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Abstract:When planktonic bacteria adhere together to a surface, they begin to form biofilms, communities of
bacteria. Biofilm formation in a host can be extremely problematic if left untreated, especially since antibiotics
can be ineffective in treating the bacteria. Certain lung diseases such as cystic fibrosis can cause the formation
of biofilms in the lungs and can be fatal. With antibiotic-resistant bacteria, the use of phage therapy has been
introduced as an alternative or an additive to the use of antibiotics to combat biofilm growth. Phage therapy
utilizes bacteriophages that attack bacteria, to penetrate and eradicate biofilms. To evaluate the effectiveness
of phage therapy against biofilm bacteria, we create a phage-biofilm model with ordinary differential equa-
tions and a stochastic model. We considered three possible cases for the stability of disease-free equilibrium;
by model simulations and parameter alterations in both models, we investigated the effect of bacteria–phage
interactions alongside biofilm bacteria cell detachment from the biofilm phase to the planktonic phase, and
how these will affect the efficiency of phage therapy against bacteria. Our results show that, by increasing the
phage mortality rate, the biofilm growth can be balanced, which makes it more vulnerable to antibiotics. Thus,
phage therapy is an effective aid in biofilm treatment.
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1 Introduction

The presence of pathogenic microorganisms in our environment entails enormous problems for humans and
livestock. The problem of pathogenic microorganisms is even grievous when they reside in the host [17].
Bacteria is one such pathogenic microorganism, and they prefer to live in communities called biofilms.
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Biofilms are aggregations of bacteria on immersed surfaces and interfaces, in which the cells are
embedded in a self-produced layer of extracellular polymeric substances (EPS). The EPS gives them protection
against mechanical washout and antibiotics. The formation of biofilm is often considered a virulence factor [32].
Given the role that biofilms play in resistance, new treatments are promoted that aim at penetrating the biofilm
matrix and attacking the individual cells in the biofilm. Dissolved growth-limiting substrates such as oxygen diffuse
into the biofilm and undergo a reaction with bacteria. In many instances, in well-developed biofilms, such growth-
limiting substrates might only be able to penetrate the biofilm over relatively thin active outer layers and sub-
stantial inactive inner layers may form. Several studies have shown that there are some immaterial substances and
microbes that can also penetrate the biofilm matrix, one such microbes is the bacteriophages.

Bacteriophage, also known informally as phage, is a virus that infects and replicates within bacteria and
archaea, and it is among the most common disease entities in the biosphere. Bacteriophages are exclusively
used as therapeutic agents to treat infections caused by pathogenic bacteria. Application of phage therapy was
dated more than a century ago with poor understanding of its potentials [6,36] and so was overshadowed in
western medicine until the emergence of bacterial strains that were resistant to antibiotics [1]. The use of
phage in treatments has several potential advantages over the use of antibiotics [12,27].

This study focuses on the interaction between biofilm and bacteriophage in phage therapy. There are two
main approaches to studying phage–biofilm interactions: the experimental approach and the mathematical
modeling approach. Both methods are widely utilized, and each has advantages; the utilization of mathema-
tical models as a proxy to study disease dynamics is an extremely useful tool when it comes to the observation
and prevention of infections in humans [10,26,29,37]. Through the use of mathematical modeling, one is able to
implement approaches in which infectious outbreaks can be predicted, assessed, and controlled [10,29,38]. To
represent these dynamics, a form of model must be chosen with appropriate assumptions. These mathematical
models can range from equation-based modeling, such as ordinary, partial, and stochastic differential equa-
tions, to agent-based modeling [19,25]. From different studies that utilized mathematical modeling, findings
have been made on in-host disease dynamics. Through the use of differential equations in a study conducted
by Beke et al., the disease dynamics in a bacteria–phage interaction are examined. The results of this study
gathered that disease dynamics can be contingent on environmental factors such as a change in pH or
temperature [3]. In a separate study conducted by Bardina et al., a different approach involving a stochastic
model is used to analyze these dynamics. Upon these findings, there existed equilibria such that pathogens
could be eliminated from the host or could persist depending on the levels of noise within the environment [2].
Similarly, through differential equations and Monte Carlo simulations, Sinha et al. evaluated which mathe-
matical model is adequate for modeling the dynamics between phage and bacteria. In this study, it was found
that disease dynamics can differ if there are spatial restrictions introduced to the model and the type of model
used to describe such dynamics should reflect this restriction [40]. These mathematical models are not only
used for examining in-host dynamics but also used to address various phenomena. Some of these phenomena
include spatial phenomena as previously mentioned, evolutionary game theory, and dynamic optimization.

Mathematical models for bacterial biofilm over the years have greatly helped in the understanding of biofilm
processes such as biofilm formation and growth, detachment, and its inducers [5,8,15,16,23]. Many of the experi-
mental andmodeling studies of biofilm–phage interactions and their interplay have focused on biofilm formed on
surfaces other than in-host, mathematical modeling that focuses on the biofilm–phage interactions, and interplay
in immunocompromised patients is still in its infancy. Several immunocompromised patients suffer from biofilm
infection, and we will be considering the case of biofilm formation in the lungs of cystic fibrosis patients.

Over the last two decades, a large number of models have been produced to represent the interactions
between bacteria, biofilm, and bacteriophages. Some of these models involve ordinary differential equations
(ODEs), partial differential equations (PDEs), agent-based modeling, or stochastic models, but all of which
attempt to recreate results that could be produced in an experiment to better and more quickly understand
and predict these interactions. In a recent review from Sinha et al., we find models utilizing PDEs, ODEs,
stochastic differential equations, and Monte Carlo simulations. This review compares models subject to spatial
constraints with those without spatial constraints [40].

In this study, the objective is to develop a mathematical framework to understand the different factors
that contribute most during bacterial–phage interactions in biofilm setting and planktonic phase.
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2 Methods

2.1 Basic model assumptions

We develop a mathematical model that describes the dynamics of biofilm–phage interactions in matured
biofilms, under the condition that both bacterial and phage populations are high enough; the interaction
between bacteria, phages, and nutrients does not depend on their location; the biofilm-planktonic system is
closed; and nutrients enter the system at a predetermined rate ( ( )f n ). There are two specific regions involved
in this system, namely, the biofilm phase, which is the region where the bacterial cells accumulate and form
biofilm; and the Planktonic phase, which is the flow region of the bronchiole comprising of air and fluid
(Figure 1). We assume that (a) there are two different forms of bacteria–phage interaction taking place in the
system: one interaction leads to infection and ultimately to the replication of phages; the other interaction
leads to the conversion of bacteria or phages from one region to another [16,18], (b) conversion of biofilm
bacteria to planktonic bacteria is induced by phages, (c) phages conversion rate between biofilm and the
planktonic phase is assumed to be constant (p and q), and (d) the conversion of phages from one region to the
other does not change their characteristics.

2.2 Deterministic model – ODE

The model describing the biofilm–phage interactions is formulated as a deterministic model of a system of six
ordinary differential equations. The dependent variables are n, B, P, VB, VP and I . At a time t , the variable n

denotes the concentration of the bacteria growth limiting nutrient substrate, B denotes the bacteria cells in the
biofilm region while P denotes the bacterial cells in the planktonic region, VB and VP denotes the viral load of
bacteriophages in the biofilm and the planktonic regions respectively; I is the concentration of all the infected
bacteria cells from the planktonic and biofilm regions. The dynamics for substrate nutrients are established by
the functional ( )f n which under certain conditions, defined in the next section, can facilitate desired scenarios
like nutrient saturation. The bacterial population growth is based on a monod function of n and decreases
from their intrinsic mortality rates, conversion between the biofilm and planktonic regions, or infection as a
consequence of the interaction with the corresponding phage population. The model captures the detachment
of bacteria cells from the biofilm induced by bacteriophages and reattachment of bacteria to the biofilm, and
this meshes well with the life cycle of biofilms.

Figure 1: Schematic of biofilm in bronchiole. This is a schematic representation of the biofilm that formed on the wall of the bronchiole,
showing the biofilm region and the planktonic region. Source: This figure has been created by the authors.
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The governing equations for our deterministic model are given by the following system:
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Equations (2) and (3) describe the bacterial growth in the planktonic and biofilm regions, the equations
also describe predation of bacteria by the phages and biofilm cell detachment which forms a direct coupling of
the system. Equations (4) and (5) describe the phage growth in the biofilm and planktonic region, while
equation (6) keeps track of all infected bacterial cells in both the biofilm and planktonic regions. Equation
(1) describes the consumption of nutrient by B and P. The flow diagram of the model is presented in Figure 2.
The parameters of this model are presented in Table 1, and one of the parameters of interest is the burst size
that determines the average number of phage releases per bacterium and could vary from 10 to 100 for DNA
transducing bacteriophages to about 20,000 pfu for the RNA viruses.

2.2.1 Basic reproduction number

The system (1)–(6) represents a nonlinear system of ODEs with the interaction of phages and bacteria. We aim
to determine the stability of equilibria points in the model through the basic reproduction number, which will
describe the expected number of infected bacteria generated by one case of phage infection, using the next
generation matrix method as described in previous studies [41,42].

Remark 1. (Assumption for the nutrient rate) The function ( )f n , for the nutrient rate of change, is such that
(1) f is continuous and differentiable on the interval [ )∞0, .
(2) ( ) =f 0 0 (thus making the origin a steady state) and ( )′ >f 0 0.
(3) For some fixed n, say >∗x 0, the conditions ( ) =∗f x 0 and ( )′ <∗f x 0 are held.

There are several functions that satisfy the aforementioned conditions such as ( ) ( )= −f n n n1 .
Considering the aforementioned properties and system (1)–(6), we compute the Jacobian matrix, which is

given by:
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where
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The equilibria points are determined by the zeros of the systems (1)–(6). Considering the disease-free
equilibria, which are mainly determined in the absence of a pathogen scenario, that is, when neither phages
nor infected bacterial cells are present. From this context, we let =∗I 0, =∗V 0P , and =∗V 0B ; notice this
condition causes equations (4)–(6) to be equal to zero, thus reducing the equilibria problem to just find the
zeros of the following system
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Figure 2: Flow diagram of the deterministic ODE model. This is a schematic representation of the deterministic ODE model, showing the
flows and connections with the parameters. These parameters are also presented in Table 1 with the actual descriptions of the
parameter, the values, and sources. Because of the lack of a better word, we have used “migration” to capture the conversion from
biofilm to planktonic region, and this does not imply any spatial component. Source: This figure has been created by the authors.
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Through a quick inspection, we have that the equilibria points of (8) that are biologically relevant are
defined by
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where ∗nB and ∗nP need to be positive, and such that when f is evaluated at those values, ( )∗f nP and ( )∗f nB are
also positive, to guarantee biologically relevant scenarios.

We seek to address the stability of each of the equilibria above and under which conditions are each
locally asymptotically stable. First, by evaluating the Jacobian (7) at DFE1 we have that

Table 1: Table of parameters

Symbol Description Value Units Source

n0 Initial nutrient concentration Variable gm‒3 [16,18]

B0 Initial biofilm bacteria Variable gm‒3 [16,18]

P0 Initial planktonic bacteria Variable gm‒3 [18]

Vb0 Initial biofilm phages Variable gm‒3 Assumed

Vp0 Initial planktonic phages Variable gm‒3 [18]

I0 Initial Infected cells Variable gm‒3 [18]

p Phage detachement rate 0.1 d‒1 Assumed
q Phage reattach rate 0.5 d‒1 Assumed

λB biofilm bacteria growth rate 6.0 d‒1 [18]

λP Planktonic bacteria growth rate 6.0 d‒1 [18]
τ Average latency time 0.5 h [11,18]
k Monod constant 4.0 gm‒3 [18]

α Infection decay rate 0.2 d‒1 Assumed

β Burst size 100 — [18]
γ

1
Phage induced detach rate 0.6 d‒1 [16]

γ
2

Natural detach rate 0.3 d‒1 [16]

ϕ
1

Predation rate in biofilm 10‒8 m g d3 ‒1 ‒1 Assumed

ϕ
2

Predation rate in planktonic 10‒6 m g d3 ‒1 ‒1 Assumed

ζ1 Monod saturation 102 gm‒3 Assumed

ζ2 Monod saturation 104 gm‒3 Assumed

c1 Phage mortality rate in biofilm 2.1 d‒1 Assumed
c2 Phage mortality rate in planktonic 2.1 d‒1 Assumed
μB Bacteria mortality rate in Biofilm 0.1 d‒1 Assumed
μP Bacteria mortality rate in planktonic 0.1 d‒1 Assumed
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thus allowing us to obtain the corresponding basic reproduction number for this equilibrium point through
the next generation method [42], defining:
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Theorem 1. The disease-free equilibrium 1 (DFE1) is locally asymptotically stable if ≠n 0 and <R 10,1 .

Proof. Suppose =∗n 0 is a zero of f , considering Remark 1 (assumption for the nutrient rate), and in this case,
the system naturally becomes unstable since (9) has positive eigenvalues, so it suffices that >n* 0 be a zero
of f .

Remains to show <R 10,1 for stability: For this, the overall stability of ( )= nDFE *, 0, 0, 0, 0, 01 is given by
the roots of the characteristic polynomial of (9), which is
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whose roots are all negative if the following holds:
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Notice that when <R 10,1 , all the conditions above hold. Hence,DFE1 is asymptotically stable. Furthermore,
notice that the last inequality arises from the constant term in the quadratic at the end of the characteristic
polynomial of (9), as it makes it positive thus having a quadratic polynomial with no change signs, by Decarte’s
sign rule such polynomial has no positive real roots, and when the roots are complex they have a negative real
part. □

Second for DFE2, its corresponding Jacobian matrix is defined by
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We compute the corresponding basic reproduction number using the next generation matrix method
[42], thus:
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Theorem 2. The disease-free equilibrium 2 ( )DFE2 is locally asymptotically stable if ≠∗n 0B , ( )′ ≫∗f n 0B

and <R 10,2 .

Proof. Suppose =n* 0B is a zero of f , considering Remark 1 (assumption for the nutrient rate), and in this case,
the system naturally becomes unstable since the DFE2 Jacobian matrix has positive eigenvalues, so it suffices
that >n* 0 be a zero of f .

Remains to show <R 10,2 for stability: For this, the overall stability of ( )= ⎛
⎝

⎞
⎠

∗
∗

nDFE , , 0, 0, 0, 0B

f n

μ2
B

B
is given by

the roots of the characteristic polynomial of DFE2 Jacobian matrix, which is

( )

( )

−

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

− ′ +

− − + − +

− +

− + +
+ +

− + +

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

∗ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆

⋆ ⋆
⋆

⋆

⋆
⋆

sI J

s f n k q λ q λ

k s q λ μ s t ϕ
γ t

ζ

s q λ s μ
γ t

ζ

s βt ϕ c q p

q s p c

t ϕ s
q

τ
α

det

det

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
10

,

B B P

B B

P P

0,2

1

1

1

1

1

1 1

2

1

where

( )

( )

( )

( )

( )
=

+
=

+
=

+
=⋆

∗

∗
⋆

∗

∗
⋆

∗

∗
⋆

∗
k

kλ f n

μ n k
q

n

n k
s

f n γ

μ ζ f n
t

f n

μ
, , ,

B B

B B

B

B

B

B B

B

B
2

2

2

whose roots are all negative if the following holds:

• If ( )
( )

( )
′ + < +∗

+ +

∗

∗

∗

∗f n μB

n λ

n k

kλ f n

μ n k B
B B

B

B B

B B
2 ,

– Since phages are gone, and bacteria are growing, we expect the mortality rate of bacteria to be negligible
when compared with the growth rate.
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• If ( )

( )( )
+ >+ ′ +

∗

∗

∗

∗ ∗ μ
n λ

n k

kλ f n

f n n k B
B B

B

B B

B B
2

– This means that the bacteria growth in the biofilm is greater than the bacteria death, and this sounds right
since the DFE of phages in the biofilm implies losing more phages and having more bacteria.

• If ( )
( )( )+ + > +∗

c p c qc
βϕ f n c p

μ2 1 2

B

P

1 2

– This means that the phage loss in the biofilm is greater than phage growth.
Notice that when <R 10,2 , the aforementioned conditions hold. Hence, DFE2 is locally asymptotically stable

when R0,2. This concludes the proof. □

Finally, for DFE3, the corresponding Jacobian matrix is given by

( )
( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

′ −
+

−
+

−
+

+
+ −

+
−

+
− −

− −

− −

−
+

−

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

∗
∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗ ∗

∗

∗

∗

∗ ∗

∗

J

f n
kλ f n

μ n k

n λ

n k

n λ

n k

n λ

n k

γ f n

μ ζ
μ

λ kf n

μ n k

γ f n

μ ζ

λ n

n k
μ ϕ

f n

μ

c q p

q βϕ
f n

μ
p c

ϕ
f n

μ

n

τ n k
α

0 0 0

0 0 0 0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0
10

,

P
P P

P P

P B

P

P P

P

P B

P

P

P
B

P P

P P

P

P

P P

P
P

P

P

P

P

P

P

P

P

0,3

2

2

2

2

2

2
2

1

2 2

2

we compute the basic reproduction number using the next generation method [42], thus:

( )

( )

( )

( )

∣ ( )∣ ( ) ( )

( )

( )

( )

( ) ( )( )
⎜ ⎟

=
⎧
⎨
⎩ +

+
+

⎡
⎣⎢

−
′ + +

⎤
⎦⎥ +

±
⎛
⎝ +

⎞
⎠

+
+ +

⎫
⎬
⎭

∗

∗

∗ ∗

∗

∗

∗ ∗ ∗

∗

∗

R
n λ

μ n k

γ f n

μ μ ζ

λ n

μ n k

kλ f n

f n μ n k kλ f n

βϕ f n

μ c p

βϕ f n

μ c p

pq

c q c p

max , 1 ,
2

2
.

P B

B P

P

P B

P P

P P

P P

P P P P P

P

P

P

P

0,3

2

2
2

2

2

2

2

2

1 2

(12)

Theorem 3. The disease-free equilibrium 3 (DFE3) is locally asymptotically stable if ≠n* 0p , ( )′ ≫f n* 0p

and <R 10,3 .

Proof. Suppose =n* 0p is a zero of f , considering Remark 1 (assumption for the nutrient rate), in this case, the
system naturally becomes unstable since the DFE3 Jacobian matrix has positive eigenvalues, so it suffices that

>n* 0p be a zero of f .

Remains to show <R 10,3 for stability: For this, the overall stability of ( )= ⎛
⎝

⎞
⎠

∗
∗

nDFE , 0, , 0, 0, 0P

f n

μ3
P

P
is given by

the roots of the characteristic polynomial of the Jacobian matrix J
0,3
. The roots are indeed all negative if the

following inequalities are satisfied, which have equivalent meaning as those described for DFE2:

•
( )+ <+

∗

∗

∗

μ
n λ

n k

γ f n

μ ζ B
P B

P

P

P

2

2

• ( )
( )

( )
′ + < +∗

+ +

∗

∗

∗

∗f n μP

λ n

n k P

kλ f n

μ n k

P P

P

P P

P P
2 and ( ) ( )

( )

( )
′ + > ′∗

+ +
∗

∗

∗

∗

∗f n μ f nP

λ n

n k

kλ f n

n k P P
P P

P

P P

P
2

•
( ) < + + +

∗

βϕ p c q c
f n

μ2 2 1
P

P
and ( ) < ++

∗

βϕ c
f n

μ

pc

c q2 2
P

P

1

1

.
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When <R 10,3 , all these conditions hold. Hence, DFE3 is locally asymptotically stable when <R 10,3 , concluding
this proof. □

2.3 Co-existence disease-free equilibrium

The remaining piece is DFE4, which is a disease-free equilibrium where there is coexistence of the bacterial
populations within the biofilm and the planktonic region. Hence, we need to solve the following system of
equations:

( ) ( )= − +
+

f n λ B λ P
n

n k
0 B P (13)

=
+

+
+

−
λ n

n k

γ P

ζ B
μ0

B
B

2

2

(14)

=
+

−
+

−
λ n

n k

γ B

ζ B
μ0 .

P
P

2

2

(15)

From (15), we find that the second entry of this equilibrium point holds

=

⎛
⎝ − ⎞

⎠

+ −
∗

+

+

B

ζ μ

γ μ
.

λ n

n k P

P

λ n

n k

2

2

P

P

(16)

From (14), we find that the third entry of this equilibrium point holds

=
+ ⎛

⎝ −
+

⎞
⎠

∗
∗

P
ζ B

γ
μ

λ n

n k
.B

B2

2

(17)

The first entry of this equilibrium point is the solution of the following nonlinear equation:

( ) ( )= +
+

∗ ∗ ∗
∗

∗f n λ B λ P
n

n k
,B P

by substituting (16) and (17) in equation results in

( )
( ) ( )

⎜ ⎟=
⎡

⎣⎢
⎛
⎝

+
+ −

+
⎞
⎠

+
+ −

+
⎤

⎦⎥ +
∗ ∗

∗ ∗

∗

∗ ∗ ∗

∗f n B λ
λ

γ

μ n k λ n

n k

λ ζ

γ

μ n k λ n

n k

n

n k
.B

P B B P B B

2

2

2

(18)

2.3.1 Biological relevance of coexistence equilibrium

One important characteristic needed of this equilibrium point is its biological relevance, that is, for all three
entries to be positive. Notice that this holds if the following scenarios hold
• >∗B 0 if and only if

> >∗λ n μ 0P P and ( )( )+ + > >∗ ∗γ μ n k λ n 0P P2

OR
> >∗μ λ n 0P P and ( )( )> + + >∗ ∗λ n γ μ n k 0P P2

• >∗P 0 if and only if

>∗B 0 and > +

∗

∗μB

λ n

n k

B .

Furthermore, notice that the second scenario for the positivity of ∗B mentioned earlier is unlikely to occur
since it requires that a linear re-scaling of μP would be larger than ∗λ nP with the additional condition of
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>∗λ n μP P. Moreover, the condition on the positivity of ∗P is such that the right-hand side of (18) is strictly
positive for >∗n 0, and hence, the possible intersection with ( )∗f n is not guaranteed to occur in experimental
setting given the following circumstances:
(1) ( ) =f 0 0.
(2) For some >∗x 0, the conditions ( ) =∗f x 0 and ( )′ <∗f x 0 are held.

(3) ( )
( ) ( )≔ ⎛

⎝ + ⎞
⎠ +∗ ∗ + −

+
+ −

+

∗ ∗

∗

∗ ∗

∗g n B λB
λ

γ

μ n k λ n

n k

λ ζ

γ

μ n k λ n

n k

P B B P B B

2

2

2

is such that ( ) = ⎛
⎝ + ⎞

⎠ + >∗g B λ0 0B
λ μ

γ

λ ζ μ

γ

P B P B

2

2

2

, has a ver-

tical asymptote at = −∗n k , and horizontal asymptote at
( ) ( )⎛

⎝ + ⎞
⎠ +∗ − −

B λB
λ μ λ

γ

λ ζ μ λ

γ

P B B P B B

2

2

2

and a root

at
( )( )= − −∗ + +∗

∗n 1
k B ζ μ μ

B λ γ

1 P B

B

2

2

.

(4) ( )
( ) ( )

′ = −⎛
⎝ + ⎞

⎠ <∗
+ +

∗

∗ ∗g n 0
B λ λ k

γ n k

ζ λ λ k

γ n k

P B P B

2
2

2

2
2 for all ∗n , and hence, this is a strictly decreasing function.

In the cases where the maximum values for ( )∗f n are under the asymptote of ( )g n , we cannot have the
conditions for a disease-free equilibrium with bacterial coexistence in an experimental setting and therefore
biologically irrelevant.

Remark 2. Notice that among the conditions that we are requiring for ∗B and ∗P , we require the absorption of
nutrients for both bacteria to be smaller than the respective mortalities, and at the same time, the rate of
nutrient absorption is larger than the mortalities in one region but not the other.

3 Numerical simulation

All the computations were done using Matlab, the parameter values of the model equations are listed in Table
1, which shows the parameter values, units, and sources. For the nutrient input function ( )f n , we fixed a
logistic growth given by ( ) ( )= − ∕f n n n k1 , where k is the Monod half-saturation constant. Due to the novelty
of this study, some of the parameter values are assumed based on similar studies such as [16]. In this section,
we solve and simulate the deterministic model described earlier to understand the system’s behavior for a
given set of known initial conditions; this is compared with the sample paths from the stochastic model, which
captures some levels of randomness present in the model through a continuous time Markov chain (CTMC)
model.

Parameter sensitivity was performed in the subsequent section to determine which of the parameter
values have a strong impact on the model generally. We let the program run for at least 15 units of time to see
the model behavior in its completeness.

3.1 ODE model: Phage burst size controls biofilm growth

The first simulation experiments investigates the effect of phage burst size on the biofilm growth. Here, we
have considered a situation of a steady supply of nutrients to the biofilm, and we have varied the burst size as
10, 50, 150, and 250. These results are presented in Figure 3, in which, we have considered only biofilm cells
and phages in the biofilm and in the planktonic phase, with the same initial conditions in each of the
simulations. The biofilm is assumed to be growing already with a moderate viral load of phages at the onset
of the simulation. As the simulation progresses, we observed that (i) the phages in the biofilm increases as
the biofilm increases, (ii) the increased phage growth in the biofilm did not clear the bacterial cells in the
biofilm but rather stabilizes the bacterial growth in the biofilm, and (iii) the planktonic phages grows and
balances the bacterial cell growth in the planktonic phase. The rationale here is to ascertain the effect of
the biofilm in the case of targeted treatment of injecting the phages into the biofilm directly; so with this,
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we can compare our results with the experimental data. Several studies show that Planktonic bacterial cells
grow more rapidly than bacteria cells within a biofilm; therefore, the phage burst size in the biofilm could be
several-fold smaller and the infection cycle takes even longer [7,13,20–22,24,35,39]. Remarkably there is a
standard procedure for the determination of phage burst size, which is defined as the number of phage
progeny produced per infected bacterial cell [9,11,14,30]. Phage burst size differs from phage to phage
depending on the lysis time.

3.2 Stochastic model - CTMC

If the bacteria (or phage) population is sufficiently small, an ordinary differential equation model is not appro-
priate, and hence, we utilize a CTMCmodel, which is continuous in time and discrete in the state space in order to
study the variability at the initiation of bacteria clearance during phage treatment therapy and, peak level of
phage infection (in the phage–bacteria interaction, phages are seen as the pathogen and the bacteria are the
susceptible). To make it simple, we use the same notation for the state variables as in the ordinary differential
equation. The state variables are discrete random variables, { }∈n B I P, , , 0, 1, 2, 3 and [ ]∈ ∞t 0,

To formulate the CTMC, it is necessary to define the infinitesimal transition probabilities that corresponds
to each event in the state variables, and this is outlined in Table 2, which consists of 17 distinct events.

3.2.1 CTMC analysis

For the CTMCs, we numerically simulate the sample paths to visually observe the stochasticity in the model, we
also evaluated the frequency of infection to determine the peak number of infected bacteria and peak
phage–bacteria infection. For the sample paths, we simply compare our results with that of the ordinary
differential equations.

3.2.2 Sample paths

An example of the sample paths that result from the continuous time Markov chain model is shown in
Figure 4, where the sample paths are captured by the blue, orange, purple, and yellow lines, whereas the
ODE model is captured by the black line presented in the subplots. We observe that these sample paths
generally aligned with the population average response that is captured by the ODE model. The sample paths
of the CTMC model show the potential variability in timing of the peak level of infection and the peak number

Figure 3: Variability of phage burst size. Left - The average value of the biofilm cells B, planktonic cells P , biofilm phage VB and the
planktonic phage VP , this is plotted for different values of the burst size β. Right - The average possible value of the biofilm phage for
different burst sizes (black solid lines) is compared with the data from [43] for different lysis times for comparable burst sizes (red).
Source: This figure has been created by the authors.
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Table 2: Transitions and corresponding probabilities in stochastic model

Table of events

Event Event description Transitions Change (( ))n B P Vb Vp IΔ , Δ , Δ , Δ , Δ , Δ Probability

1 Availability of nutrient → +n n 1 ( )1, 0, 0, 0, 0, 0 ( ) ( )+f n t o tΔ Δ

2 Nutrient consumption and bacterial growth →n n‒1 ( )‒1, 1, 0, 0, 0, 0 ( ) ( )++λ B t o tΔ ΔB
n

n k

→ +B B 1

3 Nutrient consumption and bacterial growth →n n‒1 ( )‒1, 0, 1, 0, 0, 0 ( ) ( )++λ P t o tΔ ΔP
n

n k

→ +P P 1

4 Bacteria migration →B B‒1 ( )+0, ‒1, 1, 0, 0, 0
( ))( ++γ B t o tΔ Δ

V

ζ V1

B

B1

→ +P P 1

5 Bacteria migration →P P‒1 ( )0, 1, ‒1, 0, 0, 0
( ))( ++γ P t o tΔ Δ

B

ζ B2 2

→ +B B 1

6 Biofilm bacteria infection by phage →B B‒1 ( )0, ‒1, 0, 0, 0, 1 ( ) ( )+ϕ BV t o tΔ ΔB1

→ +I I 1

7 Planktonic bacteria infection by phage →P P‒1 ( )0, 0, ‒1, 0, 0, 1 ( ) ( )+ϕ PV t o tΔ ΔP2

→ +I I 1

8 Biofilm–phage migration →V V ‒1B B ( )0, 0, 0, ‒1, 1, 0 ( ) ( )+qV t o tΔ ΔB

→ +V V 1P P

9 Biofilm–phage migration →V V ‒1P P ( )0, 0, 0, 1, ‒1, 0 ( ) ( )+pV t o tΔ ΔP

→ +V V 1B B

10 Biofilm–phage gain from infected cells → +V V 1B B ( )0, 0, 0, 1, 0, 0 ( ) ( )+βϕ V B t o tΔ ΔB1

11 Planktonic–phage gain from infected cells → +V V 1P P ( )0, 0, 0, 0, 1, 0 ( ) ( )+βϕ V P t o tΔ ΔP2

12 Death of biofilm bacteria →B B‒1 ( )0, ‒1, 0, 0, 0, 0 ( ) ( )+μ B t o tΔ ΔB

13 Death of planktonic bacteria →P P‒1 ( )0, 0, ‒1, 0, 0, 0 ( ) ( )+μ P t o tΔ ΔP

14 Biofilm–phage death →V V ‒1B B ( )0, 0, 0, ‒1, 0, 0 ( ) ( )+c V B t o tΔ ΔB1

15 Planktonic–phage death →V V ‒1P P ( )0, 0, 0, 0, ‒1, 0 ( ) ( )+c V P t o tΔ ΔP2

16 Decay of infected cells →I I‒1 ( )0, 0, 0, 0, 0, ‒1 ( ) ( )
( )

++ t o tΔ Δ
n

τ n k

10

17 Death of infected cells →I I‒1 ( )0, 0, 0, 0, 0, ‒1 ( ) ( )+αI t o tΔ Δ

Figure 4: Sample paths and deterministic plots. This is the sample paths to the CMTC model (left) and the deterministic model plots
(right) with black lines, and due to insufficient memory space, we used reduced initial conditions for all the dependent variables, and
volume fractions for the phages. Source: This figure has been created by the authors.
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of infected bacteria, which is captured by the infection frequency in Figure 5. Due to limitation in computa-
tional memory, the dependent variables are presented as volume fractions with reduced initial values as
shown in Table 2.

3.2.3 Time to peak infection and peak number of infected biofilm bacteria

We asked whether bacteria infection will reach peak infection in a shorter time; to investigate this, we
calculated the mean (±SD) of time to peak infection for the bacteria in the biofilm. This is presented in
Figure 5 showing that we can attend peak infection with just one phage in the system within a limited
time. By introducing few bacteriophages, we observed a large amount of infected bacterial cells resulting
from the interaction, and this shows that there were a large replication of the viruses. Interestingly, this
happened within a short period of time. Even though we do not know how long it might take phage therapy to
work, experimental data have shown that treatment of bacteria infection could be achieved in a period as
short as 10 days and up to 8 weeks [33], and this is in agreement with our finding.

Figure 5: Peak infection. This shows the frequency of infection of bacteria up to peak infection (left) and the corresponding time to reach
the peak infection (right), which is also captured by the mean time to reach the highest frequency of infection of bacteria. Source: This
figure has been created by the authors.

Table 3: Baseline parameter values are used in all simulations

Parameter Values

Baseline Range

λB Biofilm bacteria growth rate 0.06
λP Planktonic bacteria growth rate 0.6931 (0.4, 0.8)
k Monod constant 6.3 (2–8)
γ

1
Phage induced detachment rate 0.4 (0.1, 2)

γ
2

Natural detachment rate 0.08 (0.02, 0.14)

ϕ
1

Biofilm predation rate 0.075 (0.05, 0.1)

ϕ
2

Planktonic predation rate 0.075 (0.05, 0.1)

ζ1 Monod saturation 0.075 (0.05, 0.1)

ζ2 Monod saturation 0.075 (0.05, 0.1)
c1 Biofilm phage lysis 0.075 (0.05, 0.1)
c2 Planktonic phage lysis 0.075 (0.05, 0.1)
p Phage detachment rate 6.3 (2–8)
q Phage reattachment rate 6.3 (2–8)
τ Average latency time 6.3 (2–8)
b Burst size 6.3 (2–8)
α Infection decay rate 6.3 (2–8)

The range of values presented in this table is used for the parameter sensitivity analysis.
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4 Parameter sensitivity analysis

We conduct a sensitivity analysis on the parameter ranges outlined in Table 3 for the ODE models, utilizing a
uniform distribution for the parameter values. To achieve this, we apply Latin hypercube sampling (LHS), a
technique first introduced by McKay et al. [30,31], in conjunction with the partial rank correlation coefficient
(PRCC) as the statistical sensitivity measure. This approach enables a comprehensive exploration of the
parameter space defined by the intervals specified in Table 3. Unlike traditional methods that assess one
parameter at a time while keeping others fixed at baseline values, the LHS/PRCC method allows for a global
exploration of the multidimensional parameter space. LHS is a stratified Monte Carlo sampling technique
without replacement, which provides an unbiased estimate of the average model output using a limited
number of samples. The PRCC is particularly effective for parameters that exhibit nonlinear and monotonic
relationships with the output measure.

As illustrated in Figure 6, the PRCC indicates how variations in a specific parameter influence the output
measure while accounting for the linear effects of other parameters. We calculated the PRCC values as
Spearman (rank) partial correlations using the partialcorr function in MATLAB 2020, also determining their
significance through uncorrelated p-values. The PRCC values range from −1 to 1, with negative values sug-
gesting an inverse relationship between the parameter and the outcome measure. Following the methodology
of Marino et al. [28], we employed a z-test on the transformed PRCC values to rank the significant model

Figure 6: PRCC. This is the partial rank correlation coefficient for the sensitivity analysis of the parameters. Source: This figure has been
created by the authors.
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parameters based on their relative sensitivity. Parameters with larger magnitudes were found to exert a
stronger influence on the output measures.

Initially, we verify the monotonicity of the output measures as presented in Figures 7 and 8, which is
confirmed for all parameters, with more emphasis on parameters that relate to bacteriophages and infected
cells respectively. The PRCC analysis across these ranges yields consistent results. For the biofilm–phage
model, we compute the PRCC for the following output measures: infected bacterial cells, bacteriophages in
the planktonic phase, and 10% of the population of infected bacterial cells. Our findings show that β is not very
sensitive to the population of infected cells because the infected class is more like a counter that captures how
much of the bacterial cells are infected during the interaction, and this is not directly related to β but toϕ

1
and

ϕ
2
. Similarly, c1 and c2 are not sensitive to the bacteria in the planktonic phage, and this is the phage mortality

rate in the biofilm. Since the bacteria and the phages are assumed to be region specific, these parameters do
not affect the outputs of bacteria in the planktonic regions. Furthermore, ζ1 and ζ2 are not sensitive parameters
to the infected population rather they are significantly sensitive to the bacteria population in the biofilm and
planktonic regions respectively. For the parameters not showing monotonicity, we can attempt to solve the
monotonicity by breaking down the graph into two monotonic regions, such that instead of the small range of
outcome measures observed, and we would have considered truncating the range and looking at each trun-
cated half separately. However, the current effect of these parameters on the overall outcome is not very
significant.

5 Discussion

We have developed a bacteria–phage interaction model within a biofilm in a cystic fibrosis patient. The model
considers bacteria in a biofilm and planktonic phase. The model assumes that the interactions are region

Figure 7:Monotonicity check (infected population). This plot shows a monotonicity check of the parameters for the infected population.
Source: This figure has been created by the authors.

Figure 8: Monotonicity check (bacteriophage population). This plot shows a monotonicity check of the parameters for the bacterio-
phages population in biofilm and planktonic regions. Source: This figure has been created by the authors.
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specific, which means that the phages in the planktonic phase can only interact with the planktonic bacteria,
while the phages in the biofilm can only interact with biofilm bacteria cells. The model speculates that the
burst size could control the biofilm growth. In an effort to understand the state of the disease over time, we
developed a stochastic model with which we could investigate the probabilities of reaching peak infection
within a short time.

The model in this study can be easily adopted to investigate the effect of factors such as temperature and
pH value on middle ear infection. Experimental study in previous studies [34,45] revealed that the pH of
middle ear fluid collected from acute otitis media of children could affect biofilm formation, and biofilm
formation is limited or completely absent under aerobic conditions, which is likely to happen; therefore, the
current model in this study can be adopted with the inclusion of these specific factors to understand the
interaction of phages and bacteria in middle ear infection.

Our assumptions and findings are consistent with the dynamics associated with biofilms. For instance, one
of our main assumptions confirms that the phage interaction rate in the biofilm is different from the plank-
tonic since the bacteria in the biofilm are dense and encased with extracellular polymeric substances, this is
consistent with several in-vitro settings [2,4,5,12,18,23,44].

In connecting models to experiment, our model is not able to explain the biofilm occupancy, which will
require the spatial components incorporated into the model, and the spatial structures can definitely be
therapeutically relevant. For example, understanding the biofilm matrix and EPS will help to understand
the actual interaction rates within the biofilm; the bacteria occupancy in the biofilm will help to determine if
the phage interactions is at the biofilm surface, mimicking a lollipop-like degradation, or from within the
biofilm, thus forming cavities. Another extension of this model are to (a) investigate a combination therapy
that will involve antibiotics and immune response and (b) investigate the factors that influence biofilm
formation and how they can be manipulated to prevent and eliminate biofilm-associated diseases in other
areas of the body.
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