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Abstract: A mathematical model is proposed and discussed to study the effect of cell-to-cell transmission, the
non-cytolytic process, and the effect of logistic growth on the dynamics of HIV in vivo. The model system
consists of one disease-free steady state and another endemic steady state. The disease-free steady state is
globally asymptotically stable and the disease eradicated if the basic reproduction number is smaller than one.
However, the endemic steady state is globally stable under specific parametric conditions, when it exists. At

=R 10 , the forward transcritical bifurcation is obtained. Also, by considering proliferation rate as bifurcation
parameter, we get Hopf and Hopf–Hopf bifurcations. We have performed numerical simulations using
MATLAB to support our analytical results and show the effects of cell-to-cell infection, proliferation rate,
and non-cytolytic cure on all three populations. In the end, we have performed data fitting and note the
same behaviour of observed data with predicted data.
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1 Introduction

AIDS caused by human immunodeficiency virus (HIV) is a devastating disease affecting millions globally. HIV
is a single-stranded RNA virus that attacks CD4+ T cells, macrophages, and dendritic cells, which leads to HIV
infection. AIDS is the last phase of HIV infection. The primary infection with HIV starts via blood, semen,
vaginal fluids, and breast milk when these fluids transfer from one HIV-infected person to another healthy
person. Once a virus attacks the host cell, it inserts into it and releases its genetic material, i.e., single standard
RNA and other enzymes, and then reverse transcription, integration, transcription, and assembly occur. A new
virus comes out from the host cells [18,33]. HIV infection occurs in three phases, acute stage, asymptomatic
stage, and symptomatic HIV infection. In the first stage, a person can feel flu-like symptoms. This time cytotoxic
T lymphocytes (CTLs) control the viral load, which peaks and then declines. In the second stage, a person may
have no symptoms from 2 to 10 years or more. In the third stage, person’s immune system is damaged and
leads to AIDS (CD4+ T cells count below less than 200). Once the immune response knows the penetration of
HIV, then CD4+ T cells become active and send signals to CD8+ T cells to destroy the free virus and infected
cells Nowak and coworkers [33].
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The following three-dimensional ordinary differential equation system gives the basic viral infection
model studied by Nowak and coworkers [18,19].
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where T , T*, and V represent the number of uninfected CD4+ T cells, infected CD4+ T cells, and virus,
respectively, at any time t. Λ, k , and N are the production rate of uninfected CD4+ T cells, the rate of infection
of CD4+ T cells with the virus, and the burst size, respectively. The mortality rates of uninfected cells, infected
cells, and free virus are μ, δ, and c, respectively.

Since the development of the model system (1.1), there has been a significant focus on understanding and
representing the dynamic behaviours and mechanisms involved in the viral infection process. Several mod-
ifications/generalizations of mathematical model (1.1) have been proposed to study the dynamics of HIV
[2–4,25]. These models have been used to explain various aspects of HIV dynamics as disease progression,
viral replication, eclipse phase, excess drug use, delayed model, and mode of transmission. CD4+ T cells are
continuously generated from precursor cells at a constant rate and have a natural death rate. When antigen is
stimulated, CD4+ T cells undergo proliferation with a rate r following logistic growth. To make the model more
realistic, we need to incorporate logistic proliferation terms for the uninfected target cells [1,12,30]. There are
two types of immune response, cytolytic immune response and non-cytolytic immune response. In the cyto-
lytic immune response, immune response destroys infected cells, whereas infected cells can be cured in the
non-cytolytic immune response [7,8,20,35]. The dynamics of HIV infection within host has been investigated
using a variety of mathematical models [21,24,25]. The virus-to-cell mode of infection was the main focus of all
of these models. Viral infection, however, can also happen directly between cells. The processes underlying
cell-to-cell spread one yet to be fully understood. Virological synapses allow viruses to spread from infected
cells to other infected cells [10]. Comparatively to cell-to-virus infection, cell-to-cell transmission may provide
more favourable conditions for viral infection. For example, viruses transmitted from cell to cell may be less
likely to be eliminated by CD8+ T cells or neutralized by neutralising antibodies [16]. By incorporating cell-to-
cell transmission mechanisms, we can better understand HIV infection in vivo. In studies by Wang et al. [29,32],
the mathematical study of virus models with cell-to-cell transmission has been carried out. It was established
by Sigal et al. that the key mode of HIV infection is cell-to-cell transmission [23]. The global dynamics of an HIV
infection that includes cell-to-cell transmission have been addressed by Li and Wang [12]. In the meanwhile,
Lin et al. [14] investigated how HIV dynamics was impacted by cell-to-cell transmission. More recently, age-
structured infection models with viruses that contained cell-to-cell transmission have been studied in the
study by Wang et al. [31] and established the threshold condition for global behaviour.

Motivated by the aforementioned work, we are concerned about the combined impact of virus-to-cell and
cell-to-cell transmission on the dynamics of HIV infection. Here, we study a primary infection model with
logistic growth of CD4+ T cell, two modes of transmission (cell-to-cell [36] and virus-to-cell), and infected cells
that can be cured by a non-cytolytic process [34] and revert to the uninfected cell population. We establish
local and global behaviour of the disease-free steady-state and infected steady state, establish transcritical
bifurcation at =R 10 , and also show the effect of different parameters on uninfected CD4+ T cell population,
infected CD4+ T cell population, and virus population. In the end, we estimate model parameters and fit the
observed data with CD4+ T cell data.

This article is structured as follows: The model that includes cell-to-cell infection and non-cytolytic cure is
described in the next section, and the analysis of local and global stability of disease-free and endemic steady
states of the proposed model is expressed in the following section. Conditions for transcritical and Hopf
bifurcation are carried out in Section 3. The numerical simulation and parameter estimation are established
in Sections 4 and 5, respectively. Finally, we discuss our obtained results in Section 6.
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2 Mathematical model

In this section, we formulate the HIV infection model with CD4+ T cells and constant CTL immune response.
Let ( )T t , ( )T t* , and ( )V t are the uninfected CD4+ T cells, infected CD4+ T cells, and the virus population at any
instant of time >t 0, respectively. We construct our mathematical model based on the following assumptions:
(i) The growth of CD4+ T cells is logistic with r as its growth rate [1] and carrying capacity K ; the uninfected

CD4+ T cells dies naturally at the rate μ; the natural inflow of CD4+ T cells is represented by Λ.
(ii) The bilinear interaction, i.e., ( ) ( )kV t T t and ( ) ( )αT t T t* , represents the infection of CD4+ T cells with virus

and cells, respectively, where k and α represent the rate of infection of CD4+ T cells with virus and cells,
respectively.

(iii) The infected CD4+ T cells are cured with rate q due to constant CTL immune response E , i.e., ( )qET t* ;
infected CD4+ T cells dies naturally at the rate δ. It is natural to assume ≤μ δ.

(iv) As more CD4+ T cells become infected, more free virus is produced, ( )NδT t* , where N is the average
number of free virus produced by an infected CD4+ T cells; free virus dies naturally at the rate c.

Combining all the aforementioned said assumptions lead to the following model:

= − − + ⎛
⎝ −

+ ⎞
⎠ − +

= − + −

= −

⋆

T

t
kVT μT rT

T T

K
αTT qET

T

t
kVT δT αTT qET

V

t
NδT cV

d

d
Λ 1

*
* *,

d

d
* * *,

d

d
*

(2.1)

with initial conditions ( ) = >T T0 00 , ( ) =T* 0 0, and ( ) = ≥V V0 00 . All parameters are positive and explained in
Table 1.

2.1 Positivity and boundedness

The populations should always be non-negative, much like in biological models. Therefore, for the population’s
positivity in our model, we assume that the starting population size is selected in such a way that all population
components remain positive over all future time. From the model equation (2.1), we derive the following:
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Table 1: List of default values for parameters with sources

Parameter Description Value and unit Source

Λ Production rate of uninfected cells 10 mm day‒3 ‒1 [26]

k Virus-to-cell infection rate 0.0000024 mm virion day3 ‒1 ‒1 [22]

α Infection rate from cell to cell 0.0000006 mm cell day3 ‒1 ‒1 Assumed

μ Rate of mortality of uninfected cells 0.04 day ‒1 Assumed

δ Rate of mortality of infected cells 1 day ‒1 [1]

q Non-cytolytic cure rate 0.01 day ‒1 Assumed

K Carrying capacity 5,000–10,000 cells mm‒3 Assumed

N Burst size 1,000 [27]
r Proliferation rate of CD4+ T-cell 0.03–3 day ‒1 [22]

c Clearance of free virus 0.40 day ‒1 Asuumed

E Constant CTLs response 0.01 day ‒1 Asuumed
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On the boundary plane of the cone �+
3 , the aforementioned rates are non-negative. As the vector fields on the

boundary planes are oriented inward, we can say that if we begin in the interior of the cone, the solutions will
always be contained within that positive cone of �+

3 . So long as the initial conditions are positive, the solutions
to the model system (2.1) remain positive and corresponding the biologically feasible region of the model
system (2.1) is Γ.

�( )= ⎧⎨⎩ ∈ ≤ + ≤ ≤ ⎫⎬⎭+T T V T T K V
NδK

c
Γ , *, : 0 * , .

3

2.2 Basic reproduction number calculation

By using Vanden Driessche and Watmough proposed work on next-generation matrix approach [28], we
determine the basic reproduction number, for the model system (2.1), which is given as follows:
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2.3 Feasibility and stability (local and global) of system’s steady states

In this section, we discuss the existence of steady states of the model system (2.1) and their stability. The model
system (2.1) has the following two steady states:
(1) The disease-free steady state
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which always exists, provided >r μ. This steady state represents a situation where infection is not present.
It is to be noted that, we assume >r μ, throughout our analysis, where r and μ are defined in Table 1.

(2) The endemic steady state ( )≔ ⋆E T T V¯, ¯ , ¯1 , where T̄ , ⋆T̄ , and V̄ are the positive solutions of the following
isoclines:
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Therefore, the unique endemic steady state is given by
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provided >R 10 .
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The following theorems address the local and global stability of the two steady states present in the model
system (2.1).

Theorem 2.1.
(1) The disease-free steady state E0 is locally stable if <R 10 and unstable if >R 10 .
(2) The endemic steady state E1 exists when >R 10 and is locally asymptotically stable if the conditions >A 0,

>B 0, >C 0, and − >AB C 0 holds, where A, B, and C are defined in the proof.

Proof. The Jacobian matrix at a steady state is given by,
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Clearly, all roots of the characteristic equation of ( )J E0 are with negative real part when <R 10 , Hence, E0

is locally asymptotically stable when <R 10 .
(2) The characteristic equation of ( )J E1 is,
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If > > >A B C0, 0, 0, and − >AB C 0, then all inequalities of the Routh-Hurwitz criterion are satisfied.
Therefore, the infected steady state E1 is locally asymptotically stable for >R 10 . □

Theorem 2.2. The disease-free steady state E0 is globally asymptotically stable in Γ if <R 10 .

Proof. Global stability of disease-free steady state obtained by constructing the Lyapunov function. A
Lyapunov function of the model system (2.1) is defined as follows:
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Clearly, ≤L̇ 0 in Γ, since ≤R 10 and ( ) ≤T t T0. Furthermore, if N is the set of solutions of the model system (2.1),
where =L̇ 0 if and only if = = =T V T T* 0, 0, 0 on =R 10 . In both cases, { }=N E0 . Thus, the Lyapunov–LaSalle
principle [11] dictates all paths in Γ approach E0, and hence the global stability of disease-free steady state
E0. □

Next, in the following theorem, we discuss the global stability of E1 for the model system (2.1) using the
method developed by Li and Muldowney [13].

Theorem 2.3. The unique endemic steady state E1 of the model system (2.1), exists if >R 10 and is globally
asymptotically stable when <Δ 0, where Δ is defined in the proof.

Proof. The Jacobian matrix J of the model system (2.1) is given as follows:
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2
and the boundedness

of ( )T t* . This proves the global stability of E1. □

3 Bifurcation analysis

Now, we explore the emergence and disappearance of steady states and the changes in their stability through
various types of local bifurcations. Notably, the model system (2.1) demonstrates local bifurcations, including
transcritical bifurcation and Hopf bifurcation. We present the conditions of these local bifurcations in the
following theorems.
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3.1 Transcritical bifurcation

Theorem 3.1. The model system (2.1) undergoes a forward transcritical bifurcation, as R0 crosses 1.

Proof. We prove bifurcation at =R 10 with the help of the approach that Castillo-Chavez and Song [5]
described. we choose the virus to cell transmission rate k as the bifurcation parameter and by =R 10 , we have
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T T

K
αTT qET f

T

t
kVT δT αTT qET f

V

t
NδT cV f

d

d
Λ 1 ,

d

d
,

d

d
.

1

2

3

Now, the Jacobian matrix of the model system (2.1) evaluated at E0 and k* is given by

( ) =

⎛

⎝

⎜
⎜⎜

− − − − + −

− + −
−

⎞

⎠

⎟
⎟⎟

J E k

r μ
rT

K

rT

K
αT qE k T

δ αT qE k T

Nδ c

, *

2
*

0 *

0

.0

0 0

0 0

0 0

This Jacobian matrix ( )J E k, *0 has simple zero eigenvalue at =R 10 , and all other eigenvalue of ( )J E k, *0 has
negative real parts. Further,

( )
( )

( )( )
= = ⎡

⎣⎢
+

− + − + −
−

− + −
⎤
⎦⎥

w w w w
k T δK rT

δ αT qE rT Kμ rK

k T

δ αT qE
, ,

*

2
,

*
, 1 ,T

T

1 2 3

0 0

0 0

0

0

and ( )= = ⎛
⎝

⎞
⎠v v v v, , 0, 1,

k T

c1 2 3

* 0 are the right and left eigenvectors of ( )J E k, *0 corresponding to the eigenvalue

0, respectively. The coefficients a and b are defined in the study by Castillo-Chavez and Song [5] are given as
follows:

( ) ( )∑ ∑=
∂
∂ ∂

=
∂

∂ ∂= =
a v w w

f

x x
E K b v w

f

x K
E k, * , , * ,

i j l

l i j

l

i j i l

l i

l

i, , 1

3 2

0

, 1

3 2

0

where the second-order partial derivatives of f f,
1 2

, and f
3
which are nonzero at ( )J E k, *0 are given by

∂
∂

= −
∂

∂ ∂
= − −

∂
∂ ∂

= −
∂

∂ ∂
=

∂
∂ ∂

=

∂
∂ ∂

=

f

T

r

K

f

T T

r

K
α

f

T V
k

f

T T
α

f

T V
k

f

V k
T

2
,

*
,

*,
*

, *,

.

2

1

2

2

1

2

1

2

2

2

2

2

2

0

Hence, we obtain

( ( ) ) ( )( )

( ) ( )
= −

+ − + +
− + − + −

=a
c δ qE αcT δk rT δ qE

N δ T δ αT qE rT Kμ rK
b T

*

2
, and .

0
2

0

2 2
0 0

2
0

0

Clearly, <a 0 and >b 0. Thus, the model system (2.1) undergoes a forward transcritical bifurcation at the
disease-free equilibrium E0. □
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3.2 Existence of Hopf bifurcation at endemic steady state

Here, we examine the occurrence of Hopf bifurcation around the endemic steady-state E1. Specifically, we
consider r (proliferation rate of CD4+ T cell) as the bifurcation parameter while keeping the other parameters
constant, and the coefficients of the characteristic equation ∣ ( ) ∣− =×J E λI 01 3 3 is a continuously differentiable
function of r . If the following criteria are met, Hopf bifurcation exists around the endemic steady state E1:
(1) At the endemic steady state E1, the Jacobian matrix ( )J E1 has two purely imaginary eigenvalues and one

negative real eigenvalue

(2) ( ( )) ≠
=

0
λ

r
r r

d Re

d
crit

, where rcrit is the equivalent bifurcation threshold value of r and λ denotes the eigenvalue

of ( )J E1 at =r rcrit.

We apply the criterion developed by Liu [15] to achieve oscillatory behaviour via Hopf bifurcation.
If the coefficients of ∣ ( ) ∣− =×J E λI 01 3 3 satisfy the conditions such as: ( ) >B r 0crit , ( ) >C r 0crit , and =Δ

( )( )− =AB C r 0crit , we obtain a pair of purely imaginary roots of ∣ ( ) ∣− =×J E λI 01 3 3 . Further, to calculate
( ( ))

=

λ

r
r r

d Re

d
crit

, we consider

( ) ≔ + + + =P λ λ Aλ Bλ C 0,3 2 (3.1)

and = ±λ ιω is a pair of purely imaginary roots of ∣ ( ) ∣− =×J E λI 01 3 3 . Further, we differentiate equation (3.1)
with respect to r , and we obtain

= + + + + + =
P

r
λ

λ

r
λA

λ

r
B

λ

r
λ

A

r
λ

B

r

C

r

d

d
3

d

d
2

d

d

d

d

d

d

d

d

d

d
0.2 2

We have

= −
+ +
+ +

λ

r

λ λ

λ Aλ B

d

d 3 2
.

A

r

B

r

C

r

2
d

d

d

d

d

d

2

By substituting =λ ιω, we obtain

( )

( ) ( )
=
−⎛⎝− + + ⎞

⎠ − + −

− + +=

λ

r

ω ιω ω B Aιω

ω B Aω

d

d

3 2

3 2
,

λ ιω

A

r

B

r

C

r

2
d

d

d

d

d

d

2

2 2 2

( ) ( )
⎜ ⎟
⎛
⎝

⎞
⎠
= −

+ ⎛
⎝ − − ⎞

⎠ +

− +=

λ

r

ω ω A B B

B ω Aω
Re

d

d

3 2 3

3 2
.

λ ιω

A

r

B

r

C

r

A

r

C

r

4
d

d

2
d

d

d

d

d

d

d

d

2 2 2

Therefore,

⎜ ⎟
⎛
⎝

⎞
⎠
≠ + ⎛

⎝ − − ⎞
⎠ + ≠

=

λ

r
ω

A

r
ω A

B

r

C

r
B

A

r
B

C

r
Re

d

d
0, if 3

d

d
2

d

d
3

d

d

d

d

d

d
0.

λ ιω

4 2

The following theorem summarizes the aforementioned discussion.

Theorem 3.2. The Hopf bifurcation through the endemic steady state E1 occurs under the necessary and sufficient
conditions that a critical threshold value of =r rcrit exists, such that following specified condition:
(1) ( ) >B r 0crit , ( ) >C r 0crit , and ( )( )= − =Δ AB C r 0crit ,

(2) + ⎛
⎝ − − ⎞

⎠ + ≠ω ω A B B3 2 3 0
A

r

B

r

C

r

A

r

C

r

4
d

d

2
d

d

d

d

d

d

d

d
holds.
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3.3 Direction and stability of Hopf bifurcation

Here, we employ normal form theory to determine the direction of Hopf-bifurcation and investigate the
stability characteristics of the bifurcating periodic solution in the system described by equation (2.1). This
analysis is detailed in the literature [9]. First, we find eigenvector V1 and V3 corresponding to the eigen values

=λ ιω1 and = −λ A3 , respectively, at =r rcrit, where =ω B . Here,

=
⎛

⎝
⎜⎜

−
−
−

⎞

⎠
⎟⎟ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟V

b ib

b ib

b ib

V

b

b

b

, ,1

11 12

21 22

31 32

3

13

23

33

with

⎟

⎟

⎜

⎜

⎟

⎟

⎜

⎜

=

⎛
⎝
⎛
⎝ + ⎞

⎠ − ⎞
⎠
⎛
⎝ − − − ⎞

⎠ −
⎛
⎝ + + ⎞

⎠

⎛
⎝
⎛
⎝ − − − ⎞

⎠ +
⎞
⎠

= −

⎛
⎝
⎛
⎝ + ⎞

⎠ − ⎞
⎠ +

⎛
⎝ − − − ⎞

⎠
⎛
⎝ + + ⎞

⎠

⎛
⎝
⎛
⎝ − − − ⎞

⎠ +
⎞
⎠

= = − = =

=

⎛
⎝− − + ⎞

⎠
⎛
⎝

⎞
⎠

− − − +
=

−
=

− +

b

δ c ω r μ δ c ω

Nδ r μ ω

b

δ cω ω r μ δ c ω

Nδ r μ ω

b
c

Nδ
b

ω

Nδ
b b

b

δ A

r μ A

b
c A

Nδ
b

, , 1, 0

, , 1.

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

rT

K

c A

Nδ

rT

K

rT

K

11

̄
2

2 ̄ ̄ ̄
2

2 ̄ *̄
2

2

12

̄
3

2 ̄ ̄ ̄
2

2 ̄ *̄
2

2

21 22 31 32

13

̄

2 ̄ *̄
23 33

*

*

We use the following transformation

= + + +
= + + +
= + + +

x x b x b y b z

y y b x b y b z

z z b x b y b z

* ,

* ,

*

11 1 12 1 13 1

21 1 22 1 23 1

31 1 32 1 33 1

to reduce the given system as

=

=

=

x

t
H

y

t
H

z

t
H

d

d
,

d

d
,

d

d
,

1 1

1 2

1 3

(3.2)

where

( )

( ) ( ) ( )

( )

=
− + −

=
− + + − + − +

=
− + + −

H
b E b E b b b b E

D

H
b b E b b E b b b b E

D

H
b E b E b b b b E

D

,

,

,

1 22 1 12 2 12 23 22 13 3

2 21 23 1 11 13 2 11 23 13 21 3

3 22 1 12 2 11 22 12 21 3

with
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( )

( )( ) ( )

( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )

⎜ ⎟

= − + −
= − + + + + + + − + + +

+ + + + ⎛
⎝
−

+ + + + + + + ⎞
⎠

− + + + + + + + + + +
= + + + + + + − + + +
+ + + + + + + − + + +

= + + + − + + +

D b b b b b b b b

E k x b x b y b z z b x b y b z μ x b x b y b z

r x b x b y b z
x b x b y b z z b x b y b z

K

α x b x b y b z z b x b y b z qE y b x b y b z

E k z b x b y b z x b x b y b z δ y b x b y b z

α x b x b y b z z b x b y b z qE z b x b y b z

E Nδ y b x b y b z c z b x b y b z

,

Λ * * *

* 1
* *

* * *

* * *

* * *

* * .

11 22 21 12 12 23 22 13

1 11 1 12 1 13 1 31 1 32 1 33 1 11 1 12 1 13 1

11 1 12 1 13 1

11 1 12 1 13 1 31 1 32 1 33 1

11 1 12 1 13 1 31 1 32 1 33 1 21 1 22 1 23 1

2 31 1 32 1 33 1 11 1 12 1 13 1 21 1 22 1 23 1

11 1 12 1 13 1 31 1 32 1 33 1 31 1 32 1 33 1

3 21 1 22 1 23 1 31 1 32 1 33 1

Clearly one equilibrium point of system (3.2) is ( )0, 0, 0 . So Jacobian matrix of new system (3.2) becomes

( ) =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

J E

H

x

H

y

H

z

H

x

H

y

H

z

H

x

H

y

H

z

1

1

1

1

1

1

2

1

2

1

2

1

3

1

3

1

3

1

with ∂
∂
H

x

1

1

= ∂
∂
H

y

2

1

= ∂
∂
H

z

1

1

= ∂
∂
H

x

3

1

= ∂
∂
H

y

3

1

= =∂
∂ 0
H

z

2

1

, −∂
∂
H

y

1

1

= =∂
∂ ω
H

x

2

1

, and =∂
∂ A
H

z

3

1

. Now we calculate the value of
g g g G G G h h w w w, , , , , , , , , ,

11 02 20 101 110 21 11 20 20 11, and g
21
by using the following relations:

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

=
⎡

⎣
⎢
⎛

⎝
∂
∂

+
∂
∂

⎞

⎠
+

⎛

⎝
∂
∂

+
∂
∂

⎞

⎠

⎤

⎦
⎥

=
⎡

⎣
⎢
⎛

⎝
∂
∂

−
∂
∂

−
∂
∂ ∂

⎞

⎠
+

⎛

⎝
∂
∂

−
∂
∂

+
∂
∂ ∂

⎞

⎠

⎤

⎦
⎥

=
⎡

⎣
⎢
⎛

⎝
∂
∂

−
∂
∂

+
∂
∂ ∂

⎞

⎠
+

⎛

⎝
∂
∂

−
∂
∂

−
∂
∂ ∂

⎞

⎠

⎤

⎦
⎥

=
⎡

⎣
⎢
⎛

⎝
∂
∂

+
∂
∂ ∂

+
∂
∂ ∂

+
∂
∂

⎞

⎠
+
⎛

⎝
∂
∂

+
∂
∂ ∂

−
∂
∂ ∂

−
∂
∂

⎞

⎠

⎤

⎦
⎥

= −
∂
∂

=
⎛

⎝
∂
∂

+
∂
∂

⎞

⎠

=
⎛

⎝
∂
∂

−
∂
∂

−
∂
∂ ∂

⎞

⎠

g
H

x

H

y
i

H

x

H

y

g
H

x

H

y

H

x y
i

H

x

H

y

H

x y

g
H

x

H

y

H

x y
i

H

x

H

y

H

x y

G
H

x

H

x y

H

x y

H

y
i

H

x

H

x y

H

x y

H

y

ω
H

y

h
H

x

H

y

h
H

x

H

y
i

H

x y

1

4
,

1

4
2 2 ,

1

4
2 2 ,

1

8
,

,

1

4
,

1

4
2 .

11

2 1

1

2

2 2

1

2

2 2

1

2

2 1

1

2

02

2 1

1

2

2 1

1

2

2 2

1 1

2 2

1

2

2 2

1

2

2 1

1 1

20

2 1

1

2

2 1

1

2

2 2

1 1

2 2

1

2

2 2

1

2

2 1

1 1

21

3 1

1

3

3 1

1 1

2

3 2

1

2

1

3 2

1

3

3 2

1

3

3 2

1 1

2

3 1

1

2

1

3 1

1

3

1

1

11

2 3

1

2

2 3

1

2

20

2 3

1

2

2 3

1

2

2 3

1 1

By solving the following equations, we have to find w11 and w20

( )= − − = −Aw h D iω w h, 2 ,11 11 20 20

where

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

=
⎡

⎣⎢
⎛
⎝
∂
∂ ∂

+
∂
∂ ∂

⎞
⎠
+

⎛
⎝
∂
∂ ∂

−
∂
∂ ∂

⎞
⎠
⎤

⎦⎥

=
⎡

⎣⎢
⎛
⎝
∂
∂ ∂

−
∂
∂ ∂

⎞
⎠
+

⎛
⎝
∂
∂ ∂

+
∂
∂ ∂

⎞
⎠
⎤

⎦⎥

= + +

G
H

x z

H

y z
i

H

x z

H

y z

G
H

x z

H

y z
i

H

x z

H

y z

g G G w G w

1

2
,

1

2
,

2 .

110

2 1

1 1

2 2

1 1

2 2

1 1

2 1

1 1

101

2 1

1 1

2 2

1 1

2 2

1 1

2 1

1 1

21 21 110 11 101 20
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We compute the following quantities by using the aforementioned values:

( ) ∣ ∣ ∣ ∣

{ ( )}

( )

{ ( )}

{ ( )} ( )

= ⎛
⎝ − − ⎞

⎠ +

= −
′

=

= −
+ ′

C
i

ω
g g g g g

μ
C

α

β C

T
C μ ω

ω

0
2

2
1

3

1

2
,

Re 0

0

2Re 0

Im 0 0
,

1 20 11 11

2

02

2

21

2

1

2 1

2

1 2

where ( ) ( { ( )})∣′ = =α λ r r r0 Re
k

d

d 1 crit and ( ) ( { ( )})∣′ = =ω λ r r r0 Im
r

d

d 1 crit. Here, μ
2
decides the direction of the

Hopf-bifurcation. The Hopf-bifurcation is supercritical (sub-critical) if ( )> <μ β0 0 ;
2 2

decides the stability of
the periodic solutions: If ( )< >β 0 0

2
, then the solutions are stable (unstable), and T2 determines the period of

the bifurcating periodic solutions: the period increases (decreases) if ( )> <T 0 02 .

4 Numerical simulation

This section uses MATLAB for numerical simulations to back the analytical findings. A hypothetical parameter
set meeting conditions and demonstrating dynamic properties is chosen for the simulations. We fix the
parameter values as =Λ 10, =μ 0.04, =δ 1, =q 0.01, =N 500, =c 0.4, and =E 0.01, and other parameter
values are varied in the following examples.

Example 1. In this illustration, we numerically validate the existence of forward transcritical bifurcation through
which endemic steady state E1 appears and disease-free steady state E0 exchanges its stability with E1. For this, we set
=α 0.0000006, =k 0.0000024, =K 8,000 , and ( )∈r 0.001, 0.0195 so that ( )∈R 0.76867648327, 1.387289781830 . In

this case, disease-free steady state E0 always exists and loses its stability as R0 crosses unity from the left, and a unique
steady state E1 appears, which is stable for >R 10 . Figure 1(a) demonstrates the forward transcritical bifurcation as R0

crosses the threshold value from the left in the considered range of r . Further, we plot phase diagram (see
Figure 1(b)) for fixed =r 0.01820240481 (so that = >R 1.3161680312 10 ). We notice that the disease-free steady
state ( )=E 438.678814, 0, 00 is unstable and the solutions curve initiating from different initial conditions
( )76, 44, 200 , ( )800, 20, 100 , ( )400, 50, 150 , and ( )700, 30, 50 converge to unique steady state =E1

( )333.300007, 2.4802199, 3100.27482 , it suggests that E1 is locally stable.

Example 2. In this illustration, we validate the existence of Hopf bifurcation through which endemic steady
state E1 loses its stability and periodic oscillation appears. We set =α 0.000001, =k 0.0000035, =K 8,000 ,
and ( )∈r 0.001, 0.5 . For this set of parameter values, >R 10 , and a unique endemic steady state E1 exists
for the considered range of r . We observe that E1 loses its stability through Hopf bifurcation at
threshold value =r 0.2739245332crit . At this critical value, there exists a unique endemic steady state

( )=E 228.5420, 61.19429, 76492.8581 and the characteristic equation (3.1) is given by

+ + + =λ Aλ Bλ C 0,3 2

where =A 1.451479267541721, =B 0.074374258011956, and =C 0.107952693543153. Certainly, >A 0, >B 0, >C 0,
and − = − × ≅−AB C 1.11022 10 016 . Therefore, the first condition of Theorem 3.2 is satisfied. Now, from the

Figure 2(b), we can observe that ( ( )) >
=

0
λ

r
r r

d Re

d
crit

. Also the eigenvalues of the characteristic equation for =r rcrit

are −1.45147927, and ± ι0.2727164 . Hence, the transversality condition of Theorem 3.2 is satisfied. Thus, the
model system (2.1) undergoes the Hopf bifurcation at the endemic steady state E1 for the critical value =r rcrit.
In Figure 2(a), we plot the Hopf bifurcation diagram that depicts the emergence of the limit cycle at the critical
value =r rcrit. For determining the stability, direction, and nature of periodic oscillation at the Hopf-bifurca-
tion point, we evaluate ( ) = − × + ×− −C ι0 0.385682 10 0.33708 101

9 10, = × −μ 0.2322 10
2

9, = − × −β 0.7714 10
2

9, and
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= × −T 0.2885 102
9 using algorithms outlined in the direction and stability of Hopf bifurcation (Subsection 3.3).

It confirms the occurrence of bifurcating periodic solution. The oscillation exhibits supercritical behaviour
and remains stable, indicated by <β 0

2
and >μ 0

2
. Further, time series solutions of T , T*, andV at =r 0.3 are

plotted in Figure 2(c)–(e). Also, we plot phase diagram to show the stable limit cycle numerically by choosing
two different initial conditions: ( )270, 83,81,000 and ( )100, 60,60,000 (see Figure 2(f)).

4.1 Hopf–Hopf bifurcation and multiple stability switch

In the next example, we numerically validate the sequential changes in the system’s behaviour as a parameter
varies, transitioning from a stable steady state to an oscillatory state after losing stability via the first Hopf
bifurcation and regaining it through the second Hopf bifurcation.

Example 3. In this illustration, we use =α 0.0000006, =k 0.0000024, =K 5,000 , and ( )∈r 0.00599, 4 so that
( )∈R 0.87323, 14.859060 . For this set of parameter values, we notice that unique endemic steady state E1 loses

its stability at the through Hopf bifurcation at the threshold value = =r r 0.30690043495crit1
. At this critical

value of r , the characteristic equation (3.1) is given by

+ + + =λ λ λ1.450388093430468 0.076248032383685 0.110589238316796 0.3 2

Clearly, every coefficient in the aforementioned equation is positive and also − = × ≅−AB C 1.45716772 10 015 .
Therefore, at rcrit1

, the characteristic equation has a pair of purely imaginary eigenvalues, i.e., ± ι0.276130462614476

and one other eigenvalues is −1.4503881. From Figure 3(b), we notice that ( ( )) >
=

0
λ

r
r r

d Re

d
crit1

. Thus, both conditions

of Theorem 3.2 are satisfied. Hence, the model system (2.1) experiences a Hopf bifurcation at =r rcrit1
around E1.

Further, if we increase the parameter r , then we observe another Hopf bifurcation at the threshold value
= =r r 2.288072354crit2

through which endemic steady state E1 become stable. At this critical value, the coeffi-
cient of characteristic equation (3.1) are =A 1.582610352, =B 0.5372807, and =C 0.850306001, which are posi-
tive; moreover, − = − × − ≅AB C 8.8817842 10 16 0. Thus, the characteristic equation has a pair of purely

imaginary roots, i.e., ± ι0.73299434 , and one other eigenvalue is −1.582610352. Also, ( ( )) <
=

0
λ

r
r r

d Re

d
crit1

. Therefore,

from Theorem 3.2, we can conclude that the model system (2.1) goes through Hopf bifurcation at the critical
value =r rcrit2

around E1. Now, to observe this multiple stability switch, we plot the bifurcation diagram in
Figure 3(a), which depicts the stability switch from stable state to unstable state through Hopf bifurcation at
threshold value =r rcrit1

and again become stable via another Hopf bifurcation as the parameter r crosses the

Figure 1: (a) Existence of forward transcritical bifurcation and (b) phase portrait for different initial conditions at
( )= =r R0.0182024048 1.31616803120 showing stability of E1.
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Figure 2: (a) A bifurcation diagram with a single parameter is used to illustrate how a Hopf bifurcation occurs when the parameter r

crosses = =r r 0.2739245crit in the rT V* -plane, (b) plot for the real part of the roots of the characteristic equation corresponding to E1,
(c)–(e) time series plots at =r 0.3 for uninfected CD4+ T cells, infected CD4+ T cells, and virus, respectively, and (f) phase plot shows the
existence of stable limit cycle for two different initial conditions: ( )270, 83,81,000 and ( )100, 60,60,000 .
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threshold value =r rcrit2
. Figure 3(b) shows the maximum real part of the complex eigenvalues of the Jacobian

matrix ( )J E1 by varying ( )∈r 0.00599, 3.5 . Phase portraits at = <r r0.25 crit1
, =r rcrit1

, =r rcrit2
, and = >r r2.4 crit2

are plotted in Figure 3(c)–(f), respectively.

4.2 Combined effect of cell to cell infection rate and proliferation rate of CD4+
T cell

Now, we are interested in exploring how parameters α and r simultaneously impact the dynamics of the model
system (2.1). To do so, we have given the following examples.

Example 4. In this example, we choose =K 5,000 , ( )∈α 0.000001, 0.001 , and ( )∈r 0.001, 3 . For this set of
parameter values, we notice in Figure 4(a) thatαr-parametric space is divided into three different colours (red, yellow,
and blue) regions. In the red and yellow colour region disease-free steady state E0 and endemic steady state E1 always
exist, in which E0 is always unstable. Endemic steady state E1 is stable and surrounded by a stable limit cycle in the
yellow and red regions, respectively. In the blue colour region, only a globally stable disease-free steady state exists.
Further, to observe the dynamics on each different colour region, we plot phase diagram in Figure 4c–e, for fixed
value of ( ) ( )=α r, 0.000102939, 1.2508 , ( ) ( )=α r, 0.000408755, 1.83712 , and ( ) ( )=α r, 0.00063302, 0.001 , respec-
tively. Clearly, we can see the oscillatory coexistence of all populations in the red region, stable E1 in the yellow
region, and stable E0 in the blue region.

Example 5. Finally, in this example, we choose all parameter values the same as in Example 4 except
=K 8,000 . We notice that for this set of parameter values instability region (red region) of unique endemic

steady state E1 increases (Figure 4(b)). Therefore, this example exhibits a very interesting phenomenon, i.e., the

Figure 3: (a) Diagram illustrating the presence of the Hopf–Hopf bifurcation in the rT V* -plane, (b) plot for the real part of the roots of
the characteristic equation corresponding to E1, (c) phase diagram at = <r r0.25 crit1

, (d) phase diagram at =r rcrit1
, (e) phase diagram at

=r rcrit2
, and (f) phase diagram at = >r r2.4 crit2

.
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paradox of enrichment. As the carrying capacity increases, there are higher numbers of uninfected CD4+ T
cells. However, this also increases infected CD4+ T cells and free HIV, causing instability. The amplifying
process intensifies the spread, potentially leading to population crashes and increased disease severity. To
effectively combat HIV, strategies must target both viral replication and infection rate to mitigate unintended
consequences and achieve better disease control.

Figure 4: (a) and (b) Two-parameter stability region in αr-plane for =K 5,000 and =K 8,000 , respectively. The description of all
different colour regions is described in the text, (c) phase plot for a fixed value of ( ) ( )=α r, 0.000102939, 1.2508 in the red colour region,
(d) phase plot for a fixed value of ( ) ( )=α r, 0.000408755, 1.83712 in the yellow colour region, and (e) phase plot for a fixed value of
( ) ( )=α r, 0.00063302, 0.001 in the blue colour region.
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Figure 5: (a) Two-parameter stability region in rq-plane. The description of all different colour regions is same as shown in Figure 4(a)
and (b) Time series solution for different values of q.
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4.3 Effect of non-cytolytic cure rate (q)

In this section, we analyze the effect of non-cytolytic cure rate (q). We plot two-parameter stability region by
varying parameters ( )∈r 0.0000001, 1.5 and ( )∈q 0, 4 (Figure 5(a)) and keeping other parameter the same as
in Figure 4a except =K 4,000 , =α 0.0000006. Clearly, from Figure 5(a), we observe that if we choose r q, from
red region (unstable region), then an increase in the parameter q eliminates the oscillations in populations and
the endemic equilibrium point E1 becomes stable. Therefore, if we enhance the non-cytolytic cure rate (q) of
infected cells, it leads to better control of the viral load, reducing the oscillatory behaviour and stabilizing the
infection dynamics around the endemic equilibrium point. This means that the infection is more predictable
and does not fluctuate much. For better visualization, we have plotted time series solution for fixed =r 0.85

and three different values of =q 1, 2.6, and 3.6.
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Figure 6: The solution with the estimated parameters alongside the patient data for the HIV model.

Table 2: Data for CD4+ T-cell [6,31]

Days CD4+ T-cell count Days CD4+ T-cell count

168 629 618 526
179 547 678 513
199 954 735 459
241 578 804 539
261 886 865 462
305 712 935 479
366 438 1,046 492
432 420 1,059 420
464 511 1,183 479
495 401 1,191 347
561 360 1,246 383

Table 3: Estimated parameters

Parameter Estimate

k 0.0000024
α 0.0000006
δ 2
q 0.001
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5 Parameter estimation

For parameter estimation, we have used MATLAB built-in function “fminsearch” for fitting the data with the
numerical solution of the model. We have taken patient data from [6,31] and estimated the different para-
meters such as virus-to-cell infection rate ( )k , cell-to-cell infection rate ( )α , death rate of free virus ( )δ , and
non-cytolytic cure rate q, keeping other parameters fixed at =Λ 10, =μ 0.04, =K 5,000 , =N 500, =r 0.03,
=c 2.4, and =E 0.01 (Table 1) and simulate our model. Here, we are interested to know how the population of

CD4+ T cells progresses as time passes, i.e., we have predicted CD4+ T cell population behaviour for 1300 days.
The observed population of CD4+ T cells data is plotted with the blue circles and the solid red colour curve
showing the model prediction (Figure 6 and Table 2). We can note that the predicted curve has approximately
the same behaviour as the observed data of CD4+ T cell for the fitted set of parameters. Moreover, we found
two-parameter values, i.e., ( )k α, same as appears in Table 1, but we observe different values of δ and q in our
parameter estimation, which is given in Table 3.

6 Conclusion

We investigated a mathematical model of HIV infection that incorporates logistic growth of CD4+ T cell, cell-to-
cell transmission, and non-cytolytic cure. We demonstrated the model’s positivity and boundedness and
identified two steady states: a disease-free steady state and an endemic steady state. Furthermore, we calculate
R0, i.e., the basic reproduction number, and perform the stability analysis of the model system, which shows
that both steady states are locally asymptotically stable, provided Routh-Hurwitz criteria are stratified. We also
show the endemic and disease-free steady state’s global stability by building a Lyapunov function and using
geometric methods, respectively. We explore the bifurcation behaviour of the model systemwith respect to the
proliferation rate of CD4+ T cells. Moreover, we observed that the model system goes through a forward
transcritical bifurcation at the disease-free steady state and Hopf bifurcation and Hopf–Hopf bifurcation
around the endemic steady state. We observed fascinating dynamics, i.e., the Paradox of enrichment: As
carrying capacity grows, higher numbers of uninfected CD4+ T cells. Also, we have done data fitting and
seen the same behaviour of observed data with predicted data.

Therefore, our findings provide valuable insights into the dynamics of HIV infection and may inform the
development of strategies for controlling the spread of the virus.
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