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Abstract: The four-dimensional food-web system consisting of two prey species for a generalist middle predator
and a top predator is proposed and investigated. The middle predator is predating over both the prey species
with a modified Holling type-II functional response. The food-web model is effectively formulated, exhibits
bounded behavior, and displays dissipative dynamics. The proposed model’s essential dynamical features are
studied regarding local stability. We investigated the four species’ survival and established their persistence
criteria. In the proposed model, a transcritical bifurcation occurs at the axial equilibrium point. The numerical
simulations reveal the persistence of a chaotic attractor or stable focus. The conclusion is that increasing the food
available to the middle predator may make it possible to manage and mitigate the chaos within the food chain.
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1 Introduction

Among the most important topics for mathematical biologists and theoretical ecologists is the analysis of the
dynamical processes of prey-predator interactions. The prey-predator interaction is an appealing subject of
study due to its ubiquitous occurrence and relevance. In recent decades, theoretical ecologists and experi-
mental biologists have focused on prey-predator interactions [13]. Many mathematical models of prey-pre-
dator interactions have been developed and investigated to determine various species’ consumption and
survival dynamics [10,15]. Ordinary differential equations [14,15], fractional differential equations [5,30], par-
tial differential equations [10,29], stochastic differential equations [16], delay differential equations [32], and
difference equations can all be used to model prey-predator interactions. Furthermore, using mathematical
models, researchers attempt to detect other environmental impacts, such as the Allee effect, species refuge,
harvesting, and pattern development.

Malthus [11] was the first to formulate prey-predator interactions using mathematical modeling in the early
nineteenth century. The well-known Lotka-Volterra model was eventually improved by including a logistic
growth function for prey species [12], encompassing numerous functional responses and environmental impacts,
and these improvements are making prey-predator interactions more realistic [3,9]. In environmental biology
and ecology, the dynamics of prey-predator interactions can be significantly influenced by the fear effect [28].
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Predator populations have the greatest influence on a prey-predator relationship in direct predation and fear of
predation. Many mathematical models have expressed worry about taking direct predation into account.

Because of the possibility of predation, prey species may alter their behavior in the presence of predator
species. The mere presence of a predator may have a more significant impact on prey species than direct
predation [2,25,31].

Numerical investigations in a tri-trophic food chain model carried out by Hasting and Powell [8] show the
existence of chaos. The well-known teacup strange attractor was obtained for a biologically reasonable choice of
parameters. The key chaos feature in a nonlinear, coupled, multi-species nonlinear dynamical system is unpredict-
able behavior. The chaos is sensitively dependent on initial conditions and the choice of parameters. When two
predator-prey subsystems in a food chain have oscillations such that their frequencies are not commensurate, the
complete system tends to have chaotic dynamics. The food webs of competing species may exhibit chaos in the same
way as in food chains. This has been demonstrated in a model of two competing prey and a predator system [6].

Chaos is an interesting dynamic behavior, but its control is a challenge from the resource management
point of view, as discussed by Schaffer [22]. The model proposed by Gakkhar and Singh [4] showed the control
of chaos when an additional predator is introduced in the usual HP model. The role of additional food for the
top predator in a tri-trophic food chain has been investigated by Sahoo and Poria [19]. It was concluded that
regular dynamics with additional food can control the chaos. However, he has assumed that the additional
food is abundant, and its dynamics are ignored. The impact of additional food on the predator’s survival and
persistence in the system is also reported by many investigators [18,20,21,23,24,26,27].

When food availability is limited for the predator, it is observed that the predator may incline toward
alternate food (prey) instead of its usual food for survival. The additional food may also be provided for the
persistence of predators. These may affect the equilibrium density. Predator-prey models with additional food
predict that prey increases the predator population.

In this article, the famous Hastings-Powell food chain [8] has been modified, incorporating additional food for
the middle predator population with a Beddington-DeAngelis functional response. Then, investigate the effects of
adding additional food to the model. Our main aim is to save the top predator population from extinction in the
presence of additional food. We established the feasibility conditions, and local stability of different equilibrium
points and numerically explored the chaos control dynamics of the system. The article is organized as follows:

In Section 2, the model system is formulated. In Section 3, positivity, boundedness, and the existence of
equilibrium points are discussed. Section 4 is devoted to the local stability of various equilibrium points. In
Section 5, the persistence of the system is established. In Section 6, numerical explorations are presented.
Finally, we summarize biological indications from our analytical observation, and discussions and conclusions
are made in Section 7.

2 Mathematical formulation

Let X and U be the densities of the two prey species. The generalist middle predator, which feeds on both prey
species, has a density of Y. Let the top predator, Z, predate on the middle predator, Y. As a result, the following
mathematical model for the system’s dynamics is proposed:

ax X GA XY
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The schematic representation of interactions among different species is given in Figure 1.

The positive constants Ry and R; represent the growth rates of prey X and U, respectively, whereas K and
K; represent carrying capacities. In the absence of food, the constants D;(i = 1, 2) indicate the loss of predators
Y and Z. C7\(i = 1, 2) represent the conversion rate of prey X and U into predator Y, whereas C; represents the
conversion rate of Y into Z. By, By, and By are the saturating Beddington-type functional response parameters.
B, is the middle predator’s half-saturation constant. Since the generalist middle predator ¥ consumes food
from X and U, the Beddington-type functional response is explored for Y. The Holling type-II functional
response for top predator Z is considered. When U = 0, the model (1) changes to the Hastings-Powell food
chain. The model (1) includes 16 parameters reduced to ten by inserting the nondimensional variables and
parameters listed below:

t=RT x-£ u-g _ar z-—ClZ
TR TR TR T ok
_ AKy _ BpKy _ B3Ky R _ GA3K,
M = ) 1= 5 Wy = ——, R__) a = )
R()Bl Bl Bla RO CleRO
CzAzKo Ang D1 Dz Ko
az = ’ 4= ) dlz_; d2=_x b2= .
CiB1R, aBiR, Ry Ry CB,
Accordingly, the nondimensional system takes the form
dx axy
—=x(1-x)-—— =F
dt ( ) 1+ wix + wyu !
du asuy
— =Ru(l-u)-———=F
dt ( ) 1+ wix + wou 2 @
dy _ axy auy dy - ayz F
dt_1+w1x+w2u 1+ wix + wou 1+be_ 3
dz ayz
— = -dyz = F.
At 1+by #TH
The initial conditions for the system (2) are as follows:
x(0) =20, y(0)=0, z(0) =0, and u(0) = 0. 3

This article examines the four-species food-web model (2), considering an additional food for the middle
predator. The objective is to investigate the effect of additional food on system persistence and chaos control.

PREY (X) | PREY (U)
MIDDLE
PREDATOR (Y)
A
TOP

" PREDATOR (2) ™

Figure 1: Schematic representation of interactions among different species.
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This model is comprised of two subsystems, both of which are food chains. In the absence of U = 0 or X = 0, the
model reduces to Hasting Powell in the XYZ and UYZ subsystems.

3 Preliminaries
This section deals with the positivity and boundedness of the system (2). The positivity ensures the population

never goes negative. The boundedness may be interpreted as a natural growth restriction due to limited
resources.

3.1 Positive invariance

Let){l = X)XZ =Uu, X3 =)’;X4 = Z;X = ()ﬁ:)(Z:XB)Xll)T € R41F ‘R — R4: andF = (le FZ’ F3: El) € Cw(R4) Then)
the system (2) can be written in the matrix form as follows:

a
x(1-x) - Wy
1+ wx + wu
azu
Ru(l-u) - — 3
. 1+ wx + wd
X = F(X) = alx)) . a4uy d aZ))Z y
1+ wx+wu 1+ wx+ wu 1+ by
ayz
- dyz
1+ by 2

with X(0) = X,.

Since the function is sufficiently smooth and satisfies the Lipschitz condition, the existence and unique-
ness theorem guarantees the uniqueness and existence of the initial value problem.

Observe that for X(0) € R} such that X; = 0, then X;(0) > 0 for all (i = 1-4). Accordingly, the solution of
the system is positively invariant.

3.2 Boundedness

Theorem 3.1. All the solutions (x(t), (y(t), (z(t)) of the system (2) which initiated in R;} are uniformly bounded in
the regionT = {(x, u, y, z) € R}; a%x(t) + aigu(t) + a%y(t) + a%z(t) = % +¢g, Ve> 0.
Proof. Define a positive definite function
1 1 1 1
Q(t) = —x(t) + —u(t) + —y(t) + —z(t). 4
(0 = 2X(O + Zu®) + (O + =20 @
As Q(t) is differentiable in some maximal interval (0, t,) for an arbitrary n > 0, the time derivative of equation

(4) along the solution of the system (2) is

de _X _ u _ Yo Z.
T +nQ = a4(n+(1 X)) + a3(17+R(1 u)) + a4(n d) + a4(n dy)

2 2 _ 2 _ 2
d_9+ngs(f7+1) LR -d)t | (n dz)‘
dt 4 4 4 4

Hence, we can find u > 0 such that
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dQ
E+I795[J vt € (0, tp.)

The theory of differential equation [1,7] gives

0<Qx,u,y,z)< %(1 - e ™) + Q(x(0), u(0), y(0), z(0))e™* Vt € (0, ty),

and forty — o, 0<Q(x,u,y,z) < % Hence, all the solutions of the initial value problems (2) and (3) remain
in R;. The solutions that initiate in R, are confined in the compact region

1 1 1 1 u
T=1ix,uy,2) €RE —x(t) + —u(t) + —yt) + —z(t) = — +¢&, Ve> 0. O
x,u,y,z) a4() as() a4)’() a4() "

4 Existence of equilibrium points

This section briefly summarizes the existence of equilibrium points in the model. The equilibrium points of the
model (2) are discussed as follows:
(1) The system (2) has a trivial equilibrium point E, = (0, 0, 0, 0).
(2) The axial points are E, = (1,0, 0, 0) and E, = (0,1, 0, 0).
Remark: The system does not admit equilibrium points on the y and z-axis.
(3) The planar point E,, = (1,1, 0, 0) always exists where the two species reach their respective carrying

capacities.
(4) The other planar points are E,, = (X, 0, y, 0), where
. d L om - di(1+ wy)
X=-—"—"" Y= "
[¢5] d1w1 (al dlwl)
for
a > di(1 + wy), (5)
and E,y = (0, %, y, 0), where
i = dy S Ray(as - di(1 + wy))
a, — dﬂl)z ’ (13((14 - d1w2)2
with
as > di(1 + wy). (6)

Remark: No equilibrium point exists on xz, uz, or yz planes.
(5) The unique equilibrium point E; = (X,0,y,Z) on u = 0 is obtained by solving the following system of

equations:
@
1-5-—2 g
1+ wix
alf( azi _
Trogx @ 1+by ° ®
ay _
1+ by d, = 0.
The last equation of equation (7) gives
d
y = —————, > by)d,.
Yy (@ - bydy) a > (@ + by)d,

We obtain
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1
(az = body)

N (11)?
i= -

1+ wX

with the condition X > X.

Substitution of y in the first equation of equation (7) gives the quadratic equation (equation (8)) as follows:

o . ad,
w1 (X)) + XA - w) +|-1+ ———|=0. (8)
1(X)* + X( 1) [ . bzdz]
This gives real, positive, and unique
daid
- o)+ |1+ 02 - S

X =
204 ’

provided a; > (a1 + by)d,.
As a, > (a1 + by)d; > dob, > 0, this condition ensures the positivity of y.

Hence,
daydywy
R A Rt = - S A
20, ’ (a - bydy)’
. 1 alf(
3= ~ W)
(@ = body) |1 + wiX

with a, > (ay + by)d,, X > X.
(6) The another equilibrium point E; = (0, &, y, Z) may be obtained from the following system of equations:

_ asy
R(1- 1) - =
( u) 1+ wylt
asll aZ
— — — = 0
T+ 1+by ©
ay _
1+ by d, = 0.
We obtain
Adyasw
. -1 - wy) + \/ A+ w0 - 7@y 5= d,
2w, ’ (az = bydy)’
7= 1 asil _
(a = bady) |1 + wylt

for Ra, > (a3 + Rby)d,, 1 > ii.
(7) The unique equilibrium point E; = (%, i, ¥, 0) exists when

G-dd+w) Ry ay- dwy 10)

0< S
a — dywy a;  ag - dil+ wy)

where

_ a3(ay — diwy) — Ray(ay - di(1 + wy))

>u

Ray(ay - dywy) + as(ay — diwy)

i- Ray(ay - dwy) - az(ay = di(1 + wy)) an
Ray(a; - diw) + as(ay — diwy)

v R+ as - &1 + w1 + w))aas(l + w)) + Raf(l + wy) - ;(Raswy + a302))

vz (Ray(ay — dywy) + as(ay - diwy))* '
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(8) The point E4 = (x*, u*, y*, z*) denotes unique interior equilibrium point,

Ra1(1 - u*) d,
X¥=l- ————— yf = ——,
as a — b2d2
1- 7Ral(z—u*) + aquu* 1+b
k — 3 2
7 =|a Ray(1- ) —d g
1+ w(@- T) + Wyll* )

. RCQRaywor + a5(-1 - w1 + wy)) + JRAZC(RazA* — dy(Rb,A* + 4B))

with condition a, > bydy, RA? > 4Bdy, u*>1- -

C=a - bzdz.

2RCB

3
Ray’

5 Local stability analysis

At any point (X, u, y, z), the Jacobian matrix of the system (2) is computed as follows:

-9y - ay + a;ouy MmwqLxy X 0
(1 + wix + wou)? (1 + wix + wou)? 1+ wix + W
azwiuy azy + azwixy —azu
— 12— R-2Ru- 2 — 0
(1 + wix + wou)? u (1 + wix + wou)? 1+ wix + W
I=| ay + aqwyuy - aywiuy —@WoXY + A4y + Ayw1Xy ax+au a4z -ay
(1 + wix + wou)? (1 + wix + wou)? T+wx+wu + 1+ byy)? 1+ by
aZ ay
0 0 P E— - d.
(1 + byy)? 1+by

—_— 7

12)

where A =1+ w; + Wy, B=Raw + azw;, and

Proposition 5.1. It can be easily observed that the eigenvalues about E,(0, 0, 0, 0) are 1, R, —d;, —d. Accordingly,
E, is a saddle point with an unstable manifold along the x-axis and u-axis.

Theorem 5.2. The equilibrium point Ex(1, 0, 0, 0) is a saddle point.
Proof. The eigenvalues of the Jacobian matrix about E,(1, 0, 0, 0) are -1, R, %:wl), -ds.

Hence, E, is a saddle point. The unstable manifold exists along the u-axis. It also has an unstable manifold
along y-axis, provided a; > di(1 + w).

If ;; < di(1 + wq), then E, remains a saddle point but has a stable manifold along the y-axis. Furthermore,
condition (5) for the existence of E,, is violated in this case. O

Theorem 5.3. The equilibrium point E,(0, 1, 0, 0) is a saddle point.

Proof. The eigenvalues of the variational matrix about the equilibrium point E,(0,1,0,0) are
1 -R as = di(1+wy) -d,

1+wy ’
Hence, E, is a saddle point. It has an unstable manifold along the x-axis, and the y-axis pro-
vides ay > di(1 + w,).
Ifa, < di(1 + wy), then E, is also a saddle point but has a stable manifold along the y-axis. Furthermore, it
violates the existence condition (6) of Eyy.

Hence, E, is saddle under the condition as < di(1 + w,).
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Comparing a4 < di(1 + w,) with existence condition (6), it is observed that the existence of E,y is possible
when E, has an unstable manifold in the y-direction. (I

Theorem 5.4. The equilibrium point Ey,(1, 1, 0, 0) is saddle, provided
a - di(1 + wy) + ag — diwy > 0. 13)

Proof. The eigenvalues of the variational matrix about the equilibrium point Ey,(1,1,0,0) are
-1,-R, 8% _ g —d,

P 1+ Wt wy

a1t ay
1+wi+wy

Under condition (14), the eigenvalue d; is positive.

Hence, Ey, is a saddle point with an unstable manifold along the y-axis.

If both conditions (5) and (6) are satisfied and equilibrium points E,, and E,y, exist, then E,, is a saddle
point. However, the existence of both these equilibrium points is only a sufficient condition for Ey, to be a

saddle point. 0

Theorem 5.5. The equilibrium point Ey(X, 0, ¥, 0) is locally asymptotically stable provided

(@ = dbo)(ay — di(1 + wy)) < dy(ay — dywy)? (14)
az| a; — di(1 + wy)
R< —|——mM = 15)
a| (- diwn)
(a1 + dywn) > (a1 — diwr)w. (16)

Proof. The Jacobian matrix about the equilibrium point E,(X, 0, y, 0) gives
a(@ — dw)A® + di(@ + diwy) - (@ — diw)wi]A + di(a = di(1 + wy))(a - dw,) = 0.
The eigenvalues are

a(ag - di(1 + wy))
(@ = diw)* + byay = di(1 + wy))

a
M= ~dydy =R+ =N,
a

where A = -1+ & _délwl.

The eigenvalues A and A, will be negative for conditions (14) and (15), respectively.

If the equilibrium point Ey, exists then the solution of quadratic gives negative eigenvalues provided
condition (16) is satisfied.

Hence, E,y is locally asymptotically stable under conditions (14)—(16).

The system will admit periodic solutions in xy-plane when (a; + djw,) = (@ - diw;)w; and the equilibrium
point becomes nonhyperbolic. O

Theorem 5.6. The equilibrium point E,(0, i, ¥, 0) is locally asymptotically stable, provided

Ray(as - di(1 + wy))(az = doby) < dyas(ay — diws)?, an
1 ay-di(1+ w)

Il Bl ANl 74 18

Raz as — d1w2 ’ (18)

(ag + dwy) > (a4 - diwy)w;. (19)

Proof. The Jacobian matrix about the equilibrium point E,, gives
ay(ay - dw)A* + diR[(ay + dw;) - (ag — diw)w2]A + diR(ay - di(1 + wy))(aq - diw,) = 0.

The values of characteristic roots are
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_ G(Rag(ay — di(1 + wy))) _
as(ay — diwy)* + by(Ray(ay — di(1 + w,)))

d), A =1+ Rayl\,,
where A, = -1+ _djilwz.

Conditions (17) and (18) provide the conditions for the negative value of eigenvalues 4 and A;.

If E, exists then the solution of quadratic gives negative eigenvalues provided condition (19) is satisfied.
Hence, E,y is locally asymptotically stable under conditions (17)—(19).

The system will admit periodic solutions in uy-plane when (a4 + diw;) = (a4 - diw;)w; and the equili-
brium point becomes nonhyperbolic. O

Remark. The characteristic equation about the equilibrium point E; where i = 1, 2, 3, 4 is given as follows:
2+ A8 + BiA* + CA+D; = 0.
The Routh-Hurwitz criterion gives the local stability of E;, and it is given as follows:
A, B, C,Di>0, AB;>C, C(ABi-C)-DaAl>0.

Since the expressions for the coefficients A;, B;, C;, and D; are complex, they are omitted.

6 Bifurcation

Theorem 6.1. A transcritical bifurcation occurs around the axial equilibrium point E,(1, 0, 0, 0) in the system (2)
if the system parameters satisfy the following condition:

@ = a¢ = di(1 + wy),
where alC is the critical value of transcritical bifurcation.

Proof. If q; = alTC = di(1 + wy) then determinant of Jacobian matrix at Ey is zero (Det([EX = 0)). Hence, the
Jacobian matrix J has a zero eigenvalue.

Let X and Y be the eigenvectors of the matrices J; ata{ and J; ata{* corresponding to zero eigenvalue,
respectively, then

x) |-di

_|*|_]0

X=16l71 1

X4 0

and

N 0

Y2 _ |0

Y= vl = |1

3/ 0

Now, using Sotomayor’s theorem [17], we have
0
0
M =Y'E(Eca{)=(0 0 1 0)g|=0
0

and
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-d
-1 0 -—— 0
a, 0
00 0 0 d
4y = YT[DE,(Exaf9X1=(0 0 1 0) 0 8=—1¢0.
00 — M
a 0
00 0 O

Using the values of x;, y;(i = 1-4), the final expression of 4; is given as follows:
As = YT[D?E, (E;a{)(X, X)]
or

A3 = y3 [1:'3XXX12 + F3yyX32 + Zngy)(ng].

Then,
a1d1

Ay =~
BT+ wy)?

Thus, we observe that 4; = 0, 4, # 0, and Az # 0.
Hence, according to Sotomayor’s theorem, a transcritical bifurcation occurs in system (2) around the axial
equilibrium point E,. The transcritical bifurcation is obtained between the equilibria E, and E,y. O

7 Numerical explorations

Extensive numerical experiments are performed to observe the role of additional food on the dynamics of the
tri-trophic food chain. Accordingly, the following set of parametric values are chosen as given by Hasting and
Powell [8] for the tri-trophic food chain:

a =50, w3 =30, a=01, bz =2.0, d1 =04, dz = 0.01.
The additional parameters are chosen as follows:
R=1, as = 0.2, as = 2.9, Wy = 2.2.

For this choice of data, Hastings and Powell [8] observed various dynamical behaviors such as stable focus,
limit cycle, period-doubling, and chaos with respect to half saturation constant w;. These chaotic dynamics in
the phase plane take the shape of a teacup attractor for w; = 3.0.

The impact of additional food is investigated here by varying the parameter w,, keeping all other para-
meters fixed. For the gradual increase of the parameter w,, the system (2) switches its stability from chaotic
oscillation to limit cycle oscillation, then to stable focus. For w; = 2.2, the system (2) exhibits chaos (Figure 2).
When w, is further increased to w; = 4.9, the limit-cycle oscillations are observed (Figure 3). The time-series in
Figure 4 shows the periodic behavior for w, = 13.8. However, the stable focus at the interior equilibrium point

Figure 2: (a) Chaotic solution in xyz phase space and (b) chaotic solution in uyz phase space for w; = 2.2.
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Figure 3: (a) Periodic limit cycle solution in xyz phase space and (b) periodic limit cycle solution in uyz phase space for w; = 4.9.

0.98

Species

1.4 F

0.4

(i T

n;‘v\:y.w.m i !w!t!g;}n;.h\aWﬁwAwuwM@fanamﬂg\gn%&%ﬁ!l\,‘A,w\gn-gm!wuﬂ|

i

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Tine

Figure 4: Time series of the system (2) for w; = 13.8.

(0.96483, 0.99859, 0.12500, and 0.42906) is obtained for w; = 13.9 (Figure 5). Thus, the three species Hasting-
Powell food chain which was chaotic turned out to have stable dynamics when suitable food is added to the
intermediate predator.

These observations indicate that the additional prey could be used as a biological control parameter for
controlling chaotic dynamics.

1 PW u <
wp.8 f E
R
(8}
S
.6 P r
n z
0.4 F .
N IEJ%,’\”!W* Y]
I

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time

Figure 5: Time series of the system (2) for w, = 13.9.
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Figure 6: Limit cycle in x—y phase plane for a; = 0.08.

We consider the following data:
a = 5.0, w1 = 3.0, a, = 0.08, bz = 2.0, d1 =04, dz = 0.01.

In the absence of additional prey (u = 0), the three species food chain xyz has a limit cycle in xy-plane (see
Figure 6) while the z-species goes to extinction as a; is decreased in this case. The food for the middle predator
is insufficient for its survival.

However, by providing additional food (u) to the middle predator, persistence is possible in the four-
species food-web system. This is exhibited for the following dataset for additional food:

R=1 a=02, a,=0.08 w;=22.

The persistence of all four species in the form of chaotic attractors is possible (Figure 7). The system exhibits
various dynamical behaviors.

For further increase in w, = 4, the z-species survive with the additional food, but the main prey (x) goes to
extinction (Figure 8). This is because the increase in predator (y) due to the availability of additional food (u),
increases the predation stress on prey (x), leading to its extinction. Furthermore, it is observed that one of the
conditions for persistence is violated in this case.

In Figure 9, a bifurcation diagram is plotted with respect to the parameter a,. Here, blue and red colors
depict prey density. Cyan and purple colors represent the middle predator and top predator, respectively. The

Figure 7: Chaotic solution in u—y-z phase space for a; = 0.08 and w; = 2.2.
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Figure 8: Chaotic solution in u—y—z phase space for a, = 0.08 and w; = 4.
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Figure 9: Bifurcation diagram of system (2) with respect to parameter ay.

parameters, values are same as mentioned above. The splitting in lines represent the stable equilibria to
oscillation in magnitude of population and effect reverse for the merging of lines. This ensures the presence of
Hopf bifurcation in system (2) with respect to parameter a,.

8 Conclusion

A food-web model comprising four species is developed and investigated. The solution is bounded and
positively invariant in a closed and bounded domain, reflecting the well-behaved nature of the model. The
local stability has been carried out about its various equilibrium points. The survival of all four species is
explored, and conditions are established for their persistence. The occurrence of transcritical bifurcation
experienced by the system has been discussed analytically. In the context of our study, the occurrence of a
transcritical bifurcation may imply that management or conservation efforts need to carefully consider the
parameter values to avoid tipping points that lead to undesirable outcomes. For instance, introducing an
invasive species or changes in additional food could trigger such shifts, with cascading effects throughout the
food web. The numerical simulations reveal rich dynamics in the system, including stable focus, limit cycle,
and chaos. Chaos observed in our model involving an additional food underscores the intricate and uncertain
dynamics inherent to ecological systems. This chaotic behavior results from intricate, nonlinear interactions
among species and can significantly impact ecological aspects such as biodiversity, stability, and managing
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natural ecosystems. The appropriate additional food may control the chaos in classical Hasting’s model, giving
a stable focus where all four species survive.
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