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Abstract: Models used to explain phenomena are necessarily finer grained than
the models used to measure them. In language study, the measures used to assess
development (e.g., readability indices) rely on models of language that are too coarse
grained to be interpreted in a linguistic framework and so do not participate in lin-
guistic accounts of development. This study argues that the constructionist ap-
proaches provide a framework for the development of a practical and interpretable
measure of developmental complexity because these approaches feature affordan-
ces from which a measurement model may be derived: they describe language
knowledge as a comprehensive network of enumerable entities that do not require
the imputation of external processes, are extensible to early child language, and hold
that the drivers of language development are the learning and generalization of
constructions. It is argued here that treating schematic constructions as the unit of
language knowledge supports a complexity measure that can reflect developmental
changes arising from the learning and productive generalization of these units.

Keywords: complexity; language development; constructions

1 Introduction

How does language knowledge change as it develops? Almost certainly, it becomes
more complex. Some way of measuring this could support the comparison of
development in different social and educational contexts, reveal allometries
between language growth and the maturation of other cognitive abilities, and
help identify atypical language development. Despite such benefits, and a substantial
complexity literature produced throughout the subfields of linguistics, there is
no sustained pursuit of a general measure of developmental language complexity.
The absence of this inquiry is surprising for two reasons. First, there are tools for
doing so, arising from the interdisciplinary efforts of physicists, mathematicians,
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biologists, and ecologists who share a need to account for structural and emergent
causation in their explanatory models. Second, language is a complex system:
languages are composed of simpler structures that interact in complicated ways to
produce complicated behaviors (Simon 1962; Wolfram 1984). These interactions
occur in hierarchical contact structures that show functional independence at
lower scales but integration at higher scales (Badii 1997; Page 2010; Tononi et al. 1994).
These structures allow the correlated influences of individual elements to produce
system outputs that range in probability from common to rare (Allen et al. 2017;
Crutchfield and Young 1989; Gell-Mann and Lloyd 1996) while the coordinated
behavior of these components produce “patterns detectable by an external observer”
(Prokopenko et al. 2009: 12). In development, the language system, like all adaptive
systems, is a “pattern-recognition (device) that ... finds regularities in experience
and compresses them into schemata” (Gell-Mann 1994: 22)" by registering statistical
stabilities in the flows of data it experiences. These schemata comprise the system’s
memory and guide prospective behavioral selection (Gell-Mann 1994).

Yet, despite this encouraging overlap in the descriptions of complex systems and
theories of language structure, there seems to be little interest in a general measure
that could represent the evolution of an individual’s language system, with
researchers preferring locally defined and ‘ad hoc’ (Juola 2008) measures whenever
the need for complexity as a dependent variable arises. The reason for this is unclear,
but a review of the literature suggests it arises from a tension between the different
requirements placed on models used to measure phenomena and those used to
explain them (Page 2018: 27).

1.1 Models for measures and explanations

One of the ways in which linguistics assumes a scientific stance is in its use of
explanatory models. The most salient of these are its various grammatical theories.
These are explanatory models of language structure that ‘coarse grain’ over
observable events, providing “the basis for an effective theory (that) allows us to
model the behavior of a system without specifying all of the underlying causes
that lead to system state changes” (Flack 2017: 3—4). For example, the schematic
representation of the covariational conditional construction, [the X-er, the Y-er]
(Goldberg 2003: 220), coarse grains over elements that might occupy the X and Y slots
to locate an explanatory relationship at a schematic level of meaning and form.

1 Gell-Mann’s (1994) definition is not psychological: the adaptivity of all complex systems requires
the retention of a schematic trace of past experiences, such as achieved by the immunological
memory of the adaptive immune system.
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In a longitudinal study of development, one might use this model to observe the
first occurrence of the described construction in child language data, perhaps as a
holophrase, and then track it as it increases in productivity. First variants might
feature different adjectives in the X and Y slots, with the child later generalizing
them to feature complex sub-constructions, as in this example from the Corpus
of Contemporary American English (Davies 2008): “the more detached you are, the
more in harmony you live.”

As schematic as the representation of the covariational is, it is defined in terms
far richer than those currently used to measure language development. Consider
the readability indices of Kincaide et al. (1975), the most influential of which may be
the Flesch—Kincaid Grade Level Formula (FKGL):

# #
FKGL = 0.39(‘”0rd‘°’> + 11.8<Synables> ~15.59 1)
# sentences #words

The underlying model of language in this consequential measure (used in the US
Common Core State Standards for literacy development and in US laws setting
readability standards for official documents) proposes only that as children become
older, their words and sentences become longer. There is little that this observation
can provide to an inquiry into the nature of language development.

The different requirements placed on explanatory and measurement models
may account for a general lack of interest in measures of developmental complexity.
Indeed, this seems to be the content of DeGraff’s (2001) objection to compressibility-
based measures (e.g., Ehret and Szmrecsanyi 2019; Juola 2008) which show “no
relation to any theory where linguistic phenomena are independently identified
and analyzed” (2001: 269). This, in turn, is a specific instance of the ‘problem of
representativity’ described by Miestamo (2004, 2008; see also Sinneméki 2008).
According to Miestamo (2004: 6), a complexity measure requires a model of language
that takes “into account all aspects of grammar as exhaustively and in as much detail
as possible.” From the institutional perspectives that prioritize predictive validity,
these critiques appear unfair, as they expect a measurement model to have the
same coarse graining as an explanatory model which, as Miestamo (2008) notes,
is probably not possible. However, construct validity for the linguist requires a
representation of how complexity emerges from aspects of development that are
open to theoretical and empirical exploration. The following sections argue that
constructionist models of language may resolve this tension. This is because the
various definitions of a grammatical construction (Boas and Sag 2012; Croft 2001;
Fillmore et al. 1988; Goldberg 1995; Lakoff 1984), although rich in unique content,
all share three features that allow for a theoretically meaningful course-graining
of theory into a functional measurement model: enumerability, comprehensiveness,
and surface-availability.
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In service of this proposal, this paper proceeds as follows: Section 2 reviews the
history of complexity and its measurement to develop a clearer picture of how
measures depend on the models used to describe the measured system. This sec-
tion will show that the closer one gets to social systems, the more coarse-grained
measurement models become. Section 3 then describes the three affordances in
detail. Proceeding from this, Section 4 attempts a proof-of-concept measure, which
section five applies to developmental and usage data to show that it increases with
child age (for L1 development) and proficiency level estimates (for L2 development).
The measure is also applied to language samples to show that it correlates with
institutional intuitions about complexity (i.e., readability measures).

2 The emergence of interpretive models in
complexity measurement

In 1948, Warren Weaver observed that modern science was most successful with
problems in two categories: those with only two variables and those that were
reducible to a few statistical parameters. Between these extrema lay problems
of ‘organized complexity’, “which involve dealing simultaneously with a sizable
number of factors which are interrelated into an organic whole” (Weaver 1948: 539,
emphasis in original). Because of this gap, the reductionist mode of science presented
an asymmetric causal image of the world wherein, according to Gell-Mann (1995),
we find nothing in biology that is not explained by chemistry and physics, yet nothing
in physics or chemistry that predicts the emergence of biology.

The earliest attempts to quantify complexity treated it as the length of a program
needed to generate a specified data set (Li and Vitdnyi 2008). In this approach, the
algorithmic complexity of a data set could, in principle, be assessed as a function of
the number of rules and times they are applied by the program that generated the
data. Because of this, algorithmic measures are maximized when no set of rules can
predict the data, making the data itself its own shortest description. While this
definition led to profound statements in computer science (e.g., Chaitin 1974), it made
algorithmic complexity a measure of randomness and unsuited to real world
applications for three reasons. First, because the randomness that maximizes an
algorithmic description is statistically simple (Crutchfield and Young 1989: 105).
Second, because the randomness in a system says nothing about the structure of its
non-random parts (Feldman and Crutchfield 1998: 1). Finally, because the algorithmic
approach is not required to be measure-theoretically sound (Grassherger 1986: 908).
That is, because algorithmic complexity was conceived to play a constructive role
in the theorems of computational theory (like the Turing machine), there is no
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requirement that it have even the basic properties of a practical measure.” A
practical complexity measure, it was argued, should be measure theoretically sound
and achieve its minimum scores in the extremes of randomness and regularity while
privileging the “structurally intricate systems between these extremes” (Lloyd
and Pagels 1988: 187). One frequently cited proposal is Gell-Mann and Lloyd’s (1996)
Effective Complexity. However, other work (e.g., Crutchfield and Young 1989;
Grassberger 1986; Huberman et al. 1986; Lopez-Ruiz et al. 1995) had already defined
sound complexity measures that fell to zero for both periodic and random data while
increasing for complex systems between these two extremes. While perhaps more
useful, these measures of statistical complexity (Feldman and Crutchfield 1998), were
defined for the discrete-valued systems of atomic physics, whose models have either
few degrees of freedom® or ensembles that are tractable under central limit theo-
rems (Grassberger 1986: 907; Lloyd and Pagels 1988: 189).

Because of the simplicity of their underlying models, statistical complexity
measures do not scale to systems which have many degrees of freedom, or which
produce highly skewed distributions of behavioral outcomes. Some conceptual
developments from these early measures, however, showed promise of extensibility
to more intricate systems. These include Lloyd and Pagels’ (1988) thermodynamic
depth measure and Bennett’s (1988) logical depth measure, which proposed that
complexity has to do with the hidden processes that create structure — the “assembly
routine” of the system (Lloyd and Pagels 1988). In these systems, simplicity on the
surface of a system can ‘screen off underlying complexity (McShea 2000), as when
complex and distributed neurodynamic processes are subjectively experienced as
the instantaneous recognition of a unitary pattern (i.e., a word or face). Indeed, in
Wolpert and Macready (1997), this was the shibboleth of complexity: non-complex
systems look the same at different scales while complex systems have simple surface
structures that belie underlying complexity. Cross-scale self-dissimilarity emerges,
they argued, in systems with functional structures that are “efficient at encoding as
much (information) processing into (their) dynamics as possible” (Wolpert and
Macready 1997: 78). While conceptually promising, their proposed application

2 For ametric to be a measure, it must satisfy (among other things) the requirements of monotonicity
and additivity. Monotonicity formalizes the intuition that a part of a thing is generally smaller than
the whole thing, and so requires that any measure (M) applied to a measurable subset (ss) of a
measurable set (S) must show M(ss) < M(S). Additivity formalizes the intuition that a cutting a 10 cm
long string into two pieces will produce two sections with lengths that sum to 10 cm. Thatis, if A and B
are two non-overlapping subsets of a countable set, a measure M applied to their union is equal to the
sum of the measure applied to each one, M(A U B) = M(A) + M(B).

3 Crutchfield and Feldman (1997), for example, used the Ising model spin values which are,
exhaustively, 1 and -1.
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coarse-grained the subject system by arbitrarily ‘digitizing’ the information content
of (e.g.) different magnification levels of a system, ignoring any pre-existing
structure. It turns out that, as the desire to quantify complexity looks toward human
scale systems, one must accept increasing divergences in coarse graining between
explanatory and measurement models. The utility of the measure, however, depends
on the ability of this coarse graining to preserve theoretically meaningful taxon-
omies and relationships.

Unlike those studied in atomic physics, biological and sociocultural systems are
continuous, densely interlinked, and often difficult to separate from their context
(Chu 2011), so care must be taken to preserve their meaningful features when
partitioning them into the enumerable elements of their respective measurement
models. This is the first step in McShea’s (2000) parts-as-proxies approach to
biological complexity and Deacon and Koutroufinis’ (2014) dynamical depth frame-
work, and it comprises the major insights of Adami (2000) measure of genetic
complexity* and Rebout et al.’s (2022) measure for social organizations. While Rebout
et al. (2021: 3) acknowledge the poor enumerability of natural systems as the major
challenge for any measure of complexity in social organizations, their framework
illustrates how elements translated from the fine-grained explanatory model to the
much coarser grained measurement model can support theoretically interpretable
metrics of complexity. They propose a three-dimensional measurement model of
complexity for primate communities by counting social behaviors that exhibited
diversity, flexibility, and combinability. Their measure finds differences between
communities of ‘tolerant’ Tonkean macaques and ‘intolerant’ rhesus macaques, with
greater social tolerance emerging from the more complex repertoires of social
behavior. In both Adami (2000) and Rebout et al. (2021), the far less comprehensive
measurement models are successful and interpretable because the coarse graining
of the measurement model retains features of the explanatory model that are
relevant to complexity change.

In summary, the first practical measures of statistical complexity worked by
focusing on systems with few states. Because the evolved systems studies studied in
life and social sciences exhibit complexity through structures and dynamics that are
difficult to analyze into countable parts, or even separate from their surroundings,
measures developed for them require researchers to establish a measurement
model that preserves the explanatory properties that can credibly account for the
emergence of complexity. The following section describes how some basic properties
and principles of the constructionist model of language knowledge may do this.

4 See also Adami et al. (2000) and Edlund et al. (2011).
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3 Constructions and complexity

The discussion in the previous section described a tension: a complexity measure
acquires meaning through its links to an explanatory theory, yet a measure requires
models that are far coarser grained than the explanatory model. This section
proposes that the construction, as the unit of language knowledge, provides
affordances that support a model satisfying this tension for the measurement of
developmental complexity.

3.1 What does ‘complexity’ mean, here?

Complexity is the property of a system that causes it to have interesting behaviors.
Here, ‘interesting’ means that the behaviors cannot be predicted from analyses of
the elements or structures of the system (nothing about a description of language,
for example, predicts the existence of poetry). While there is no widely accepted
definition of complexity,” a diversity of elements and arrangements is universally
considered a precursor (see Page 2010). While this diversity alone may not be
sufficient for complexity to emerge, there is no chance of complexity without it
(Page 2010: 10). Accordingly, the complexity of the language system is held here to
be causally tied to the diversity of elements and their configurations in use.

While diversity is taken to be a general property of complexity, a more specific
property of language complexity is the productivity of its schematic elements.
Indeed, the most striking functional feature of human language is that its finite
resources can adapt to a seemingly infinite range of situations (cf. Christiansen 1994).
This adaptivity cannot occur unless the schematic frames of the language can
increasingly deploy the more concrete elements in a manner that responds to the
needs of unpredictable situations. That is, because the adaptivity of the language
system emerges from the productivity of its schematic constructions, we should
view this as an additional but necessary component of developmental complexity.

Within the network model of the lexicogrammatical system, we can say that
increases in the diversity and productivity of constructions reflect the arborization
of the ‘contact structure’ (Page 2010): the network of constructions that constitutes
language knowledge. Specifically, the network grows (a) by adding constructions
as the nodes of the network, increasing the diversity of available resources, while
(b) establishing links between new and old constructions, which increases the
productivity of the available resources. While varying constructionist approaches

5 Inany discipline or science. The lack of a definition of complexity is not unique to language studies.
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may differentiate these links (e.g., instance, metaphor, and/or meronymic links),
they are here all treated as the same schematic type of functionally efficient linking
through learned association.

3.2 What does ‘construction’ mean, here?

A construction is “a unit of language that comprises multiple linguistic elements used
together for a relatively coherent communicative function, with sub-functions being
performed by the elements as well” (Tomasello 2008: 8; see also Fillmore et al. 1988:
36). These elemental constituents of the language knowledge system, according to
Croft and Cruse (2004), schematically encode the features of a complex scene, such as
the translocation of an object, to treat them as basic units of semantic representation.
Importantly, form-meaning links are internal to constructions, and not dependent on
external operations or mechanisms.

While linguists have long recognized the importance of constructions (e.g.,
Fillmore et al. 1988), it is the more schematic ones that constitute the theoretical
advancement of the constructionist perspective (Croft 2001; Goldberg 1995).
Important to the issue of complexity, there are two kinds of information stored
within every schematic construction, where information is “that which allows you ...
to make predictions with accuracy better than chance” (Adami 2016: 1-2). The first is
information about states of affairs that comprise human experience (e.g., ‘the
scene encoding hypothesis’; Goldberg 1995). The second is the information, within
a construction, that lets us make better than chance predictions about what lexical
and phrasal constructions we are likely to observe. The dative construction, for
example, creates a structural expectation for two nominal arguments and a semantic
expectation that these arguments have specific qualities (e.g., a thing that can be
given and an entity that can reasonably receive).

Here we arrive at the core conjecture of this study: because constructions
contain information about what lexical roles are likely to co-occur and what lexical
items are likely to occupy those roles, we can define measures that increase with the
diversity and productivity of constructions in a text. In fact, this study proposes that
we can use the diversity of the adjacencies of grammatical categories within an
utterance as a monotonically increasing estimator of the diversity of the construc-
tions that comprise an utterance. Because this proposal is unlikely to appeal to the
reader, its rationale is given some attention, here.

Given two patterns of stimuli, A and B, that are to be associated with different
meanings (a and B, respectively), there must be some information usable by the
pattern associator on the surface of the patterns, otherwise the correct associations,
A — aand B — B, will be no more likely than the errant associations A — fand B — a.
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It is proposed here that this minimal structural difference must consist, at some level
of coarse graining, of at least one unique adjacency of more atomic forms. At the most
schematic level, this would be an adjacency of grammatical categories. To be clear, I
do not propose that this is the psychologically effective difference between con-
structions, only that some new adjacency, at some available level of analysis, is
entailed by whatever the effective difference is. To take an example, consider the
sentences:

(@) John hammered the flat metal

(b) Sally hammered the metal flat

The difference between (a) and (b) arises because the latter, but not the former, is an
instantiation of a pattern of grammatical categories that is associated with the
resultative function (Goldberg and Jackendoff 2004) during learning. Using graphs
as a framework for this discussion, Figure 1 shows that we can treat a construction as
a simple graph (i.e., network) within which the vertices (i.e., nodes) are grammatical
categories, and the edges (i.e., links) are adjacencies (i.e., grammatical categories that
are next to each other in a construction are linked in the graph). In Figure 1, the
adjacencies in (b) that are different than those in (a), and vice versa, are shown as
labeled edges.

Such graphs are useful to an exploration of the consequences of the above
conjecture as the claim that different schematic constructions must exhibit
differences in the nature or order of their components (at some level of analysis)
entails that adjacency graphs of different constructions must show different
topologies (i.e., patterns of connectedness, as in (a) and (b), above). If we accept
that the symbolic function of a construction depends on a distinctive ordering of
sub-parts, we should expect that any embedding of constructions must preserve
some functionally distinctive adjacencies. This indeed happens when both (a) and
(b) are embedded in a conjoining construction, as in Figure 2.

The bolded edge labels in Figure 2 show the distinctive adjacencies that are
preserved in the embedding of (a) and (b) in a conjoining construction and, with italic
edge labels, the two new adjacencies that are created by the embedding construction.
One will notice that construction-internal adjacencies are not required to survive

John hammered the flat metal

@— oT—y %@— BN 9@
-®

®

Sally hammered the metal flat
NNP @ @— DT—NN %@7 NN—JJ
A

Figure 1: POS graphs for (a) and (b), above.
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John hammered the flat metal but Sally hammered the metal flat

@ DT -» NN

CC » NNP

DT-J

NN - JJ

JJ 5NN

NN - CC

Figure 2: POS graph for the conjunction of (a) and (b).

every embedding in a super-ordinate construction. For example, consider (c), where
(b) is embedded in (a) as an object-extracted relative clause.
(c) John hammered the metal that Sally had hammered flat.

In (c), both distinctive adjacencies of (b) are eliminated by the extraction of the object
NP. For the resultative sense to survive this extraction, some new distinctive feature
should emerge. As Figure 3 shows, this may be the new ‘VBD — JJ’ adjacency.

A generalization of this is held to be true, at some descriptive coarse graining, for
all composite constructions: to retain their symbolic function under the reorderings
brought about by embedding, some distinguishing adjacencies either must persevere
or must be replaced by other adjacencies capable of achieving the symbolic function.

John hammered the metal that Sally had hammered flat

Figure 3: POS graph for (c), above.
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In summary, the conjecture behind the diversity measure proposed below gener-
alizes the notion of a phonological minimal pair to the rest of the lexicogrammatical
network, as it holds that associations between grammatical constructions and their
meanings must be made using information that is available at the perceptual surface
and that can signal that a specific association is intended. While some differentiating
information may become unavailable when language is transcribed, both efficient
everyday communication and robust cross-generational cultural transmission
would seem to require a stable source of effective information, using either different
elements (e.g., N VN with N vs. N VN to N) or different orderings of elements (e.g.,
can go. vs. Can I go?). Both will produce differences in the surface form that can be
detected as distinctive adjacencies or combinations of adjacencies. Because of this, it
is held here that changes in the diversity of these adjacencies can be related, through
post hoc examination of compared texts, to countable differences in the diversity of
constructions.®

It should be noted that such a causal relation between adjacency and diversity
cannot be assumed with approaches to complexity or diversity framed in generative
theories. For example, changes in the diversity of grammatical category adjacencies
would not be meaningful to Frank’s (1998: 254) proposal that tree adjoining
operations are the locus of effect for developmental complexification, as any
diversification of these adjacencies resulting from tree adjoining is epiphenomenal
to the syntactic operation proposed to increase structural diversity.

3.3 Some initial arguments: diversity, familiarity of forms, and
level of analysis

Some initial constraints are important to establish contact between the measure and
complexity as a language system property. Here, these constraints are (1) a
complexity measure should track the diversity of forms rather than the location and
shape parameters of their distribution, (2) it must work from limited samples, (3) the
units of analysis should be ‘familiar forms’ (Fillmore et al. 1988), and (4) the level of
analysis should be the argument construction considered a full grammatical clause
(i.e., the plain language sentence). These points are developed in the following.

6 It is important to repeat that whether a particular analysis can observe differences between
constructions in the patterning of sub-elements will depend on its coarse graining. For example, the
CLAWS tagger (Rayson and Garside 1998) annotates both ‘Mary sent flowers with Alice’ and ‘Mary
gave flowers to Alice’ as [NPO VVD NN2 PRP NP0], while the Brill tagger (Brill 1992) annotates the first
as [NNP VBD NNS IN NNP] and the second as [NNP VBD NNS TO NNP].
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3.3.1 Why diversity?

Weaver (1948), in initiating a science of complexity, excluded systems with behaviors
that could be summarized by parameters like range or variance (see also Kadanoff
2009; Siegenfeld and Bar-Yam 2020), as these describe diversity in terms of the
symmetric distributions emergent from random interactions. The behavior of
complex systems, however, is influenced by underlying functional structures and so
typically exhibit skewed distributions of outputs. For example, the distribution of
height in a population will show a symmetric normal distribution because there is no
structure within which your height can interact with that of a randomly chosen
other, and so the number of people shorter than the mean is roughly the same as the
number who are taller. The distribution of wealth in the same population will,
differently, show a highly skewed Pareto distribution because everyone competes
for limited resources within a complex system that structures (and biases) their
interactions. That is, because the components of complex systems “interact in a
nontrivial fashion ... studying the system via statistical mechanics would miss
important properties brought about by interactions” (Prokopenko et al. 2009: 12).

Because diversity is a reliable diagnostic of complexity, it is often used in studies
of phonological complexity. These include the scaling of type diversity explored in
Baumann et al. (2021) and the phonemic diversity measures in Atkinson (2011),
referred to as phonemic complexity in Maddieson et al. (2011). However, despite the
diagnostic importance of diversity, some have treated language complexity as a
central tendency. These include ratios of the kind used in readability indices like
the FKGL (above) and the clauses-per-T-unit-type measure (e.g., Wolfe-Quintero et al.
1998) used in second language development (SLD, henceforth). To see how the latter
are insensitive to diversity, consider two imaginary texts, each composed of 30
sentences but with different diversities of clause-per-sentence ratios. In text 1, every
sentence has three clauses and a clause-per-sentence ratio of 90/30 = 3. Text 2 has five
one-clause sentences, eleven two-clause sentences, eight with three clauses, four
with four clauses, and two with five, and so a clause-per-sentence ratio of 77/30 = 2.57.
The clauses-per-sentence measure scores text 1 as the most complex, even though it
shows no diversity of clausal configurations. Differently, a diversity measure like
entropy (Shannon 1948) would assign a higher score to text 2 than to text 1 (text1=0,
text 2 = 2.12), indicating that the text with the more diverse repertoire of structural
types is more complex.

Throughout this text, diversity will be measured with entropy, and the term
‘entropy’ will always mean Shannon’s (1948) entropy. This is described in (2) as the
function H over the set of observations O consisting of outcomes {0, 0, ... 0,}:
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H(0)=- Zop(oi)Ingp(oi) )

Entropy in (2) is often used to measure diversity (Page 2010) because it increases
monotonically with the diversity of any group or set to which it is applied. Imagine a
system so simple that it can produce only one outcome, repeatedly, such as a six-sided
die with the unusual property that every face shows six dots (or ‘pips’). Because every
role of this die can show only six pips, any set of observations over six rolls will be {6,
6, 6, 6, 6, 6}. Since the probability of observing six pips is 1, and log 1= 0, H in (2) will
give the result 0, indicating no diversity. For a normal die, with pips on each side
ranging from one to six, it is possible (though unlikely) to see each side in six rolls,
producing the set of observations {1, 2, 3,4, 5, 6}. For this set, the probability of six pips
is now 1/6, which is the same as that of one pip, or two, or three, etc. For these
observations, the formula for entropy in (2) will be the sum of the sequence (1/6 log;
6) + (1/6 log, 6) + (1/6 log, 6) + (1/6 log, 6) + (1/6 log, 6) + (1/6 log, 6),” which is log, 6 or
about 1.79. It is a feature of Shannon’s design of the entropy measure that it ranges,
in this case, from a minimum of 0 to a maximum of log, 6, as six is the number of
different observations in the set and the most diverse set one can have over six
observations is six different outcomes.?®

3.3.2 Must work from incomplete samples

It may be possible, in principle, to exhaustively count the constructions a person can
recognize using some variant of a word recognition test. Unfortunately, however,
there is no complete and authoritative list of constructions, where ‘complete’
means ‘contains all’ and ‘authoritative’ means ‘everybody agrees’. Because of this, a
practical measure of developmental complexity should work from samples of the
language used by an individual and, rather than count constructions, be sensitive
to how the diversity of constructions used impacts the statistical properties of the
texts a person produces. This study proposes that this can be achieved by measuring
the increase in category adjacencies described at the end of Section 3.2, above.

3.3.3 The use of familiar forms

While not required for establishing soundness, if the measurement model is defined
over theoretically relevant units, such as constructions, increases in the scores that

7 log, 6 because —log 1/n = log n.

8 AsMorales et al. (2021) explain, this property of ranging from 0 to some function of the type-count is
necessary to any diversity measure, as it provides the scale (minimum and maximum) for the
interpretation of a score.
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the measure gives are, in principle, relatable through post-hoc analysis to changes in
the measured system. DeGraff’s (2001) objection to the use of compression algo-
rithms (e.g., Ehret and Szmrecsanyi 2019) appears to arise from this issue: because
the inputs are not theoretically meaningful, compressibility can only sometimes be
related through analysis to complexity differences in a text. Consider strings (a), the
quick brown fox jumped over the lazy dog, and (b), the lazy brown fox jumped over the
lazy dog. The LZ77 algorithm (Ziv and Lempel 1978) captures the reduced diversity,
here, compressing (a) to 112 bytes and (b) to 104 bytes. However, changes that do not
affect orthographic redundancy are not registered. For example, string (c), the quick
brown fox will jump over the lazy dog, also compresses to 112 bytes, indicating that it is
no more complex than a). It may be the case, that a) and c) are of equal complexity,
but because the input to the measure (i.e., ASCII character encodings) is not theo-
retically meaningful, we cannot decide.’

3.3.4 The level of analysis

The units of analysis should be the ‘production units’ (e.g., sentences) that constitute
a written or spoken text, with the score taken as the average over the document
because this is the level of grammatical problem solving that is a universal target
of development. The position here is that the SLD approach to the unit of analysis
(e.g., Kyle and Crossley 2015) is fundamentally correct: questions about development
should focus on the average complexity of the units of production, known in plain
language as the sentence, as these are directly affected by an increasing elaboration
of the construction network. Taking averages over these units provides the
additional benefit of making any measure robust against text length effects.

3.4 The three affordances

So far, this study has argued that a complexity measure should be coarse grained
enough to be applied to real text but not so coarse grained that it loses contact with
the explanatory theory. This section argues that constructions, as a conceptual
framework for the representation of human language knowledge, show three
affordances that support a coarser-grained measurement model that can be
interpreted in the terms of a finer-grained explanatory model.

9 Iam not arguing that compressibility is an invalid measure, only that it is difficult to map changes
in scoring to changes in the measured system.
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3.4.1 Comprehensiveness

This means that the measurement model can, in principle, respond to every
observation contained in the data. This affordance is an entailment of two features of
the constructionist approach. The first is that the language knowledge system is
“constructions all the way down” (Goldberg 2006: 18). That is, in the various
approaches that make constructions the foundation of language knowledge (Croft
2001; Fillmore et al. 1988; Goldberg 1995), all units of meaning are constructions, with
no appendix holding anomalies outside of a ‘core’ (Fillmore et al. 1988: 504). The second
reason is that the distributional test used to distinguish constructions is extensible to
novel forms and early language. That is, the basic principle that schematic construc-
tions are (a) associations of form and meaning and (b) differentiated by the type and
order of their lexical categories allows us to count a construction even if it has not yet
been cataloged (i.e., described in an authoritative text) or if it is a learner’s develop-
mental hypothesis (e.g., Braine 1963). It is important to recall that the earliest verbal
acts of the child are also the pairings of an intention and a form (i.e., constructions) and
itis not clear how other approaches to language description extend unproblematically
to these utterances.

3.4.2 Enumerability

While constructions interact in complex ways and present boundary problems
in their definition, they are elements of a uniform nature (i.e., form-meaning
associations) which are, in principle, discrete and countable parts of the language
system. Taking an analogy, constructions, like organs and organ systems, may be so
interdependent that different well-informed observers can disagree over what
constitutes an individual within the framework of reference, yet we can still count
them and generally agree in our counts because, like organic systems, constructions
show “both internal integration (achieving) the coordination required for function,
and external isolation (minimizing) outside interference with that coordination”
(McShea 2000: 643). The importance of this may not be immediately obvious so it is
valuable to consider how exposure to the problem of enumerability appears to have
pushed generative linguists to favor process-based definitions of complexity.

In the earliest days of the generative program, every utterance analyzed in the
standard theory (Chomsky 1965), received a Solomonoff-Kolmogorov estimate of its
complexity for free, since the number of rewriting rules and the number of times
they were used is a de facto (description length-based) measure of an analyzed
utterance’s complexity. However, the move toward argumentation based on abstract
constraints in the Government and Binding and Minimalist programs (Chomsky
1982, 1994) produced a formal vocabulary consisting of different types (i.e., abstract
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rules vs. specific parameters) that were difficult to enumerate. Because of this,
Rogers noted in 1998 that the study of complexity in the generative program “has all
but disappeared (because) the structural properties characterizing language as a
class may well not be those that can be distinguished by existing complexity classes”
(Rogers 1998: 1-2). This almost certainly contributed to the treatment of complexity
as a computational property of language (i.e., parsing difficulty) in Hawkins (1999)
and Gibson (1998).

3.4.3 Surface availability

This affordance arises from a property of constructions elsewhere called verticality
(Croft and Cruse 2004: 247): constructions integrate across structural, phonological,
and semantic components with internal links. That is, a construction is a unique and
direct bijective association of a signified and a signifier. Where ‘direct’ means that
the link between form and meaning is internal (i.e., not mediated by hidden trans-
formations or construction-external constraints) and ‘unique’ means that there are
only one-to-one mappings between schematic grammatical forms and meanings,
so that different meanings are associated with different surface patterns (i.e., ‘no
synonymy’ in Givon 1985). Because of this affordance, the complexity of an
individual’s language can be estimated from the texts they produce.

Approaches that posit hidden transformations and abstract constraints or
processors, or that produce surface strings with many-to-one mappings to under-
lying representations, stall on the basic question of what to measure. For example,
how would feature unification contribute to a HPSG-based complexity measure?
Would a Minimalism-based measure assign equal value to all projections (i.e., CP and
C)? And then should it score the numeration, the count of merge operations, or the
output of merge? It is also not clear whether other usage-based approaches offer this
affordance. For example, although a radical dependency grammar (e.g., Hudson
2010) would support a complexity measure that makes a typological comparison, it
might complicate a developmental measure, as the verb-centric analysis of structure
(e.g., Bresnan 2001) would probably account for language development, at least in
part, as the arborization of verb projections to nominal arguments. In developmental
processes that include holophrastic utterances, this means one must choose some
arbitrary point where these dependencies emerge to replace unanalyzed sequences.
Such a measure would find a leap in complexity wherever the analyst set the
threshold score for whichever (certainly controversial) holisticity measure was used.
Differently, if we assume constructions as the unit of representation, this transition,
whether gradual or abrupt, is captured as the increased productivity of the slots.

Finally, it should be noted that this affordance invites the distinction between
‘absolute’ and ‘relative’ complexity (Miestamo 2008), wherein complexity is
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construed as either emergent from the absolute properties of a text (e.g., its
countable surface features; Kusters 2008) or through the relative effortfulness of
the processing required by the text (Hawkins 1999; Housen and Simoens 2016).
It is important to recognize the impact of theory on this distinction, as that sets
the degree to which one kind of complexity can vary independently of the other.
While they might be far apart for the formal models that “assign as much work as
possible to the computing or figuring out part of knowing how to use a language”
(Fillmore et al. 1988: 502), they are assumed to be correlated here: constructions
comprise a uniform representational format exactly because they rely on a uniform
cognitive operation — pattern association. As an initial position, it seems a
constructionist account of complexity should hold that processing (or relative)
complexity is a function of text (or absolute) complexity that is mediated by the kinds
of memory effects observed in word recognition (e.g., context and frequency effects).

4 A possible complexity measure

How is it that we can, by focusing on the core principles and properties of
constructions, devise a practical measure that will increase as a function of the
complexity of the producer’s network of constructions? The proposal herein is that
a measure of constructional complexity must at least be sensitive to the diversity
and productivity of constructions.

If schematic constructions maintain their distinctness as symbols by the
categories they include and the way they order them (cf. Lieven and Tomasello 2008:
181; Tomasello 2008: 8), any increase in the diversity of constructions in a sentence
will diversify the adjacencies of grammatical roles in that unit. Practically, this
means that many different constructions can be separated by the increase in the
diversity of part-of-speech tag pairs. Take, for example, the way that alternation
diversifies the coordinate construction in (e), but not in (d):

(d) Hesprayed the flowers with water and she covered the vegetables with herbicide.
(e) He poured water on the flowers and she covered the vegetables with herbicide.

These are illustrated in Figure 4 as graphs of the POS annotations of (d) and (e). In the
graph for (e), the adjacencies that distinguish it from (d) are labeled.

To capture this diversification with Shannon’s entropy, however, one need not
render (d) or (e) into graphs, as partitioning the tags into pairs at an offset of one
creates a list of all the adjacencies that are realized in the graphs as edges. For (d),
this list is {{PRP, VBD}, {VBD, DT}, {DT, NNS}, {NNS, IN}, {IN, NN}, {NN, CC}, {CC, PRP},
{PRP, VBD}, {VBD, DT}, {DT, NNS}, {NNS, IN}, {IN, NN}} which shows twelve
adjacencies of seven types. The diversity (entropy) of this list is 2.75. The same list for
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(d) He sprayed ... (e) He poured ...

VBD — NN :;

Figure 4: POS graphs for (d) and (e).

(e) also shows twelve adjacencies but with ten unique types, giving a diversity of
adjacencies of 3.25. This increase in diversity is a consequence of the requirement
that constructions contain enough surface information to guide a pattern associator
to an intended association, making the position taken here an admittedly spare but
practically tractable view of how constructions work: in recognition, constructions
are detectably different from each other because they are differently ordered
and differently long permutations of lexical categories with distinctive restrictions
on the words that occupy category positions.'

Measuring the productivity of a construction is a more straightforward affair,
as, in spoken and written texts, increasing productivity will decrease redundancy, or
the re-use of a lexical item within a construction. Consider a case of restricted
productivity, the description of the apartment Tom rents for Myrtle in Fitzgerald’s
The Great Gatsby:

() The apartment was on the top floor — a small living-room, a small dining-room, a
small bedroom, and a bath.

While this sentence has four token adjectives, there are only two types and three
are the word small. This means that, for this sentence, knowing that a word is an
adjective removes substantial uncertainty over which adjective it is: if you guess
small you will be right 75% of the time. It is held here that the productivity of a
category in a construction is how much information we need beyond the categories
to guess which words occur. That is, if Tom had gotten Myrtle an apartment with a

10 Biases emerging from measurement and tagging error should be randomly distributed and so
made negligible by taking the average of the diversity of all the utterances in a text. Recall that the
goalhere is a measurement model whose coarse graining, rather than retain a full representation of a
theory’s content, maintains contact with a theoretically valid account of development.
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cozy living-room and spacious dining-room, so that the adjective category was more
productive for this sentence, a guess of small would only be right 25 % of the time.
Because entropy measures diversity, it also captures this uncertainty: the more
diverse the outcomes are, the less certain we can be over which ones we will observe.
Once we measure how much information is contained in the category-word pairings,
or H(category, word), and how much information is contributed by the category
label, or H(category), we can estimate how much information is needed, beyond that
provided by the category, to predict the word as H(category, word) — H(category).
This gives the entropy of the word conditioned on the category, or H(word | category).

4.1 Diversity and productivity as developmental complexity

The complexity measure attempted here is the average product of by-sentence
diversity and productivity terms, or:

1N
Cd=y ;D(Si)P(Si) ©)

On the left side, C(d) is the complexity of document d. This is an average (over the
document) of the products of the terms on the right side: D(s;), which is diversity of all
tag adjacencies within a sentence, and P(s;), which is the productivity of each
grammatical category within a sentence. As above, the constructional diversity of a
sentence, or D(sy), is the entropy of all adjacent tags in sentence s; of document d, or:

D(s;)) = H(sy) @

where H is Shannon’s entropy given in (2), above. P(sy) in (3) is the productivity
of sentence s; taken as the entropy of its words conditioned on their tags. Taking
the 14-word first sentence of Orwell’s 1984 as an example, s; is the transposition
of the set of words W = {it, was, a, ..., thirteen} and the set of tags for those words,
T ={PRP, VBD, DT, ..., NN}, or s; = {{w; = it, t; = PRP}, {w, = was, t, = VBD}, {w; = a,
t; = DT}, ... {wy, = thirteen, t;4 = NN}}. P(s;) is:

P(s)=H(W|T)+1 (5)
where H(W | T) is calculated, for the reason introduced above, as H(W, T) — H(T),
where HW, T) = -) ,ew 1 p(w, t) log, p(w, t). Because the complexity score, C(d), is

the average of the products of the diversity, D(s;), and productivity, P(s;), one must be
added in P(s;) because H(W | T) can be zero and is often less than one. As productivity

11 it/PRP was/VBD a/DT bright/J] cold/]] day/NN in/IN April/NNP and/CC the/DT clocks/NNS were/VBD
striking/VBG thirteen/CD
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and diversity are held to interact, multiplication is used to relate the terms. A text
that shows some diversity of constructions, but no productivity, should receive a
score representing only the constructions’ diversity (i.e., it should be equal to (4)),
however, if (5) is allowed to equal zero, (3) will give zero.

As a final note, this discussion has made two assumptions so far that should be
acknowledged. The first is that, while producing a document, the range of choices
made by a language user is proportionate to the overall size of their language
knowledge network. Speakers and writers, however, often intentionally restrict the
diversity or productivity of their language to produce effect (as in example f, above)
or in the accommodation of an audience. It seems safe to assume, however, that
while adults may not always operate at the complexity limit of their language system,
children and learners reliably do. The second assumption is that complexity
increases over development: there is evidence that cognitive systems minimize
complexity when seeking the best fitting hypothesis for incoming data (e.g., Chater
1996; Feldman 2003). Whether complexity change is an increasing function of
development is an empirical question, requiring a complexity measure that credibly
responds to developmental growth in comprehensible ways and that is validated
across multiple data types produced under the fullest range of developmental
conditions.

5 Applying the measure: materials, methods, and
results

To see if the measure defined above would (a) increase with standard descriptors of
development while (b) mirroring institutional perspectives on complexity, it was
applied to two corpora that include texts produced by speakers and writers at
different points of first and second language development.

Child age and second language proficiency provide natural scales that can serve
as benchmarks of a global complexity measure, so the first analysis uses a corpus of
early child language constructed from the longitudinal developmental data of 12
children in the CHILDES database (MacWhinney 1991). These data follow CHILDES’
recommended naming conventions'® which give the age of the child at the time of
recording as the file name. To prepare the data for analysis, the CLAN files were
converted to text files and the author extracted all text lines perpended with ‘CHI’
(indicating an utterance of the focal child) and saved these as new text files with the

12 “(W)e recommend that file names use the age of the child” (p. 24). Tools for Analyzing Talk Part 1:
The CHAT Transcription Format (https://doi.org/10.21415/3mhn-0z89).
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original file names. No parent, sibling, or researcher utterances were included. The
second analysis uses the corpora of the International Corpus Network of Asian
Learners of English (ICNALE; Ishikawa 2013). The ICNALE is 1.8 million words in 4,236
transcribed speeches and 5,600 essays produced by users of English across Asia.
All essays and speeches are sorted into four proficiency levels from the Common
European Framework (CEFR: Council of Europe 2011). While CEFR is a six-level scale
(A1, A2, B1, B2, C1, C2), the ICNALE corpus has only samples from levels A2, B1, and B2,
with B1 split into B1.1 and B1.2 (low and advanced intermediate proficiency).
The INCALE also contains 400 comparator texts produced by native speakers using
the same prompts. These texts were used for the final analysis, which assesses
the complexity measure against public discourses on complexity. These measures
represent a consequential institutional perspective on language complexity,”
making them a more-or-less official realization of language complexity in the US.
A final addendum to this section addresses the degree to which text length is a
confound.

All corpus texts were tagged with the Stanford tagger (Toutanova et al. 2003) and
then all capitalizations and sentence-internal punctuation were cleared from the
texts. The texts were imported into Mathematica (Wolfram Research, Inc. 2021)
which computed the complexity scores for each and exported the results as.csv files.
For the first two analyses, the.csv files were imported into R (R Core Team 2021) and
analyzed with the Ime4 (Bates et al. 2014) and rjags (Plummer et al. 2016) packages
(the final comparison to readability measures was done in Mathematica). Although
the score sets showed a slightly better fit to log normal distributions, they were
treated as normal by the mixed effects and Bayesian analyses (Elliott and Woodward
2007).

5.1 Child language data

Intuitions suggest that the complexity of language production should increase with
age in early language development. To see if this was so, the measure was applied to
the production data of twelve children taken from eight CHILDES sub-corpora
(Brown 1973; Clark 1978; Kuczaj II 1977; MacWhinney 1991; Nelson 1989; Post 1992;
Sachs 1983; Suppes 1974). Figure 5 graphs the scores for each sample as x = complexity
and y = child’s age in months.

Alinear mixed effects analysis with age as fixed and child and the interaction as
random effects showed that complexity increased by 0.015 per month, CI 95(0.02,

13 For example, HR 946, the plain language act of 2010, requires a readability assessment of every
document produced by the US federal government.
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Figure 5: Complexity (on vertical axes) by age (months on horizontal axes). 1, 2, and 3 are Adam, Eve,
and Sarah from Brown (1973); 4 is from Clark (1978); 5 from Kuczaj II (1977); 6 from MacWhinney (1991); 7
from Nelson (1989); 8,9 and 10 are Lew, Tow, and She from Post (1992); 11 is from Sachs (1983) and 12 is
from Suppes (1974).

0.03), SE = 0.002, t(933) = 9.04, p < 0.001 (intercept = 0.85, CI 95(0.6, 1.1), SE = 0.12,
t(17) = 7.1, p < 0.001) with conditional r* = 71 %. The positive slope shows an increase
with time as expected of a measure of developmental complexity.

5.2 Second language data

A measure of developmental complexity should reliably indicate language system
development regardless of the context, and so it should correlate not just with age in
early first language development, but also with the proficiency levels of adult second
language learners. Figure 6 reports the complexity scores sorted by the proficiency
labels on the files of the ICNALE corpus described above.
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Figure 6: Complexity of texts at each proficiency level in the ICNALE learner corpus. A2 through B2 are
transcripts of spoken and written text produced by college-age second language learners in the
proficiency level order: A2, B1.1, B1.2, B2. NS scores are from transcripts produced by college-age native
speakers in the US and UK. All essays use the same prompts.

To illuminate the relationship between CEFR proficiency level and the
measure, a Bayesian hierarchical model (BHM) with distributions on proficiency,
mode, and their interactions was applied to the ICNALE complexity scores. This
model was used to derive an estimate of the degree to which complexity changes
with each transition in proficiency levels and isolate that from any effect that the
mode of language use, writing versus speaking, may have. The model was
complexity ~ mode + prf + mode:prf, where mode was spoken versus written,
prf was proficiency level, and the final term was their interaction. The BHM used
uninformed normal priors on means and gamma priors on SD, as in Kruschke
(2014: 588) with burn in = 10,000 and sampling = 50,000 (autocorrelation in four
chains <1.1). The model posterior assigned an estimated baseline of complexity to
the intercept as u = 6.59 (o = 0.02) with 99 % of the most credible values (99 % MCV,
henceforth) between 6.54 and 6.64. The estimated contribution of mode was,
relative to proficiency, small at ¢ = +0.09 (o = 0.021). The impact of each proficiency
level on the complexity measured from the texts is shown in Table 1, where y is
the average amount of complexity difference from the baseline associated with the
proficiency level.

Table 1: Estimated difference from intercept due to complexity differences associated with each
proficiency level.

Prof. level 7] o 99 % MCV
A2 —-0.88 0.045 (-1, -0.77)
B1.1 -0.68 0.035 (-0.78, -0.6)
B1.2 —-0.038 0.03 (-0.12, 0.04)
B2 +0.18 0.046 (0.06, 0.3)

NS +1.43 0.049 (1.3,1.56)
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Because these data are pseudo-longitudinal and include native speakers, growth
curve fitting is not attempted. The analysis summarized in Table 1 shows the measure
increases in a way correlated with learner proficiency level in the ICNALE data,
indicating that this measure is sensitive to the developmental complexification of
a second language.

5.3 Readability and complexity

Readability indices claim to tell how subjectively complex a text is. While not
grounded in any theory of literacy or language, these measures constitute an official
perspective on developmental language complexity in the US (where educational
standards, for example, use Flesch-Kincaid and ARI scores as the ‘quantitative’
dimension of literacy development benchmarks).!* Figure 7 visualizes the correla-
tions between four such indices and the complexity measure. The first three of these
are claimed to be interpretable as the US grade level required of a text’s audience

F-K Grade Level. r? = 0.554 Automated Readability. r? = 0.547

25 e

4 6 8 10 12 4 6 8 10 12

100 ™

FKRE

Figure 7: Plots of complexity and four readability scores. In all frames, x = complexity and
y = readability.

14 https://learning.ccsso.org/common-core-state-standards-initiative.
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(Kincaid et al. 1975; Gunning 1952), and so should show a positive correlation with the
complexity measure. The fourth is claimed to decrease with reading difficulty and so
should show a negative correlation with a complexity score. These four indices were
chosen because they are defined over the text and writer types found in the ICNALE
L1 sub-corpus. The linear models, also shown in Figure 7 with their 99 % prediction
bands, show that, to some degree, these measures™ seem to index overlapping
constructs.

5.4 Text length and complexity

Text length is expected to correlate with complexity as it is defined above (i.e., (3)
in Section 4.1), as increasing the diversity of the constructions in a sentence will,
according to Section 3.2 (above), increase the number of words in that sentence.'
It is important, therefore, to establish that complexity is an independent construct.
To explore whether the measure might only be a proxy of text length, two
comparable corpora showing notable differences in text length are subjected to
a final comparison. These are the main candidates’ speeches from the 2016 US
presidential campaign (Trump, 81 texts, and Clinton, 36 texts, downloaded from UC
Santa Barbara’s The American Presidency Project website Woolley and Peters 1999).
The Trump corpus is comprised of speeches that are, on average, 39 % longer than the
Clinton speeches (mean lengths of 6,788 vs 4,159), yet show scores (mean = 3.86,
median = 3.84, variance = 0.13) that are significantly less complex (U = 2,851, p < 0.001,
r=0.761) than the Clinton corpus (mean = 4.83, median = 4.77, variance = 0.1). A mixed
effects model with complexity as dependent variable, speaker as random effect, and
document length (i.e., log(word count)) as fixed effect did not find an effect for
document length, showing a marginal r* of 0.0017 (conditional r* = 0.78) with a
coefficient of —0.06 (CI 95(-0.19, 0.07), SE = 0.07, t(114) = —0.85, p = 0.397), leaving
speaker identity as the locus of effect, with the shorter documents of the Clinton
corpus scored as more complex 0.47 (CI 95(0.35, 0.58), SE = 0.06) than the longer
documents of Trump corpus —0.47 (CI 95(-0.54, —0.39), SE = 0.04).

15 FKGL is (1), above; FKRE = 206.835 — 1.015(#words/#sentences) — 84.6(#syllables/#words); GFI = 0.
4(#words/#sent.) + 100(#words =3 syllables/#words); ARI = 4.71(#characters/#words) + 0.5(#words/
#sent.) — 21.43.

16 In the ICNALE data, for example, complexity and text length were positively correlated,
r(9,770) = 0.17, p = 0, and so the correlations between the measure and readability scores may be
partially due to all readability measures including document word count as a term.
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6 Conclusion and discussion

This study has proposed that the absence of sustained interest in a measure of
general developmental complexity is due to the difference in granularity between
the models we use to explain language and the models we use to measure it.
The models implicit in readability indices, ratios of clauses and sub-clausal elements,
and the compressibility of documents are the nearest we have had to measurement
models of developmental complexity. While some of these are widely used to sort
people and documents into institutional and research categories, they are too coarse
grained to support the kinds of statements that can inform a linguistic picture of
human development. The goal here has been to argue that the constructionist
approach may provide affordances that can link theory to measurement, as it
describes language knowledge as a comprehensive network of enumerable entities
whose function requires no system-external rules, constraints, processors, or
procedures. Here the main (but not exclusive) drivers of development are taken to
be (a) the learning of new constructions and (b) the generalization of established
constructions. These are held to be reflected in production as measurable increases
in diversity and productivity such that score increases should be relatable, through
post hoc analyses, to the appearance of new constructions and/or the productive
generalization of established constructions in records of child and learner language.

The measure developed from this definition was applied to three corpora in
three comparisons. The first two applications were intended to discover whether
the measure met the expectation that complexity increases with other indicators of
language development, with the first showing that the measure did indeed increase
with the age (in months) of children learning their first language and the second
showing that the measure increased with proficiency level estimates of second
language learners. The third application showed that the measures correlated with
the readability indices used by US governmental institutions as a de facto definition
of language complexity.

Are constructionist representations unique in providing these affordances? In
principle, no. However, other approaches, in their specification of the components of
language knowledge, include rules and processes that are not readable from a text.
That is, if we try to interpret these scores in the context of another theory, we find
that we cannot decide whether an increase in formal diversity is the result of a
theoretical operation like new links between words (or new projections from higher
order units) or from an increase in the number of holophrastic units. This means that
the age/proficiency when important developmental transitions occur become a
matter of user interpretation. Similar concerns surround measures used in SLD
(e.g., Norris and Ortega 2009). These are over-fit to the measurement of instructional
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effect in the language classroom, as their measurement model is a list of pedagogical
categories that cannot capture language development in young children, and that
show a mathematical form (discussed above) that is probably not sensitive to the
presence of complexity as it is developed in broader systems literature. Differently,
if we take a model within which language knowledge consists of multi-word symbols
of varying degrees of schematicity, the transition from the holophrastic to the
grammatical will change the amount of information construction-internal lexical
categories give about their specific words, while the diversity of lexical category
adjacencies within each argument construction will (on average) increase as new
schematic, multiword constructions are learned. Changes in these parameters
indicate the functionally adaptive development of an underlying contact structure
of the kind generally recognized as a ‘complexity’.

Data availability statement

The underlying data are available at https://doi.org/10.17605/0OSF.I0/9CJW6.
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