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Abstract: The study of dynamics of diabetic population infected by COVID-19 is of pressing concern as people
with diabetes are considered to be at higher risk of severe illness from COVID-19. A three-compartment
mathematical model to describe the interactions of diabetic population and non-diabetic population both
infected by COVID-19 with a susceptible population is considered. Time delays in incubation periods of
COVID-19 in diabetic and non-diabetic populations are introduced. Besides the basic properties of such a
dynamical system, both local and global stability of endemic equilibrium, are studied. The lengths of time delays
are estimated for which the stability of the system is preserved locally, while sufficient conditions on system
parameters are obtained for global stability. Numerical examples are provided to establish the theory, and simula-
tions are provided to visualize the examples. It is noted that an increase in length of time delay in either of infected
populations leads to oscillations in susceptible population but has no impact on infected populations.
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1 Introduction

COVID-19 is a highly infectious respiratory illness caused by the novel coronavirus, SARS-CoV-2, and it was first
identified in Wuhan, China, in December 2019. The transmission of this disease is via contaminated air
droplets or small airborne particles containing the virus. General symptoms include fever, cough, headache,
fatigue, and loss of taste and smell, among many others. Individuals of all ages are at risk of contracting this
infection; however, patients with age greater than 60 years with underlying medical condition have an
increased risk of developing serious complications [6]. The most prevalent comorbidity of COVID-19 is hyper-
tension (42.46%), followed by diabetes (39.72%), old k-chest (20.54%), bronchial asthma (16.43%), coronary
artery disease (13.69%), chronic kidney disease (13.69%), and valvular heart disease (6.84%) [4]. Studies
[5,8,11,29] have highlighted that COVID-19 patients with diabetes, cardiovascular diseases, hypertension, and
other comorbidities are likely to develop a more severe course and progression of the disease, which could
develop into a life threatening situation leading to death.

COVID-19 patients with diabetes experience significantly higher rates of complications and mortality
[16,19,28]. Joshi and Pozzilli [16] emphasized on the COVID-19 induced diabetes, which is a novel phenomena
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observed in critically ill patients. COVID-19 patients with diabetes frequently experience uncontrolled hyper-
glycaemia and episodes of acute hyperglycaemic crisis, requiring exceptionally high doses of insulin [30].
COVID-19 has been associated with the development of new-onset hyperglycemia and worsening of glycemic
control in pre-existing diabetes, due to direct pancreatic damage by the virus, body’s stress response to
infection, and use of diabetogenic drugs such as corticosteroids in the treatment of severe COVID-19 [35].
Diabetes is one of the major risk factors for fatal outcomes from COVID-19, and a 64% greater risk of diabetes
was found in patients with COVID-19 [22]. Patients with diabetes are vulnerable to infection because of
hyperglycemia and impaired immune function [15]. During the COVID-19 pandemic, diabetes care was also
affected and had a negative impact on people with diabetes, as the healthcare providers were overloaded by
COVID-19 cases [12].

Several studies [1,18,20,26,33] suggest a mathematical model to study the dynamics of the spread of COVID-
19 in diabetic patients. Mathematical models have been used in literature since decades to examine, analyze,
and predict future events and to bring the system to a desirable and controllable state. The real impact of
mathematical modeling on public health came with the need for evaluating intervention strategies for newly
emerging and re-emerging pathogens [21]. Hence, the study of the interaction between COVID-19 infection and
diabetes to understand the spread of epidemic, as well as identification and control, is of utmost importance in
current scenario. Kouidere et al. [20] suggested a mathematical modelling of the spread of the COVID-19
pandemic, highlighting the negative impact of quarantine on diabetic population. Khan et al. [18] proposed
a first-order nonlinear mathematical model for hypertensive or diabetic patients open to COVID-19. Okyere
and Ackora-Prah [24] suggested that more attention should be given to COVID-19 patients with diabetes as they
have increased chance of death. Various mathematical modelling of COVID-19 disease has been done exten-
sively in literature with or without comorbidities [2,23,25,31,32].

Our primary focus in this article revolves around examining the impact of COVID-19 on individuals with
and without diabetes, incorporating incubation time delays in both populations. In our recent study [1], we
developed a mathematical model that initially did not account for time delays. However, we acknowledge that
in real-life scenarios, there is a period of time before symptoms of the infection manifest in the host’s body,
indicating that it is not an instantaneous process. Therefore, mathematical models utilizing delay differential
equations are employed to address this limitation of ordinary differential equation (ODE) models. Delay
differential equations involve time derivatives that depend on the solution at previous time points. Over
the past few decades, the literature has seen an increased focus on the analysis and control of continuous-
time delay systems. The main objective of the model presented in this article is to comprehend the dynamics of
COVID-19 infection among individuals with and without diabetes, specifically examining the tolerable level of
incubation time delay that allows the system to reach a desirable state.

The outline of the article is as follows: Section 2 introduces our mathematical model incorporating time
delays, which represents the susceptible population, as well as the COVID-19-infected populations of both
diabetic and non-diabetic individuals. We define the model parameters and derive the characteristic equation.
Moving to Section 3, we explore the conditions under which the endemic equilibrium point will be locally
stable, considering various scenarios of time delays. Section 4 focuses on the global stability of the endemic
equilibrium point. In Section 5, we validate the theoretical results obtained in the previous sections through
numerical experiments. Finally, we conclude with a discussion and provide insight into future prospects in the
last section.

2 The mathematical model

We present a nonlinear delay mathematical model to study the transmission of COVID-19 infection in diabetic
and non-diabetic population. We denote the total susceptible population by x t( ); the infected diabetic popula-
tion by y t( ), and z t( ) denotes the infected non-diabetic population at time t. Here, we have introduced two
different time delays in our model to study their consequences on the dynamic behaviour of the model. Below,
we briefly discuss about the biological significance of these time delays.
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• τ1: The time delay ≥τ 01 has been incorporated to account for the presence of the incubation period of the
COVID-19 virus specifically in the diabetic population. Thus, τ1 represents the duration between infection and
the activation or onset of COVID-19 symptoms in individuals with diabetes.

• τ2: The delay ≥τ 02 takes into consideration the time delay in the onset of symptoms of COVID-19 in the non-
diabetic population.

Figure 1 shows a pictorial representation of our model.
We consider the following system of delay differential equations:

′ = − − − + +
′ = − + − − −
′ = − − + − − − −

x t f x dx af x y bf x z pα y qα z
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with initial populations

= > = > = > ∈ − =x t χ t y t ζ t z t η t t τ τ τ τ0, 0, 0, , 0 , max , .1 2( ) ( ) ( ) ( ) ( ) ( ) [ ] { }

In equation (2.1), f x( ) is the growth rate function of the susceptible population x , whereas f
1
and f

2
are the

conversion functions of y and z, respectively. They are converting the susceptible population into infected
ones after contact. We assume these functions to be non-negative, as they define the growth rate of the
populations. Several examples of these types of functions are available in literature, such as

+
ax

x1
(Holling

Type II) and
+
ax

x1

k

k
(Holling Type III). The model consists of three main variables, two time delays, and several

parameters. These variables and parameters are important to capture the dynamics occurring in the trans-
mission of COVID-19 among diabetic and non-diabetic groups in a certain population. Here, all the parameters
are non-negative owing to the biological significance. The parameters d d, 1, and d2 represent the specific death
rates of the susceptible, infected diabetic, and infected non-diabetic populations. The death could be natural
due to ageing, diseases, etc. for susceptible population, while it could be due to COVID-19 and its comorbidities
for infected populations. Rest of the parameters are given in Table 1 for a clear understanding.

We assume that the functions f f,
1
, and f

2
satisfy the local Lipschitz conditions, and hence, equation (2.1)

has unique solutions that are continuable in their maximal intervals of existence for appropriate initial
conditions [13]. Furthermore, following arguments as in the study by Rao and Kumar [27], one can see that

Figure 1: Schematic diagram of the proposed model.
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the solutions of equation (2.1) are also non-negative in their domains of definition to be suitable to represent a
biological situation.

2.1 Equilibrium solution and characteristic equation

In general, studies on influence of time delays on biological models consider one or more of five interesting
cases: stability invariance, instability invariance, stability change, instability change, and instability switching
of equilibria [3,10]. Studies on mathematical models of infectious diseases such as equation (2.1) considers two
types of equilibria, viz, a disease-free equilibrium and an epidemic equilibrium. However, in our present
study, as we are interested in the environment where the disease, i.e. the COVID-19 infection, persists under
the influence of time delays, we consider only the existence of a disease equilibrium and establish conditions
for stability of it, implying the prevalence of a disease environment. We assume that the endemic equilibrium
solution of the system (2.1), denoted by x y z*, * , *( ), exists and is unique, recalling the conditions on parameters
and functional relations in the study by Anand et al. [1], as time delays have no impact on the existence of
equilibria. For simplicity, hereafter, we assume the growth function f x( ) as a constant, say =f x k( ) ,
throughout the text.

In order to study the local stability of this endemic equilibrium solution, we first linearise the system (2.1)
around the endemic equilibrium point x y z*, * , *( ). For simplicity, we will denote −x t τ1( ) as xτ1

and −x t τ2( ) as
xτ2

. The linearised system with respect to the endemic equilibrium point is given as follows:
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Then, the characteristic equation corresponding to the endemic equilibrium point x y z*, * , *( ) is given as
follows:

= − − − =F m mI S T Udet 0,( ) ( )

Table 1: Notations of the model parameters with their biological significance

Parameters Biological significance

a Contact (exposure) rate of y with x

b Contact (exposure) rate of z with x

a1 Rate of infection of exposed y

b1 Rate of infection of exposed z

α Part of diabetic population infected by y

β Part of diabetic population infected by z

α1 Quarantine + treatment rate of y

α2 Quarantine + treatment rate of z

p Part of recovered population of y becoming susceptible again
q Part of recovered population of z becoming susceptible again
d Specific mortality rate of x

d1 Specific mortality rate of y

d2 Specific mortality rate of z

4  Monalisa Anand et al.



where I is the identity matrix. Hence, the characteristic equation is

= + + + + + + +− − − −
F m m l m l m l l e l e l me l me ,mτ mτ mτ mτ3

1
2

2 3 4 5 6 7
1 2 1 2( ) (2.3)

where = − + +l H B C1 1 2( ), = − + +l B C B C B C H2 1 2 2 1 1 2( ) , = − −l H B C B C3 1 2 2 1( ), =l αA4 1 − − −C D α A B D12 1 1 2 1( )

+ −αA C D α A B D12 1 1 2 1 1( ) , = − − − + −l βA C D β A B D βA C D β A B D1 15 1 2 2 1 2 2 2 1 2 2 1 2( ) ( ) , = − − −l αA D α A D16 1 1 2 1( ) ,
and = − − −l βA D β A D17 1 2 2 2( ) .

We shall now proceed to find the stability of the endemic equilibrium point, which enables us to under-
stand the importance of the delay parameters τ1 and τ2 and the role they are playing in ensuring the stability of
the system in hand.

3 Local stability analysis

In this section, we study the local stability of the endemic equilibrium point x y z*, * , *( ) of the system (2.1). We
will consider the following different cases:
(i) > =τ τ0, 01 2 : Here, we consider that there is a latency or incubation period of the COVID-19 virus in the

diabetic population; however, in the non-diabetic population, the symptoms arrive as soon as they are
infected.

(ii) = >τ τ0, 01 2 : This is the opposite of the above case. That is, there is no latency or incubation period of the
COVID-19 virus in the diabetic population, but the non-diabetic population takes some time to show the
symptoms.

(iii) > >τ τ0, 01 2 : This is the most realistic real-life scenario. Both the populations (diabetic and non-diabetic)
are taking time to show the symptoms after getting infected by COVID-19.

Here, we will consider these cases and find the range of the time delays, for which the endemic equilibrium
point will be locally stable.

3.1 Delay in incubation of diabetic population (( >> == ))τ τ0, 01 2

This is the case where there is no latency or incubation period of the infection in the non-diabetic population,
but the diabetic population takes time >τ 01 to show first sign of symptoms.

The characteristic equation (2.3) in this case becomes

= + + + + + + + −
F m τ m l m l l m l l l l m e, .mτ

1
3

1
2

2 7 3 5 4 6
1( ) ( ) ( ) (3.1)

We rewrite the characteristic equation (3.1) as = + −
F m τ P m Q m e, mτ

1
1( ) ( ) ( ) , where,

= + + + + + = +P m m l m l l m l l Q m l l mand .3
1

2
2 7 3 5 4 6( ) ( ) ( ) (3.2)

We will denote the real and imaginary parts of the root m by mR( ) and mI( ), respectively. Let us consider the
following result, which will help us estimate delays in such cases.

Lemma 3.1. A system with characteristic equation = + −
F m τ P m Q m e, mτ

1
1( ) ( ) ( ) is asymptotically stable if and

only if the following conditions are satisfied [14,27]:
(i) = + ≠ ≥F m P m Q m m0, 01 R( ) ( ) ( ) ( ) ,
(ii) = − ≠ = ≠F m P m Q m m m0, 0, 02 R( ) ( ) ( ) ( ) ,

(iii) = + ≠ = ≠ < < ∞−
+F m P m Q m m m R0, 0, 0, 0

mR

mR
3

1

1
R( ) ( ) ( ) ( ) ,

where R denotes the pseudo-delay and is related to τ1 as = + ∀ ∈−
τ νR kπ ktan ,

ν
1

2
1 �( ( ) ) .
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The condition i( ) in Lemma 3.1 ensures stability for =τ 01 ; hence, by continuity of solutions, this condition
ensures stability even for sufficiently small delay >τ 01 ; ii( ) confirms that no pure imaginary zeros exist in the
limiting case; and condition iii( ) establishes the absence of imaginary zeros. F F,1 2, and F3 are obtained by
letting = −−

e 1, 1mτ1 , and −
+

mR

mR

1

1
, respectively. Lemma 3.1 is a necessary and sufficient condition, and violation of

any of the conditions i ii,( ) ( ), or iii( ) reflects corresponding change in stability of characteristic equation
= + −

F m τ P m Q m e, mτ

1
1( ) ( ) ( ) . For more details on the applicability of this lemma, one may refer to [14].

Using Lemma 3.1, we will find the conditions for the preservation of stability in the system. We have,
= + −

F m τ P m Q m e, .mτ

1
1( ) ( ) ( ) Putting =−

e 1mτ1 , we obtain

= + = + + + + + + + ≠F m P m Q m m l m l l m l l l l m 01
3

1
2

2 7 3 5 4 6( ) ( ) ( ) ( ) (3.3)

for ≥m 0R( ) .
Next, let = −−

e 1mτ1 , then

= − = + + − + + + −F m P m Q m m l m l l l m l l l .2
3

1
2

2 6 7 3 5 4( ) ( ) ( ) ( ) (3.4)

Let us now put, =m iν in equation (3.4). Then,

= − − + − + + − +F iν iν l ν iν l l l l l l .2
3

1
2

2 6 7 3 4 5( ) ( ) (3.5)
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2
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l l l

l
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1

. Hence, we can say that, ≠F m 02( ) for
= ≠m m0, 0R( ) , if the following condition holds ensuring that no purely imaginary zeros exist in the limiting

case:

− + ≠ − +l l l l l l l .2 6 7 1 3 4 5( ) (3.6)

Finally, let =− −
+e

mτ
mR

mR

1

1

1 , for some >R 0. Then, F m3( ) becomes

= +
−
+

F m P m
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Q m

1

1
.3( ) ( ) ( )

Substituting P m( ) and Q m( ) in the above equation, we obtain

=
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Now, if we can show that ≠F m 03( ) for = ≠ < < ∞m m R0, 0, 0R( ) , then equation (3.1) has no pure
imaginary zeros. In addition, =F m 03( ) only if numerator is equal to 0. Hence, we will assume that

+ + ≠l l l 03 4 5 , otherwise =m 0. Putting =m iν in numerator of F m3( ), we obtain

= − + − + + −
+ + + + + − + + +

F iν ν R iν l R ν l R l l l

iν l l l R l l l l l l

1

.
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4 3

1
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Separating real and imaginary parts, we obtain

= − + + − + + +
= − + + + + + + −

F ν R ν l R l l l l l l

F ν l R ν l l l R l l l

,

1 .
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3
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From the F3I( ) part, we have ≠ν 0, hence = + + + − +
+ν

l l l R l l l

l R

2

1

2 6 7 3 4 5

1

( ) . Thus, no real ν exists if + + +l l l2 6 7

− + <R l l l 03 4 5( ) for any >R 0, establishing that there is no change in stability for any ≥τ 01 . Next, using
this value of ν

2 and putting in F3R( ), we obtain

+ + + =M R N R P R Q 0,1
3

1
2

1 1
(3.9)

where M N P, ,1 1 1, and Q
1
are given as follows:

(i) = − + − − + − +M l l l l l l l l l l1 3 4 5
2

1 3 4 5 2 6 7( ) ( )( ),
(ii) = + + − +N l l l l l l21 2 6 7 3 4 5( )( )

+ + + + − + − − +l l l l l l l l l l l l1
2

3 4 5 1 6
2

1 2 7
2

2 6 7( ) ( ) ( ) − + − − +l l l l l l l3 4 5 1
2

3 4 5( ) ( ),
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(iii) = + + + + + − +P l l l l l l l l l21 2 6 7
2

1 3 4 5 2 7
2( ) ( ) ( ) + − − + − + +l l l l l l l l l6

2
1 3 4 5 1

2
2 7 6( ) ( ),

(iv) = + + − + +Q l l l l l l l
1 3 4 5 1 2 6 7( ).

Hence, we have the following theorem.

Theorem 3.1. Assume the endemic equilibrium solution of equation (2.1) is locally stable for = =τ τ 01 2 . Then, for
any length of delay > =τ τ0, 01 2 , the endemic equilibrium solution is locally stable if the following conditions
hold:
(i) − + ≠ − +l l l l l l l2 6 7 1 3 4 5( ) ,
(ii) >M N P Q, , , 01 1 1 1

,
(iii) >N P M Q1 1 1 1

.

A change of stability occurs at = >+
τ τ 01 1 if any of the coefficient M N P, ,1 1 1, or Q

1
is negative. Here,

=+ − + +
+τ ν Rtan

ν
1

2
1( ), where

=
+ + + − +

+
+

ν

l l l R l l l

l R1

2 6 7 3 4 5

1

( )

and +
R is solution of equation (3.9).

3.2 Delay in incubation of non-diabetic population (( == >> ))τ τ0, 01 2

This case corresponds to the scenario where there is no latency or incubation period of the infection in the
diabetic population, but the non-diabetic population takes time >τ 02 to show first sign of symptoms.

We have = >τ τ0, 01 2 . Then, equation (2.3) becomes

= + + + + + + +−
F m τ m l m l l m l l e l l m, .mτ

2
3

1
2

2 6 3 4 5 7
2( ) ( ) ( ) (3.10)

Let us write the characteristic equation (3.10) as = + −
F m τ P m Q m e, mτ

2
2( ) ( ) ( ) , where

= + + + + + = +P m m l m l l m l l Q m l l m, .3
1

2
2 6 3 4 5 7( ) ( ) ( ) (3.11)

Similar as the above case, we have = + −
F m τ P m Q m e, ,mτ

2
2( ) ( ) ( ) and we will use Lemma 3.1 to study the

stability of this system. Putting =−
e 1mτ2 , we obtain

= + = + + + + + + + ≠F m P m Q m m l m l l m l l l l m 01
3

1
2

2 6 3 4 5 7( ) ( ) ( ) ( ) (3.12)

for ≥m 0R( ) , ensuring stability for =τ 02 .
Next, let = −−

e 1mτ2 , then

= − = + + + − + + −F m P m Q m m l m l l l m l l l .2
3

1
2

2 6 7 3 4 5( ) ( ) ( ) ( ) (3.13)

Let us now put, =m iν. Then,

= − − + + − + + −F iν iν l v iν l l l l l l .2
3

1
2

2 6 7 3 4 5( ) ( ) (3.14)

Clearly, =F m 02( ) if = + −ν l l l
2

2 6 7 and = + −
ν

l l l

l

2 3 4 5

1

. Hence, we can say that, ≠F m 02( ) , and there exists no
pure imaginary zeros in limiting case if

+ − ≠ + −l l l l l l l .1 2 6 7 3 4 5( ) (3.15)

Finally, let =− −
+e

mτ
mR

mR

1

1

2 for some >R 0. Then, F m3( ) becomes

= +
−
+

F m P m

mR

mR

Q m

1

1
.3( ) ( ) ( )

Substituting P m( ) and Q m( ) in the above equation, we obtain
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=
+ + + + + −
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+
+ + + + − + + +
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Therefore, =F m 03( ) only if numerator is equal to 0. Hence, + + ≠l l l 03 4 5 ; otherwise, =m 0. For pure
imaginary zeros, putting =m iν in numerator of F m3( ), we obtain

= − + − + + −
+ + + + + − + + +

F iν ν R iν l R ν l R l l l

iν l l l R l l l l l l

1

.

3
4 3

1
2

1 2 6 7

2 6 7 3 4 5 3 4 5

( ) ( ) ( ( ))

( ( ))
(3.17)

Separating real and imaginary parts, we obtain

= − + + − + + +
= − + + + + + + −

F ν R ν l R l l l l l l

F ν l R ν l l l R l l l

,

1 .

3
4 2

1 2 6 7 3 4 5

3
3

1 2 6 7 3 4 5

R

I

( ) ( ( ))

( ) ( ) ( ( ))

From the F3I( ) part, we have ≠ν 0, hence = + + + + −
+ν

l l l R l l l

l R

2

1

2 6 7 3 4 5

1

( ) . Thus, no real ν exists if + + +l l l2 6 7

+ − <R l l l 03 4 5( ) for >R 0, establishing that stability is preserved for any length of delay >τ 02 . Next, using
this value of ν

2 and putting in F3R( ), we obtain

+ + + =M R N R P R Q 0,2
3

2
2

2 2
(3.18)

where
(i) = + − − + − + −M l l l l l l l l l l ,2 3 4 5

2
1 3 4 5 2 6 7( ) ( )( )

(ii) = + + + −N l l l l l l22 2 6 7 3 4 5( )( )

+ − + + + + − + −l l l l l l l l l l l l1 7
2

1 2 6
2

1
2

3 4 5 2 6 7( ) ( ) ( ) + − − + −l l l l l l l ,3 4 5 1
2

3 4 5( ) ( )

(iii) = + + + + + − +P l l l l l l l l l22 2 6 7
2

1 3 4 5 2 6
2( ) ( ) ( ) + − + − − + +l l l l l l l l l ,7

2
1 3 4 5 1

2
2 7 6( ) ( )

(iv) = + + − + +Q l l l l l l l .
2 3 4 5 1 2 6 7( )

We have the following theorem.

Theorem 3.2. Assume the endemic equilibrium solution to equation (2.1) is locally stable for = =τ τ 01 2 . Then, for
any length of delay = >τ τ0, 01 2 , the endemic equilibrium solution is locally stable if the following conditions
hold:
(i) + − ≠ + −l l l l l l l1 2 6 7 3 4 5( ) ,
(ii) ≥M N P Q, , , 02 2 2 2

,
(iii) >N P M Q2 2 2 2

.

A change of stability occurs at = >+
τ τ 02 2 if any of the coefficient M N P, ,2 2 2, or Q

2
is negative. Here,

=+ − + +
+τ ν Rtan

ν
2

2
1( ), where

=
+ + + + −

+
+

ν

l l l R l l l

l R1

2 6 7 3 4 5

1

( )

and +
R is solution to equation (3.18).

3.3 Delays in incubation of both diabetic and non-diabetic populations ( >>τ τ, 01 2 )

This is the most important and relevant scenario, where the incubation periods τ1 and τ2 of both the popula-
tions are greater than zero.

Letting = +m μ iν in equation (2.3), then μ and ν are real solutions of

8  Monalisa Anand et al.



= − + − + + + +
+ + + +

= − + + − −
+ − + −

− −

− −

− −

− −

F μ ν μ μν l μ ν l μ l l ντ e l ντ e

l μ ντ ν ντ e l μ ντ ν ντ e

F μ ν μ ν ν l μν l ν l ντ e l ντ e

l ν ντ μ ντ e l ν ντ μ ντ e

, 3 cos cos

cos sin cos sin ,

, 3 2 sin sin

cos sin cos sin .

τ μ τ μ

τ μ τ μ

τ μ τ μ

τ μ τ μ

3 2
1

2 2
2 3 4 1 5 2

6 1 1 7 2 2

2 3
1 2 4 1 5 2

6 1 1 7 2 2

1 2

1 2

1 2

1 2

R

I

( ( )) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

( ( )) ( ) ( )

( ( ) ( )) ( ( ) ( ))

To find the condition for change of stability, we substitute =μ 0 in the above equations to obtain

= − + + + + +F iν l ν l l ντ l ντ l ν ντ l ν ντcos cos sin sin ,1
2

3 4 1 5 2 6 1 7 2R( ( )) ( ) ( ) ( ) ( ) (3.19)

= − + − − + +F iν ν l ν l ντ l ντ l ν ντ l ν ντsin sin cos cos .3
2 4 1 5 2 6 1 7 2I( ( )) ( ) ( ) ( ) ( ) (3.20)

For the preservation of the stability of the delay system, we use the following conditions of the Nyquist criteria
>F iν 00I( ( )) and =F iν 00R( ( )) , where ν0 is the smallest positive root of =F iν 00R( ( )) . For more details, we

refer to [7,9].
Let =ν ν0 be the smallest positive root of =F iν 0R( ( )) . We write =F iν 0R( ( )) as

− = + + +l ν l l ντ l ντ l ν ντ l ν ντcos cos sin sin .1
2

3 4 1 5 2 6 1 7 2( ) ( ) ( ) ( ) (3.21)

After replacing sin and cos by their maximum values, we rewrite the above equation (3.21) as follows:

− < + + +l ν l l l ν l ν l .1
2

3 4 5 6 7∣ ∣ ∣ ∣ ∣ ∣∣ ∣ ∣ ∣∣ ∣

Let us consider the equation

− + − − − =l ν ν l l l l l 0.1 0
2

0 6 7 3 4 5(∣ ∣ ∣ ∣) ∣ ∣ ∣ ∣ (3.22)

The quadratic equation (3.22) has two roots, and let +ν be the bigger root, which is given as follows:

=
+ + + + + + +

+ν

l l l l l l l l l l

l

2 4

2
.

6 7 6
2

7
2

6 7 1 3 4 5

1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∣ ∣ ( ∣ ∣ ∣ ∣) (3.23)

We now use >F iν 00I( ( )) and obtain

− + + + > +ν l ν l ν ντ l ν ντ l ντ l ντcos cos sin sin .3
2 6 1 7 2 4 1 5 2( ) ( ) ( ) ( ) (3.24)

Let, = − + + +ϕ ν l ν l ν ντ l ν ντcos cos3
2 6 1 7 2( ) ( ) and = +ψ l ντ l ντsin sin .4 1 5 2( ) ( ) Then, clearly >ϕ ψ.

We now need to find the range of the delay for which the system will be stable. We observe that
< + ++ψ l l ν τ τ .4 5 1 2(∣ ∣ ∣ ∣) ( ) Hence,

+
≤ +

+

ψ

τ τ ν

l l .

1 2

4 5
( )

∣ ∣ ∣ ∣

In addition,

≤ + + + < + + +
+

+ + + +
ϕ

ν

ν l l ν τ l ν τ ν l l lcos cos .2
2 6 1 7 2

2
2 6 7∣ ∣ ∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ∣ ∣ ∣ ∣

Therefore,

+
≤

+ + +
++

+ϕ

τ τ ν

ν l l l

τ τ

.

1 2

2
2 6 7

1 2( )

∣ ∣ ∣ ∣ ∣ ∣

Hence, we can write

+ <
+ + +

+
+

l l

ν l l l

τ τ

.4 5

2
2 6 7

1 2

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣

Thus, we obtain

+ <
+ + +

+
+

τ τ

ν l l l

l l

.1 2

2
2 6 7

4 5

( )
∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
(3.25)

Hence, we can formulate the following theorem.
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Theorem 3.3. Assume that the endemic equilibrium point of equation (2.1) is locally stable for = =τ τ 01 2 . Then,
the stability of the endemic equilibrium point is preserved for >τ τ, 01 2 if

+ <
+ + +

+
+

τ τ

ν l l l

l l

.1 2

2
2 6 7

4 5

( )
∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

Remark. Note that condition (i) of Lemma 3.1 discusses the case of delay-free system = =τ τ 01 2 . Thus, from
equation (3.3), we have

= + + + + + + +F m m l m l l l m l l l .3
1

2
2 6 7 3 4 5( ) ( ) (3.26)

Hence, if the parameters of the system satisfy the conditions

> + + > + + > + + > + +l l l l l l l l l l l l l l0, 0, 0, ,1 2 6 7 3 4 5 1 2 6 7 3 4 5( )

then equation (3.26) will have all the roots with negative real parts. Therefore, the system (2.1) is asymptotically
stable for = =τ τ 01 2 if the above conditions hold true. We observe that our results are matching with those of
Theorem 3.3 of [1].

We now proceed to find the global stability of the endemic equilibrium point of equation (2.1).

4 Global stability analysis

Global stability is an important study in disease dynamics, which specifies the stability of the equilibrium in
the broader sense – whether the equilibrium point is always stable irrespective of the changes in the initial
conditions. In this section, we will deal with the global stability aspect of the endemic equilibrium point. We
make the following assumptions on the conversion functions f

1
and f

2
before we establish our results.

≤ ≤ ≤ ≤ ≤ ≤f x f x0 , 0 ,1 1 1 2 2 2� � � �( ) ( ) (4.1)

for all x . These assumptions are realistic in view of examples of conversion functions that are commonly used
in such biological scenarios mentioned in Section 2.

4.1 Global stability analysis for endemic equilibrium point

Let x y z*, * , *( ) be the endemic equilibrium point. Then, they satisfy the following equations:

= − − − + +k dx af x y bf x z pα y qα z0 * * * * * * *,
1 2 1 2( ) ( ) (4.2)

= + − +a αf x y b βf x z d α y0 * * * * * ,1 1 1 2 1 1( ) ( ) ( ) (4.3)

= − + − − +a α f x y b β f x z d α z0 1 * * 1 * * *.1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) (4.4)

Subtracting equations (4.2)–(4.4) from equation (2.1) and rearranging, we obtain

− ′ = − − − − − −
− − − − + − + −

x x d x x af x y y ay f x f x

bf x z z bz f x f x pα y y qα z z

* * * * *

* * * * * ,

1 1 1

2 2 2 1 2

( ) ( ) ( )( ) ( ( ) ( ))

( )( ) ( ( ) ( )) ( ) ( )
(4.5)

− ′ = − + − + −
+ − − − − −

y y a αf x y y a αy f x f x b βf x z z

b βz f x f x d y y α y y

* * * * *

* * * * ,

τ τ τ

τ

1 1 1 1 1 1 2

1 2 2 1 1

1 1 2

2

( ) ( )( ) ( ( ) ( )) ( )( )

( ( ) ( )) ( ) ( )
(4.6)

− ′ = − − + − − + − −
+ − − − − − −

z z a α f x y y a α y f x f x b β f x z z

b β z f x f x d z z α z z

* 1 * 1 * * 1 *

1 * * * * .

τ τ τ

τ

1 1 1 1 1 1 2

1 2 2 2 2

1 1 2

2

( ) ( ) ( )( ) ( ) ( ( ) ( )) ( ) ( )( )

( ) ( ( ) ( )) ( ) ( )
(4.7)

Let us assume that there exist positive real constants S1 and S2 such that
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− ≤ − − ≤ −f x f x S x x f x f x S x x* * , * * ,
1 1 1 2 2 2∣ ( ) ( )∣ ∣ ∣ ∣ ( ) ( )∣ ∣ ∣ (4.8)

where ≠x x*. We are now in a position to establish global stability of the endemic equilibrium. We employ a
Lyapunov-Krasovskii-type functional to cancel out the delay terms and manipulate the delay-free terms using
inequality analysis [17]. We note that the functional employed in [27] is also applicable here. Now we have the
following theorem.

Theorem 4.1. The endemic equilibrium point x y z*, * , *( ) of the system (2.1)is globally asymptotically stable if the
following conditions hold:
(i) − − − − >d a a y S b b z S* * 01 1 1 2( ) ( ) ,
(ii) + − + − >d p α a a1 01 1 1 1 1� �( ) , and
(iii) + − + − >d q α b b1 02 2 2 1 2� �( ) ,

where ,1 1� � , and ,2 2� � are positive real constants defined above.

Proof. We consider the functional

∫

∫

≡ = − + − + − + −

+ −

−

−

V t V x t y t z t x x y y z z a y f x u f x u

b z f x u f x u

, , * * * * * d

* * d .

t τ

t

t τ

t

1 1 1

1 2 2

1

2

( ) ( ( ) ( ) ( )) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ( )) ( )∣

∣ ( ( )) ( )∣

(4.9)

Clearly, =V x y z*, * , * 0( ) and ≥V t 0.( ) The upper Dini derivative ofV along the solutions of the system (2.1) is
given as follows:

∫

∫

≤ − − − − − − − −
− − + − + − + − − −
+ − + − + − − −
+ − − + − − + − −

+ − − − − − − + −

+ −

+

−

−

D V d x x af x y y ay f x f x bf x z z

bz f x f x pα y y qα z z a αf x y y d y y

a αy f x f x b βf x z z b βz f x f x α y y

a α f x y y a α y f x f x b β f x z z

b β z f x f x d z z α z z a y f x u f x u

b z f x u f x u

* * * * *

* * * * * *

* * * * * *

1 * 1 * * 1 *

1 * * * * * * d

* * d .

τ

τ τ τ

τ τ τ

τ

t τ

t

t τ

t

1 1 1 2

2 2 1 2 1 1 1

1 1 1 1 2 1 2 2 1

1 1 1 1 1 1 2

1 2 2 2 2 1 1 1

1 2 2

1

1 2 2

1 1 2

2

1

2

∣ ∣ ( )∣ ∣ ∣ ( ) ( )∣ ( )∣ ∣

∣ ( ) ( )∣ ∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣

∣ ( ) ( )∣ ( )∣ ∣ ∣ ( ) ( )∣ ∣ ∣

( ) ( )∣ ∣ ( ) ∣ ( ) ( )∣ ( ) ( )∣ ∣

( ) ∣ ( ) ( )∣ ∣ ∣ ∣ ∣ ∣ ( ( )) ( )∣

∣ ( ( )) ( )∣

After simplifying, we obtain

≤ − − − + − − − + − − − − −
− − − − − − − − −

+
D V d x x d p α y y d q α z z y y af x a f x

z z bf x b f x a a y f x f x b b z f x f x

* 1 * 1 * *

* * * * * .

τ

τ

1 1 2 2 1 1 1

2 1 2 1 1 1 1 2 2

1

2

∣ ∣ ( ( ) )∣ ∣ ( ( ) )∣ ∣ ∣ ∣∣ ( ) ( )∣

∣ ∣∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣
(4.10)

We rewrite the above equation (4.10) by using the bounds (4.1) and (4.8), and we arrive at

< − − − − − − − + − + − −
− + − + − −

≤ − − − − − − − + − + − −
− + − + − − <

+
D V x x d a a y S b b z S d p α af x a y y

d q α bf x b z z

d a a y S b b z S x x d p α a a y y

d q α b b z z

* * * 1 *

1 *

* * * 1 *

1 * 0

1 1 1 2 1 1 1 1 1

2 2 2 1 2

1 1 1 2 1 1 1 1 1

2 2 2 1 2

�

�

� �

� �

∣ ∣( ( ) ( ) ) ( ( ) ( ) )∣ ∣

( ( ) ( ) )∣ ∣

( ( ) ( ) )∣ ∣ ( ( ) )∣ ∣

( ( ) )∣ ∣

by assumptions (i)–(iii). Thus, V t( ) is negative definite. Furthermore, by definition ≥V t 0( ) and =V t( )

=V x y z, , 0( ) if and only if = = =x x y y z z*, * , *. Thus,V t( ) is a suitable Lyapunov functional. This completes
the proof. □

We shall now present some illustrative examples in order to verify the results.
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5 Numerical experiments

In this section, we perform some numerical experiments to validate our theoretical results using MATLAB
software dde23. Since, we could not obtain a single source of data to reflect all parameters, we have assumed
the parameters to illustrate the results. We perform simulations for various lengths of delays in all three cases,
i.e. (i) = =τ τ 01 2 , (ii) > =τ τ0, 01 2 , (iii) = >τ τ0, 01 2 , and (iv) > >τ τ0, 01 2 . The motive of this study is to find the
incubation time of the COVID-19 virus in the diabetic and non-diabetic population, depending on the different
parameters. We will assume the units of the parameters to be as per day.

Example 1. We consider the system (2.1) with high exposure rates a and b and low conversion rates a1 and b1.
We also take the treatment parameters α1 and α2 to be nearly equal to the conversion rates, and the mortality
rates (d d d, ,1 2) are taken as low values. Let = = +f x f x

x

x1 2 1
( ) ( ) and =α β. Let the parameter values be =k 300,

=d 0.0001, =a 2, =b 3, =p 0.5, =q 0.2, =α 0.71 , =α 0.52 , =α 0.5, =a 0.751 , =b 0.51 , =d 0.011 , and =d 0.0082 .
The initial populations are =x t 100( ) , =y t 20( ) , =z t 80( ) , ∈ −t τ , 0[ ], and =τ τ τmax ,1 2{ }. The endemic equili-
brium point of the system (2.1) is given by =x y z*, * , * 49, 54, 75( ) ( ).

Delay free. Let = =τ τ 01 2 . Then, we see that all the conditions for delay-free system are satisfied. The
solution profile of the delay-free case is given in Figure 2.

Case 1 ( > =τ τ0, 01 2 ). We calculate =M 0.000091 , =N 0.0161 , = −P 0.00461 , and = −Q 0.066
1

from Theorem
3.1. We see that there is one sign change in the equation + + + =M R N R P R Q 01

3
1

2
1 1

, and hence from Routh-
Hurwitz criteria, there exists one root R with positive real part, which is coming to be =R 2.17706. With this
value of R, we obtain =+

ν 0.236 and =+
τ 4.0221 from Theorem 3.1. Hence, theoretically, the system will be

stable till ≤+
τ 4.0221 for =τ 02 and will be unstable when >+

τ 4.0221 . Numerically, we can see from Figure 3, the
solutions are approaching the equilibrium solution x y z*, * , *( ) for =τ 41 , whereas for =τ 4.21 , the solutions
does not converge. Hence, stability change is clearly evident as per theory.

Case 2 ( = >τ τ0, 01 2 ). Here, = −M 0.000092 , =N 0.0142 , = −P 0.00752 , and = −Q 0.066
2

from Theorem 3.2.
Similar to the above case, we see that there are two sign changes in + + + =M R N R P R Q 02

3
2

2
2 2

, and hence
there exists two R with positive real parts. The positive roots are =R 2.4528 and =R 155.58. With =R 155.58, we
obtain =+

τ 50.42 . This high value of delay τ2 may represent the case where the non-diabetic population is a
carrier (strong immunity and/or does not show symptoms easily) but not identified as infected for a long time.
Since, we are more interested in finding the incubation period after which the population will show symptom,
we will not proceed with this case. With =R 2.4528, we obtain =+

ν 0.2328 and =+
τ 4.45742 from Theorem 3.2.
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Figure 2: Solution profile for = =τ τ 01 2 of Example 1.
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Hence, the system is stable for ≤+
τ 4.45742 when =τ 01 . We see that numerically, from Figure 4, a change in τ2

from 4.45 to 4.7 changes the stability of the system. Hence, our theoretical results are validated.
Case 3 ( >τ τ, 01 2 ). From Theorem 3.3, we find + <τ τ 5.381 2 . Hence, the system should be stable till

+ <τ τ 5.381 2 and unstable when + ≥τ τ 5.381 2 . From Figure 5, we see that the system is stable till + ≤τ τ 3.61 2 .
Discussion. From our chosen set of parameter values, we see that the exposure rates a and b are much

higher than the conversion rates a1 and b1, respectively. We took the treatment parameters α1 and α2 nearly
equal to the conversion rates and the death rates are comparatively small. With these parameter values, we
see that the system is becoming stable after long time, and if the delays or incubation time is crossing their
threshold value, then the system starts oscillation. The delays or incubation periods estimated in this Example
1 are close to the real-life scenario [36]. We also note from the Figures 3–5 that the oscillation due to the delays
are only in the x , i.e. the susceptible population, and there is no oscillation in the y and z populations. This is
due to the fact that we have introduced the delay parameters only in the susceptible population and none in
the infected diabetic and non-diabetic populations. As we are increasing the delay range, oscillations with
higher amplitude are observed in the x population – a chaotic situation continues. In addition, the condition of
global stability in Theorem 4.1 is not satisfied, and hence, the system is not globally stable around the
equilibrium point =x y z*, * , * 49, 54, 75 .( ) ( ) That is, a small change in the initial conditions might give rise
to instability around the equilibrium point =x y z*, * , * 49, 54, 75 .( ) ( )

Example 2. In this example, we alter the conversion parameters (i.e. reduce a1 and increase b1) while
increasing the proportions of recovered turning susceptible diabetic and non-diabetic populations (p and
q). We let = = +f x f x

x

x1 2 1
( ) ( ) and = =α β 0.5, =k 300, =d 0.0001, =a 2, =b 3, =p 0.7, =q 0.3, =α 0.71 ,

=α 0.52 , =a 0.61 , =b 0.61 , =d 0.011 , and =d 0.0082 . The initial populations are = =x t y t100, 20( ) ( ) , =z t( )

∈ −t τ80, , 0[ ], and =τ τ τmax ,1 2{ }. The endemic equilibrium point is given by =x y z*, * , * 76, 55, 77 .( ) ( )

Delay free. Let = =τ τ 01 2 . Then, all the conditions for delay-free system are satisfied. The solution profile
of the delay-free case is given in Figure 6.

Case 1 ( > =τ τ0, 01 2 ). We calculate = − = = −M N P0.000075, 0.0056, 0.00561 1 1 , and = −Q 0.0257
1

from
Theorem 3.1. We see that there are two sign changes in the equation + + + =M R N R P R Q 01

3
1

2
1 1

, and hence,
from Routh-Hurwitz criteria, there exists two roots R with positive real parts. The roots are =R 2.7666 and

=R 73.58. With =R 73.58, we obtain very high values of τ1; hence, as discussed in Case 2 of the previous
example, we will not proceed with this scenario. With =R 2.7666, we obtain =+

ν 0.16 and =+
τ 5.21351 from

Theorem 3.1. Hence, the system will be stable till ≤+
τ 5.21351 given =τ 02 and will be unstable when >+

τ 5.21351 .
Numerically, we see from Figure 7 that a change in τ1 from 5 to 5.5 changes the stability of the system.

Case 2 ( = >τ τ0, 01 2 ). Here, =M 0.00007382 , =N 0.00832 , = −P 0.000872 , and = −Q 0.025
2

from Theorem
3.2. Similar to the above example, we see that there is one sign change in the coefficients of
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Figure 3: Solution profiles for > =τ τ0, 01 2 .
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+ + + =M R N R P R Q 02
3

2
2

2 2
, and hence there exists one R with positive real part, which is =R 1.7984. With

this R, we obtain =+
ν 0.166 and =+

τ 3.52 from Theorem 3.2. Hence, the system is stable for ≤+
τ 3.52 given =τ 01 .

From Figure 8, we observe that a change in τ2 from 3.3 to 3.6 changes the stability of the system.
Case 3 ( >τ τ, 01 2 ). From Theorem 3.3, we obtain + <τ τ 5.4131 2 . Hence, the system is stable till + <τ τ 5.4131 2

and should be unstable for + ≥τ τ 5.4131 2 . From Figure 9, we see that the system is stable till + ≤τ τ 3.71 2 .
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Figure 4: Solution profiles for = >τ τ0, 01 2 .
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Figure 5: Solution Profiles for >τ τ, 01 2 .
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Figure 6: Solution profile for = =τ τ 01 2 of Example 2.
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Discussion. In this example, we changed the conversion parameters slightly, i.e. reduced a1 (conversion
rate corresponding to the diabetic population) and increased b1 (conversion rate corresponding to the non-
diabetic population). Compared to Example 1, there have been changes in the delays (with τ1 increasing and τ2

slightly decreasing). These changes indicate that more non-diabetic individuals exposed to COVID-19 are
transitioning into the infected population, implying a weaker immune response and a shorter incubation
period (τ2) compared to Example 1. On the other hand, the diabetic population exposed to the COVID-19 virus
shows a lower rate of transition into the infected population compared to Example 1, suggesting better
immunity due to medication. Consequently, the diabetic population has a longer incubation period compared
to their non-diabetic counterparts. Similar to Example 1, we see from the Figures 7–9 that the oscillations are
only in x , and none in y and z, and oscillations with larger amplitude are observed in the x population as we
increase the delay values leading to a chaotic situation. The explanation of this phenomena is given in the
discussion of Example 1. In addition, in this example, the condition of global stability in Theorem 4.1 is not
satisfied, and hence, the system is not globally stable around the equilibrium point =x y z*, * , * 76, 55, 77( ) ( ).

Next, let us consider an example where the endemic equilibrium point x y z*, * , *( ) is globally asympto-
tically stable.

Example 3. In this example, we take the parameter values in the system (2.1) as = = =k d a300, 0.8, 1.2534,
=b 2.1431, =p 0.5, =q 0.7, =α 51 , =α 12 , =α 0.5, =a 1.2531 , =b 2.1421 , =d 0.51 , =d 0.152 , = = +f x f x

x

x1 2 1
( ) ( ) ,

and =α β.

The endemic equilibrium point is given by =x y z*, * , * 22, 55, 262 .( ) ( ) We have chosen the parameters in
such a way that the global stability of the endemic equilibrium point =x y z*, * , * 22, 55, 262( ) ( ) is satisfied, i.e.
whenever the exposure (a b, ) and conversion (a b,1 1) rates are nearly equal, the treatment rates (α α,1 2) are high
compared to the mortality rates (d d,1 2). We see that all the conditions of Theorem 4.1 are satisfied, and hence,
our system is globally asymptotically stable.

We can see from Figure 10 that the stability of the delay-free system is independent of the initial popula-
tions, implying global stability.

Next, let us consider the system where both the delays exist, i.e. >τ τ, 01 2 . From Theorem 3.3, we obtain
+ <τ τ 2.991 2 . Hence, the system is stable till + <τ τ 2.991 2 . Below, we have given the following plots in Figure 11

for different initial populations for >τ τ, 01 2 .
Discussion. From Figures 10 and 11, we see that system behaves similarly irrespective of the presence of

delays and change in initial conditions. We observe that for the case where >τ τ, 01 2 , the system is globally
stable whenever + <τ τ 2.991 2 .

Remark. From Examples 1 and 2, we observe how the parameters play an important role in influencing the
time delays (incubation periods, in our case) of the system. In Example 1, our conversion rates from
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Figure 7: Solution profiles for > =τ τ0, 01 2 .
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susceptibles to COVID-19-infected diabetic and non-diabetic populations were =a 0.751 and =b 0.51 , whereas
in Example 2, we had =a 0.61 and =b 0.61 . The exposure to the COVID-19 infection was same for both the
populations in both the examples ( = =a b2, 3). In Example 1, we observed that the theoretical value of delay τ1

(incubation period of COVID-19 infection in diabetic population) is 4.022, whereas in Example 2, we obtain
=τ 5.21 . This is due to the fact that in Example 2, less diabetic people are getting converted to the infected

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

Po
pu

la
tio

ns

x
y
z

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

Po
pu

la
tio

ns

x
y
z

Figure 8: Solution profiles for = >τ τ0, 01 2 .
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Figure 9: Solution Profiles for >τ τ, 01 2 .
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Figure 10: Solution profiles for = =τ τ 01 2 at different initial conditions.
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population ( =a 0.61 as compared to =a 0.751 in Example 1), and hence, their immunity is comparatively better,
due to which the onset of symptoms is taking longer as compared to Example 1. Similarly, the delay =τ 3.52 in
Example 2, as compared to =τ 4.452 in Example 1. This is again due to the fact that our conversion parameter b1

in Example 1 is smaller (hence less people getting converted to infected population) as compared to Example 2.
In Example 3, we showcased a scenario where the system will be globally stable for all initial populations
irrespective of time delays, which is only possible if the treatment parameters (α1 and α2) are very high as
compared to exposure rates (a and b) and conversion rates (a1 and b1). This is relevant to real-life scenario also.
Example 3 illustrates the case where the system is globally stable, i.e. independent of initial states. Further-
more, these conditions are violated in Examples 1 and 2, implying that global and local stability need not go
hand-in-hand usually. On the whole, our examples illustrate the results established and explain the contribu-
tion of parameters in stabilising or destabilising the system under the influence of time delays.

6 Conclusions and future work

In this article, we have focused on discussing the COVID-19 virus, which has emerged as the most prevalent and
dangerous viral infection of this decade. Specifically, we have examined its impact on individuals who are
diabetic, a chronic health condition that is currently widespread. To capture the real-life dynamics of the virus
within the host’s body, we have proposed a three-compartment model incorporating two time delays. These
time delays have been introduced to enhance the model and represent the incubation period of the COVID-19
virus. We emphasize that ODE compartmental models do not adequately represent the transition of a suscep-
tible individual to the infected compartment, as it is not an instantaneous process. Therefore, we have
developed a delay compartmental model to better capture this aspect. In our study, we have conducted a
local stability analysis of the model, where we derived upper bounds for the delay parameters τ1 and τ2. These
bounds have been numerically verified in Section 5. Furthermore, we have performed a global stability
analysis using a Lyapunov function. Finally, we have validated our theoretical findings through numerical
experiments. We chose our model parameters in such a way that the incubation periods derived should be
realistic. Numerous meta-analyses [34,36] estimate the incubation time of the COVID-19 virus to be around 5
days, with a range of 1.80–18.87 days. In particular, Wu et al. [36] provided incubation periods for different
variants of the COVID-19 virus. From their meta-analysis of 141 articles, they found the incubation periods for
the Alpha, Beta, Delta, and Omicron variants to be 5.00, 4.50, 4.41, and 3.42 days, respectively. These values
closely align with the incubation periods obtained in our examples using synthetic data. Therefore, our model,
with the chosen parameters, accurately reflects the real-life scenario.

We have emphasised on the incubation periods of the virus in populations; however, the treatment period
is also of significant importance. Hence, a model with recovery or treatment delay is left for future endeavor.
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Figure 11: Corresponding solution profiles for >τ τ, 01 2 for different initial states.
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Also, introduction of control/preventive measures such as vaccination or face mask usage in equation (2.1)
could be an interesting study in the scenario of endemic prevalent conditions established here. Hence, we can
further venture in this direction in our next studies. It is interesting to note that an increase in length of time
delay in either of infected populations led to oscillations in susceptible population but has no impact on
infected populations. This phenomenon needs to be explored further and verified with real-time environment.
Authors noted that increase of lengths of time delays beyond the estimates obtained in the results leads only to
disturb the stability of the endemic equilibrium leading a chaotic state. This is due to the fact that we have
restricted our study to conditions of Lemma 3.1, which focuses only on non-changing of stability of the system,
and parameters and functions are chosen to fit these conditions only. However, the existence of multiple
bifurcation points and change of stability or instability status of the system are also interesting phenomena to
explore for dynamical systems such as equation (2.1). We leave this for a future study.
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