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1 Introduction
In this survey, we mainly study higher cohomology groups, which naturally appear as obstructions when we
approach certain fundamental problems in complex geometry. For example, when we consider the problem
of extending (holomorphic) sections of a (holomorphic) line bundle F from a subvariety S ⊂ X to the ambient
complex manifold X, the long exact sequence induced by the following sequence

0 → F ⊗ IS → F → F|S → 0

tells us that every section of F|S on S can be extended to a section of F on X if the first cohomology group
H1(X, F ⊗ IS) vanishes. The same conclusion holds under the weaker assumption that the induced map
H1(X, F⊗IS) → H1(X, F) is injective. Therefore it is important tofindgoodconditions that imply the vanishing
or the injectivity of higher cohomology groups. The Kodaira vanishing theorem is one of the most celebrated
vanishing theorems:

Theorem 1.1 (The Kodaira vanishing theorem). Let F be a positive line bundle on a smooth projective variety
X. Then

Hq(X, KX ⊗ F) = 0 for any q > 0.

Here KX denotes the canonical bundle of X.

The following theorem is the so-called injectivity theorem,which can be seen as a generalization of the above
theorem to semi-positive line bundles.

Theorem 1.2 ([10] (resp. [5])). Let F be a semi-ample (resp. semi-positive) line bundle on a smooth projective
variety (resp. a compact Kähler manifold) X. Then for a (non-zero) section s of a positive multiple Fm of the line
bundle F, the multiplication map induced by the tensor product with s

Φs : Hq(X, KX ⊗ F) ⊗s−−→ Hq(X, KX ⊗ Fm+1)

is injective for any q.
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In the proof of Kodaira’s vanishing theorem and Enoki’s injectivity theorem, the theory of harmonic integrals
plays a crucial role, which enables us to study the vanishing theorem and the injectivity theorem from the
viewpoint of complex differential geometry.

The purpose of this survey is to present recent techniques on the theory of harmonic integrals to study
the cohomology group Hq(X, KX ⊗ F⊗ I(h)), where I(h) is the multiplier ideal sheaf of a singular (hermitian)
metric h on F. As an application, we generalize Enoki’s injectivity theorem to line bundles equipped with
singular metrics (Theorem 1.3). A line bundle is said to be pseudo-effective if it admits a singular metric with
semi-positive curvature. Therefore Theorem 1.3 can be seen as an injectivity theorem for pseudo-effective line
bundles.

Theorem 1.3 ([11, Theorem 1.3]). Let F be a line bundle on a compact Kähler manifold X and h be a singular
metric with semi-positive curvature on F. Then for a (non-zero) section s of a positive multiple Fm satisfying
supX |s|hm < ∞, the multiplication map

Φs : Hq(X, KX ⊗ F ⊗ I(h)) ⊗s−−→ Hq(X, KX ⊗ Fm+1 ⊗ I(hm+1))

is (well-defined and) injective for any q. Here I(h) denotes the multiplier ideal sheaf associated to the singular
metric h.

The multiplication map is well-defined thanks to the assumption of supX |s|hm < ∞. When h is a metric with
minimal singularities on F, this assumption is automatically satisfied for any section s of Fm (see [1] formetrics
with minimal singularities). Metrics with minimal singularities or singular metrics obtained from a suitable
limit of a family of metrics play an important role whenwe study algebraic geometry by using transcendental
methods, however they do not always have algebraic singularities. We can apply the above theorem to such
singular metrics since we do not assume that h has algebraic singularities, which is one of our advantages.

When we consider the problem of extending sections from subvarieties to the ambient space, we need to
refine the above formulation (see [9, Theorem 1.3]). Our injectivity theorem can be seen as an improvement
of [5], [7], [10], [12], [16]. For the proof, we take an analytic approach for the cohomology groups with coeffi-
cients in KX ⊗ F ⊗ I(h), which includes techniques of [5], [7], [12], [13], [15]. The proof is based on a technical
combination of the L2-method for the ∂-equation and the theory of harmonic integrals. To handle transcen-
dental (non-algebraic) singularities, after regularizing a given singular metric, we investigate the asymptotic
behavior of the harmonic forms with respect to a family of the regularized metrics. See [12] and [9] for more
details.

This survey is organized as follows: In Section 2, we give techniques on the theory of harmonic integrals
to study Hq(X, KX ⊗ F ⊗ I(h)) by using harmonic differential forms. In Section 3, after we give a proof of the
special case of Theorem 1.3, we discuss Theorem 1.3 and its generalization.

2 The Theory of Harmonic Integrals
In this section, recent techniques on the theory of harmonic integrals are given, whose purpose is to study
Hq(X, KX ⊗ F ⊗ I(h)) by using harmonic differential forms. By Proposition 2.5, we know that, if a singular
metric h is a smooth on a Zariski open set Y, cohomology classes can be represented by harmonic forms on
Y (not X). For this reason, we need to formulate the theory of harmonic integrals on non-compact manifolds.

2.1 Harmonic differential forms in L2-spaces

In this subsection, we recall basic facts on the theory of harmonic integrals. Let Y be a (not necessarily com-
pact) complexmanifoldwith a hermitian form ̃︀ω and F be a line bundle on Y with a smooth (hermitian)metric
h. For F-valued (p, q)-forms u and v, the point-wise inner product ⟨u, v⟩h,̃︀ω can be defined, and the (global)
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inner product ⟨⟨u, v⟩⟩h,̃︀ω can also be defined by

⟨⟨u, v⟩⟩h,̃︀ω :=
∫︁
Y

⟨u, v⟩h,̃︀ω ̃︀ωn
n! .

Denote by Lp,q(2) (Y , F)h,̃︀ω the L2-space of F-valued (p, q)-forms on Y, namely

Lp,q(2) (Y , F)h,̃︀ω := {u | u is an F-valued (p, q)-form on Y with ‖u‖h,̃︀ω < ∞.}.

The Chern connection Dh of F is defined by the holomorphic structure and the hermitian metric h of
F, and further Dh can be written as Dh = D′

h + D
′′
h with the (1, 0)-connection D′

h and the (0, 1)-connection
D′′
h . Remark that D′′

h = ∂ by the definition. We consider the maximal Hilbert extension of the connections
D′
h and D

′′

h , which we denote by the same notation. For example, D′
h is densely defined closed operator on

Lp,q(2) (Y , F)h,̃︀ω, whose domain is the following subspace

DomD′
h := {u ∈ Lp,q(2) (Y , F)h,̃︀ω | D′

hu ∈ Lp+1,q(2) (Y , F)h,̃︀ω .}.
Here D′

hu ∈ Lp+1,q(2) (Y , F)h,̃︀ω means that there exists v ∈ Lp+1,q(2) (Y , F)h,̃︀ω such that D′
hu = v in the sense

of distributions. The Hilbert adjoint operators D
′*
h and D

′′*
h in the sense of von Neumann can be defined as

follows: For every u in DomD
′*
h defined by

DomD
′*
h := {u ∈ Lp,q(2) (Y , F)h,̃︀ω | DomD

′

h ∋ v ↦→ ⟨⟨u, D
′

hv⟩⟩h,̃︀ω is bounded.},

there uniquely exists w ∈ Lp−1,q(2) (Y , F) such that ⟨⟨w, v⟩⟩ = ⟨⟨u, D
′

hv⟩⟩ for any v ∈ DomD
′

h. Then we put D
′*
hu :=

w. Now we have the following orthogonal decomposition:

Lp,q(2) (Y , F)h,̃︀ω = Im ∂ ⊕H
p,q
h,̃︀ω(Y , F)⊕ ImD′′*

h .

HereHp,q
h,̃︀ω(Y , F) is the space of harmonic forms defined by

H
p,q
h,̃︀ω(Y , F) := {u | u is an F-valued (p, q)-form such that ∂u = D

′′*
h u = 0.}.

In some cases, we can prove that the subspaces Im ∂ and ImD
′′*
h are closed, and then we have

Ker∂/Im ∂ ∼= H
p,q
h,̃︀ω(Y , F).

In particular, equivalence classes in the left hand side can be represented by the associated harmonic forms.
For example, when Y is a compact complex manifold, we have

Hq(Y , ΩpY ⊗ F) ∼= Ker∂/Im ∂ ∼= H
p,q
h,̃︀ω(Y , F).

Therefore given cohomology classes can be represented by the harmonic forms. Under suitable assumptions,
such an isomorphism can be proved for Hq(X, KX ⊗ F ⊗ I(h)). See Proposition 2.5.

2.2 Bochner-Nakano-Kodaira’s identity

The Kodaira vanishing theorem and Enoki’s injectivity theorem are derived from Bochner-Nakano-Kodaira’s
identity. In this subsection, we formulate some results obtained from Bochner-Nakano-Kodaira’s identity,
which can be applied in the proof of our injectivity theorem.

If ̃︀ω is a complete formon Y, theHilbert adjointsD
′*
h andD

′′*
h coincidewith themaximalHilbert extensions

of the formal adjoints (see [2, (3,2) Theorem in Chapter 8]). The following proposition follows from Bochner-
Nakano-Kodaira’s identity and the density lemma (see [2, ChapterVIII], [3, Lemma 4.3]).
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Proposition 2.1. Assume that ̃︀ω is a complete Kähler form on Y and
√
−1Θh(F) ≥ −C̃︀ω for some positive con-

stant C > 0. Then for every u ∈ Ln,q(2) (Y , F)h,̃︀ω satisfying u ∈ DomD
′′*
h ∩ Dom ∂, the following equality holds :

‖D
′′*
h u‖

2
h,̃︀ω + ‖∂u‖2h,̃︀ω = ‖D

′*
h u‖

2
h,̃︀ω + ⟨⟨

√
−1Θh(F)Λ̃︀ωu, u⟩⟩h,̃︀ω .

Here n denotes the dimension of Y and Λ̃︀ω denotes the adjoint operator of the wedge product ̃︀ω ∧ ·.

Proof. This proposition can be obtained from Bochner-Nakano-Kodaira’s identity and the density lemma.
Since ̃︀ω is a Kähler form, we have Bochner-Nakano-Kodaira’s identity:

∆
′′
= ∆

′
+ [

√
−1Θh(F), Λ̃︀ω].

Here ∆
′
(resp. ∆

′′
) is the Laplacian operator defined by ∆

′
:= D

′

hD
′*
h +D

′*
h D

′

h (resp. ∆
′′
:= D

′′

hD
′′*
h +D

′′*
h D

′′

h ) and
[· , ·] is the graded Lie bracket. Therefore the equality in the proposition holds if u is smooth and compactly
supported.

Since ̃︀ω is complete, we can take a family of cut-off functions {ψℓ}∞ℓ=1 with |dψℓ|̃︀ω ≤ 1. For a given u
satisfying u ∈ DomD

′′*
h ∩ Dom ∂, by putting uℓ := uψℓ and by considering convolution with regularizing

kernels ρε, we can obtain uℓ,ε := uℓ * ρε satisfying the following properties:

• uℓ,ε is smooth and compactly supported.
• uℓ,ε converges to u in Ln,q(2) (Y , F)h,̃︀ω.
• D

′′*
h uℓ,ε (resp. ∂uℓ,ε) converges to D

′′*
h u (resp. ∂u) in L

n,•
(2) (Y , F)h,̃︀ω.

The third property comes from |dψℓ|̃︀ω ≤ 1 (completeness of ̃︀ω). As ε goes to zero, we have the equality in the
proposition for uℓ. Further by the assumption of

√
−1Θ(F) ≥ −C̃︀ω, the second term of the right hand side

⟨⟨
√
−1Θh(F)Λ̃︀ωuℓ, uℓ⟩⟩h,̃︀ω =

∫︁
Y

⟨
√
−1Θh(F)Λ̃︀ωuℓ, uℓ⟩h,̃︀ω ̃︀ωn

n! .

is bounded below. Therefore we obtain the conclusion by Lebesgue’s monotone convergence theorem.

The following proposition is also used in the proof of Theorem 1.3.

Proposition 2.2. Let g be a smooth metric on a line bundle G and s be a section with supY |s|g < ∞. Assume
that ̃︀ω is a complete Kähler form on Y and

√
−1Θh(F),

√
−1Θg(G) ≥ −C̃︀ω for some positive constant C > 0. Then

su ∈ DomD
′′*
hg ∩ Dom ∂ ⊂ Ln,q(2) (Y , F ⊗ G)hg,̃︀ω

if u belongs to DomD
′′*
h ∩ Dom ∂ ⊂ Ln,q(2) (Y , F)h,̃︀ω.

Proof. If u is smooth, we can easily see that ∂su = s∂u and D
′*
hgsu = sD

′*
h u. Here we used D

′*
hg = − * ∂*, where

* is the Hodge star operator with respect to ̃︀ω. Even if u is not smooth, for every u ∈ DomD
′′*
h ∩Dom ∂, we can

prove that ∂su = s∂u and D
′*
hgsu = sD

′*
h u, by taking a smooth and compactly supported uk such that uk → u,

D
′′*
h uk → D

′′*
h u and ∂uk → ∂u in Ln,•(2) (Y , F)h,̃︀ω. Indeed, by the assumption of supY |s|g < ∞, we have

‖suk − su‖hg,̃︀ω = sup
Y

|s|g‖uk − u‖h,̃︀ω → 0,

‖s∂uk − s∂u‖hg,̃︀ω = sup
Y

|s|g‖∂uk − ∂u‖h,̃︀ω → 0.

For a smooth and compactly supported w, we obtain

⟨⟨∂su, w⟩⟩hg,̃︀ω = lim
k→∞

⟨⟨suk , D
′′*
hgw⟩⟩hg,̃︀ω

= lim
k→∞

⟨⟨s∂uk , w⟩⟩hg,̃︀ω
= ⟨⟨s∂u, w⟩⟩hg,̃︀ω ,
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which implies ∂su = s∂u. By the same argument we have D
′*
hgsu = sD

′*
h u, and thus su ∈ Dom ∂ ∩DomD

′*
hg. It

remains to show su ∈ DomD
′′*
hg . For every w ∈ Dom ∂, we take a smooth and compactly supported wℓ such

that wℓ → w and ∂wℓ → ∂w in Ln,•(2) (Y , F ⊗ G)hg,̃︀ω. Then an easy computation yields

⟨⟨su, ∂w⟩⟩hg,̃︀ω = lim
k→∞

lim
l→∞

⟨⟨suk , ∂wℓ⟩⟩hg,̃︀ω
= lim
k→∞

lim
l→∞

⟨⟨D
′′*
hgsuk , wℓ⟩⟩hg,̃︀ω

≤ lim
k→∞

‖D
′′*
hgsuk‖hm+1 ,̃︀ω‖w‖hg,̃︀ω .

Therefore it is sufficient to check that ‖D
′′*
hgsuk‖hg,̃︀ω is uniformlybounded. Putting gk := ⟨

√
−1Θh(F)Λ̃︀ωuk , uk⟩h,̃︀ω

and applying Proposition 2.1 to suk, we have

‖D
′′*
hgsuk‖

2
hg,̃︀ω ≤ sup

Y
|s|2g‖D

′*
h uk‖

2
h,̃︀ω +

∫︁
Y

|s|2g gk
̃︀ωn
n!

≤ sup
Y

|s|2g
{︁
‖D

′*
h uk‖

2
h,̃︀ω +

∫︁
{gk≥0}

gk
̃︀ωn
n!

}︁
.

On the other hand, by applying Proposition 2.1 to uk, we obtain

−C‖uk‖2h,̃︀ω ≤
∫︁

{gk≥0}

gk
̃︀ωn
n! +

∫︁
{gk≤0}

gk
̃︀ωn
n!

≤ ‖∂uk‖2h,̃︀ω + ‖D
′′*
h uk‖

2
h,̃︀ω .

Here we used the assumption of the curvature. Therefore ‖D
′′*
hgsuk‖hg,̃︀ω is uniformly bounded.

2.3 Singular metrics and their multiplier ideal sheaves

First we recall the definition of singular metrics, curvature currents, and multiplier ideal sheaves.

Definition 2.3 (Singular metrics, curvature currents).

(1) A (hermitian) metric h on F is called a singular metric, if for a local trivialization θ : F|U ∼= U × C and a
local section ξ of F, we have

|ξ |h = |θ(ξ )|e−φ

for some L1loc-function φ on U. Here φ is called the local weight of h with respect to the trivialization.
(2) The curvature current

√
−1Θh(F) associated to h is defined by

√
−1Θh(F) = ddcφ,

where φ is a local weight of h.
(3) The curvature current

√
−1Θh(F) is said to be semi-positive if

√
−1Θh(F) ≥ 0 in the sense of currents.

For simplicity we abbreviate the singular metric (resp. the curvature current) to the metric (resp. the curva-
ture). The Levi form ddcφ is taken in the sense of distributions, and thus the curvature is a (1, 1)-current
but not always a smooth (1, 1)-form. The Levi form ddcφ is semi-positive if and only if the function φ is a
plurisubharmonic function (psh function for short).

We consider only metrics h such that
√
−1Θh(F) ≥ 𝛾 for some smooth (1, 1)-form 𝛾. Under this condition,

the weight function φ becomes a quasi-psh function. In particular φ is upper semi-continuous and hence is
bounded above. Then we define multiplier ideal sheaves, which are coherent ideal sheaves.
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Definition 2.4. Let h be a singular metric on F such that
√
−1Θh(F) ≥ 𝛾 for some smooth (1, 1)-form 𝛾. Then

the ideal sheaf I(h) defined to be

I(h)(U) := I(φ)(U) := {f ∈ OY (U)
⃒⃒
|f |e−φ ∈ L2loc(U)}

for every open set U, is called themultiplier ideal sheaf associated to h.

From now on, let X be a compact Kähler manifold with a Kähler form ω and F be a line bundle on X with
a (singular) metric h on F. In this survey, we mainly study the cohomology group Hq(X, KX ⊗ F ⊗ I(h)) by
applying the theory of harmonic integrals. For this purpose, we introduce the space of the harmonic forms
that is isomorphic to the cohomology group Hq(X, KX ⊗ F ⊗ I(h)). If h is a smooth metric on a (non-empty)
Zariski open Y ⊂ X, then we can represent a cohomology class by the associated harmonic form by taking a
suitable complete Kähler form ̃︀ω on Y satisfying the following properties:

(a) ̃︀ω is larger or equal to than ω on Y.
(b) There is a bounded function Φ with ̃︀ω = ddcΦ on a neighborhood of every point.

Proposition 2.5. Under the same situation as above, we have the following orthogonal decomposition :

Ln,q(2) (Y , F)h,̃︀ω = Im ∂ ⊕H
n,q
h,̃︀ω(Y , F)⊕ ImD

′′*
h .

Moreover we have the following isomorphism :

Hq(X, KX ⊗ F ⊗ I(h)) ∼= Ker∂/Im ∂ ∼= H
n,q
h,̃︀ω(Y , F).

Proof. The proof is same as that of [7, Claim 1]. In general we have

Ln,q(2) (Y , F)h,̃︀ω = Im ∂ ⊕H
n,q
h,̃︀ω(Y , F)⊕ ImD′′*

h .

Therefore it is sufficient to show that Im ∂ and ImD
′′*
h are closed subspaces, and

Hq(X, KX ⊗ F ⊗ I(h)) ∼= Ker∂/Im ∂.

First we prove the above isomorphism, by chasing the De Rham-Weil isomorphism. Fix an open cover U :=
{Uj}Nj=1 of X with an open ball Uj. Then we have the isomorphism

Hq(X, KX ⊗ F ⊗ I(h)) ∼= Ȟq(U, KX ⊗ F ⊗ I(h)),

where the right hand side is the Čech cohomology group calculated by U. For simplicity, we put Uj0 j1 ...jq :=
Uj0 ∩ · · · ∩ Ujq . We consider a q-cocycle u = {uj0 j1 ...jq} satisfying

uj0 j1 ...jq ∈ H
0(Uj0 j1 ...jq , KX ⊗ F ⊗ I(h)) and δu = 0,

where δ is the coboundary operator of the Čech complex. Then, by using a partition {ρj}Nj=1 of unity associated
to U, we define u1 := {uj0 j1 ...jq−1} by uj0 j1 ...jq−1 :=

∑︀N
j=1 ρjujj0 ...jq−1 . By the construction, we have δu

1 = u and
δ∂u1 = 0. From the same argument, we can obtain u2 with δu2 = ∂u1. By repeating this process, we obtain
uq. Then ∂uq determines the F-valued (n, q)-form on X with ‖∂uq‖h,ω < ∞ thanks to δ∂uq = 0. Further it is
easy to see that ∂uq belongs to Ln,q(2) (Y , F)h,̃︀ω (that is, ‖∂uq‖h,̃︀ω < ∞). Indeed, for every F-valued (n, q)-form u,
we have the inequality |u|2h,̃︀ω ̃︀ωn ≤ |u|2h,ωωn by property (a) of ̃︀ω. From the above argument, we have obtained
the (well-defined) map

Ȟq(U, KX ⊗ F ⊗ I(h)) → Ker∂/Im ∂.
Nowwe see that this map is actually isomorphic by using the L2-method for the ∂-equation (for example,

see [3, Théorème 4.1]). For every w ∈ Ln,q(2) (Y , F) ∩ Ker∂, we define w0 := {wj0} by wj0 := w|Uj0 \Z . By the L
2-

method for the ∂-equation, we obtain w1 = {w1
j0} such that

∂w1 = w0 on Uj0 \ Z,

‖w1‖2h,̃︀ω : =
N∑︁
j0=1

∫︁
Uj0 \Z

|w1
j0 |

2
h,̃︀ω ̃︀ωn ≤ C1‖w‖2h,̃︀ω .
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Here C1 is a positive constant independent of w. By the construction, we have ∂δw1 = 0. Therefore by the
same method, we can obtain w2 = {w2

j0 j1} such that

∂w2 = δw1 on Uj0 j1 \ Z,

‖w2‖2h,̃︀ω : =
N∑︁

j0 , j1=1

∫︁
Uj0 j1 \Z

|w2
j0 j1 |

2
h,̃︀ω ̃︀ωn ≤ C2‖w‖2h,̃︀ω .

By repeating this process, we obtain wq such that ∂wq = δwq−1 and ‖δwq‖h,̃︀ω ≤ C‖w‖h,̃︀ω for some positive
constant C > 0. Then δwq determines the q-cocycle since holomorphic (n, 0)-forms on U \ Z with bounded
L2-norm can be extended (by the Riemann extension theorem). Here we used the special characteristics of
the canonical bundle. Hence we have obtained

β : Ker∂/Im ∂ → Ȟq(U, KX ⊗ F ⊗ I(h)).

It is easy to see that these maps give an isomorphism.
It remains to show that Im ∂ is a closed subspace in Ln,q(2) (Y , F)h,̃︀ω. Take a sequence {∂vk}∞k=1 in Im ∂ that

converges to w ∈ Ln,q(2) (Y , F)h,̃︀ω. Since β is continuous by the construction, we have ‖β(w − ∂vk)‖ → 0 as
k → ∞. Then β(w) is zero in Ȟq(U, KX ⊗ F ⊗ I(h)) since Ȟq(U, KX ⊗ F ⊗ I(h)) is a finite dimensional vector
space. Therefore we know w ∈ Im ∂ by the above isomorphism, which implies that Im ∂ is closed. It follows
from this fact that ImD

′′*
h is also closed.

For a given singular metric h, thanks to [4, Theorem 2.3.], we can approximate h by singular metrics hε that
are smooth on a Zariski open set, without changing the multiplier ideal sheaf. Moreover if the set {x ∈ X |
ν(h, x) > 0} is contained in a subvariety, then we can assume that the singular metrics hε are smooth on
a Zariski open set independent of ε. Here ν(h, x) denotes the Lelong number of the weight φ of h at x. We
reformulate [4, Theorem 2.3.] with our notation and give an additional property.

Theorem 2.6. ([4, Theorem 2.3.]) Let X be a compact Kähler manifold and F be a line bundle with a singular
metric h such that

√
−1Θh ≥ 𝛾 for some smooth (1, 1)-form 𝛾. Then there exist metrics {hε}1≫ε>0 on F with the

following properties :

(a) hε is smooth on X \ Zε, where Zε is a subvariety on X.
(b) hε2 ≤ hε1 ≤ h holds for any 0 < ε1 < ε2.
(c) I(h) = I(hε).
(d)

√
−1Θhε (F) ≥ 𝛾 − εω.

Moreover, if the set {x ∈ X | ν(h, x) > 0} is contained in a subvariety Z, then we can add the property that Zε is
contained in Z for any ε > 0.

Proof. Fix a smooth metric g on F. Then there exists an L1-function φ on X with h = ge−φ. By applying [4,
Theorem 2.3.] to φ, we obtain quasi-psh functions φν with equisingularities. For a given ε > 0, by taking large
ν = ν(ε), we define hε by hε := ge−φν(ε) . Then the metric hε satisfies properties (a), (b), (c), (d).

The latter conclusion follows from the proof in [4]. We see this fact shortly, by using the notation in [4]. In
their proof, they locally approximate φ by φε,ν,j with logarithmic pole. By inequality (2.5) in [4], the Lelong
number of φε,ν,j is less than or equal to that of φ. Hence φε,ν,j is smooth on X \Z since φε,ν,j has a logarithmic
pole. Since φν is obtained from Richberg’s regularization of the supremum of these functions (see around
(2.5) and (2.7)), we obtain the latter conclusion.
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3 Applications
In this section,we give an idea of the proof of Theorem 1.3 (see also [7]). The following theorem is an injectivity
theorem with multiplier ideal sheaves under the regularity assumption for singular metrics, whose proof
provides a rough strategy to prove Theorem 1.3.

Theorem 3.1 ([12, Theorem 1.5]). Let (L, hL) and (M, hM) be singular hermitian line bundles on a compact Käh-
ler manifold X. Assume the following conditions:

(1) There exists a subvariety Z on X such that hL and hM are smooth on X \ Z.
(2)

√
−1ΘhL (L) ≥ 𝛾 and

√
−1ΘhM (M) ≥ 𝛾 on X for some smooth (1, 1)-form 𝛾 on X.

(3)
√
−1ΘhL (L) ≥ 0 on X \ Z.

(4)
√
−1ΘhL (L) ≥ ε

√
−1ΘhM (M) on X \ Z for some positive number ε > 0.

Then for a (non-zero) section s of M with supX |s|hM < ∞, then the multiplication map induced by the tensor
product with s

Φs : Hq(X, KX ⊗ L ⊗ I(hL))
⊗s−−→ Hq(X, KX ⊗ L ⊗M ⊗ I(hLhM))

is (well-defined and) injective for any i.

Proof. Fix aKähler formω on X anda completeKähler form ̃︀ω on Y := X\Z satisfying the followingproperties:

(a) ̃︀ω is larger or equal to than ω on Y,
(b) There is a bounded function Φ with ̃︀ω = ddcΦ on a neighborhood of every point.

We prove that themultiplicationmap Ψs fromHn,q(Y , L)hL ,̃︀ω toHn,q(Y , L⊗M)hLhM ,̃︀ω is well-defined, by using
the theory of harmonic integrals in Section 2. In other words, we prove that su belongs toHn,q(Y , L⊗M)hLhM ,̃︀ω
for every u ∈ Hn,q(Y , L)hL ,̃︀ω. Then we have the following commutative diagram:

Hq(X, KX ⊗ L ⊗ I(hL))
∼=−−−−−→ Hn,q(Y , L)hL ,̃︀ω

Φs

⎮⎮⌄ Ψs
⎮⎮⌄

Hq(X, KX ⊗ L ⊗M ⊗ I(hLhM))
∼=−−−−−→ Hn,q(Y , L ⊗M)hLhM ,̃︀ω

We can easily see that the multiplication Φs is injective if Ψsis injective.
For a given u ∈ Hn,q(Y , L)hL ,̃︀ω. we first see that su is L2-bounded with respect to hLhM. Since supX |s|hM is

finite by the assumption, an easy computation yields

‖su‖2hLhM ,̃︀ω =
∫︁
Y

|s|2hM |u|
2
hL ,̃︀ω ̃︀ωn

n!

≤ sup
X

|s|2hM
∫︁
Y

|u|2hL ,̃︀ω ̃︀ωn
n!

= sup
X

|s|2hM‖u‖
2
hL ,̃︀ω .

Therefore su is L2-bounded. By Proposition 2.2, we can apply Proposition 2.1 to su, and thus we obtain

‖D
′′*
hLhM su‖

2
hLhM ,̃︀ω = ‖D

′*
hLhM su‖

2
hLhM ,̃︀ω + ⟨⟨

√
−1ΘhLhM (L ⊗M)Λ̃︀ωsu, su⟩⟩hLhM ,̃︀ω .

Here we used ∂su = s∂u = 0. In order to show that su is harmonic, it is sufficient to prove that the right hand
side is zero.

On the other hand, by applying Proposition 2.1 to u, we have

0 = ‖D
′*
hLu‖

2
hL ,̃︀ω + ⟨⟨

√
−1ΘhL (L)Λ̃︀ωu, u⟩⟩hL ,̃︀ω .
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Remark that the left hand side is equal to zero since u is harmonic. Since the curvature
√
−1ΘhL (L) is semi-

positive on Y by assumption (3), the integrand ⟨
√
−1ΘhL (L)Λ̃︀ωu, u⟩hL ,̃︀ω is a semi-positive function. Therefore

from the above equality we obtain

|D
′*
hLu|hL ,̃︀ω = 0 and ⟨

√
−1ΘhL (L)Λ̃︀ωu, u⟩hL ,̃︀ω = 0 on Y .

Since s is a holomorphic section, we can easily see that D
′*
hLhM su = sD

′*
hLu = 0. Moreover by assumption (4) we

have

⟨
√
−1ΘhLhM (L ⊗M)Λ̃︀ωsu, su⟩ = |s|2hM ⟨

√
−1ΘhLhM (L ⊗M)Λ̃︀ωu, u⟩

= |s|2hM ⟨
√
−1ΘhM (M)Λ̃︀ωu, u⟩

≤ 1ε |s|
2
hM ⟨

√
−1ΘhL (L)Λ̃︀ωu, u⟩ = 0.

This implies ⟨⟨
√
−1ΘhLhM (L ⊗M)Λ̃︀ωsu, su⟩⟩hLhM ,̃︀ω = 0. We have proved that su is harmonic for every harmonic

form u ∈ Hn,q(Y , L)hL ,̃︀ω. It is obvious that themultiplicationmap Ψs : Hn,q(Y , L)hL ,̃︀ω → Hn,q(Y , L⊗M)hLhM ,̃︀ω
is injective. This completes the proof.

The following theorem is a generalization of Theorem 3.1 and Theorem 1.3. At the end of this survey, we give
some remarks and the sketch of the proof of Theorem 3.2.

Theorem 3.2 ([9, Theorem 1.3]). Let (F, hF) and (L, hL) be singular hermitian line bundles with semi-positive
curvature on a compact Kähler manifold X. Assume that there exists an effective R-divisor ∆ with

hF = haL · h∆ ,

where a is a positive real number and h∆ is the singular metric defined by ∆.
Then for a (non-zero) section s of L satisfying supX |s|hL < ∞, the multiplication map

Φs : Hq(X, KX ⊗ F ⊗ I(hF))
⊗s−−→ Hq(X, KX ⊗ F ⊗ L ⊗ I(hFhL))

is (well-defined and) injective for any q.

Remark 3.3. (1) The case of ∆ = 0 corresponds to Theorem 1.3. When we apply our injectivity theorem to
the problem of extending holomorphic sections from subvarieties to the ambient space, it is important to
consider the case of ∆ ≠ 0. See [9] for more details.
(2) If hL and hF are smooth on a Zariski open set, the same conclusion holds under the weaker assumption
of

√
−1ΘhF (F) ≥ a

√
−1ΘhL (L). See Theorem 3.1.

(3) When (L, hL)=(Fm , hm), the above theorem agrees with Theorem 1.3.

We shortly give the sketch of the proof (see [11] for the precise proof). In our situation, we must consider
singular metrics with transcendental (non-algebraic) singularities. It is quite difficult to directly handle tran-
scendental singularities, and thus in the first step, we approximate a given metric hF by metrics {hε}ε>0 that
are smooth on a Zariski open set, by using Theorem 2.6. Then we represent a given cohomology class in
Hq(X, KX ⊗ F ⊗ I(hF)) by the associated harmonic form uε with respect to hε on the Zariski open set (see
Theorem 2.5). We want to show that suε is also harmonic by using the same method as the proof of Enoki or
Theorem 3.1. However, the same argument fails since the curvature of hε is not semi-positive. For this reason,
in the second step, we investigate the asymptotic behavior of the harmonic forms uε with respect to a family
of the regularized metrics {hε}ε>0. Then we show that the L2-norm ‖D

′′*
hεhL,ε suε‖ converges to zero as ε goes

to zero, where hL,ε is a suitable approximation of hL. Moreover, in the third Step, we construct solutions 𝛾ε of
the ∂-equation ∂𝛾ε = suε such that the L2-norm ‖𝛾ε‖ is uniformly bounded, by applying the Čech complex
with the topology induced by the local L2-norms. In the final step, we prove

‖suε‖2 = ⟨⟨suε , ∂𝛾ε⟩⟩ ≤ ‖D
′′*
hεhL,ε suε‖‖𝛾ε‖ → 0 as ε → 0.

From these observations, we can conclude that uε converges to zero in a suitable sense. This completes the
proof.
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