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1 Introduction

In this survey, we mainly study higher cohomology groups, which naturally appear as obstructions when we
approach certain fundamental problems in complex geometry. For example, when we consider the problem
of extending (holomorphic) sections of a (holomorphic) line bundle F from a subvariety S C X to the ambient
complex manifold X, the long exact sequence induced by the following sequence

0—>F®Js—F—F|s—0

tells us that every section of F|s on S can be extended to a section of F on X if the first cohomology group
H'(X, F ® J5) vanishes. The same conclusion holds under the weaker assumption that the induced map
H'(X, F®Js) — H(X, F)isinjective. Therefore it is important to find good conditions that imply the vanishing
or the injectivity of higher cohomology groups. The Kodaira vanishing theorem is one of the most celebrated
vanishing theorems:

Theorem 1.1 (The Kodaira vanishing theorem). Let F be a positive line bundle on a smooth projective variety
X. Then
HYX,Kx ®F)=0 foranyq>0.

Here Ky denotes the canonical bundle of X.

The following theorem is the so-called injectivity theorem, which can be seen as a generalization of the above
theorem to semi-positive line bundles.

Theorem 1.2 ([10] (resp. [5])). Let F be a semi-ample (resp. semi-positive) line bundle on a smooth projective
variety (resp. a compact Kdhler manifold) X. Then for a (non-zero) section s of a positive multiple F™ of the line
bundle F, the multiplication map induced by the tensor product with s

@ : HI(X, Ky @ F) 2% HI(X, Ky ® F™1)

is injective for any q.
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In the proof of Kodaira’s vanishing theorem and Enoki’s injectivity theorem, the theory of harmonic integrals
plays a crucial role, which enables us to study the vanishing theorem and the injectivity theorem from the
viewpoint of complex differential geometry.

The purpose of this survey is to present recent techniques on the theory of harmonic integrals to study
the cohomology group H?(X, Kx ® F ® J(h)), where J(h) is the multiplier ideal sheaf of a singular (hermitian)
metric h on F. As an application, we generalize Enoki’s injectivity theorem to line bundles equipped with
singular metrics (Theorem 1.3). A line bundle is said to be pseudo-effective if it admits a singular metric with
semi-positive curvature. Therefore Theorem 1.3 can be seen as an injectivity theorem for pseudo-effective line
bundles.

Theorem 1.3 ([11, Theorem 1.3]). Let F be a line bundle on a compact Kdhler manifold X and h be a singular
metric with semi-positive curvature on F. Then for a (non-zero) section s of a positive multiple F™ satisfying
supy |s|pm < oo, the multiplication map

@5 : HI(X, Ky ® F® I(h)) =% HI(X, Kx @ F™! @ J(h™*1))

is (well-defined and) injective for any q. Here J(h) denotes the multiplier ideal sheaf associated to the singular
metric h.

The multiplication map is well-defined thanks to the assumption of supy |s|;m < co. When h is a metric with
minimal singularities on F, this assumption is automatically satisfied for any section s of F™ (see [1] for metrics
with minimal singularities). Metrics with minimal singularities or singular metrics obtained from a suitable
limit of a family of metrics play an important role when we study algebraic geometry by using transcendental
methods, however they do not always have algebraic singularities. We can apply the above theorem to such
singular metrics since we do not assume that h has algebraic singularities, which is one of our advantages.

When we consider the problem of extending sections from subvarieties to the ambient space, we need to
refine the above formulation (see [9, Theorem 1.3]). Our injectivity theorem can be seen as an improvement
of [5], [7], [10], [12], [16]. For the proof, we take an analytic approach for the cohomology groups with coeffi-
cients in Ky ® F ® J(h), which includes techniques of [5], [7], [12], [13], [15]. The proof is based on a technical
combination of the L2-method for the d-equation and the theory of harmonic integrals. To handle transcen-
dental (non-algebraic) singularities, after regularizing a given singular metric, we investigate the asymptotic
behavior of the harmonic forms with respect to a family of the regularized metrics. See [12] and [9] for more
details.

This survey is organized as follows: In Section 2, we give techniques on the theory of harmonic integrals
to study HY(X, Kx ® F ® J(h)) by using harmonic differential forms. In Section 3, after we give a proof of the
special case of Theorem 1.3, we discuss Theorem 1.3 and its generalization.

2 The Theory of Harmonic Integrals

In this section, recent techniques on the theory of harmonic integrals are given, whose purpose is to study
HY(X, Kx ® F ® J(h)) by using harmonic differential forms. By Proposition 2.5, we know that, if a singular
metric h is a smooth on a Zariski open set Y, cohomology classes can be represented by harmonic forms on
Y (not X). For this reason, we need to formulate the theory of harmonic integrals on non-compact manifolds.

2.1 Harmonic differential forms in L2-spaces
In this subsection, we recall basic facts on the theory of harmonic integrals. Let Y be a (not necessarily com-

pact) complex manifold with a hermitian form w and F be a line bundle on Y with a smooth (hermitian) metric
h. For F-valued (p, g)-forms u and v, the point-wise inner product (u, v);, 5 can be defined, and the (global)
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inner product (u, v), 5 can also be defined by
a)n
(u, V>>h,¢7) = /(u, % e
Y

Denote by sz’)q (Y, F)p, g the L?-space of F-valued (p, q)-forms on Y, namely

sz’)q(Y, F)p 5 := {u| uis an F-valued (p, q)-form on Y with ||u||;, < ee.}.

The Chern connection Dy, of F is defined by the holomorphic structure and the hermitian metric h of
F, and further Dy, can be written as D, = D}, + D} with the (1, 0)-connection Dj, and the (0, 1)-connection
D} Remark that D} = 0 by the definition. We consider the maximal Hilbert extension of the connections
D), and D;;, which we denote by the same notation. For example, D}, is densely defined closed operator on

sz’)q (Y, F)}, 5> whose domain is the following subspace

Dom Dy, := {u € LEJ(Y, F)pg | Dpu € Lf’2+)1,CI(Y, Fpa-t

Here Dju € Lf’;)l’q(Y, F),. means that there exists v € Lf’;)l’q(Y, F), 5 such that Dyu = v in the sense

of distributions. The Hilbert adjoint operators D; and D;]/* in the sense of von Neumann can be defined as
follows: For every u in Dom D: defined by

DomD;, := {u € sz’)q(Y, Fpal DomDj, > v — <(u,D;,v)>h,a~, is bounded.},

there uniquely exists w € Ll(”z_)l’q(Y, F) such that (w, v) = (u, D/hv)) for any v € Dom D;l. Then we put D;:u =
w. Now we have the following orthogonal decomposition:

L2A(Y, Py = 1mo @ 324 (Y, F) o Im D}, .
Here ﬂ{i"ﬂ%(Y, F) is the space of harmonic forms defined by
H-C‘Z:(%(Y, F) := {u | uis an F-valued (p, q)-form such that ou = D;:*u =0.}.
In some cases, we can prove that the subspaces Im 0 and Im DZ* are closed, and then we have
Kerd/Imo ¥ 32 (Y, F).

In particular, equivalence classes in the left hand side can be represented by the associated harmonic forms.
For example, when Y is a compact complex manifold, we have

H(Y, Q% ® F) = Kerd/Im o = H}'4 (v, F).

Therefore given cohomology classes can be represented by the harmonic forms. Under suitable assumptions,
such an isomorphism can be proved for H?(X, Kx ® F ® J(h)). See Proposition 2.5.

2.2 Bochner-Nakano-Kodaira’s identity

The Kodaira vanishing theorem and Enoki’s injectivity theorem are derived from Bochner-Nakano-Kodaira’s
identity. In this subsection, we formulate some results obtained from Bochner-Nakano-Kodaira’s identity,
which can be applied in the proof of our injectivity theorem.

If w is a complete form on Y, the Hilbert adjoints D: and D;,/* coincide with the maximal Hilbert extensions
of the formal adjoints (see [2, (3,2) Theorem in Chapter 8]). The following proposition follows from Bochner-
Nakano-Kodaira’s identity and the density lemma (see [2, ChapterVII], [3, Lemma 4.3]).
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Proposition 2.1. Assume that w is a complete Kdhler form on Y and v/-10y(F) = -Cw for some positive con-

stant C > 0. Then for every u € LZ’Z’)‘I (Y, F)y, 5 satisfying u € Dom D;;* N Dom 0, the following equality holds :

T2 5,02 02
1D ullh,g + lloully,g = 1Dy ully,g + (V-10(F)Agu, u)p, 5.
Here n denotes the dimension of Y and A denotes the adjoint operator of the wedge product @ A -.

Proof. This proposition can be obtained from Bochner-Nakano-Kodaira’s identity and the density lemma.
Since w is a Kihler form, we have Bochner-Nakano-Kodaira’s identity:

A=A+ [V=16,(F), A).

1%

Here A’ (resp. A”) is the Laplacian operator defined by A’ := D, D, + D,'D;, (tesp.A” := D, D," + D, "D, ) and
[-, -] is the graded Lie bracket. Therefore the equality in the proposition holds if u is smooth and compactly
supported.

Since w is complete, we can take a family of cut-off functions {y,}52, with |dy,|; < 1. For a given u
satisfying u € Dom D;;* N Dom 9, by putting u, := up, and by considering convolution with regularizing
kernels pe, we can obtain uy . := u, * pe satisfying the following properties:

Uy, is smooth and compactly supported.

uy . converges to u in LEIZ’)‘I(Y, Fpa-

D), uy,¢ (resp. duy, ) converges to D, “u (resp. ou) in LGy (Y, )y -
The third property comes from |dyy,|; < 1 (completeness of w). As € goes to zero, we have the equality in the

proposition for u,. Further by the assumption of v/-168(F) > —-Cw, the second term of the right hand side

(V-16,(F) Agus, us)p 5 = /(ﬁ@h(F)Aaue, Ue)n,z %

Y

is bounded below. Therefore we obtain the conclusion by Lebesgue’s monotone convergence theorem. [

The following proposition is also used in the proof of Theorem 1.3.

Proposition 2.2. Let g be a smooth metric on a line bundle G and s be a section with supy |S|g < co. Assume
that w is a complete Kdhler form on Y and v/-10y(F), v/-10¢(G) = —Cw for some positive constant C > 0. Then

sue DomD;;; N Domd C LE’z’)q(Y, F®Ghgn

if u belongs to Dom D, N Dom d C LY, F)pg.

Proof. If u is smooth, we can easily see that dsu = sdu and Dy, su = sD;, u. Here we used D, = —* 3%, where

* is the Hodge star operator with respect to w. Even if u is not smooth, for every u € Dom D;:* NDom 0, we can
prove that dsu = sou and D;,*gsu = sD,, u, by taking a smooth and compactly supported u; such that uy — u,

D, u — D, u and duy — du in L{; (Y, F)y 5. Indeed, by the assumption of supy |s|g < oo, we have
llsug - sullpg,a = s‘;,p Is|glluk — ullp,a — O,
lIsouy — s0Ullg 5 = sup |s|g]|Oux — Oullp,z — 0.
For a smooth and compactly supported w, we obtain
(951, W)pg g = lim (sug, DypgW)pe

= khfolo (souy, Whpne

= <<55u,w>>hg’a~,,
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which implies dsu = sou. By the same argument we have D;l*gsu = sD;[*u, and thus su € Dom 0 N Dom D;l*g. It

remains to show su € Dom D;:;. For every w € Dom 0, we take a smooth and compactly supported w, such
that w, — w and ow, — ow in L?z’)' (Y, F ® G)pg ;- Then an easy computation yields

(su, ow),, - = lim lim (su, ow,)

k—oo =00 hg,®

hg,w

= lim lim (D;;;suk,w))

k—o00 |—o0 hg,®

. 1%
< kll,n; | DpgSuillpme zlIWllhg,a-

Therefore it is sufficient to check that HD'h/;su klIhg, is uniformly bounded. Putting gy := (vV-10,(F)Aguy, ui)n,5
and applying Proposition 2.1 to su;., we have
2 2 W"
nat / Islg 8k r
Y

2 /x 2 &)n

Ss‘;p|5‘g{||Dh Urlln,a + Sk W}
{8120}

1% 2 2 I%
| Dhgsukllhg,a < SI;P IS|gl|Dp uk

On the other hand, by applying Proposition 2.1 to u;, we obtain

w" w"
~Cllullj & < / Skt / 8k o7
{8x20} {8x=0}

— 2 1% 2
< |louklin,g * 1Py ukllh,a-

Here we used the assumption of the curvature. Therefore HD;:;su klIng, is uniformly bounded.

2.3 Singular metrics and their multiplier ideal sheaves
First we recall the definition of singular metrics, curvature currents, and multiplier ideal sheaves.
Definition 2.3 (Singular metrics, curvature currents).

(1) A (hermitian) metric h on F is called a singular metric, if for a local trivialization 8 : F|y ¥ U x C and a
local section ¢ of F, we have

§1n =10()]e”™?

for some L} -function ¢ on U. Here ¢ is called the local weight of h with respect to the trivialization.
(2) The curvature current \/-10y(F) associated to h is defined by

V=10,(F) = dd“p,

where ¢ is a local weight of h.
(3) The curvature current v/-10y(F) is said to be semi-positive if v/-10,(F) = 0 in the sense of currents.

For simplicity we abbreviate the singular metric (resp. the curvature current) to the metric (resp. the curva-
ture). The Levi form dd®¢ is taken in the sense of distributions, and thus the curvature is a (1, 1)-current
but not always a smooth (1, 1)-form. The Levi form dd¢ is semi-positive if and only if the function ¢ is a
plurisubharmonic function (psh function for short).

We consider only metrics h such that v/~18,(F) = ~ for some smooth (1, 1)-form ~. Under this condition,
the weight function ¢ becomes a quasi-psh function. In particular ¢ is upper semi-continuous and hence is
bounded above. Then we define multiplier ideal sheaves, which are coherent ideal sheaves.
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Definition 2.4. Let h be a singular metric on F such that v/-10(F) = ~ for some smooth (1, 1)-form ~. Then
the ideal sheaf J(h) defined to be

I(h)U) = I(@)(U) := {f € Oy(U) | [fle™® € L} (U)}

for every open set U, is called the multiplier ideal sheaf associated to h.

From now on, let X be a compact Kiahler manifold with a Kahler form w and F be a line bundle on X with
a (singular) metric h on F. In this survey, we mainly study the cohomology group HY(X, Kx ® F ® J(h)) by
applying the theory of harmonic integrals. For this purpose, we introduce the space of the harmonic forms
that is isomorphic to the cohomology group H?(X, Kx ® F ® J(h)). If h is a smooth metric on a (non-empty)
Zariski open Y C X, then we can represent a cohomology class by the associated harmonic form by taking a
suitable complete Kidhler form w on Y satisfying the following properties:

(a) w islarger or equal to than w on Y.
(b) There is a bounded function @ with w = dd°® on a neighborhood of every point.

Proposition 2.5. Under the same situation as above, we have the following orthogonal decomposition :

LY, Py g =1md & Hy 4 (Y, F) & Im Dy, .

Moreover we have the following isomorphism :

H(X,Kx ® F ® J(h)) = Kerd/Im 0 =~ H;1(Y, F).

Proof. The proof is same as that of [7, Claim 1]. In general we have

LYY, Py g = Imd & IC4(Y, F) & Im D,

Therefore it is sufficient to show that Im o and Im D;l'* are closed subspaces, and

HI(X,Kx ® F @ I(h)) = Kerd/Im 9.

First we prove the above isomorphism, by chasing the De Rham-Weil isomorphism. Fix an open cover U :
{U; }]-Ail of X with an open ball U;. Then we have the isomorphism

HI(X,Kx © F® I(h)) ~ HI(U, Kx ® F ® I(h)),

where the right hand side is the Cech cohomology group calculated by U. For simplicity, we put U;
Uj, N+ -+ N Uj,. We consider a g-cocycle u = {u;;, . ;, } satisfying

Ujpj,.j, € H'WUyoj,..j,» Kx © F@I(h)) and  6u =0,

oj1eedq T

0j1---Jq
where 8 is the coboundary operator of the Cech complex. Then, by using a partition {pj }jl\il of unity associated
to U, we define u' := {wjyj, j. .} by Ujj,.j, ., = Zj]\il PiUijo...igr- BY the construction, we have éu' = u and
8ou' = 0. From the same argument, we can obtain u? with §u? = ou'. By repeating this process, we obtain
u?. Then ou? determines the F-valued (n, q)-form on X with || dug||p,,, < oo thanks to §0u? = 0. Further it is
easy to see that ou? belongs to LE‘Z’)‘I(Y, F)hy(;, (thatis, ||5uq llh& < o). Indeed, for every F-valued (n, q)-form u,
we have the inequality |u|i’ FW" < |u|ﬁ’ »W" by property (a) of w. From the above argument, we have obtained
the (well-defined) map
HY(U, Kx ® F @ J(h)) — Kero/Im 0.
Now we see that this map is actually isomorphic by using the L?-method for the 0-equation (for example,
see [3, Théorémf 4.1)). For every w € LE’Z’)‘I (Y, F) N Kero, we define w® := {w;,} by w;j, := w| v, \z- B the L’
method for the 0-equation, we obtain w' = {w; } such that
ow'=w® on Ui, \Z,
N
WHRa:=> [ Wilha@" < Cilwli g

Jo=ly;\z
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Here C; is a positive constant independent of w. By the construction, we have 06w! = 0. Therefore by the
same method, we can obtain w” = {w; ; } such that
ow? =éw' onUj \Z,
N
W lha:= D Wi o @" < C2Wll5 -

Jo, ].lleA ) \Z

Jjoi1
By repeating this process, we obtain w? such that ow? = §w? ! and || 6w || na < Cllwlly, g for some positive
constant C > 0. Then 6w? determines the g-cocycle since holomorphic (n, 0)-forms on U \ Z with bounded
L%-norm can be extended (by the Riemann extension theorem). Here we used the special characteristics of
the canonical bundle. Hence we have obtained

B : Kerd/Imo — HI(U, Kx @ F @ I(h)).

It is easy to see that these maps give an isomorphism.

It remains to show that Im 0 is a closed subspace in LE‘Z’)‘J (Y,F) e Take a sequence {0vy};, in Im 0 that
converges to w € LFz’)q (Y, F)y, 5. Since f is continuous by the construction, we have ||f(w - dv)|| — 0 as
k — oo. Then B(w) is zero in HI(U, Kx ® F ® J(h)) since HI(U, Kx ® F @ J(h)) is a finite dimensional vector
space. Therefore we know w € Im 0 by the above isomorphism, which implies that Im 0 is closed. It follows

from this fact that Im D;:* is also closed. O

For a given singular metric h, thanks to [4, Theorem 2.3.], we can approximate h by singular metrics h; that
are smooth on a Zariski open set, without changing the multiplier ideal sheaf. Moreover if the set {x € X |
v(h, x) > 0} is contained in a subvariety, then we can assume that the singular metrics he are smooth on
a Zariski open set independent of €. Here v(h, x) denotes the Lelong number of the weight ¢ of h at x. We
reformulate [4, Theorem 2.3.] with our notation and give an additional property.

Theorem 2.6. ([4, Theorem 2.3.]) Let X be a compact Kdiihler manifold and F be a line bundle with a singular
metric h such that v/-10y, = v for some smooth (1, 1)-form ~. Then there exist metrics {hs}1s.¢>0 on F with the
following properties :

(a) h¢is smooth on X \ Z¢, where Z; is a subvariety on X.
(b) he, < he, < h holds forany 0 < g; < &,.

(c) I(h) = I(he).

(@ V=10, (F) 2 vy - ew.

Moreover, if the set {x € X | v(h, x) > 0} is contained in a subvariety Z, then we can add the property that Z; is
contained in Z for any € > 0.

Proof. Fix a smooth metric g on F. Then there exists an L!-function ¢ on X with h = ge™. By applying [4,
Theorem 2.3.] to ¢, we obtain quasi-psh functions ¢, with equisingularities. For a given € > 0, by taking large
v = v(g), we define h¢ by he := ge?v©, Then the metric h. satisfies properties (a), (b), (c), (d).

The latter conclusion follows from the proof in [4]. We see this fact shortly, by using the notation in [4]. In
their proof, they locally approximate ¢ by ¢, , ; with logarithmic pole. By inequality (2.5) in [4], the Lelong
number of ¢, , ; is less than or equal to that of ¢. Hence ¢, , ; is smooth on X\ Z since ¢, , ; has a logarithmic
pole. Since ¢y is obtained from Richberg’s regularization of the supremum of these functions (see around
(2.5) and (2.7)), we obtain the latter conclusion. O
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3 Applications

In this section, we give an idea of the proof of Theorem 1.3 (see also [7]). The following theorem is an injectivity
theorem with multiplier ideal sheaves under the regularity assumption for singular metrics, whose proof
provides a rough strategy to prove Theorem 1.3.

Theorem 3.1 ([12, Theorem 1.5]). Let (L, hy) and (M, hy) be singular hermitian line bundles on a compact Kdh-
ler manifold X. Assume the following conditions:

(1) There exists a subvariety Z on X such that hy and hy are smoothon X \ Z.

() V-16y,(L) 2 v and vV-16y,,(M) = v on X for some smooth (1, 1)-form  on X.
B) V-16,(L)200nX\Z.

(4) V-10y,(L) 2 eV-16y, (M) on X \ Z for some positive number € > 0.

Then for a (non-zero) section s of M with supy |s|y, < oo, then the multiplication map induced by the tensor
product with s
@s: HI(X,Kx @ L ® I(hy)) ®s, HYX,Kxy ® L @ M @ I(h hyy))

is (well-defined and) injective for any i.

Proof. FixaKihler form w on X and a complete Kihler form w on Y := X\Z satisfying the following properties:

(a) w islargerorequal tothanwon Y,
(b) There is a bounded function @ with w = dd°® on a neighborhood of every point.

We prove that the multiplication map ¥s from #™4(Y, L) n.o to H™(Y, Lo M) hhy.@ 18 well-defined, by using
the theory of harmonic integrals in Section 2. In other words, we prove that su belongs to H™4(Y, L& M)y, &
for every u € H("4(Y, L), 5. Then we have the following commutative diagram:

HIX,KxoLoil) ——  H(Y, L), 5
@sl w{
HIX,Kx © L@ M@ Iy hy)) —— H"IUY, L& My,

We can easily see that the multiplication @; is injective if ¥sis injective.
Foragiven u € H"™4(Y, L), ;. we first see that su is L?-bounded with respect to h; hy;. Since supy |s| hy 1S
finite by the assumption, an easy computation yields

Isul o= [ 1B uf 52
hhy,w — b 2,0 T
Y

2 2 &v)n
< Sl)l(p IS / lulh, & T
¥
2 2
= sgp\swl\ullm,a-

Therefore su is L2-bounded. By Proposition 2.2, we can apply Proposition 2.1 to su, and thus we obtain
1D, by SUll R . = 1Dy SR 1.5 + (V=10p 1, (L © M)A su, su) . -

Here we used dsu = sou = 0. In order to show that su is harmonic, it is sufficient to prove that the right hand
side is zero.
On the other hand, by applying Proposition 2.1 to u, we have

0 =Dy ullp 5+ (V=104 (L)Agu, u),, 5.
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Remark that the left hand side is equal to zero since u is harmonic. Since the curvature v-10y, (L) is semi-
positive on Y by assumption (3), the integrand (v~10y, (L)Agu, u);, 5 is a semi-positive function. Therefore
from the above equality we obtain

Dpuly =0 and (V=160 (L)Azu,u), =0 onY.

Since s is a holomorphic section, we can easily see that D;L By SU = sDZL u = 0. Moreover by assumption (4) we
have

(V=104 1, (L ® M)Agsu, su) = |s|, (V=10 1, (L © M)Azu, u)
= [s|p, (V=164 (M)Azu, u)

< %|s\fw<\/—1@hl(L)Aau, u) = 0.

This implies (v-10y,, (L ® M)Agsu, su) nhy.a = 0- We have proved that su is harmonic for every harmonic
formu € H"4(Y, L)), 5.Itis obvious that the multiplication map ¥s : 5™ (Y, L), 5 — H"U(Y, Lo M)y 1, &
is injective. This completes the proof. O

The following theorem is a generalization of Theorem 3.1 and Theorem 1.3. At the end of this survey, we give
some remarks and the sketch of the proof of Theorem 3.2.

Theorem 3.2 ([9, Theorem 1.3]). Let (F, hg) and (L, h;) be singular hermitian line bundles with semi-positive
curvature on a compact Kdhler manifold X. Assume that there exists an effective R-divisor A with

hp = h{ - hy,

where a is a positive real number and h, is the singular metric defined by A.
Then for a (non-zero) section s of L satisfying supy ||, < oo, the multiplication map

@ : HI(X, Ky © F @ I(hp)) 2% HIX, Ky ® F @ L @ I(hphy))

is (well-defined and) injective for any q.

Remark 3.3. (1) The case of A = 0 corresponds to Theorem 1.3. When we apply our injectivity theorem to
the problem of extending holomorphic sections from subvarieties to the ambient space, it is important to
consider the case of A # 0. See [9] for more details.

(2) If hy and hr are smooth on a Zariski open set, the same conclusion holds under the weaker assumption
of v-10y,(F) = av-16y, (L). See Theorem 3.1.

(3) When (L, hy)=(F™, h™), the above theorem agrees with Theorem 1.3.

We shortly give the sketch of the proof (see [11] for the precise proof). In our situation, we must consider
singular metrics with transcendental (non-algebraic) singularities. It is quite difficult to directly handle tran-
scendental singularities, and thus in the first step, we approximate a given metric hy by metrics {h¢ }.-o that
are smooth on a Zariski open set, by using Theorem 2.6. Then we represent a given cohomology class in
HY(X, Kx ® F ® J(hF)) by the associated harmonic form u, with respect to he on the Zariski open set (see
Theorem 2.5). We want to show that su. is also harmonic by using the same method as the proof of Enoki or
Theorem 3.1. However, the same argument fails since the curvature of h is not semi-positive. For this reason,
in the second step, we investigate the asymptotic behavior of the harmonic forms u, with respect to a family
of the regularized metrics {he }es0. Then we show that the L2-norm HD;;:hL’esugH converges to zero as € goes
to zero, where h; . is a suitable approximation of h; . Moreovet, in the third Step, we construct solutions ~y. of
the 0-equation 0ve = su such that the L2-norm ||ve|| is uniformly bounded, by applying the Cech complex
with the topology induced by the local L?-norms. In the final step, we prove

Isue||* = (sue, 0ve) < [|Dpn,  Sucllllvell = O ase —o.

From these observations, we can conclude that ue converges to zero in a suitable sense. This completes the
proof.
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