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Abstract: Given a Hodge manifold, it is introduced a self-adjoint operator on the space of endomorphisms of
the global holomorphic sections of the polarization line bundle. Such operator is shown to approximate the
Laplace operator on functions when composed with Berezin-Toeplitz quantization map and its adjoint, up to
an error which tends to zero when taking higher powers of the polarization line bundle.

1 Introduction

Let M be a n-dimensional projective manifold and let g be a Hodge metric on M. This means that M is equipped
with a complex structure J and with a positive Hermitian line bundle (L, h). Denoted by 6 the curvature of
the Chern connection, the form w = ﬁ@ is positive, and it holds g(u, v) = w(u, Jv). This setting is precisely
that of quantization of compact Kdhler manifolds [2, 8, 10, 11]. See Schlichenmaier [13] for an overview of fun-
damental results and references therein. In this theory, for any integer m > 0 is defined a finite-dimensional
Hilbert space Vi, together with the Berezin-Toeplitz quantization map and its adjoint (see Section 2)

Tm:C (M) = Vi, T i Vi — C(M).
The aim of this note is introducing a self-adjoint positive operator (see Section 3)
Am : Vi — Vnm
which approximate in a suitable sense, as m grows, the (positive) Laplacian
A: CT(M) — C=(M)

associated with the metric g (recall that it is defined by the identity A(f)w™ = -nid9f A w™ ! for any complex-
valued smooth function f on M). To be a little more specific, we will prove that for any smooth function f on
M one has the asymptotic expansion

T 0 Am o Tm(f) = m"LAf + O(m™?) 1

as m — oo, For this reason the operator A, could be thought of as a quantized Laplacian. Interestingly, Am
depends just on the projective geometry of the Kodaira embedding of M via L™ and the Fubini-Study metric
induced by h™ (see Section 3).

Thanks to results available on asymptotic expansions of Bergman kernels [3, 8, 14, 15] and Toeplitz oper-
ators [6, 9], the main result we will prove is indeed the following, which obviously implies (1).

Theorem 1.1. There is a complete asymptotic expansion

T o Am o Tm(f) = > P(f)m" 1"+ 0(m™),

r=0
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where P; are self-adjoint differential operators on C*°(M). More precisely, for any k, R > O there exist constants
Cy R f such that

< Ck,R,fmnfsz .

CkM)

R
T o Am o Tn(f) = > Pr(f)m" 17

r=0

Moreover one has 1
Po(f)=4f,  Pi(f)=-5_4°f.

The construction of the quantized Laplacian A, was inspired by a work of J. Fine on the Hessian of the
Mabuchi energy [4]. Even though in principle A, is unrelated to the problem of finding canonical metrics
on M, when w is balanced in the sense of Donaldson (see definition recalled at the end of Section 4) the
relation between Ay, and A is even more apparent as shown by the following

Theorem 1.2. If w is m-balanced then
Am(A) = CTmoAo Tr(A)

2
n-1 "
m (fM W)

foral A € Vi, where C = (dim HO(M, L™))?*
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2 Preliminaries

Quantization of Kdhler manifolds is an extensively studied topic (see [13] and references therein). This section
is intended to fix the notation and recall some basic facts of the theory that will be useful in the following.

The space V,, mentioned in the introduction is nothing but End(Hyn), being H, = H°(M, L™) the space
of the holomorphic sections of L™. By Riemann-Roch theorem dim V,, grows like a positive multiple of m?"
when m — oo. The space Hn, is equipped with a Hermitian inner product b, induced by the Hermitian metric
h™ on L™ and the Kéhler form w. Explicitly it is given by

(s, ) = [ ™, % @
1\! n!

forall s, t € Hn. Thus Vy, is a Hermitian vector space with inner product defined by
(A, B) = tr(AB"), €)

forall A, B € Vy,. Here B” denotes the adjoint of B with respect to bp.
The map Trm : C=°(M) — Vi, mentioned above is the well known Berezin-Toeplitz quantization operator
[2]. Given a smooth function f on M, the operator Tr(f) is the composition Trm(f) = P o M(f), where M(f) :
Hp — I'(M, A™) is the multiplication by f:
M(f)(s) = fs,
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and P : I'(M, A™) — Hp, is the orthogonal projection with respect to the obvious extension of the inner prod-
uct by, to smooth sections. The space of smooth functions C*°(M) is equipped with the L?-product induced
by w, given by

f.e = [z, @)
M/ n!

forall f,g € C*(M). Let Ty, : Vin — C=(M) be the adjoint of Ty. The relationship between Ty, and the
so-called covariant Berezin symbol has been firstly highlighted by Schlichenmaier [12, Theorem 3.1]. With
notation introduced above, his result reads as follows.

Lemma 2.1. Let {sq} be an orthonormal basis of Hm. For all A € Vy, it holds:

Th(A) = Z h™(Asq, Sa).

a

Proof. For convenience of the reader we recall here the Schlichenmaier’s argument in our notation. For every
f € C>(M) one has
tr(A Tm(f)*) = Z bm (ASa, Tm(f)Sa) .
a

Substituting
m w"
Tm(f)sa =) (ﬂ fh (sa,sﬁ)n,) Sps
5 !

it follows

* - a)n
wATn()) = 3 [ FOR™Asu, 5002
‘M
which gives the thesis by arbitrariness of f after noting that

* - (l)n *
/ Tn(AF ;= (A Tu(/)").
M
O
Note that the map T, takes an endomorphisms A € Vi, to the restriction to the diagonal of its integral kernel.

More precisely, given an orthonormal basis {s«} of Hm, the integral kernel of A is the smooth section K(A) of
L™ X L™™ over M x M given by

KA)xy) =3 / A" (Ase, sp)@sp) @ 52002,

B y

where s, (x) is the metric dual of s(x) in the fiber of L™ over the point x. The restriction of the kernel to the
diagonal is (naturally identified with) the smooth function T},(A) thanks to Lemma 2.1. When A is of the form
Tm(f) for some smooth function f, the integral kernel is given by

Km0 ) =3 / AR (sa 59)@s0) @ 5300 2%

aB y

whence n
. w
T o Tm(0) =) /f(Z)h’”(sa, sp) )" (s, sa)(X) 7.
af y
For a constant function f = ¢ € R, one has

T 0 Tm(C) = € pm,

where pm = 3", |Sa |§m is the so-called Bergman kernel (along the diagonal) of w, also known as Rawnsley’s
e-function (originally introduced as n-function [10] and 8-function [11]).
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3 The operator A,

In this section we introduce the quantized Laplacian and we describe some of its fundamental properties.

The quantized Laplacian Ay : Vin — Vi is a self-adjoint operator which depends just on projective
geometry of M in P(Hp,). Consider the embedding

Im : M — P(Hm),

given by the Kodaira map of M in P(H},) induced by L™, followed by the isomorphism P(H},) ~ P(H,) induced
by the Hermitian product bp. Every endomorphism A of H,, induces a (holomorphic) vector field v(4) on
P(Hp,) whose flow is given by

ch,(A)(Z) = ez,

Let Ay be the hyperplane bundle on P(Hy,), endowed with the Hermitian metric induced by bm, and let gn
be the pull-back to M of the associated Fubini-Study metric on P(Hy,). One can restrict v(A) to M as a section
of 15, TP(Hy), and then project orthogonally to TM C 1, TP(Hm) to get a smooth vector field e (A) on M. This
defines a map

em: Vm — I'(TM).

Recall that Vy, has an inner product defined by (3). On the other hand, I'(TM) is equipped with the L?-inner
product induced by the Kdhler metric gm:

W

n!’

(1, 8m = /gm(n,f)

M

for all n, ¢ € I'(TM) (here wy, is the Kéler form of gm, i.e. the pull-back of the Fubini-study form to M). Thus
one can form the adjoint operator
em : T(TM) = Vi,

and finally define
Am = e:n o €m. (5)

The next lemma shows that the vector field e (A) and the function Tr,(A) are related through the projec-
tively induced Kdahler metric gm.

Lemma3.1. Forall A ¢ Vp, one has
Tm(4)
em(A) = grad,, ———,
Pm

where the gradient is taken with respect to the Riemannian metric gm.

Proof. We have to show that gn, (em(A), v) =v (T;,,(A)/pm) for all vector field v € I'(TM). In order to do this,
consider a smooth extension ¥ of v to a smooth vector field of P(Hy,). Since gm is induced by the Fubini-Study
metric grs on P(Hn), and em(A) is the orthogonal projection of v(A) on TM, one has

gm(em(4), V) = tm grs(V(A), V). (6)

The right hand side of the equation above can be related to a function on P(Hy,) naturally associated to
A.Indeed we claim that v(A) is the gradient of the function u4 defined by

bm (As, s)

ua(s) = bm(s.s)

For the reader’s convenience a proof of this (standard) fact is given below. Now we go ahead taking the claim
for grant. From (6) one gets
gm(em(4),v) = V(l:nﬂA),
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thus it remains to prove the identity
tmka = Tr(A)/pm. )

To this end, let {s4} be an orthonormal basis of Hn, so that the pull-back of u4 to M is given by

Za,ﬂ sa(X)Wbm(ASa, Sﬂ)
Z’y |s+(0)|2 ’

tmpa(x) =

sa(x)m
5, 15,07

the line bundle L™. In particular, taking h™ it becomes

where the ratio is well defined and can be computed choosing an arbitrary Hermitian metric on

h™(sa,5p)(X)
POMRImek whence

Za,[% .fM hm(AStx, Sﬁ)(Z)hm(sa, sﬁ)(x)%%l
ny |S'Y|}21m (X) ’
and the identity (7) follows by definition of p, and Lemma 2.1.

Finally, in order to prove the claim above, let (z4) be homogeneous coordinates on P(H,;) corresponding
to the basis {s«}. The function u, then takes the form

tmpa(X) =

zAZ!
Ha (2) = W;
where now A = (A a/;) denotes the matrix that represents the endomorphism A with respect the chosen basis.
The equality between v(A) and the gradient of p, can be proved in local affine coordinates, but here we
consider the projection of Hy, \ {0} on P(Hy,), and the fact that v(A), grs and p? lift to C”-invariant objects

(which will be denotes with the same symbols). In particular one has

o _ 0
V(A) = ZAaﬁ <Zaazﬁ +Zﬁa) )
a’ﬁ

and s 7. dads
3 dz;dz; zizjaziazj
ST T T
i L]
whence 5
. zadZp + Zpdza  zaZpd|Z|
IV(A)gFS = ZAa/} < ‘Z‘Z - |Z‘4 = d"'lA’
a.p
which proves the claim. O

Next lemma characterizes the kernel of Ap,.

Lemma 3.2. An(A) = 0if and only if A is a multiple of the identity.

T,.(4)
Pm

Am(A) = 0if and only if % = c for some c € C. Let I € Vi be the identity. The identity Ty,(I) = pm implies

. Thus

Proof. By definition Ay = ey, o em, and by Lemma 3.1 and its proof it follows en(4) = grad,,

Am(A) = 0if and only if A - cI € ker Tp,, thus the thesis follows by injectivity of Ty, [2, Proposition 4.1].

Alternatively, one can argue more geometrically as follows. In the proof of Lemma 3.1 has been introduced

Tw(4)

a smooth function u, on P(H,,) satisfying = tyM4. Thus by Lemma 3.1 one has Ap(4) = 0 if and only if

Pm
tmduy = 0. Then the thesis follows by showing that the locus where du, = 0 contains no positive dimensional
holomorphic submanifolds (or, in other words, ker dj, is totally real), unless uy, is constant. O

Now we pass to give a more explicit description of the operator Am. To this end fix an orthonormal basis {s«}
of Hp, and let (z;) be the corresponding homogeneous coordinates on P(H ;). Moreover this identifies V;, with
the space of dim Hy;, x dim Hy, complex matrices. Consider the map

lIIm . P(Hm) — Vm
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defined by ¥m(z) = % Note that by Lemma 2.1 it follows that

T (A)

Pm

(o tt(A¥) = (8)

forall A € Vin. On the other hand, by definition of A, one has

tn(@)B") = [ gnlen(a), en(B) 22,
M

thus by Lemma 3.1 together with (8) one gets

w" ~ . wn—l
/gm(em(A), em(B))n—’!" = /ia tr(WmA) A o tr(¥mB') A ﬁ
M M
whence n-1
tr(Am(A)B") = / i0 tr(¥mA) A 3 tr(¥mB") A (r‘l":" e
M
Let

@ : P(Hp) — Vi

be the map obtained by composing @ with the dual paring induced by the Hermitian metric by, on Vy,. More
explicitiely one has
Dm(2)(A) = tr(¥m(2)A)

forall A € Vi and z € P(Hp). The computation above yields the following
Proposition 3.3. Consider the End(Vn,)-valued differential form on P(Hn) defined by
Em = l()@m /\ (_)qym A ea}ps.

Am=/5m.

M

Then it holds

Here e“’s is a mixed-degree form defined by the exponential series. Since wés = Oforall k = dim Hp,, one has

2 dim Hp,—1
w w
WFs _ FS FS
eB =1+wps+ =2+ + 72—
ST (dim Hyp — 1)!

This implies that =, has mixed degree. More interestingly it depends just on the dimension of P(Hy;) (and on
a choice of homogeneous coordinates) and it is independent of M.

Corollary 3.4.

n
tr(Am) = 2mn m"/%
Jont

Proof. Recall that we identified Vi, with the space of dim Hy, x dim H;y, matrices by choosing an orthonormal
basis {sq} of Hm. The set of canonical matrices E;;, then form an orthonormal basis of V». Thus by Proposition
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3.3 one has
tr(Am) = Z<Am(E 8)s Eap)
ZaZp ZpZa
- Z/ (| |2) (|z\2)AewFs
_ zaa|z\2 1022 A BIZ2\ | wne
i LN
M
= 2n/wFS/\e‘”FS
M
n
- 2nn/ﬂ,
n!
M
whence the thesis follows since wn, is cohomologous to mw. O

4 Proof of Theorems 1.1 and 1.2

First of all we recall a fundamental result on asymptotic expansion of Berezin-Toeplitz quantization map
which is originally due to Karabegov and Schlichenmaier [6].

Theorem 4.1. Thereis a sequence {b,} of self-adjoint differential operators acting on C*(M) such that for any
smooth function f € C*°(M) one has the asymptotic expansion

Tmo Tm() = b(AIm"™" + 0(m™), ©9)
r20

and for any k, R = O there exist constants Cy. g s such that

R
T o Tm(f) = > by(HIm" < Cppm"®
r=0 ck(m)
Moreover one has
bo(f) = f,
_ oscal(g), 1
bip) = T Ef- o af.

Proof. The original proofis due to Karabegov and Schlichenmaier [6]. Actually they prove the existence of an
asymptotic expansion for the Berezin transform Ty, o Tm(f)/pm, but the statement above follows directly from
their result together with the well-known expansion for pn, [3, 14, 15]. For a proof with normalization used
above we refer to Ma and Marinescu [9, Theorem 0.1]. The only fact one still needs to show is self-adjointness
of the operator b;. It follows readily by self-adjointness of T m o Tm and expansion (9). Indeed one has

R
0= m™ [ (bing-r5:) 4 + 0™,
r=0 M

asm — +oo, forall f, g € C=(M). O

Since the Bergman kernel satisfies pm = T o Tm(1), one recovers the well known asymptotic expansion
[3,5,8,9, 14, 15]
pm =Y _am"" +0(m™), (10)

r=0
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where a, = b;(1) € C~(M) depends polynomially in the curvature of g and its covariant derivatives. In
particular

_ scal(g)
= &g - (11)

The next lemma express the quantized Laplacians in terms of objects for which an asymptotic expansion
is known.

ap =1,

Lemma 4.2. For any A € Vy, one has

where Ag,, denotes the Laplacian of the metric gm.

Proof. By definition of Am, for any B € Vy, it holds

tr(Am(A)B") = / gnlen(a), en(B) 0

M

whence, by Lemma 3.1 and integration by parts it follows

« Th(A)\ Th(B) wh
tr(Am(A)B ) = Agm ( ) m .
A{’ pm

pm n!

The right hand side can be rewritten as

Wm Tm(4) wh Trm(A) .
7 pmw"Ag’“( pm ) m(B)i_U<T'" <pmw"Agm( pm ))B>’

whence the statement follows by arbitrariness of B. O

Now we can prove the Theorem 1.1 as follows. For any f € C>(M), by Lemma above one has

. . wh TmoT
TmoAmoTm(f) = TpyoTm <Pm Z,nAgm ( m ‘;)mm(f)>) , (12)

thus the statement of Theorem 1.1 follows readily by Theorem 9 and asymptotic expansion (10). In particular
one has
T o Tm(f) = m"f + m" by (f) + O(m"?)

whence
pm = mt+m"la;+0(m"?),
eIl pom 1) - asf) + O )
m
wm = mw+0(m?Y),
Wi = 1-mta; +0m>?)
pmw" 1 )

g, (f) = mA(f)+0(m>3).

Substituting in (12) finally gives

TnodnoTn(f) = TnoTw((1-mar)ma(f+m™ (b1 - af) + 0m™))
= m ' Tho T (A0 + ™ (AB1() - Aarf) - a1 A(F) + O(m ™))

= m"Af +m"? (A1 () + b1(A() - Alasf) - a1 A(f)) + 0(m™ ).
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This obviously proves Py = A and, recalling that b, (f) = %ﬁgg)f - ~A(f)and a; = scgz@, it gives

A(scal(g)f - 2A(f)) + scal(g)A(f) - 24%(f) - A(scal(g)f) - scal(g)A(f)
~44%(f),

8m P1(f)

which concludes the proof of Theorem 1.1.

Now we turn to the proof of Theorem 1.2. Balanced metrics have been introduced by Donaldson in con-
nection with the existence problem of constant scalar curvature Kihler metric on polarized manifolds [1].
Recall that a metric is called m-balanced if the Bergman kernel p:, is constant. Note that the value of such
a constant is not arbitrary for p, satisfies f M pm% = dim H°(M, L™). Moreover, since in general one has
Wm = MW + 5-0010g pm, w is m-balanced if and only if wm = mw. Thus, assuming that w is m-balanced, by
Lemma 4.2 for any A € Vi, one has

ana) = pid T (L5, (T2() )

2
mt(r wf?
- Ui ) Tm o Ao Tr(A),
(dim HO(M, L™))*

which proves Theorem 1.2.
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