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Abstract: This article presents a cost-effective optimal control analysis of interventions applied to a S2EI2RS
type deterministic compartmental model of COVID-19, considering community awareness and immunity loss.
We introduce two time-dependent controls, namely, home quarantine and treatment, to the model for defining
an optimal control problem (OCP). In addition to some basic qualitative properties, we obtain the reproductive
threshold Ry by using the next-generation method and see the impact of controls on it. We also investigate the
effect of community awareness and waning immunity, when no controls are applied. The existence and
characterization of optimal controls is proved to establish the optimality system, and the OCP is solved using
the forward-backward sweep method. The results are simulated using MATLAB. Our comparative cost-effec-
tive analysis indicates that implementing both control strategies simultaneously, along with community
awareness, is the most optimal and sustainable way to flatten COVID-19 curves in a short period of time
than that of implementing single controls. This article offers valuable insights that can assist policymakers and
public health experts in designing targeted and effective control measures for COVID-19 and future epidemics
in the post-COVID era. Therefore, this piece of work could be a valuable contribution to the existing literature.

Keywords: optimal control, Pontryagin’s maximum principle, forward-backward sweep method, cost-efficacy
analysis
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1 Introduction and motivation to the research context

The COVID-19 pandemic has had a profound impact on the world, with devastating effects on public health and
the global economy. As countries continue to grapple with the ongoing pandemic, it has become increasingly
clear that effective and sustainable control measures are crucial in spreading of the virus. Mathematical
modeling has played a critical role in understanding the dynamics of the COVID-19 pandemic and in predicting
the potential impact of different control strategies. One of the key challenges in developing such models is the
incorporation of complex factors that influence the transmission and the control of the disease, such as
community awareness and immunity loss. Since the disease began to evolve in early 2020, the scientific
community has proposed a plethora of mathematical models. James et al, in their review article [11], have
eloquently illustrated the use of mathematical models in combating the diseases while also presenting a lesson
for COVID-19 by highlighting some of their limitations and misapplications. Mandal et al. [23] initiated the
COVID-19 models in India, and their model was a compartmental model that focused on two main concerns:
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the effectiveness of airport screening measures and the best approach to mitigate the spread of the disease
once it had reached major cities in India. Subsequently, numerous mathematical models emerged to illustrate
the intricate dynamics and projections of the spread of the disease within the country [33]. One such model
was presented by Sardar et al. [31], which proposed a novel mathematical model to suggest an effective
lockdown strategy.

Several recent studies have employed mathematical modeling techniques to gain insights into various
aspects of COVID-19. A recent study by Khan and Abdon [13] centred on the newly emerged Omicron variant
and utilized mathematical modeling and analysis to comprehend its transmission dynamics in South Africa. By
utilizing the real data from the early stages of the Omicron variant’s emergence, the authors estimated
parameters to validate their findings accurately. The study’s outcomes provided insights into the potential
impact of the Omicron variant on disease spread and control strategies. Another study by Kifle and Obsu [14]
investigated the transmission dynamics of COVID-19 in Ethiopia using mathematical modeling approaches. The
research provided valuable insights into the dynamics of the disease and the effectiveness of different inter-
vention strategies in the Ethiopian context. Their simulation results suggested that controlling the spread of
COVID-19 needs reducing contacts among infected individuals and increasing quarantine for those exposed. In
the realm of sentiment analysis, a novel approach utilizing a social media-based COVID-19 sentiment classi-
fication model was proposed by Arbane et al. [2]. Their model utilizes a bi-directional long short term memory
architecture and demonstrates promising results in classifying COVID-19 related sentiments, and the results
can be useful in studying impact of negative comments and help counter negative COVID-19 comments and
reduce their impact on community awareness. Furthermore, forecasting COVID-19 cases and analyzing the
effects of government interventions have been an active area of research. The recent study by Li et al. [20]
have employed a novel mathematical model to forecast the spread of the virus and evaluate the impact of
different interventions on disease transmission. Contact tracing, a crucial aspect of COVID-19 control, has also
been extensively studied in the literature. A very recent systematic review by Juneau et al. [12] highlighted the
effectiveness of contact tracing methods and provided insights into strategies for improving its efficacy.
Collectively, all these studies have contributed to our understanding of COVID-19 dynamics, control strategies,
sentiment analysis, forecasting, contact tracing, isolation guidelines, and healthcare planning in the face of the
ongoing pandemic.

Multiple studies have utilized actual data from heavily impacted countries to analyze various aspects of
the outbreak and evaluate the effectiveness of interventions such as lockdowns to contain the spread
[3,16,27-29]. Numerous studies have investigated the impact of media or information on disease progression.
For example, Zhou et al. [39] conducted one of the earliest studies that involved media reporting. The results
suggested that, in addition to improving medical interventions, media coverage can serve as an effective
strategy to mitigate disease spread during the initial stages of an outbreak. Likewise, several other studies
[5,7,15,25,35] have examined the impact of media campaigns on disease transmission. Some of these studies
included an additional compartment in their models, while others accounted for a decrease in the force of
infection by considering a reduction parameter. However, there have been only a few studies that have
investigated community awareness during the susceptibility stage. One such study is the model developed
by Ghosh and Martcheva [9], which incorporated the impact of awareness by considering two compartments
at the susceptibility level. In light of this model, we propose introducing immunity loss for the recovered
population and implementing two time-dependent controls for the exposed, un-notified, and notified infec-
tives. Incorporating waning immunity into COVID models was initially explored by Batistela et al. [4]. How-
ever, there have been relatively few studies that have included immunity loss in modeling. Notably, Ghosh and
Ghosh [10] recently published a study that highlights the role of waning immunity in disease dynamics.
Although their publication took a long time, the study was conducted in 2020 during the initial stages of
COVID in Italy, India, and Victoria, but it remains a critical contribution to the field. In this study, the authors
extended the basic susceptible-exposed-infectious-recovered (SEIR) model to explore various scenarios,
including the impact of nonpharmaceutical and pharmaceutical interventions. They also accounted for the
possibility of acquired immunity diminishing over time and the potential for reinfection. Another recent study
conducted by Srivastava et al. [32] analyzed the influence of information and treatment saturation on an
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susceptible-infectious-recovered-infectious model. In addition, the authors quantified the potential impact of
optimal controls and identified the optimal strategy based on cost analysis.

The literature mentioned earlier makes it evident that the COVID-19 pandemic has highlighted the need
for comprehensive and effective strategies to control disease transmission. Existing transmission models often
overlook the crucial role of community awareness in shaping the susceptibility of individuals to the virus.
However, it is widely recognized that individuals who are aware of the risks associated with COVID-19 are
more likely to adopt preventive measures and modify their behaviour accordingly. In contrast, individuals
who lack awareness may engage in casual behaviour, increasing their vulnerability to infection and contri-
buting to the spread of the virus. This gap calls for a novel approach that explicitly incorporates community
awareness into the modeling framework. By formulating separate compartments for unaware and aware
susceptible populations, we can capture the heterogeneity in behaviours and susceptibility and provide a more
realistic understanding of the dynamics of COVID-19 transmission. The model under consideration in this
study aims to bridge this gap by integrating community awareness at the susceptibility level, allowing for a
more comprehensive analysis of the effectiveness and cost-effectiveness of control interventions. By consid-
ering the impact of awareness on susceptibility, our model offers valuable insights into the complex interplay
between behaviour, awareness, and disease transmission, ultimately informing the development of targeted
strategies to mitigate the spread of COVID-19. This model allows us to better capture the optimal utilization of
intervention strategies, which is the main component we are exploring here through cost-effective optimal
control analysis.

In this study, we emphasize the importance of developing appropriate model to evaluate the effectiveness
of control measures against disease outbreaks, and we present cost-effective optimal control analysis of a
COVID-19 transmission model incorporating community awareness and loss of immunity. Specifically, in
addition to the consideration of waning immunity in the model, we establish an optimal control problem
(OCP) that includes two time-dependent controls. We introduce “home quarantine” as a control measure to aid
the natural recovery of un-notified infectives and exposed individuals. We also incorporate “additional treat-
ment effort” as a control measure for notified infectives who are at a higher risk of transmitting the disease. To
determine the most cost-effective combination of control interventions, we use the Pontryagin’s minimization
principle (PMP) and forward-backward sweep method (FBSM) to solve the OCP. Our results are further
validated through numerical simulation.

The documentation of this article goes like this: the next section presents the mathematical model under
consideration, with its positivity and boundedness and computation of reproduction number and investiga-
tion of impact of controls, awareness, and waning immunity on it. The subsequent section provides the
establishment of the optimality system including formulation of cost functional, existence, and characteriza-
tion of optimal control functions. After which, we discuss the results obtained from numerical simulations, and
finally, the article is concluded in the last section.

2 Mathematical model with controls

This section presents the formulation of a deterministic compartmental S2EI2RS model for COVID-19 transmis-
sion with application of controls, incorporating community awareness and immunity loss. This model is
primarily based on an SEIR model given by Ghosh and Martcheva [9], where the effects of prosocial awareness
on the spread of COVID-19 disease specifically in the context of India and Colombia have been studied. In
S2EI2RS model, “S2” represents that there are two compartments of susceptible population, (1) S,, - unaware
susceptibles and (2) S, — aware susceptibles; “E” denotes the exposed population class; “I2” stands for two
infectious classes; I, is the un-notified infectives; I, represents the notified infectives; “R” denotes removed
individuals (individuals either recovered or do not transmit the disease); and “S” at the end represents that
people are losing their immunity and moving back to the aware susceptible class S, (as the immunity waning
population is now aware about the disease). Therefore, the total population at a timet > 0, N(t) is divided into
six mutually separate population compartments, viz., S;q(t), Sq(t), E(t), Lin(t), I,(t), and R(t).
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Figure 1: Compartmental model diagram depicting population flow rates through various classes.

A net susceptibility recruitment rate A is considered as the mathematical model considers a behavioural
response among persons susceptible to the disease, and the unaware susceptibles become aware via com-
munal connections with the aware people. The rate function for this community awareness phenomenon is

considered as ¢ = 0%“ where a is the awareness parameter; the population flow from the unaware susceptible
class to the aware susceptible class will occur through this rate. The awareness susceptibility may be reduced
due to dissemination of any false or unauthentic information, and this transfer is represented by the rate 6.
People in both the susceptible classes become exposed to the infection through contact with infectives. Notified
infectives are assumed to have reduced transmission due to their access to special care and avoidance of

standard mixing, whereas un-notified infectives transmit the disease with the general force of infection.

. L. . Tan + VI . . .
Therefore, the force of infection is considered as A = %, where v is the modification parameter for

the notified infectives. As the aware susceptibles will further exercise precautions while having communal
meetings with the infectives, therefore, the force of infection for them is considered to be reduced by factor €.
Further, p proportion from the exposed class moves to the notified infectives class, while the rest (1 - p)
proportion goes to the un-notified class with a rate of y. Due to screening or diagnosis, un-notified infectives
move to notified class with n rate. The un-notified and notified infectives gain natural immunity with o; and g,
rates, respectively. We also consider that the immunity gain is not permanent; therefore, people from recov-
ered class are moving back to the aware susceptible class with a rate r. Note that g is the natural death rate,
which is considered in all population classes; §; and &, are additional disease-induced death rates for un-
notified and notified infective classes, respectively. In addition, we consider two time-dependent controls:
(1) Home quarantine u(t) implemented to exposed and un-notified infective classes, which includes addi-
tional immunity-gain effort by not mingling with the notified infectives and exercising self-precautionary
measures.
(2) Additional treatment effort u,(t) implemented to notified infective class. These treatment efforts include
providing medication, hospitalization, and necessary paramedical facilities to the infectives timely.

Under these assumptions, the population flow and dynamics of the model are described in Figure 1 and
represented by the following set of nonlinear differential equations:
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where ¢ = %S“ is the community awareness rate function and A = w is the force of infection, with the

initial conditions (Suq(0), Sa(0), E(0), Lx(0), I,(0), R(O)T € RS and w(t), uy(t) € Ay, where Ay = {(w, w):
uy, U measurable, 0 < w, u; < 1,t € [0, t]} is the admissible set of controls. From now on, for the sake of
convenience, we may occasionally refer to u(t) and uy(t) as u; and wy, respectively. All the parameters under
consideration, their description, and values are given in Table 1.

2.1 Positive invariability and boundedness of the model

This subsection provides the positive invariability and boundedness of the proposed model system. By
showing that the model remains within biologically meaningful ranges, and we can ensure that it is a viable
tool for studying the behaviour of the biological system of interest. Following the approach given in refs [18,32],

we prove the positive invariability and boundedness of the system.

Theorem 2.1. Assuming that all parameters and controls are nonnegative, the model system (1) exhibits posi-
tively invariable and bounded solutions within the region

Table 1: Description and values of the parameters used in the model; values are either assumed suitably or taken within 95% confidence

interval of estimations done in ref. [9] or sourced from other reference mentioned

Parameter Description Value/Range Source
A Susceptibility recruitment rate uxN *

a Awareness parameter 0.0960 (0.0100-0.0980) [9,26]
0 Transfer rate (S; = Suq) 0.02 [30]

B Transmission rate 0.6330 (0.5011-0.6509) [9]

v Modification parameter for I, 0.2131 (0.1231-0.2309) [9]

& Reduction factor for S, 0.1950 (0.0119-0.2430) 9]

y Incubation period (1/y) 0.2 [21]

p Proportion of I, 0.2 [38]

n Transfer rate (I, — I,) 0.9010 (0.5685-0.9940) [9]

u Natural death rate (in all classes) 0.0000389 *

61 Disease related death rate in I, 0.0631 (0.0012-0.1503) [9]

6 Disease related death rate in I, 0.0019 (0.0005-0.0028) [9]

01 Rate of recovery (I; ~ R) 017 [34]

0y Rate of recovery (I, = R) 0.072 [22]

r Rate of waning immunity Varied (0.2-0.0002) Assumed
N Total population (India) 1.38 x 10° *

* indicates that N and u are demographic as per ref. [9].
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A
r = [(Sua; Sa, E, Iun; In: R) € R?— : 0 < sua: Sa; E, Iun; In;R < Z .

Proof. From the model system (1), considering that a particular state vanishes at a time ¢, before the other
states become zero, we deduce the following at time ¢,

dsS ds, dE
—u =A+6S;20, - =rR20, —| =ASu+ €S20,
dt ls,.-0 dt ls,-o dt |-
dr, dr, dR
dl;" =(1- p)E = 0, d—; = pYE + Nl 2 0, n = (01 + W)y + (03 + W), + w(E = 0.
Lin=0 I,=0 R=0

This indicates that each particular state is a nondecreasing time-dependent function; therefore, all state
variables are nonnegative if we choose nonnegative initial conditions. Hence, R is an invariant set for the
system or (Sug, Sg, E, I, I, R) € RE. Now, to prove the boundedness, we note that the total population
N=S8y+ S, +E+1L,+I+R. On differentiating, we obtain % =A - UuN - &ilyy — Sl < A - uN, and by
using the comparison theorem [18], we obtain N(¢) at a time ¢

N(t) < % - [% - N(O)]e‘ﬂ‘. (2)

If N(0) < % then N(t) < % and if N(0) > % then limoN(¢) = % It means that all solutions with initial
conditions in I' remain in I' for all future times. Hence, the set I is a positively invariable attractor for the
solutions of the model system (1) in RE, |

Figure 2 displays the disease prevalence in the absence of any control measures, that is, whenu; = 0 = u,.
The initial population densities used in the simulation are indicated in the figure caption.

2.2 Reproductive threshold with respect to controls

The system (1) exhibits an infection-free equilibrium, denoted and given by
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Figure 2: Disease prevalence when no control is applied to the model, i.e., uy = 0 and u, = 0, with S,,4,(0) = 0.9 x N, S,(0) = 10,000,
E(0) = 4,750, L,x(0) = 1,600, I,(0) = 38, and R(0) = 0 as initial population densities.
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provided, a - (u + 6) > 0 or ﬁ > 1, i.e. awareness parameter related to the aware susceptible individuals
must be greater than the combined value of awareness reduction parameter and natural death rate. Now, by
using the next-generation matrix approach [36], we obtain the reproductive threshold or the basic reproduc-
tion number, which is the average number of secondary infections induced by one infective individual in a
fully susceptible population during the infectious period. We represent X = (E, L, I,)T as a column vector of
the infective state variable or compartments and obtain the following equation:

E
dx d
- = | = -
dt dt}‘" F-v,
n

where # and <V are the column vectors of new infection terms and transition terms, respectively, written out
from the infective state equations as follows:

ﬁ(lunj\'; V) (Sua + £S2) (y+u+w)E

F = 0 > (V=‘(1‘P)VE+(’1+11+01+51+u1)1un.
0 “PVE = Ny + (U + 02 + &2 + WI

By finding Jacobian of these column vectors, we obtain matrices F = J(F)|g, and V = J(V)|g, as follows:

0 Bk4 V[))k4 kl 0 0
F=j(7:)|Eo =10 0 0 | V=j((v)|fo = _(1_p)y k2 0 5
0 0 0 -py -n ks

wherek1=V+u+u1,kz=l1+u+01+51+u1,k3=#+Gz+62+uz,andk4=%[(9+#)+8(a-(9+u))]-

1 0 0
ke vBk i
L0 PR VPR gy 1
=FV'=lo0 0 0 0
0o 0 0 kiky ky
A-pyn+pvke n 1
Kook koks ks
Pk - p)y , VBKs( - plyn + vBKspyke PBks . VBKan VBKs
- kiky kykoks ke kks ks
0 0 0
0 0 0

The basic reproduction number (Ry) is given by the dominated eigenvalue of the next generation matrix FV,
ie., p(FVY) = Ry; therefore, we have

Bkay

Ro = ks

[(1 - p)(vn + ks) + vpky]. 3

We explore the effects of the controls on the reproductive threshold and determined using the next-
generation matrix method given earlier (3). We visualize it by plotting a surface plot of Ry against the constant
values of controls u; and u, in the range [0, 1] x [0, 1]. Figure 3 indicates that the full efforts of applying both
controls (; =1 = up) simultaneously achieve the lowest value of R,y (0.0918) compared to other scenarios,
suggesting that this approach is most effective in achieving a disease-free environment. However, it may not be
cost-effective for which we discuss OCP in the next section.
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Figure 3: Surface plot depicting the variation of R with respect to controls u; and uy, taking parameters values/in the range mentioned
in Table 1.

2.3 Effect of community awareness and warning immunity

In this subsection, we examine the effects of increasing the awareness parameter on the reproduction number
in the absence of any control measures, i.e., u; = 0 = u,. Furthermore, we investigate the impact of the loss of
immunity on the recovery rate. By focusing on these two key factors, we aim to gain a deeper understanding of
the dynamics of disease transmission and recovery within a community. Through our analysis, we explore the
implications of heightened community awareness and the consequences of waning immunity on the overall
control and management of the disease.

From Figure 4 it is evident that increment in awareness parameter a cause a decrement in reproduction
number R;, which means that community awareness plays a crucial role in reducing disease prevalence. These
results emphasize the importance of implementing robust awareness campaigns and education initiatives to
enhance public understanding and promote proactive measures against the disease. The red line in Figure 4
represents Ry = 1 threshold. Maintaining a sufficiently high level of community awareness has the potential to
drive the reproduction number R, below unity (i.e., Ry <1). This indicates that the number of secondary
infections would not exceed one, signifying a shift towards disease eradication. By achieving such a state, the
spread of the disease can be effectively controlled and ultimately halted. Thus, prioritizing and sustaining
community awareness initiatives become crucial in striving for the eradication of the disease.

Immunity loss can have a significant effect on number of recoveries when no control is applied. The Figure
5 clearly demonstrates that as the rate of waning immunity (r) increases, there is a significant depletion
observed in the number of individuals who recover from the disease. The red curve is when r = 0.2, that is,
at the high rate of immunity loss, the number of recovered individuals is low. However, when r = 0.0002, the
number recoveries are high. There is a huge difference in number of recovered individuals at the end of the
time duration, in both cases.

3 Establishment of optimality system

This section describes formulation of cost-functional and establishment of optimality system corresponding to
the model (1). We first construct a cost functional that is to be optimized and then prove the existence and
characterization of optimal controls to write the optimality system.



DE GRUYTER Cost-effective optimal control analysis of a COVID-19 model == 9

3.1 Formulation of cost functional

For each bounded control variable in Ay, the system (1) is invariant in R¢ and bounded in the region I'. The
objective cost functional with respect to system (1) is a weighted combination of two cost components:

Cost related to disease prevalence: The cost incurred due to disease prevalence refers to the economic
burden that arises from the presence of a particular disease in a population.

Ui

JOWE) + Walin(t) + Wikt

0

The cost component related to disease prevalence includes various factors, such as, direct medical costs,

indirect costs (economic impact of the disease on the productivity of the affected individuals and the society
as a whole, loss of workdays, reduced productivity, and disability), and intangible costs (nonmonetary costs
that are difficult to quantify, such as pain, suffering, and reduced quality of life). As these factors are directly
dependent on the density of infectives (exposed, un-notified, and notified), we take this cost component
directly proportional to different infectives population balanced with appropriate weights.

Cost related to control implementation: This refers to the expenses associated with implementing the
controls u; and u,.

b
[t + zagonat
0

The nonlinear nature of this cost component arises from the fact that implementing control interventions
becomes increasingly challenging and resource intensive as the related efforts increase.

Therefore, the total cost that to be minimized is given by

i

Tu(), w(t) = ﬂWlE(t) + Wala(€) + WAL(E) + %(zluf(o + Zai(n)ae, @
0

‘ * * ‘ |

0.010 0.015 0.020 0.030 0.060 0.090
Awareness Parameter («)

Figure 4: Bar plot depicting variation of reproduction number R, with respect to awareness parameter a.
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where Wy, W,, Wi, Z3, and Z, are the positive weight constants, chosen to balance the costs as per the size and
significance of the respective components of the cost functional. Our main objective is to control disease
transmission while keeping costs to a minimum, that is, we need to determine the doublet (i, u;) that satisfies

JWy, uy) = min{J(w, wy)|uy, u; € Ay} (5)

3.2 Optimal control functions: existence and characterization

In this subsection, we show that the optimal control functions (that minimize the cost functional in a finite
time) exists and are well posed or characterized. By using the approaches given in refs [8,17,32], we state and
prove the following sufficient and necessary conditions.

Theorem 3.1. There exist a doublet (uy, u;) in Ay that satisfies (5) if the following conditions hold

1) With (w, up) € Ay, the solution set of system (1) is nonempty.

(2) The state system (1) can be expressed as a linear function of control variables whose coefficients vary based
on time and state variables. In addition, Ay is both closed and convex.

(3) The integrand of (4), i.e., £ = WE(t) + Walyu(t) + Wal,(t) + %(Zlulz(t) + Zul(t)) is convex in Ay and
[y, up)

|(w, uz)|

L = f(w, uy), where f'is continuous and — 00 as |(uy, up)| = oo.
Proof. The solutions of system (1) are both positively invariant and bounded within I', as demonstrated in
Theorem 2.1. Also, the Lipschitz condition is satisfied by the right-hand side of all equations in the model
system with respect to state variables. As a result, the first condition is guaranteed by utilizing the Picard-
Lindelof theorem [6].

The admissible control set Ay is closed and convex by definition; the system (1) is linear in control
variables; therefore, the second condition is also satisfied. Further, the integrand £ = WiE(t) + Whl,,(t) +

Wal(t) + %(Zluf(t) + ZyuZ(t)) is convex due to its quadratic nature, and it can be easily shown [32] by defini-

tion. Now, let Z = min(Zy, Z,) > 0 and f(uy, up) = Z(ul2 + uzz), then £ = f(w, uy), and clearly, f is continuous
£, up)

| (g, u2) |

and — 00 as |(uy, Uz)| — o0; so, the last condition is also fulfilled. Thus, the proof. O

Now, to make use of the PMP [19], we formulate the Hamiltonian H(xX,u, A), which is a sum of the

integrand L(t, X, u) and Z?:Mi%, given by

r=0.2
r=0.02
500 r=0.002 |7

r=0.0002

0 2 4 6 8 10
Time (in weeks)

Figure 5: Effect of immunity loss on recoveries from disease in absence of any control intervention.
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ASu®) , ) 80, O, dn® |, dh©) ) dRO

dt dt S de dt dt dt °

Hx,u,A) = L(t,x,0) + A4

where X and u represent the vectors of state and control variables, respectively; A = (A4, A, &3, Ag, A5, Ag) € RS
is known as adjoint vector, elements of which satisfies

Un() __OH db(t) | OH dat) _ _0H () _ _OH i) | OH . dig) _oH

6
de S, dt s, dt 0E’ dt oL,’ dt aI dt 9R’ ©

with transversality conditions A (tr) = 0, A(tr) = 0, A3(fr) = 0, A4(ty) = 0, As(tr) = 0, and Ag(tf) = 0.

Theorem 3. 2 Given the existence of an optimal control doublet (u;, u,) and the corresponding state variables
(Sua> Sas E, Iy, In, R*) that optimize the objective cost functional (4), there exist Ay, Ay, A3, A4, As, and Ag, satisfying
the adjoint system (6) with transversality conditions, then the doublet of optimal controls can be characterized
as follows:

(A4 = ALy + BE” ’ 11’ 0}’
VA

AG)I , 1], 0].

max‘
M

max‘

Proof. As per the approach followed in ref. [32], the optimal doublet (i, u;) given in (7) is obtained by using
the PMP and optimality condltlons —=0 and — =0. O

3.3 Optimality system

In this subsection, we summaries the process of formulation described earlier and use the optimal control
functions, which are characterized in previous subsection to write the corresponding optimality system. For
the OCP with state system (1) and cost functional (4), the optimality system with optimized Hamiltonian H* at
(Suw Sa» E*, Iy, I, R, Ui, uy, A) is given by
dSlIa * * * *
dt A=+ "+ )Sy + 05,
ds; * * *
& =¢° Sy, — XS, - (u+0)S, + rrR*
d-E* * * * *
dt =A(Syq + €8q) —~ (y + U+ w)E
®)

dI—l:” =A-pWE*-(n+u+aog +68+u)l

dt - ( P)V (’7 u (%] 1 ul) un

dI;; * * * *

E = pVE + nIun - ([.1 oyt 62 + uZ)In

ar =(oy + W)y + (0y + I + WE* — (u + r)R*,

S . . . . L+ VL) .
where ¢* = % is the optimal community awareness rate function and A" = w is the optimal force of

infection, with the initial conditions (S,;,(0), S;(0), E*(0), I;,(0), I(0), R*(0))” € R® and u;(t), u;(t) € Ay, and
the corresponding adjoint system is
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da(t
55 Do r0 -2+ 0 2+

d®) _[(aSy aSa . g

& |y elAl N X - 6]/12 A

dAs(t . .
90 Wik s D - (- Py - pyis - i ©

dAy(t S, epS,; (S; +€Sy) . .
;t()=_VI/2+ ﬁNuﬂ1+ fvaﬁz_ b uN g+ (+ 00+ U+ S+ uDA — nAs — (01 + U

dAs(0) VS, . €PvS; V(Sy + €S5) . .
dst =_I/I/fg+BNuA1+ ﬁNaﬂerB MN Chs + (O + U+ 8+ UAs — (02 + 15)As

dAg(0)

GO~ + s,

with transversality condition A;(t;) = 0 Vi and the optimal controls are as written in (7). The combination of
equations (8)-(7) is termed as the optimality system, which is to be solved and analyzed in the section.

4 Discussion on numerical simulations and results

This section provides an interpretation of the results and discusses the implications of the study. We utilized
the FBSM [19] to solve our OCP (optimality system), for the purpose of simulations and discussion of results.
The FBSM involves a solution process that starts by solving the state system (8) using the fourth-order Runge-
Kutta (RK4) method, with initial conditions, in the forward direction (time). The obtained state solution is then
used to solve the adjoint system (9), with transversality conditions, in the backward direction (time) using
the RK4 method. The solutions for both the state and adjoint systems are then used to update the control
value based on the characterization discussed in (7). This process is repeated iteratively until convergence
is achieved for the values of state variables, adjoint variables, and controls [24]. To numerically simulate
our OCP, we selected a set of parameter values within the ranges as detailed in Table 1 and initialized the
system with initial conditions of S,,(0) = 0.9 x N, S,(0) = 10,000, E(0) = 4,750, L,,(0) = 1,600, I,(0) = 38, and
R(0) = 0. To ensure effective optimization, we also determined the appropriate weights for the objective cost
functional (4). Specifically, we chose W; = 400, W, = 1,000, W5 = 2,000, Z; = 500, and Z, = 800. These weights
were selected to reflect the different levels of importance and effort required for each control. The controls
were implemented over a period of 10 weeks (70 days) to achieve the desired outcomes for our optimization
problem. By selecting appropriate parameters and initializing the system with the right initial conditions, we
were able to obtain reliable and accurate results for our simulation.

For better discussion and interpretation of optimality and cost-efficacy analysis, we consider three stra-
tegies based on implementation of individual control interventions and their combination to be explored
numerically:

Strategy A: Single control, u(t), i.e., home quarantine implemented on exposed and un-notified infectives.
Strategy B: Single control, u,(t), i.e., additional treatment effort provided to notified infectives.
Strategy C: Implementation of both controls, u;(t) and uy(t), simultaneous.

We now delve into the strategy-wise outcomes of the numerical simulation that is conducted in MATLAB. In
addition, at the end, a cost-efficacy analysis is given to identify the most cost-effective strategy among all.
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Figure 6: (a) Optimal control path of u; and (b) impact of applying only u; on exposed population E.
4.1 Strategy A: only u; (home quarantine)

In the first case — strategy A, we have considered an implementation of a single control policy u(t), i.e., only
home quarantine is employed over the exposed population and un-notified infectives.

In Figure 6(a), we can see that the optimal control profile of u;” indicates that if only u; is implemented as a
single control intervention strategy, it would require full implementation efforts for nearly the entire duration
of around 68 days before it can be removed from employment at the end. Furthermore, Figure 6(b) demon-
strates the impact of solely implementing u; on the exposed population. It is noteworthy that if individuals in
the exposed population exercise home quarantine measures, there can be a significant reduction in disease
prevalence compared to scenarios where no control intervention is implemented (as depicted by the red
curve). This reduction ultimately translates to a lower risk of infection.

Furthermore, Figure 7(a) also depicts that there is a considerable impact of exercising home quarantine by
the exposed and un-notified infectives on the I, class of the population. On the other hand, Figure 7(b) shows
that even the strategy A is not applicable for the notified infective, it has a significant effect on disease
prevalence for I, class. While there is an increment in number of notified cases for the initial 1 week, but
after that, the prevalence goes down significantly.

4.2 Strategy B: only u, (additional treatment effort)

Within the scope of Strategy B, our focus is solely on the implementation of additional treatment effort as a
single control intervention for notified infectives, given their heightened vulnerability to disease transmission
and mortality.

6000
1500 "1*0’ u2=0 ul#(), u2:0
—u,=0,u,=0 u =0, u,=0
1000 4000
g =
500 2000
0 0
5 10 5 10
Time (in weeks) Time (in weeks)
(@) (b)

Figure 7: Effect of applying only u; on (a) un-notified infectives I,, and (b) notified infectives I,, in comparison with the case when no
control is applied (3 = 0 = uy).
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Figure 8: (a) Optimal control path of u, and (b) impact of applying only u, on exposed population E.

Giving additional medical aid to the identified infected individuals as a singular measure of control
necessitates complete attention (full efforts), as illustrated in Figure 8(a). Since this approach is exclusively
intended for the I, population group, it is apparent that it will have a minimal impact on the disease
prevalence of other infectious groups, as demonstrated in Figures 8(b) and 9(a). Nonetheless, it is noted
that there is an impact even on the exposed and un-notified population when compared to the disease
prevalences in the absence of any control measures.

On the other hand, Figure 9(b) demonstrates that solely implementing u, has a significant impact on the
identified infected individuals, resulting in even further reduction in the number of cases. This indicates that
providing additional treatment effort could be highly beneficial for the identified infected population com-
pared to the scenario where no control measures are implemented. In the subsequent subsection, strategy (B)
is compared with the previous strategy (A) to further highlight its effectiveness on the disease prevalence.
Additional remarks regarding the effectiveness of this approach are provided in the following subsection on
cost-effectiveness analysis (CEA).

4.3 Strategy C: both u; and u, (home quarantine and additional treatment effort)

Strategy C addresses the scenario where both controls are implemented concurrently, namely, home quar-
antine and additional treatment effort are applied simultaneously to their respective target population groups.

The optimal profiles depicted in Figure 8(a) and (b) for u; and u,, respectively, indicate that when
implementing home quarantine (u;) as a control measure in conjunction with additional treatment effort
(up # 0), it requires full efforts for a shorter period (approximately 58 days) before it decreases to zero

6000

1500 “1:0’ “Z#:o “1:0‘ u2¢0
u|=0, u2=0 ul=0, uz=0 /
1000 4000
g =
500 2000
0 0
0 5 10 0 5 10

Time (in weeks)

() (b)

Time (in weeks)

Figure 9: Effect of applying only u, on (a) un-notified infectives I, and (b) notified infectives I, in comparison with the case when no
control is applied (i = 0 = uy).
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Figure 10: Optimal control paths for (a) home quarantine u; and (b) additional treatment effort u,, when both controls are applied, i.e.,
w#0andu # 0.

(removal of control). However, implementing u, when u; # 0 requires full attention for 63 days before its
reduction (Figure 10(a) and (b)). One possible explanation for this is that the same resources, such as economic
and medical resources, are utilized when both controls are employed concurrently. Thus, these resources can
be utilized to their fullest potential for a shorter duration.

The combination of both the controls further flatten the disease prevalence curves for all the infective
population groups viz. exposed E, un-notified infectives I,;,, and notified infectives I,;, as shown in Figures 11(a)
and (b) and 12(a), respectively. It is noted that in the cases, the disease prevalence achieves the subzero level or
disease-free state nearly after 5 weeks (almost 35 days, which is half of the control employment time period).

The implementation of both controls concurrently leads to a steeper decline in the number of exposed and
un-notified cases. In addition, the prevalence curve for notified infectives also shows a decline in the number
of cases, with an initial peak in the first week and a rapid decrease thereafter, ultimately reaching zero just
before the fifth week as shown in Figure 12(a). These results demonstrate that the combined use of both
controls is highly effective in reducing the number of notified cases.

In Figure 12(b), the impact of Strategy C on the number of individuals in the recovered class is depicted. It
is apparent that the simultaneous use of both controls is significantly more effective in increasing the number
of recoveries over time. However, there is a saturation point after approximately half of the control measures’
duration. Further insights on this behaviour are provided in the following subsection. The effects of applying
single controls on the recovered population are not displayed separately in the previous subsection but are
discussed in the comparative analysis in the next section.
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Figure 11: Effect of applying both u; and u, simultaneously on (a) exposed population E and (b) un-notified infectives 1,5, in comparison
with the case when no control is applied (3 = 0 = uy).
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Figure 12: Effect of applying both w; and u; simultaneously on (a) notified infectives I, and (b) recovered class of population R, in
comparison with the case when no control is applied (w3 = 0 = uy).

4.4 Comparative study

In this section, we perform a comparative analysis of all three cases discussed earlier: the Strategy A — use of
only u; as a control, the Strategy B — use of only u,, and the Strategy C — simultaneous use of both i; and u,, with
the case where there are no controls. As depicted in Figure 13(a), implementing the u; control when both
controls are used requires less effort compared to when only i, is used. A similar trend can also be observed in
Figure 13(b) for the implementation of the u; control. The reduction in the time required for full effort (i.e.,
controls at the upper bound) is due to the fact that we are utilizing both controls simultaneously, with the same
resources and economic conditions, thereby limiting our ability to use them to their full potential for a shorter
duration (as discussed in the previous subsection). Figure 14(a) and (b) compares the disease prevalence
curves for the exposed and un-notified classes of the population, respectively, across all the scenarios or
strategies being evaluated. These figures show that simultaneous application of both the controls is most
effective (green curves) in reduced number of exposed and un-notified cases of infections. However, imple-
mentation of only u, as a control is very less effective (pink dotted curves). A similar pattern is observed for the
notified population, but with a more significant reduction in cases. Strategy C is the most effective in terms of
disease prevalence, as depicted in Figure 15(a). Figure 15(b) shows the impact of the strategies on the recovered
population. It is noteworthy that the case where no control is applied has significantly fewer recoveries
compared to the other strategies. Providing only additional treatment (1) results in a steep (almost linear)
increase in recoveries (pink dotted curve), but the simultaneous implementation of both controls is the most
advantageous as the area under the curve (green) is much larger than that of any other case, indicating that
the number of recoveries for Strategy C is the highest.

1 1
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Figure 13: Comparison of optimal control profiles for (a) home quarantine u; and (b) additional treatment effort u,, when only one
control is applied (pink dotted curves) and when both controls are applied (blue curves).
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Figure 14: Comparative disease prevalence curves for (a) exposed population E and (b) un-notified infectives I, in comparison with the
case when no control is applied (3 = 0 = uy).
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Figure 15: Comparison of optimal control profiles for (a) notified infectives I, and (b) recovered class of population R, in comparison with
the case when no control is applied (u; = 0 = u).
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Figure 16: Effect of immunity loss on recoveries from disease when both controls are applied simultaneously.

Figure 16 depicts the impact of immunity loss on number of recovered individuals when both controls are
implemented simultaneously, that is, u; # 0 # u,. It can be seen that when immunity loss is high the impact of
controls implementation is not much effective. The number of recoveries take a bow-down after reaching a
peak. However, when immunity loss rate is less, i.e.,r = 0.0002, the number of recoveries is highest and attains
a saturation level, indicating the limitations of the healthcare system.



18 =—— Sonu Lamba and Prashant K. Srivastava DE GRUYTER

5 x10° , , , 15
Cost when u_=0, u_#0
ro 12.457
4t Cost when u *0, u2=0 |
Cost when ul*O. HZ*O :5 10
L <
,g 3 = 8.135
&~
O,l =
Q 5 4.340
Optimal Cost =
1t / P
0 0°
0 2 4 6 8 10 A B C
Time (in weeks) Strategy
(2) (b)

Figure 17: (a) The cost profiles and (b) ICER values, for different strategies.

4.5 Cost-efficacy analysis

The main objective of CEA is to determine the intervention or strategy that yields the maximum health benefit
at the lowest cost. CEA is commonly utilized to guide decision-making in allocating resources for public health
programs and policies. There are three main techniques for this analysis [1,37]: averted infections ratio,
average cost-effectiveness ratio, and incremental cost-effectiveness ratio (ICER). For our purpose, we will
employ the ICER method.

The ICER is a metric that measures the cost required to produce an additional unit of health outcome, and
it allows for a comparison of the efficiency of different strategies in incremental terms. This metric is used to
compare an intervention with the next less efficient alternative, and so on, until the most cost-efficient
intervention is determined. By using ICER, it becomes possible to assess and compare different strategies,
usually two or more, and make informed decisions about trade-offs between costs and health outcomes. The
ICER formula [1] can be written as follows:

Cost;j — Costy

ICER = Effectiveness; - Effectiveness;’

where Cost; and Costy represent the costs of two different intervention strategies, and Effectiveness; and
Effectivenessy represent their corresponding health outcomes or effectiveness. The ICER calculates the ratio
of the difference in costs to the difference in effectiveness between the two strategies, allowing for a compar-
ison of their relative cost-effectiveness. The policy with the lowest ICER value is considered to be the most cost-
effective in terms of both disease prevalence and the cost associated with implementing control measures. The
cost profiles of various strategies, as compared to the scenario where no control is implemented, are depicted
in Figure 17(a). It is evident that the cost (which encompasses both disease burden and economic losses) is
significantly higher when no control strategy is employed, as compared to the cases where controls are used.
Furthermore, it can be observed that the optimal cost is attained when Strategy C is implemented. The ICER
values are obtained for all the strategies and plotted as a bar plot, and the lowest ICER value is attained by the
Strategy C. This represents that it is the most cost-effective strategy among all others.

5 Conclusion

To summarize, this article presents an optimal control analysis of COVID-19 interventions in the context of
India, incorporating community awareness and immunity loss. We considered a deterministic compartmental
S2EI2RS model for COVID-19 transmission with application of controls. We formulated an OCP with two time-
dependent controls, namely, home quarantine for exposed and un-notified infectives, and additional treat-
ment effort for notified infectives. In addition, we conducted a basic qualitative analysis of the model, which
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included exploring the effects of the controls and community awareness on the reproductive threshold, and
determined using the next-generation matrix method. We visualized the results by plotting a surface of R
against the controls 1y and u, in the range [0, 1] x [0, 1]. Our findings indicate that the full efforts of applying
both controls (; = 1 = up) simultaneously achieve the lowest value of Ry (0.0918) compared to other scenarios,
suggesting that this approach is most effective in achieving a disease-free environment. We investigated the
impact of community awareness on reproduction number in absence of any control, and the results suggest
that Ry is highest when there is less awareness in the community. However, a certain rate of community
awareness is required to keep the reproduction number below its threshold, i.e., Ry < 1. The impact of waning
immunity on the recoveries is also studied in absence of any control, the results indicate that lowering the rate
if immunity loss can be very much helpful in increasing number of recovered individuals.

The necessary and sufficient conditions for the existence and characterization of the optimality system
were proven, and we solved the OCP using PMP and the FBSM. We conducted numerical simulations using
MATLAB and analyzed the application of controls by considering their individual and combined implementa-
tion. It is noted that implementation of only @ (home quarantine) is helpful in reducing the number of
infective counts, which eventually reduces the load on the treatment, while the use of only u, (additional
treatment effort) impacts better than only u; for notified infectives. But the simultaneous application of both
control strategies is the most optimal and sustainable way to reduce the disease burden in a short period of
time. The ICERs also suggest the same. In addition, when examining the numerical simulation of the removed
population, it is observed that utilizing both control measures simultaneously results in a saturation point
after around 35 days, suggesting a scarcity of healthcare and economic resources. This finding may inspire
researchers to investigate the impact of limited medical facilities, particularly in developing countries, on this
saturation phenomenon. In addition, we have examined the influence of immunity loss on the number of
individuals who recover when both controls (u; # 0 # u;) are implemented simultaneously. The results
demonstrate that when the rate of immunity loss is high, the effectiveness of control measures is relatively
limited. The number of recoveries initially increases but eventually declines after reaching a peak. However,
when the rate of immunity loss is lower, specifically at 7 = 0.0002, the number of recoveries reaches its highest
level and stabilizes, highlighting once again the constraints of the healthcare system.

This research contributes to the existing literature in several significant ways. Firstly, we have considered
a S2EI2RS type deterministic compartmental model of COVID-19, which incorporates awareness at suscept-
ibility level unlike most of the other existing models. This enables a more comprehensive and meaningful
understanding of disease dynamics and control strategies. Secondly, we have highlighted the effect of controls
on reproduction number, which shows impact of using a particular intervention on disease prevalence.
Thirdly, our study conducts a cost-effective optimal control analysis of the OCP formulated by considering
home quarantine as an intervention for exposed and un-notified infective individuals and additional treat-
ment efforts for notified individuals, providing valuable insights for policymakers and public health experts in
designing targeted and efficient interventions for COVID-19 and future epidemics. We believe that the combi-
nation of these novel elements makes our research unique and impactful in addressing the challenges posed
by infectious diseases.

Our study provides important insights on optimal control strategies that account for community aware-
ness and immunity loss into the model for controlling the spread of COVID-19. These findings can be instru-
mental in guiding policymakers and public health experts towards implementing more targeted and effective
control measures for not only COVID-19 but also future epidemics in the post-COVID era. By doing so, we can
prevent the spread of infectious diseases, save lives, and create a more resilient public health system.
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