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Abstract: Given a Hodge manifold, it is introduced a self-adjoint operator on the space of endomorphisms of
the global holomorphic sections of the polarization line bundle. Such operator is shown to approximate the
Laplace operator on functions when composed with Berezin-Toeplitz quantization map and its adjoint, up to
an error which tends to zero when taking higher powers of the polarization line bundle.

1 Introduction

LetM be a n-dimensional projectivemanifold and let g be aHodgemetric onM. Thismeans thatM is equipped
with a complex structure J and with a positive Hermitian line bundle (L, h). Denoted by Θ the curvature of
the Chern connection, the form ω = i

2πΘ is positive, and it holds g(u, v) = ω(u, Jv). This setting is precisely
that of quantization of compact Kählermanifolds [2, 8, 10, 11]. See Schlichenmaier [13] for an overview of fun-
damental results and references therein. In this theory, for any integer m > 0 is defined a finite-dimensional
Hilbert space Vm together with the Berezin-Toeplitz quantization map and its adjoint (see Section 2)

Tm : C∞(M) → Vm , T*m : Vm → C∞(M).

The aim of this note is introducing a self-adjoint positive operator (see Section 3)

∆m : Vm → Vm

which approximate in a suitable sense, as m grows, the (positive) Laplacian

∆ : C∞(M) → C∞(M)

associated with themetric g (recall that it is defined by the identity ∆(f )ωn = −n i∂∂̄f ∧ωn−1 for any complex-
valued smooth function f on M). To be a little more specific, we will prove that for any smooth function f on
M one has the asymptotic expansion

T*m ∘ ∆m ∘ Tm(f ) = mn−1∆f + O(mn−2) (1)

as m → ∞. For this reason the operator ∆m could be thought of as a quantized Laplacian. Interestingly, ∆m
depends just on the projective geometry of the Kodaira embedding of M via Lm and the Fubini-Study metric
induced by hm (see Section 3).

Thanks to results available on asymptotic expansions of Bergman kernels [3, 8, 14, 15] and Toeplitz oper-
ators [6, 9], the main result we will prove is indeed the following, which obviously implies (1).

Theorem 1.1. There is a complete asymptotic expansion

T*m ∘ ∆m ∘ Tm(f ) =
∑︁
r≥0

Pr(f )mn−1−r + O(m−∞),
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where Pr are self-adjoint differential operators on C∞(M). More precisely, for any k, R ≥ 0 there exist constants
Ck,R,f such that ⃦⃦⃦⃦

⃦T*m ∘ ∆m ∘ Tm(f ) −
R∑︁
r=0

Pr(f )mn−1−r
⃦⃦⃦⃦
⃦
Ck(M)

≤ Ck,R,fmn−R−2.

Moreover one has
P0(f ) = ∆f , P1(f ) = −

1
2π ∆

2f .

The construction of the quantized Laplacian ∆m was inspired by a work of J. Fine on the Hessian of the
Mabuchi energy [4]. Even though in principle ∆m is unrelated to the problem of finding canonical metrics
on M, when ω is balanced in the sense of Donaldson (see definition recalled at the end of Section 4) the
relation between ∆m and ∆ is even more apparent as shown by the following

Theorem 1.2. If ω is m-balanced then

∆m(A) = C Tm ∘ ∆ ∘ T*m(A)

for al A ∈ Vm, where C =
mn−1

(︁∫︀
M

ωn
n!

)︁2

(dim H0(M,Lm))2 .
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2 Preliminaries

Quantization of Kählermanifolds is an extensively studied topic (see [13] and references therein). This section
is intended to fix the notation and recall some basic facts of the theory that will be useful in the following.

The space Vm mentioned in the introduction is nothing but End(Hm), being Hm = H0(M, Lm) the space
of the holomorphic sections of Lm. By Riemann-Roch theorem dimVm grows like a positive multiple of m2n

whenm →∞. The space Hm is equippedwith a Hermitian inner product bm induced by the Hermitianmetric
hm on Lm and the Kähler form ω. Explicitly it is given by

bm(s, t) =
∫︁
M

hm(s, t)ω
n

n! (2)

for all s, t ∈ Hm. Thus Vm is a Hermitian vector space with inner product defined by

⟨A, B⟩ = tr(AB*), (3)

for all A, B ∈ Vm. Here B* denotes the adjoint of B with respect to bm.
The map Tm : C∞(M) → Vm mentioned above is the well known Berezin-Toeplitz quantization operator

[2]. Given a smooth function f on M, the operator Tm(f ) is the composition Tm(f ) = P ∘ M(f ), where M(f ) :
Hm → Γ(M, Am) is the multiplication by f :

M(f )(s) = fs,
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and P : Γ(M, Am) → Hm is the orthogonal projection with respect to the obvious extension of the inner prod-
uct bm to smooth sections. The space of smooth functions C∞(M) is equipped with the L2-product induced
by ω, given by

⟨f , g⟩ =
∫︁
M

f ḡ ω
n

n! , (4)

for all f , g ∈ C∞(M). Let T*m : Vm → C∞(M) be the adjoint of Tm. The relationship between T*m and the
so-called covariant Berezin symbol has been firstly highlighted by Schlichenmaier [12, Theorem 3.1]. With
notation introduced above, his result reads as follows.

Lemma 2.1. Let {sα} be an orthonormal basis of Hm. For all A ∈ Vm it holds:

T*m(A) =
∑︁
α
hm(Asα , sα).

Proof. For convenience of the reader we recall here the Schlichenmaier’s argument in our notation. For every
f ∈ C∞(M) one has

tr(A Tm(f )*) =
∑︁
α
bm
(︀
Asα , Tm(f )sα

)︀
.

Substituting

Tm(f )sα =
∑︁
β

⎛⎝∫︁
M

�m(sα , sβ)
ωn
n!

⎞⎠ sβ ,
it follows

tr(A Tm(f )*) =
∑︁
α

∫︁
M

f̄ (x)hm(Asα , sα)
ωn
n! ,

which gives the thesis by arbitrariness of f aӔer noting that∫︁
M

T*m(A)f̄
ωn
n! = tr(A Tm(f )*).

Note that themap T*m takes an endomorphisms A ∈ Vm to the restriction to the diagonal of its integral kernel.
More precisely, given an orthonormal basis {sα} of Hm, the integral kernel of A is the smooth section K(A) of
Lm � L−m over M ×M given by

K(A)(x, y) =
∑︁
α,β

∫︁
M

hm(Asα , sβ)(z)sβ(y)⊗ s*α(x)
ωnz
n! ,

where s*α(x) is the metric dual of sα(x) in the fiber of Lm over the point x. The restriction of the kernel to the
diagonal is (naturally identified with) the smooth function T*m(A) thanks to Lemma 2.1. When A is of the form
Tm(f ) for some smooth function f , the integral kernel is given by

K(Tm(f ))(x, y) =
∑︁
α,β

∫︁
M

f (z)hm(sα , sβ)(z)sβ(y)⊗ s*α(x)
ωnz
n! ,

whence
T*m ∘ Tm(f )(x) =

∑︁
α,β

∫︁
M

f (z)hm(sα , sβ)(z)hm(sβ , sα)(x)
ωnz
n! .

For a constant function f = c ∈ R, one has

T*m ∘ Tm(c) = c ρm ,

where ρm =
∑︀

α |sα|
2
hm is the so-called Bergman kernel (along the diagonal) of ω, also known as Rawnsley’s

ϵ-function (originally introduced as η-function [10] and θ-function [11]).



134 | Alberto Della Vedova

3 The operator ∆m
In this section we introduce the quantized Laplacian and we describe some of its fundamental properties.

The quantized Laplacian ∆m : Vm → Vm is a self-adjoint operator which depends just on projective
geometry of M in P(Hm). Consider the embedding

ιm : M → P(Hm),

givenby theKodairamapofM inP(H*m) inducedby Lm, followedby the isomorphismP(H*m) ≃ P(Hm) induced
by the Hermitian product bm. Every endomorphism A of Hm induces a (holomorphic) vector field ν(A) on
P(Hm) whose flow is given by

Φtν(A)(z) = e
tAz.

Let Λm be the hyperplane bundle on P(Hm), endowed with the Hermitian metric induced by bm, and let gm
be the pull-back toM of the associated Fubini-Study metric on P(Hm). One can restrict ν(A) toM as a section
of ι*mTP(Hm), and then project orthogonally to TM ⊂ ι*mTP(Hm) to get a smooth vector field em(A) onM. This
defines a map

em : Vm → Γ(TM).

Recall that Vm has an inner product defined by (3). On the other hand, Γ(TM) is equipped with the L2-inner
product induced by the Kähler metric gm:

(η, ξ )m =
∫︁
M

gm(η, ξ )
ωnm
n! ,

for all η, ξ ∈ Γ(TM) (here ωm is the Käler form of gm, i.e. the pull-back of the Fubini-study form to M). Thus
one can form the adjoint operator

e*m : Γ(TM) → Vm ,

and finally define
∆m = e*m ∘ em . (5)

The next lemma shows that the vector field em(A) and the function T*m(A) are related through the projec-
tively induced Kähler metric gm.

Lemma 3.1. For all A ∈ Vm one has
em(A) = gradm

T*m(A)
ρm

,

where the gradient is taken with respect to the Riemannian metric gm.

Proof. We have to show that gm
(︀
em(A), v

)︀
= v
(︀
T*m(A)/ρm

)︀
for all vector field v ∈ Γ(TM). In order to do this,

consider a smooth extension ṽ of v to a smooth vector field of P(Hm). Since gm is induced by the Fubini-Study
metric gFS on P(Hm), and em(A) is the orthogonal projection of ν(A) on TM, one has

gm(em(A), v) = ι*m gFS(ν(A), ṽ). (6)

The right hand side of the equation above can be related to a function on P(Hm) naturally associated to
A. Indeed we claim that ν(A) is the gradient of the function µA defined by

µA(s) =
bm (As, s)
bm(s, s)

.

For the reader’s convenience a proof of this (standard) fact is given below. Nowwe go ahead taking the claim
for grant. From (6) one gets

gm(em(A), v) = v(ι*mµA),
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thus it remains to prove the identity
ι*mµA = T*m(A)/ρm . (7)

To this end, let {sα} be an orthonormal basis of Hm, so that the pull-back of µA to M is given by

ι*mµA(x) =
∑︀

α,β sα(x)sβ(x)bm(Asα , sβ)∑︀
𝛾 |s𝛾(x)|2

,

where the ratio sα(x)sβ(x)∑︀
𝛾 |s𝛾 (x)|2 is well defined and can be computed choosing an arbitrary Hermitian metric on

the line bundle Lm. In particular, taking hm it becomes hm(sα ,sβ)(x)∑︀
𝛾 |s𝛾 |2hm (x)

, whence

ι*mµA(x) =
∑︀

α,β
∫︀
M h

m(Asα , sβ)(z)hm(sα , sβ)(x)
ωnz
n!∑︀

𝛾 |s𝛾 |2hm (x)
,

and the identity (7) follows by definition of ρm and Lemma 2.1.
Finally, in order to prove the claim above, let (zα) be homogeneous coordinates on P(Hm) corresponding

to the basis {sα}. The function µA then takes the form

µA(z) =
z̄Azt
|z|2 ,

where now A =
(︀
Aαβ
)︀
denotes thematrix that represents the endomorphism Awith respect the chosen basis.

The equality between ν(A) and the gradient of µA can be proved in local affine coordinates, but here we
consider the projection of Hm \ {0} on P(Hm), and the fact that ν(A), gFS and µA liӔ to C*-invariant objects
(which will be denotes with the same symbols). In particular one has

ν(A) =
∑︁
α,β

Aαβ
(︂
za

∂
∂zβ

+ z̄β
∂
∂z̄α

)︂
,

and
gFS =

∑︁
i

dzidz̄i
|z|2 −

∑︁
i,j

z̄izjdzidz̄j
|z|4 ,

whence

iν(A)gFS =
∑︁
α,β

Aαβ

(︃
zαdz̄β + z̄βdzα

|z|2 −
zα z̄βd|z|2

|z|4

)︃
= dµA ,

which proves the claim.

Next lemma characterizes the kernel of ∆m.

Lemma 3.2. ∆m(A) = 0 if and only if A is a multiple of the identity.

Proof. By definition ∆m = e*m ∘ em, and by Lemma 3.1 and its proof it follows em(A) = gradm
T*m(A)
ρm . Thus

∆m(A) = 0 if and only if T
*
m(A)
ρm = c for some c ∈ C. Let I ∈ Vm be the identity. The identity T*m(I) = ρm implies

∆m(A) = 0 if and only if A − cI ∈ ker T*m, thus the thesis follows by injectivity of T*m [2, Proposition 4.1].
Alternatively, one can arguemore geometrically as follows. In the proof of Lemma3.1 has been introduced

a smooth function µA on P(Hm) satisfying T*m(A)
ρm = ι*mµA. Thus by Lemma 3.1 one has ∆m(A) = 0 if and only if

ι*mdµA = 0. Then the thesis follows by showing that the locuswhere dµA = 0 contains nopositive dimensional
holomorphic submanifolds (or, in other words, ker dµA is totally real), unless µA is constant.

Nowwe pass to give a more explicit description of the operator ∆m. To this end fix an orthonormal basis {sα}
ofHm and let (zi) be the corresponding homogeneous coordinates on P(Hm). Moreover this identifies Vm with
the space of dimHm × dimHm complex matrices. Consider the map

Ψm : P(Hm) → Vm
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defined by Ψm(z) = zz̄t
|z|2 . Note that by Lemma 2.1 it follows that

ι*m tr(AΨm) =
T*m(A)
ρm

(8)

for all A ∈ Vm. On the other hand, by definition of ∆m one has

tr(∆m(A)B*) =
∫︁
M

gm(em(A), em(B))
ωnm
n! ,

thus by Lemma 3.1 together with (8) one gets∫︁
M

gm(em(A), em(B))
ωnm
n! =

∫︁
M

i∂ tr(ΨmA) ∧ ∂̄ tr(ΨmB*) ∧
ωn−1m
(n − 1)!

whence
tr(∆m(A)B*) =

∫︁
M

i∂ tr(ΨmA) ∧ ∂̄ tr(ΨmB*) ∧
ωn−1m
(n − 1)! .

Let
Φm : P(Hm) → V*m

be the map obtained by composing Φ with the dual paring induced by the Hermitian metric bm on Vm. More
explicitiely one has

Φm(z)(A) = tr(Ψm(z)A)

for all A ∈ Vm and z ∈ P(Hm). The computation above yields the following

Proposition 3.3. Consider the End(Vm)-valued differential form on P(Hm) defined by

Ξm = i∂Φm ∧ ∂̄Ψm ∧ eωFS .

Then it holds
∆m =

∫︁
M

Ξm .

Here eωFS is a mixed-degree form defined by the exponential series. Since ωkFS = 0 for all k ≥ dimHm, one has

eωFS = 1 + ωFS +
ω2
FS
2 + · · · +

ωdim Hm−1
FS

(dimHm − 1)!
.

This implies that Ξm has mixed degree. More interestingly it depends just on the dimension of P(Hm) (and on
a choice of homogeneous coordinates) and it is independent of M.

Corollary 3.4.
tr(∆m) = 2πn mn

∫︁
M

ωn
n! .

Proof. Recall that we identified Vm with the space of dimHm × dimHm matrices by choosing an orthonormal
basis {sα}ofHm. The set of canonicalmatrices Eij, then formanorthonormal basis ofVm. Thus byProposition
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3.3 one has

tr(∆m) =
∑︁
α,β

⟨∆m(Eαβ), Eαβ⟩

=
∑︁
α,β

∫︁
M

i∂
(︂ zα z̄β

|z|2

)︂
∧ ∂̄

(︂ zβ z̄α
|z|2

)︂
∧ eωFS

=
∫︁
M

(︂
i∂∂̄|z|2
|z|2 − i∂|z|

2 ∧ ∂̄|z|2
|z|4

)︂
∧ eωFS

= 2π
∫︁
M

ωFS ∧ eωFS

= 2πn
∫︁
M

ωnm
n! ,

whence the thesis follows since ωm is cohomologous to mω.

4 Proof of Theorems 1.1 and 1.2

First of all we recall a fundamental result on asymptotic expansion of Berezin-Toeplitz quantization map
which is originally due to Karabegov and Schlichenmaier [6].

Theorem 4.1. There is a sequence {br} of self-adjoint differential operators acting on C∞(M) such that for any
smooth function f ∈ C∞(M) one has the asymptotic expansion

T*m ∘ Tm(f ) =
∑︁
r≥0

br(f )mn−r + O(m−∞), (9)

and for any k, R ≥ 0 there exist constants Ck,R,f such that⃦⃦⃦⃦
⃦T*m ∘ Tm(f ) −

R∑︁
r=0

br(f )mn−r
⃦⃦⃦⃦
⃦
Ck(M)

≤ Ck,R,fmn−R−1.

Moreover one has

b0(f ) = f ,

b1(f ) = scal(g)
8π f − 1

4π ∆f .

Proof. The original proof is due to Karabegov and Schlichenmaier [6]. Actually they prove the existence of an
asymptotic expansion for the Berezin transform T*m ∘Tm(f )/ρm, but the statement above follows directly from
their result together with the well-known expansion for ρm [3, 14, 15]. For a proof with normalization used
above we refer to Ma andMarinescu [9, Theorem 0.1]. The only fact one still needs to show is self-adjointness
of the operator br. It follows readily by self-adjointness of T*m ∘ Tm and expansion (9). Indeed one has

0 =
R∑︁
r=0

mn−r
∫︁
M

(︁
br(f ) ḡ − f br(g)

)︁ ωn
n! + O(m

n−R−1),

as m → +∞, for all f , g ∈ C∞(M).

Since the Bergman kernel satisfies ρm = T*m ∘ Tm(1), one recovers the well known asymptotic expansion
[3, 5, 8, 9, 14, 15]

ρm =
∑︁
r≥0

armn−r + O(m−∞), (10)
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where ar = br(1) ∈ C∞(M) depends polynomially in the curvature of g and its covariant derivatives. In
particular

a0 = 1, a1 =
scal(g)
8π . (11)

The next lemma express the quantized Laplacians in terms of objects for which an asymptotic expansion
is known.

Lemma 4.2. For any A ∈ Vm one has

∆m(A) = Tm
(︂

ωnm
ρm ωn

∆gm
(︂
T*m(A)
ρm

)︂)︂
,

where ∆gm denotes the Laplacian of the metric gm.

Proof. By definition of ∆m, for any B ∈ Vm it holds

tr(∆m(A)B*) =
∫︁
M

gm(em(A), em(B))
ωnm
n! ,

whence, by Lemma 3.1 and integration by parts it follows

tr(∆m(A)B*) =
∫︁
M

∆gm
(︂
T*m(A)
ρm

)︂
T*m(B)
ρm

ωnm
n! .

The right hand side can be rewritten as∫︁
M

ωnm
ρm ωn

∆gm
(︂
T*m(A)
ρm

)︂
T*m(B)

ωn
n! = tr

(︂
Tm
(︂

ωnm
ρm ωn

∆gm
(︂
T*m(A)
ρm

)︂)︂
B*
)︂
,

whence the statement follows by arbitrariness of B.

Now we can prove the Theorem 1.1 as follows. For any f ∈ C∞(M), by Lemma above one has

T*m ∘ ∆m ∘ Tm(f ) = T*m ∘ Tm
(︂

ωnm
ρm ωn

∆gm
(︂
T*m ∘ Tm(f )

ρm

)︂)︂
, (12)

thus the statement of Theorem 1.1 follows readily by Theorem 9 and asymptotic expansion (10). In particular
one has

T*m ∘ Tm(f ) = mn f + mn−1b1(f ) + O(mn−2)

whence

ρm = mn + mn−1a1 + O(mn−2),
T*m ∘ Tm(f )

ρm
= f + m−1(b1(f ) − a1f ) + O(m−2)

ωm = mω + O(m−1),
ωnm
ρmωn

= 1 − m−1a1 + O(m−2),

∆gm (f ) = m−1∆(f ) + O(m−3).

Substituting in (12) finally gives

T*m ∘ ∆m ∘ Tm(f ) = T*m ∘ Tm
(︁(︁

1 − m−1a1
)︁
m−1∆

(︁
f + m−1(b1(f ) − a1f )

)︁
+ O(m−3)

)︁
= m−1T*m ∘ Tm

(︁
∆(f ) + m−1

(︀
∆(b1(f )) − ∆(a1f ) − a1∆(f )

)︀
+ O(m−2)

)︁
= mn−1∆f + mn−2 (︀∆(b1(f )) + b1(∆(f )) − ∆(a1f ) − a1∆(f ))︀ + O(mn−3).
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This obviously proves P0 = ∆ and, recalling that b1(f ) = scal(g)
8π f − 1

4π ∆(f ) and a1 =
scal(g)
8π , it gives

8π P1(f ) = ∆(scal(g)f − 2∆(f )) + scal(g)∆(f ) − 2∆2(f ) − ∆(scal(g)f ) − scal(g)∆(f )
= −4∆2(f ),

which concludes the proof of Theorem 1.1.

Now we turn to the proof of Theorem 1.2. Balanced metrics have been introduced by Donaldson in con-
nection with the existence problem of constant scalar curvature Kähler metric on polarized manifolds [1].
Recall that a metric is called m-balanced if the Bergman kernel ρm is constant. Note that the value of such
a constant is not arbitrary for ρm satisfies

∫︀
M ρm

ωn
n! = dimH0(M, Lm). Moreover, since in general one has

ωm = mω + i
2π ∂∂̄ log ρm, ω is m-balanced if and only if ωm = mω. Thus, assuming that ω is m-balanced, by

Lemma 4.2 for any A ∈ Vm one has

∆m(A) = ρ−2m Tm
(︂
ωnm
ωn ∆gm

(︁
T*m(A)

)︁)︂

=
mn−1

(︁∫︀
M
ωn
n!

)︁2
(︀
dimH0(M, Lm)

)︀2 Tm ∘ ∆ ∘ T*m(A),

which proves Theorem 1.2.
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