces (X, G) in example 3 on page 5, and even for transcendental Bβ1-surfaces and
Bβ2-surfaces [18], G is nilpotent. The nilpotent complex homogeneous surfaces (X, G) are Bβ1, Bβ2, D1,
D11, . . . , D15, D2, D21, . . . , D214 [18]. Therefore for all of these surfaces (X, G), all (X, G)-structures on com-
plex tori are translation invariant.

8 Algebraic dimension

If (X, G) is a complex algebraic homogeneous space then any holomorphic (X, G)-structure is a holomorphic
rigid geometric structure in Gromov’s sense [6] and also a (flat) Cartan geometry (see the definition in section
10).

Recall that the algebraic dimension of a complex manifold M is the transcendence degree of the field of
meromorphic functions ofM over the field of complex numbers. A generic torus has algebraic dimension zero,
meaning that all its meromorphic functions are constant [22].

Lemma 7. The identity component of the symmetry group of any holomorphic geometric structure on a complex
torus T acts as a subtorus T0 of dimension at least the algebraic codimension of T (i.e. n − κ, where n = dimCT
and κ is the algebraic dimension of T).

The quotient of T by the subtorus T0 is an abelian variety (which coincides with the algebraic reduction of
T if and only if T0 is of complex dimension n − κ) .

Proof. The pair of the holomorphic geometric structure and the translation structure (the holomorphic par-
allelization) of T is a holomorphic rigid geometric structure on T. The symmetry pseudogroup of any such
structure acts transitively on sets of codimension κ [7, 8]. Therefore near each point there are locally defined
holomorphic vector fields preserving both the holomorphic geometric structure and the translation structure
(the holomorphic parallelization), acting with orbits of dimension ≥ κ. Each of these vector fields preserves
the translation structure, so is a translation. Translations on T extend globally, and give global symmetries.
The family of symmetries is Zariski closed in the complex analytic Zariski topology, so forms a subtorus.

Corollary 4. Suppose that (X, G) is a complex algebraic homogeneous space and T is a complex torus of alge-
braic dimension zero. Every holomorphic (X, G)-structure on T is translation invariant.

Proof. Here the holomorphic geometric structure in the previous proof is the (X, G)-structure. If T is of alge-
braic dimension zero, then the subtorus of common symmetries of the (X, G)-structure and of the translation
structure of T acts transitively. Consequently, the (X, G)-structure is translation invariant.

The results from [7, 8] that we used in the proof of lemma 7 hold not only for tori, but for all complex mani-
folds: any holomorphic rigid geometric structure (or holomorphic Cartan geometry modelled on an algebraic
homogeneous space) on a complex manifold of algebraic dimension zero is locally homogeneous on a dense
open set (away from a nowhere dense analytic subset of positive codimension).

With the same method we can then prove the following:

Theorem 3. Let M ..= P/π be a compact quotient of a complex Lie group P by a lattice π. If M is of algebraic
dimension zero, thenany holomorphic geometric structure ϕ onM pulls back to a translation invariant geometric
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structure on P. Consequently, for a complexalgebraic homogeneous space (X, G), any (X, G)-structure onM pulls
back to P to a right invariant (X, G)-structure.

Proof. We add together the geometric structure ϕ and the holomorphic parallelization of TM to give a holo-
morphic rigid geometric structure ϕ′. Then Corollary 2.2 in [8] shows that ϕ′ is locally homogeneous on an
opendense set inM, in the sense that the local holomorphic vector fieldspreservingboth theholomorphicpar-
allelization and ϕ are transitive in an open dense set inM. But the local holomorphic vector fields preserving
the holomorphic parallelization (which is given by global right invariant vector fields) are those vector fields
which are leӔ invariant (they are locally defined on M and their pull back is globally defined on P). Hence,
all leӔ invariant vector fields on P must preserve the pull back of ϕ; if not ϕ′ is not locally homogeneous on
any open set. LeӔ invariant vector fields generate right translation: consequently, the pull back of ϕ on P is
invariant by right translation.

If ϕ is defined by an (X, G)-structure with (X, G) a complex algebraic homogeneous space, then the pull
back of the (X, G)-structure to P is right invariant.

Theorem 3 generalizes a result of Ghys dealing with holomorphic tensors on SL(2,C)/π [9].

Theorem 4. Consider a compact complex manifold M of complex dimension n, algebraic dimension zero and
Albanese dimension n. Then M admits a holomorphic rigid geometric structure (or a holomorphic Cartan geom-
etrymodelled on an algebraic homogeneous space) if and only if M is a complex torus and the holomorphic rigid
geometric structure (the Cartan geometry) is translation invariant.

Proof. SinceM is of algebraic dimension zero, it is known that the Albanese mapM → AM is surjective, with
connected fibers and the Albanese torus AM contains no closed complex hypersurface (i.e. divisor) [22] lem-
mas 13.1, 13.3, 13.6. Here,AM is of the same dimension asM, so the Albanese mapM → AM is a modification
(see lemma 13.7 in [22]).

LetH be the locus inM onwhich theAlbanesemapdrops rank. The image α(H) ofH through theAlbanese
map α is a nowhere dense analytic subset of AM of complex codimension at least two.

The Albanese map is a biholomorphism between the open sets M \ α−1(α(H)) in M and AM \ α(H) in AM
. This implies that the holomorphic rigid geometric structure of M drops down to a holomorphic geometric
structureϕ onAM\α(H). Nowweput togetherϕ and the translation structure (holomorphic parallelization) of
AM together to formaholomorphic rigid geometric structureϕ′ onAM \α(H). The complexmanifoldAM \α(H)
being of algebraic dimension zero, the geometric structure ϕ′ is locally homogeneous on an open dense set
inAM \ α(H) [7, 8]. The local infinitesimal symmetries are translations, because they preserve the translation
structure. They extend to global translations onAM preserving ϕ′. Consequently, ϕ′ is the restriction toAM \
α(H) of a translation invariant geometric structure defined on all of AM.

Consider a family of linearly independent translations onAM. They pull back to commuting holomorphic
vector fields κ1, . . . , κn on M \ α−1(α(H)) which preserve the initial geometric structure and parallelize the
holomorphic tangent bundle TM overM \α−1(α(H)) . Since they are symmetries of an analytic rigid geometric
structure, they extend to all of M [1, 20].

Pull back a holomorphic volume form by the Albanese map: a holomorphic section vol of the canoni-
cal bundle of M which vanishes on the branch locus H. Plug κ1, . . . , κn into the volume form and get the
holomorphic function

vol(κ1, . . . , κn)

which is constant and nonzero on M \ α−1(α(H)), since it corresponds to a constant nonzero function on the
Albanese torus, so constant and nonzero on all of M.

This implies that the holomorphic vector fields κ1, . . . , κn holomorphically parallelize TM on all of M.
Since they commute, M is a complex torus and κ1, . . . , κn are translation vector fields. The initial geometric
structure on M is translation invariant.
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9 Deformation space of (X, G)-structures
Consider an (X, G)-structure on a manifold M and the corresponding holonomy morphism h : π1(M) → G.
The deformation space of (X, G)-structures onM is the quotient of the space of (X, G)-structures onM by the
group of diffeomorphisms of M isotopic to the identity.

By the Ehresmann-Thurston principle (see, for instance, [11] p. 7), the deformation space of (X, G)-
structures on M is locally homeomorphic, through the holonomy map, to an open neighborhood of h in
the space of group homomorphisms from π1(M) into G (modulo the action of G on the target G by inner
automorphisms).

In other words, any group homomorphism from π1(M) into G close to h is itself the holonomymorphism
of an (X, G)-structure onM close to the initial one. Also, two close (X, G)-structures with the same holonomy
morphism are each conjugated to the other by an isotopy of M.

For any finitely generated group π and any algebraic group G, Hom(π, G) is an algebraic variety (a sub-
variety of Gk, if π can be generated by k elements). If G is a complex Lie group, the space Hom(π, G) is a
complex analytic space. A family of (X, G)-structures on M parametrized by a complex reduced space S is
called holomorphic if the family of the corresponding holonomy morphisms liӔs as a complex analytic map
from S to Hom(π, G).

Notice that, in our case, the G-action preserves a complex structure on X and hence any (X, G)-structure
on a manifold M induces an underlying complex structure on M (for which the (X, G)-structure is holomor-
phic). In particular, when deforming the (X, G)-structure on M, one also deforms the complex structure on
M.

Let us make precise how the complex structure varies under the deformation of a holomorphic (X, G)-
structure on a complex torus.

Lemma 8. Consider a complex homogeneous space (X, G). Suppose that we have a holomorphic (X, G)-
structure on a complex n-torus T = V/Λ, with holonomy morphism h : Λ → G. If hs ∈ Hom(Λ, G) is a
holomorphic family of group morphisms for s in some reduced complex space S, with hs0 = h for some s0 ∈ S,
then there is a holomorphic family of (X, G)-structures on a holomorphic family of complex tori Ts with holonomy
morphism hs, for s in an open neighborhood of s0.

Proof. By the Ehresmann–Thurston principle, there is a unique nearby (X, G)-structure on the same under-
lying real manifold with holonomy morphism hs. Since G preserves a complex structure on X, this (X, G)-
structure is holomorphic for a unique complex structure on Ts. Being a small deformation of a complex torus,
Ts is a complex torus by Theorem 2.1 in [5].

The following result deals with the deformation space of translation invariant (X, G)-structures on complex
tori. Notice that the condition of the symmetry group ZX being of dimension n is closed under deformation
of (X, G)-structures, since a limit of (X, G)-structures could have smaller holonomy group (i.e. some gener-
ators of Λ landing in some special position), but that would only decrease the collection of conditions that
determine the centralizer Z0X, so make Z0X larger. Hence limits of translation invariant (X, G)-structures are
translation invariant, as the centralizer of the holonomy can only increase in dimension.

Theorem 5. Let (X, G) be a complex algebraic homogeneous space. If a holomorphic (X, G)-structure on a
complex torus T = V/Λ is translation invariant, then so is any deformation of that structure. Consequently,
translation invariant (X, G)-structures formaunion of connected components in the deformation space of (X, G)-
structures on the (real) manifold T.

Proof. Start with a translation invariant (X, G)-structure on T. The holonomy morphism extends from Λ to a
complex Lie group morphism h : V → G. For any other complex torus T′ = V/Λ′, restrict h to the period lat-
tice Λ′ of that torus and take the same developing map to construct a (translation invariant) (X, G)-structure
on T′. In particular, we can deform the starting translation invariant (X, G)-structure to another (translation
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invariant) (X, G)-structure on a complex torus of algebraic dimension zero (by choosing a generic lattice Λ′).
Moreover, by corollary 4 on page 9, all nearby (X, G)-structures are translation invariant, since the underly-
ing complex structure of the torus T remains of algebraic dimension zero under small perturbation of the
complex structure T′. Hence, the translation invariant (X, G)-structures on T form an open dense set in our
connected component of the deformation space of (X, G)-structures. In particular, we proved that the natural
map associating to an (X, G)-structure the underlying complex structure on T is surjective on the Kuranishi
space of V/Λ.

All of these deformations of the (X, G)-structure merely perturb the holonomy morphism h through a
family of complex Lie group morphisms h : V → G and the developing map is δ(v) = h(v)x0, with x0 ∈ X.

But, we have seen that the translation invariant (X, G)-structures always form a closed set. Therefore in
that connected component of the deformation space of (X, G)-structures, all (X, G)-structures are translation
invariant.

Let us give an easy argument implying, for various complex homogeneous surfaces (X, G), that all (X, G)-
structures on complex tori of complex dimension two are translation invariant.

Lemma 9. Suppose that (X, G) is a complex algebraic homogeneous space. If there is a holomorphic (X, G)-
structure on a complex torus T, and that structure is not translation invariant, then there is another such struc-
ture on another complex torus nearby to a finite covering of T, also not translation invariant, with holonomy
morphism having dense image in Z0X . Any connected abelian subgroup near enough to Z0X is the identity compo-
nent of its centralizer and arises as the Zariski closure of the image of the holonomy of a nearby (X, G)-structure
on a nearby complex torus.

Proof. Since ZX is the centralizer of h(Λ) in G, it is an algebraic subgroup in G. Therefore it consists of a
finite number of connected components. AӔer perhaps replacing T by a finite cover of T, we can assume that
h(Λ) ⊂ Z0X. By lemma 3 on page 4, Z0X is abelian. Since Λ is free abelian, morphisms Λ → Z0X are precisely
arbitrary choices of where to send some generating set of Λ. Since Λ has rank 2n and dimCZ0X < n, we can
slightly deform the holonomy morphism to have Zariski dense image in Z0X. If we can perturb Z0X slightly to
an abelian subgroup with larger centralizer, we can repeat the process. Since we stay in the same connected
component in the deformation space of (X, G)-structures, theorem 5 on the preceding page implies that none
of these (X, G)-structures are translation invariant.

Example 8. Suppose that dimCX = 2 and the Levi decomposition of G has reductive part with rank 2 or more.
Suppose we have a holomorphic (X, G)-structure on a complex 2-torus. The generic connected 1-dimensional
subgroup of G is not algebraic, because the characters on a generic element of g have eigenvalues with ir-
rational ratio. AӔer perhaps a small perturbation of the (X, G)-structure, Z0X has complex dimension 2 or
more: the (X, G)-structure becomes translation invariant. Every holomorphic (X, G)-structure of this kind on
a complex 2-torus must be translation invariant (because of lemma 9). From the classification of the complex
homogeneous surfaces (X, G) [18], this occurs for the complex homogeneous surfaces A1, A2, Bβ2, B𝛾4, Bδ2,
Bδ4, C2, C3, C5, C6, C7 and D1.

10 Reductive and parabolic Cartan geometries

Pick a complex homogeneous space (X, G), with H ⊂ G the stabilizer of a point x0 ∈ X, and with the groups
H ⊂ G having Lie algebras h ⊂ g. The space (X, G) is reductive if H is a reductive linear algebraic group,
rational if X is compact and birational to projective space and G is semisimple in adjoint form.

Recall that a Cartan geometry (or a Cartan connection) is a geometric structure infinitesimally modelled
on ahomogeneous space. The curvature of a Cartan geometry vanishes if and only if the Cartan geometry is an
(X, G)-structure. A holomorphic Cartan geometrymodelled on (X, G) is a holomorphic H-bundle B → M with
a holomorphic connection ω on B ×H G so that the tangent spaces of B are transverse to the horizontal spaces
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of ω. A Cartan geometry or locally homogeneous geometric structure is reductive (parabolic) if its model is
reductive (rational).

If a compact Kähler manifold has trivial canonical bundle and a holomorphic parabolic geometry then
the manifold has a finite unbranched holomorphic covering by a complex torus and the geometry pulls back
to be translation invariant [15] p. 3 theorem 1 and p. 9 corollary 2.

Example 9. Among complex homogeneous surfaces (X, G) [18], the rational homogeneous varieties are A1 =(︀
P2, PSL(3,C)

)︀
and

C7 =
(︁
P1 × P1, PSL(2,C) × PSL(2,C)

)︁
.

Therefore any holomorphic locally homogeneous structure on a complex torus modelled on either of these
surfaces is translation invariant.

Theorem 6. If a compact Kähler manifold has a holomorphic reductive Cartan geometry, then the manifold
has a finite unbranched holomorphic covering by a complex torus and the geometry pulls back to be translation
invariant.

Proof. Holomorphically split g = W ⊕ h for some H-module W; this H-module is effective [17] p. 9 lemma
6.1. At each point of B, the Cartan connection splits into a 1-form valued in W and a connection 1-form, say
ω = σ + 𝛾. At each point of the total space B of the Cartan geometry, the 1-form σ is semibasic, so defines a
1-form σ̄ on the corresponding point of the base manifold, a coframe. Because H acts effectively on W, the
map σ̄ identifies the total space of the Cartan geometry with a subbundle of the frame bundle of the base
manifold [17] corollary 6.2. Hence the Cartan geometry is precisely an H-reduction of the frame bundle with a
holomorphic connection. The tangent bundle admits a holomorphic connection, so has trivial characteristic
classes [12]. Therefore the manifold admits a finite holomorphic covering by a complex torus [12]; without
loss of generality assume that the manifold is a complex torus T. The trivialization of the tangent bundle
pulls back to the H-bundle to be amultiple gσ for some g ∈ GL(W), transforming under H-action, so defining
a holomorphic map T → GL(W)/H. But GL(W)/H is an affine algebraic variety, so admits no nonconstant
holomorphic maps from complex tori, so T → GL(W)/H is constant, hence without loss of generality is the
identity, i.e. g is valued inH, so there is a holomorphic global section of the bundle onwhich g = 1, trivializing
the bundle. The connection is therefore translation invariant, and so the Cartan connection is translation
invariant.

Example 10. Among complex homogeneous surfaces (X, G) [18], the reductive homogeneous surfaces are A2,
A3, C2, C2′, C3, C9, C9′, D1, D11, D12, D13, D14 and D3. Therefore any holomorphic locally homogeneous
structure on a complex torus modelled on any one of these surfaces is translation invariant.

Proposition 3. Suppose that (X, G) is a product of a reductive homogeneous space with a rational homoge-
neous variety. Then every holomorphic Cartan geometry modelled on (X, G) on any complex torus is translation
invariant.

Proof. Write (X, G) = (X1 × X2, G1 × G2) as a product of a reductive homogeneous space (X1, G1) and a ratio-
nal homogeneous variety (X2, G2). The splitting of X into a product splits the tangent bundle of the torus into
a product and the canonical bundle into a tensor product. Since the canonical bundle of the complex torus is
trivial, the determinant line bundles of the two factors in our splitting are dual. The reductive geometry gives
a holomorphic connection on the first factor of the splitting of the tangent bundle, so that the determinant
line bundle of that factor is trivial. Therefore the determinant line bundle of the second factor is trivial. Taking
a holomorphic section reduces the structure group of the parabolic part of the geometry to a reductive group
[15] p. 3, and so the geometry is now reductive so the result follows from theorem 6.

Example 11. Among complex homogeneous surfaces (X, G) [18], those which are a product of a reductive ho-
mogeneous curve and a rational homogeneous curve are C5, C5′ and C6. Therefore any holomorphic locally
homogeneous structure on a complex torus modelled on any one of these surfaces is translation invariant.
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11 LiӔing

If a complex homogeneous space (X, G) has underlying manifold X not simply connected, take the universal
covering space X̃ → X, liӔ the vector fields that generate the Lie algebra g of G to X̃ and generate an action of
a covering group, call it G̃, acting on X̃. Caution: this process neither preserves nor reflects algebraicity. The
developing map δ of any (X, G)-structure liӔs to a local biholomorphism δ̃ to X̃. If all of the deck transforma-
tions of π1(X) arise as elements of G̃, then the (X, G)-structure is induced by a unique (X̃, G̃)-structure. An
(X, G)-structure on a complex torus is then translation invariant just when the associated

(︁
X̃, G̃

)︁
-structure

is translation invariant.

Example 12. From the classification of complex homogeneous surfaces [18], (X, G) has universal covering
space (X̃, G̃) with deck transformations carried out by elements of G̃ for any (X, G) among Bβ1A1, Bβ1D,
Bβ1E, Bβ2′, B𝛾2′, Bδ2′, C2′, C5′, D11, D12, D13, D14 and D15. Therefore the proof of translation invari-
ance of holomorphic (X, G)-structures on complex 2-tori, for these (X, G), reduces to the proof of translation
invariance of holomorphic (X̃, G̃)-structures on complex tori, for their universal covering spaces.

A slight modification of this procedure, using proposition 1 on page 7:

Lemma 10. Suppose that we have a morphism
(︁
X̃, G̃

)︁
→

(︀
X′, G′)︀ of complex homogeneous spaces from the

universal covering space
(︁
X̃, G̃

)︁
→ (X, G) of a complex homogeneous space (X, G). Suppose that X̃ → X′ is

a local biholomorphism and that G̃ → G′ has closed image Ḡ ⊂ G′. Suppose that there is no positive dimen-
sional compact complex torus in G′/Ḡ acted on transitively by a subgroup of G′. Suppose that all of the deck
transformations of π1(X) arise as elements of G′. Then the developing map of any (X, G)-structure liӔs uniquely
to the developing map of a unique

(︀
X′, G′)︀-structure. An (X, G)-structure on a complex torus is then translation

invariant just when the associated
(︀
X′, G′)︀-structure is translation invariant.

Example 13. Take any complex homogeneous surface (X, G) with universal covering space
(︁
X̃, G̃

)︁
= Bβ1 in

the notation of [18] (see example 3 on page 5 for the definition). The inclusion Bβ1 → Bβ2 puts the deck trans-
formations of every quotient

(︁
X̃, G̃

)︁
→ (X, G) into the transformations of a group G′ containing G̃. Therefore

for all complex homogeneous surfaces (X, G) covered by Bβ1, every holomorphic (X, G)-structure on any
complex torus is translation invariant.

12 Complex tori of complex dimension 0, 1 or 2

Theorem 7. Every holomorphic locally homogeneous geometric structure on a complex torus of complex di-
mension 0, 1 or 2 is translation invariant.

Proof. Corollary 1 on page 6 covers any complex torus of dimension 1. The tricks in examples 3 to 13 prove
translation invariance of all (X, G)-structures for all of the complex homogeneous surfaces (X, G), from the
classification [18].

13 Conclusion

It seems that our methods are unable to prove the translation invariance of holomorphic solvable (X, G)-
structures on complex tori. We conjecture that all holomorphic locally homogeneous geometric structures on
complex tori are translation invariant.
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Moreover, suppose that a complex compact manifoldM homeomorphic to a torus admits a holomorphic
(X, G)-structure. Then we conjecture that M is biholomorphic to the quotient V/Λ of a complex vector space
V by a lattice Λ. In other words, nonstandard complex structures on real tori do not admit any holomorphic
(X, G)-structure and, more generally, do not admit any holomorphic rigid geometric structure.

References
[1] A. M. Amores, Vector fields of a finite type G-structure, J. Differential Geom. 14 (1979), no. 1, 1–6 (1980). MR 577874 (81k:53033)
[2] M. Salah Baouendi, Linda Preiss Rothschild, Jörg Winkelmann, and Dmitri Zaitsev, Lie group structures on groups of diffeo-

morphisms and applications to CR manifolds, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 5, 1279–1303, xiv, xx. MR 2127849
(2005k:32048)

[3] Yves Benoist, Tores affines, Crystallographic groups and their generalizations (Kortrijk, 1999), Contemp. Math., vol. 262,
Amer. Math. Soc., Providence, RI, 2000, pp. 1–37. MR 1796124 (2001k:57025)

[4] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York,
1991. MR 92d:20001

[5] F. Catanese, Deformation in the large of some complex manifolds 1, Ann. Mat. Pura Appl. (4) 183 (2004), no. 3, 261–289.
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