DE GRUYTER Computational and Mathematical Biophysics 2023; 11: 20230108 a

Research Article

Bipin Kumar* and Rajesh Kumar Sinha

Dynamics of an eco-epidemic model with
Allee effect in prey and disease in predator

https://doi.org/10.1515/cmb-2023-0108
received August 12, 2023; accepted November 16, 2023

Abstract: In this work, the dynamics of a food chain model with disease in the predator and the Allee effect in
the prey have been investigated. The model also incorporates a Holling type-III functional response,
accounting for both disease transmission and predation. The existence of equilibria and their stability in
the model have also been investigated. The primary objective of this research is to examine the effects of the
Allee parameter. Hopf bifurcations are explored about the interior and disease-free equilibrium point, where
the Allee is taken as a bifurcation point. In numerical simulation, phase portraits have been used to look into
the existence of equilibrium points and their stability. The bifurcation diagrams that have been drawn clearly
demonstrate the presence of significant local bifurcations, including Hopf, transcritical, and saddle-node
bifurcations. Through the phase portrait, limit cycle, and time series, the stability and oscillatory behaviour
of the equilibrium point of the model are investigated. The numerical simulation has been done using MATLAB
and Matcont.
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1 Introduction

In ecology and eco-epidemiology, mathematical modelling plays an important role. In the current situation, the
world suffers from various epidemic crises like COVID, dengue, plague, flu, and various zoonotic diseases. Eco-
epidemiology is a relatively new area in mathematical modelling that deals with ecological and epidemiolo-
gical issues simultaneously [10,31]. Our understanding of epidemic models has greatly improved as a result of
the innovative work done by Kermack and McKendrick, opening the door for the investigation of a newly
created interdisciplinary area called eco-epidemiology [11]. To better understand the dynamics of disease
within communities, this field connects components of ecology and epidemiology. There is a wealth of litera-
ture in the field of human-related epidemiology that applies the ideas of the Kermack-McKendrick model.
Research on diseases like HIV [3], rabies [27], the mumps virus [24], and the SARS-coronavirus [4] are a few
famous examples. These research have improved our knowledge of how diseases spread and are controlled in
human societies. By creating mathematical models that depict the spread of diseases among interacting
populations, Hadeler and Freedman [17] have significantly improved our understanding of the subject. Their
research has illuminated how illnesses might spread across intricate ecological networks. By examining
subjects like species persistence and Hopf bifurcation within epidemic models, Mukherjee [25] has added to
our understanding. This study has shed important light on the mechanisms of disease persistence and the
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crucial junctures at which important shifts in ecological and epidemiological systems take place. Ecological
species sizes are important in ecological studies and are influenced by a variety of ecological and epidemio-
logical factors. Predatory behaviour, intraspecific and interspecific competition, and various types of species
interaction are the ecological aspects. The transmission of infectious diseases is one of the major epidemio-
logical issues [28]. Researchers are interested in studying infectious diseases in their natural environment. The
effects of infectious diseases should be considered in the study of dynamical systems [26]. The first predator-
prey model was given by Lotka and Volterra for two species and is the simplest model of predator-prey
interactions. The predator-prey model was developed independently by Lotka in 1925 and Volterra in 1926
[9,37], the general form of the simplest Lotka-Volterra model is given as follows:

dz
Pk Bzw (1a)
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where z is the number of prey population, w is the predator population, § and y are the positive interaction
parameters, and a and 6 are the birth rate of prey and natural death rate of predator respectively. The first
three-species food chain model was given by Hasting and Powell in 1991. The author investigated the dynamics
of the model without the Allee effect, and the model was found to be very chaotic in long-term behaviour when
the biologically valid parameters were taken [19]. After this, further research were carried out on dynamical
properties of food chain model without Allee and with a different type of functional responses [1]. In 2016, KP
Das introduced the Eco-epidemic model involving three-species, excluding the Allee effect. According to Das’s
publication, the presence of chaotic dynamics is observed as the population of infected predators increases. It
is shown that occurrence and chaos control are due to half saturation [13,14]. The Allee effect was first
introduced by Warder Clyde Allee in 1930s. The Allee effect is crucial for describing the population growth
rate in population biology, and when the population density is low, the Allee effect is a biological phenomenon
that results in a positive relationship between population size and per capita growth rate [15,34]. Mathematical
expression of Allee term with logistic growth given as:

N

1- =
K

g—rN
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N
= 2
" 1], (2)

where A is the Allee parameter, K is carrying capacity and r is the intrinsic growth rate.

The Allee effect has currently received considerable attention in research communities due to its signifi-
cant effect on population dynamics. The phenomenon, often referred to as the Allee effect [2], explains the
positive association between the per capita growth rate and population density. The emergence of this
phenomenon may be related to many different factors, including challenges in locating compatible partners
in territories with low populations, a rise in susceptibility to predation, negative effects resulting from mating
among closely related individuals, the insufficient presence of defensive mechanisms against predators, and
other contributing factors. The Allee effect is often classified into two primary categories: strong and weak
instances. The phenomenon referred to as a significant Allee effect, sometimes termed critical dispensation,
occurs when a population attains a critical size or threshold. Once the barrier has been overcome, the per
capita growth rate transitions from negative to positive and gradually approaches the carrying capacity. On
the other hand, the weak Allee effect does not demonstrate a discernible threshold. Both manifestations of the
Allee effect, whether they are powerful or mild, have noteworthy implications for the dynamics of populations.
The Allee concept is briefly discussed in the studies by Arancibia-Ibarra and Flores [6] and Sarangi and Raw
[30]. The earlier discovery has prompted the recognition that the co-occurrence of diseases and the Allee effect
may have a collective influence on the sustainability and potential extinction of species. In order to clarify the
biological importance of the Allee effect, notable instances such as the island fox [5] and the African wild dog
[12] may be examined. The ecological and eco-epidemiological models have been published with the Allee
effect by the authors [22,23,32]. These articles examine the effects of the Allee effect, which causes Hopf
bifurcation and chaos.



DE GRUYTER An eco-epidemic model with Allee effect =—— 3

The Allee effect can change interior equilibria and is capable of influencing internal attraction. In addi-
tion, coexistence is possible at endemic state, and under appropriate parametric situations, the infection may
be suppressed [20]. The chaotic behaviour of the ecological model decreases with the increase in severity of the
Allee effect [22]. Recently, researchers did work on the effects of double Allee on eco-epidemic model [30]. In
predator-prey interactions, the choice of functional response plays a crucial role. The predator-prey functional
response quantifies the rate at which predators consume prey per unit of time. Mathematical analyses of
ecological, epidemiological, and eco-epidemiological systems rely on various functional responses, including
the Holling type-I functional response [29], the Holling type-II functional response [33], and the ratio-depen-
dent functional response, Among these, the predator-prey interaction with ratio-dependent functional
response is often considered the most effective approach [7]. In this study, we investigate an eco-epidemic
model that incorporates the Allee effect in prey and disease in predators. The model is initially based on the
Holling type-II functional response for both predation and disease transmission, as described in the study by
Shaikh and Das [32]. However, in our research, we introduce the Holling type-III functional response to the
model to study its dynamics.

In this current study, we examine the dynamic behaviour of a system, specifically focusing on the
examination of equilibrium states and their stability. In addition, we conduct a comprehensive analysis of
bifurcation phenomena within the system. In Section 2, model formulation is discussed. In Section 3, theore-
tical studies such as positivity and boundedness of model 4 are studied. In Section 4, the conditions for the
existence of equilibrium points have been analysed. Stability analysis about all possible equilibrium and
bifurcation analysis is discussed in Section 5, in which Hopf bifurcation about the Allee parameter is obtained.
In Section 6, numerical study has been done, and the dynamical properties, such as equilibria and their
stability, as well as the periodic behaviour of the model, look exactly the same as the analytical study for
the restricted conditions. Finally, the result discussion, the biological significance of the model, and future
research have been discussed in Section 7.

2 Model description

This model is a modification of the article published by Shaikh and Das [32]. The predator is divided into two
compartments, susceptible S and infected predator I, respectively, and the prey population density is denoted
by N. The prey population grows logistically with carrying capacity k and the intrinsic growth rate R.
Furthermore, the population of prey exhibits the Allee effect. The disease is transmitted by predators hor-
izontally. Infected predator cannot catch and kill the prey population as parasite infection decreases the host’s
stamina and locomotive efficiency [14]. We use Holling type-III functional response for predation and disease
transmission mechanism.
The model with the above assumptions takes the following form:

Wy A ) s .
T KL By + N2
dS GAN?S  ASY
- = - -D:S 3b
dT B, +N* B,+8§ ! (3b)
I ASA
— = 3¢
ar " Brs P Go

where we take the initial restrictions N(0) = 0, S(0) = 0, and I(0) = 0 for the further analysis; the parameter L
denotes the Allee threshold value, whereas A, By, D1, and D, denote the rates of disease transmission, the half
saturation constant, and the rates of natural mortality of susceptible and infected predators, respectively. The
parameter C; € (0, 1) denotes the rate of conversion of prey biomass into susceptible predator. By using the
following transformations: x = %, y= %, L= é, and t = RT, respectively, the model (3) has transformed into a
non-dimensional model (4) as follows:
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dx ax’y
—=x(1- -1 -
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= Xfi(Xry: Il)
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= yHh(,y, h)
dh By*h
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dt 1+ by? deh
= Ilfé(X,y, Il);
with initial condition x(0) = 0, y(0) = 0, and L(0) = 0, where
K AK®  CAK* Dy D _K? _ K?
B—L, a—BK, r= BlR, dz—R, dl—R, bl—Bl, and bz—BZ.

3 Theoretical studies of model (4)

3.1 Existence and positivity

Theorem 3.1. For the system described in equation (4) every solution associated with initial conditions where
x(0) 2 0, y(0) = 0, and L(0) = 0 exists and unique in the interval [0, €], where 0 < & < o and x(t) 2 0, y(t) = 0,
and I, 2 0 for all t in this interval.

Proof. Since the given function xf;, yf,, and I f; are continuous and locally Lipschitzian on R}, which implies
that the solution (x(t), y(¢), Ii(t)) exists and unique on [0, €], where 0 < & < o [18]. Furthermore, by integrating
the model (4) with respect to the initial conditions, we obtain the following solutions:

X(®) = x(@)el ie@YEIO1s 5 o
Y(O) = Yy FEOIOKONMS 5

1(O) = L(0)eh BC@¥O RS 5

where x(0) = xo 2 0,y(0) =y, = 0, and L(0) > 0. Hence, the theorem proved. O

3.2 Boundedness of the solution
Theorem 3.2. In R?, all the solution of model (4) are uniformly bounded.

Proof. Let us assume p = x + y + I, and by differentiating it, we obtain

dp _dx dy  dh

= 5
dt dt dt dt ©

dx d
f& Y

and taking the value of o, 4,

and % from model (4), we have
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If ¢ > min(d;, d;) and using upper bound (1 + 0)/6 of x, we defined ¢ > 0 such that

% +‘up=[x(1 —X)(GX_ 1) +yx] -

a = (dy = w)y - (dr - w4,

<

d
LTSS Ve ©n)

with the theory of differential inequality (Gréonwall’s inequality) [8] we obtain
0<plx,y h) < %(1 = e + p(x(0), y(0), 1(0))eH.

and we have 0 < p < % for t — . Hence, it is clear that all solutions of the system will remain in the region

=10y, ) ER}:p< % for all time. O
4 Equilibria and their existence
R s s s s dx _ dy _ an _
The equilibrium points of system (4) are obtained by solving the equations - = 0, 5, = 0, and d—tl = 0. We are

getting the trivial equilibrium point Ey(0, 0, 0), which always exists. Two axial equilibrium points E(1, 0, 0)
and Ez(%, 0, 0) always exists. Another equilibrium point that is the boundary equilibrium point E5(x*, y*, 0)

exists under the conditionr > bydy,p < 1,and p 2 %, where x* = = d; o p(say) and y* = %}W.
— o014y
*! + *2
Next, the system has the interior equilibrium points (x*, y*, I}*), where y* = ﬁ—dliz s and I = [1:’;; -d ! Bl;zy
provided x* < /r d:l i b,d,, B > byd,, and x* is calculated from equation (6) as follows:
-1
fOxX)=-6bx*+ O+ Dbx>- (O +b)x*-(ap-(O+1D)x-1=0 6)

Using Descartes’ rule of signs, equation (6) could have two positive roots if a > ;*1. This is because there are

two sign changes in this case. If the condition fails, then three possibilities exist: (i) no positive root; (ii) two
positive roots; and (iii) four positive roots (Figure 1).

0 05 1 15 2 0 0.5 1 15 2 0 0.5 1 15 2
(a) (b) (©

Figure 1: These figures show the positive roots of equation (6). The blue curve represents the graph of f(x) vs x for the equation (6). The

. a4
red line represents the line x* = \/ . giln . For the positive roots of the equation (6), it holds that x* < \/r Z:m ,
is clear that (a) shows two feasible roots, (b) shows zero feasible roots, and (c) shows one feasible root, respectively. The parameters are
taken from Table 1.

so from the above figure, it
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5 Stability of equilibria and local bifurcation

For the local stability of the equilibrium point, we need to first find Jacobian matrix about the equilibrium
point and then find the eigenvalue of the matrix. Now Jacobian matrix for model (4) is defined as follows:

An An Ag
J. = |An An Az, @)
Ay Az Asg
where
_ of; _ 5 2axy
Apn = ox =-30x*+2x(6+1) -1 1+ blxz)z,
of; ax?
Ap=—— ="~
ay A+ bud
of of; -2rxy f, rx? 2ByhL
As=—r=0An= "=, Ap=—7"7= ~ 7
oL ox 1+ bx?) dy (1+Dbix?) (1+by?)
_9% ___ B _ 9 _ _ 95 _ __ 2Bk _9% __ B
Ap=—7=- A=~ =0,Ap =" =-——"—5,A3=—"= 7 ~ Oa
oL 1+ by ox ay (1 + byy*) oL 1+by
The Jacobian matrix of model (4) about trivial equilibrium is:
-1 0 O
JE)=|0 -d 0 | ®
0 0 -4

where -1, -d;, and -d, are eigenvalues, respectively, and are all negative; hence, Ey = (0, 0, 0) is always in
asymptotically stable equilibrium.

Theorem 5.1. The equilibrium point E; = (1, 0, 0) is stable if 6 > 1 and d, > 1%,)1; otherwise, unstable.

Proof. Jacobian matrix about Ey(1, 0, 0)

-a
1-6 1+ b, 0
J(E) = ro_ . 9)
0 1+b, d 0
0 0 -d,
Here, all eigenvalues are negative if 6 > 1 and d; > 1+b1 Hence, the axial equilibrium E(1, 0, 0) is asymptoti-
cally stable. 0

Theorem 5.2. Disease-free equilibrium E; = (x*y*,0) is locally stable if Ay < 0, As3 < 0, and Ay;. Ay < 0.

Proof. The Jacobian matrix of model (4) about Disease-free equilibrium is:

An Ap Ag
J=[An Axn A, (10)
Az A Asz
where
apq ap?
Ap=a=-36p* +2p(6 +1) - 1- , Ap=ap=- . A =a3=0,
1= a (4 p( ) (1 + phy )2 12 = pp (1 + phy) 13 = 13
__ 2pq ___m ___ B¢ _ _
An = L+ p2b)’ Ap = A+ poby) di, Ay = A+ qhy)’ Ay =0, Ay =0,
e d @+ bipH(A-p)p -1
A = = - h * = = * = =
33 =C L+ qby) d;, where x*=p r = bid, and y*=gq =
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a AlZ 0
J=|An 0 Ay 1
0 0 As

The one eigenvalue of the above Jacobian matrix is As3 < 0, and the other two eigenvalues can be calculated
from the equation A2 — ad — AppAy = 0, ie,

azt \/az + 4A15A45 12)

2

M2 =
where both roots of equation (12) are negative if it satisfies the following conditions:

AnAp < 0 and Ay <0, ie, if these conditions are satisfied then disease-free equilibrium point is locally
asymptotically stable. d

5.1 Stability analysis of coexistence equilibrium

Theorem 5.3. The interior equilibrium point of model (4) is locally asymptotically stable if the following con-
ditions hold: a; > 0, a3 > 0, and qya; — a3 > 0.

Proof. Jacobian matrix about the coexistence equilibrium:

An Ap 0
J=1An Apn Axj| (13)
0 Ay O
where
of, 2axy of ax* oh 2rxy
Ap ==t =3+ 22O+ 1) 1= ———— Ap =~ =~ Ay = 0,4y = —> =
=5 X @+1) A+ bpd) 2 = 5y L+ by 8 0, Ay x (b))’
ofh rx’ 2pyh -By’ of 2pyh
Ay = 2% = - - dy, Ags = Ap =0,Ay = =2 =- ,
2Ty @+bu®)  A+by?) TR 1aby? T TR T gy T (14 by
_ofs By
Az = oL 1+ byy? &
The characteristic equation of the matrix is:
2B+ al)lz + @A +as=0, (14)

where
= —(Ap + Ayp), Gy = AnAy — Ay — ApAy, a3 = —(AsAniss),
and A is the eigenvalue. According to the Routh-Hurwitz criterion, stability conditions are a; > 0, a3 > 0, and

ma, > as. If the equilibrium point satisfies these conditions, the equilibrium point will be locally asymptotically
stable. O

5.2 Bifurcation analysis

Definition 5.4. Bifurcation: Bifurcation occurs when the dynamical behaviour of a system, such as equilibrium
stability and number of equilibrium, changes as a result of a small change in a parameter. The parameter at
which the behaviour changes is called the bifurcation point [35].
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5.2.1 Hopf bifurcation

Definition 5.5. A Hopf bifurcation is a type of local bifurcation in dynamical systems where a stable equili-
brium point becomes unstable and periodic (oscillatory) behaviour emerges as a parameter changes [35].

Theorem 5.6. The model (4) shows Hopf bifurcation around a disease-free equilibrium point if 8 exceeds its
critical value, i.e.,

o=gh=PL* (1 + p*by)* + 2p(1 + p*by)* 1)
© 7 =3pX(1+ pby)* + 2p(1 + p?by)?

Proof. The eigenvalues of the model (4) about the disease-free equilibrium is defined in Theorem 5.2, where 4
and A; are the complex eigenvalues and /; is the real eigenvalue. The complex eigenvalues 4 and A, are purely
imaginary if and only if there is a critical value of § = §". By differentiating the real part of the complex
eigenvalue about  and equating with zero, we obtain 6" as follows:

apq + (1 + p*b1)* + 2p(1 + p*b1)?*

0=0n= .
=3p%(1 + p*b1)* + 2p(1 + p?by)?

= -3p? + 2p # 0, which satisfy the transversality condition. So

Furthermore, for i = 1, 2, the real part Re[%

the system experience Hopf bifurcation around E,(x*, y*, 0) for some critical value of the parameter 6 = 6.

Numerically, it can also be proven by setting the parameters as follows: a = 0.79,0 = 2.5, =
0.16,r =1, d; = 0.6868, d, = 0.71, b; = 0.015, and b, = 0.010158. There exists a single boundary equilibrium,
denoted as Ep(x,y, 0) = (0.7589, 0.363096, 0), for these parameters. The corresponding eigenvalues are
(-0.363643 + 0.3394551, —0.363643 - 0.339455i, —0.697620932). This equilibrium point is stable, as all the real
parts of the Jacobian matrix are negative. In addition, the eigenvalues of the Jacobian matrix at the Hopf
bifurcation point, 6 = 1.4458113, are approximately (0.2155602381, —0.2155600238:, —0.7095630693). This signifies
that the equilibrium point becomes unstable as the eigenvalues have opposite signs. The stability is lost at

0 = 1.4458113. The transversality condition is satisfied as Re(%) = -0.1875 # 0. Hence, Hopf bifurcation is
proved for the given parameters. (]

Theorem 5.7. Hopf bifurcation about the interior equilibrium E(x*, y*, ) of model 4 occurs whenever the
Allee parameter attains the threshold value 8 = 0™ in the domain Dy, = 6™

Dy = 0™ € R* : H(O™) = [a1(0)ax(0) — a3(0)]g-gm = 0 with a(6™) > 0,

M * 0 .
ao 9=t

Proof. The characteristic equation for a matrix J, is given as follows:
A3+ alﬂz + @A +a3=0, (16)

In this equation, A represents the eigenvalues of the matrix J, and ai, ay, and as are coefficients defined in the
proof of Theorem 5.3. We have (aja, — a3)|p-g = 0. In addition, from equation (16), we have (A2 + a;)(A + ay),
which gives three roots: A4 =iJ/az, & = -i\/a;, and A3 = —as. The generally form the roots of (16) are
A = p(0) +1b(0), A, = p(0) - ib(B), A3 = —a1(0) for all values of A. By differentiating characteristic equation
(16), we have

A _ -y + My + ds) )

de 302+ 2 + ay
and by substituting, A = i,/a; in equation (17), we have

% _ 3 — Gyl + iy /0y

Ao 2a - imar)
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after rationalisation, we have

dA _ dz = (axds + axdy) . iJaz (amas + axty — amaxdy)

60 2+ ) 2ay(af + ay)
-dH . dH (18)
o a SV REG UV
2af + ay) 20,  2ayaf +ap)|

From equation (18), we clearly see that all the criteria for the Hopf bifurcation satisfy for the domain assumed

-aH
dRe(A) _ a0
d6 g 2al+ay)

in the that theorem. Here, [ # 0, and by monotonicity restriction in the real part of the

complex root [% # 0 [38], the transversality condition % # 0 ensures the existence of Hopf bifurcation. [J

5.2.2 Transcritical bifurcation

Definition 5.8. A transcritical bifurcation refers to a particular type of bifurcation that occurs in dynamical
systems. This phenomenon occurs when two equilibrium points, each having opposite stability characteristics,
undergo a switch in their stability features when a parameter is varied.

Theorem 5.9. The model (4) has transcritical bifurcation around the axial equilibrium E(1, 0, 0) at 6 = leel,
where 011 = 1 and 1%,)1 * d,.

Proof. The model (4) undergoes a transcritical bifurcation around the axial equilibrium if it meets the criteria
outlined by Sotomayor, stated as follows: (i) WTf,(Ey, 0) =0, (i) WT[Dfy(Ey, 0)v] #0, and (iii)
WT[D?f(E, 0)(v,v)] # 0. From matrix (9), we clearly see that one of the eigenvalue will be zero iff

Det(J,) = 0, which implies that 6!l = 1 and the other two nonzero eigenvalues are —d,, %@dl”. We find
1

eigenvectors v and w with a zero eigenvalue corresponding to matrix J and JT. Then, we obtain v = (1, 0, 0)T

—(A+bpdi+r
a b

T
and w = [ 1, 0] . We have

() WTfy (B 0) = 0, (i) WTIDf (B, O] = -—— 04T 4 g

and
2—(1+b1)d1+r¢0

(iti) WI[D*f (Ey, )(v, V)] = - a

ifd;, # 1+b1 and all conditions of Sotomayor’s are satisfied. Hence, the system experiences transcritical bifurca-
tion. O

Theorem 5.10. For the interior equilibrium point, saddle-node bifurcation occurs at 6 = 3.302872 for the fixed
parameters shown in Table 1.

Proof. The number of interior equilibrium points changed as the bifurcation parameter value 6 varied. From
bifurcation Figure 2, we easily see that two equilibriums come together, collide, and annihilate each other at
limit point 6 = 3.302872. At the limit point, there is exactly one equilibrium. There are no equilibria before it,
and after the limit point, two equilibria occur (Figure 2). O

6 Numerical simulation

In this section, we describe the dynamics of model (4) numerically, for which we have used the mathematical
tools Matlab and Maple. The Runge-Kutta fourth order method is used to describe the dynamical behaviour of
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Table 1: This table shows the fixed parameters set denoted by set (A)

a ﬁ r d1 dz b1 bz

0.5 0.061 0.5 0.05 0.06 0.5 0.6

the model. The analytical and numerical studies give exactly the same results, which means that the study of
dynamical behaviour like equilibria and their stability, as well as some local bifurcations, in both analytical
and numerical studies gives the same results for the valid set of parameters. We have fixed the parameters set
(1) for further numerical simulation.

In order to conduct more numerical simulations, we maintain the fixed parameters and investigate the
impact of the Allee parameter by varying its value. This part focuses on the examination of the dynamical
properties, including stability and bifurcation, of the model with respect to its equilibrium points. By using the
Mabple software (mathematical tool), we have verified the analytical results numerically. Now we have plotted
one-dimensional bifurcation diagram using the bifurcation parameter Allee (6) with the help of the Matcont
toolbox.

To study a Hopf bifurcation point more closely, you can indeed plot various visual representations of the
system’s behaviour, including phase portrait, limit cycle, and time series. A limit cycle is a closed trajectory in
the phase space, representing the oscillatory behaviour. This can help you visualise the system’s periodic
motion. The time series plots show how the system’s behaviour evolves over time and can illustrate the
transition to oscillatory behaviour at the Hopf bifurcation point. This article investigates bifurcation diagrams,
limit cycles, and time series plots in the next subsections.

6.1 Bifurcation diagram

Figure 2 describes two interior equilibria for 3.302872 < 6 < 4.172, one of which is stable and the other is
unstable. There is one stable interior equilibrium for 4.172 < 6 < 7.236080, and one unstable interior

1 T T T T T T T
o —— |
0.8 7
0.61
06 - | 0.6 Unstable Equilibrium ||
< > Stable Equilibrium
= 0.59 Unstable equilibrium
> -
i 0.58 > 6,,=3.303214
04T 0.57 e 0 ,=3302872 i
0.56 Y 0h2=7.236080
0.
0.2 33 3.305 3.31 7
6Tc=4.172
0 Il Il Il Il Il Il
2 3 4 5 6 7 8 9 10
Allee ()
(a)

Figure 2: This is the one parametric bifurcation diagram, where the Allee considered as a bifurcations parameter. This diagram shows
that Hopf bifurcations are occurs at 6 = 6y = 3.303214, and 0 = 0y, = 7.236080, Also saddle node and transcritical bifurcation obtained
at@ = Opp = 3.302872, and 6 = O, = 4.172 respectively. Taking all parameters same as fixed set A in Table 1 and initial condition xo = 0.97,
Y, =156, and 1(0) = 6.3.
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Figure 3: (a and b) Bifurcation diagrams with 6 as the bifurcation parameter for different intervals: 3 < 6 < 3.5 and 3.5 < 6 < 20,
respectively. These diagrams clearly illustrate that the stability of the equilibrium point shifts from a stable state to an oscillatory state at
points 6 = 7.236080 and 0 = 3.303214, respectively. All other parameters are the same as those in Table 1.

equilibrium for 6 > 7.236080. The limit point bifurcation occurred at 8 = 6;p = 3.302872. In Figure 2, it is
evident that there are no interior equilibria before reaching the value of 6;p. However, as we cross the limit
point 8;p, the system exhibits two interior equilibria. This observation indicates that there is a change in the
number of equilibria as the parameter 6 varies, which is a characteristic of a saddle-node bifurcation. The
black line (line drown at 6,. = 4.172) depicts transcritical bifurcation, as two equilibrium points exist before the
black line and one equilibrium point after the black line. In addition, at 6 = 7.236080, supercritical Hopf
bifurcation occurs because the first Lyapunov coefficient is —4.469271e™% < 0, and at 6 = 3.3032143, subcritical
Hopf bifurcation occurs because the first Lyapunov coefficient is 7.104523¢™% > 0. Figure 3a and b shows that
the interior equilibrium points change their stability and arise a limit cycle or oscillatory behaviour at Hopf
points. After 8 = 7.236080, the amplitude of the limit cycle increases as 6 increases. At 8 = 3.303214, stability
changes, and the limit cycle burns at that point, but before it, there is no interior point, so it does not show any
dynamical behaviour.

6.2 Limit cycle and time series at Hopf bifurcation points

Figures 4-6 are drawn for the fixed parameters set (A) given in Table 1 and the Hopf bifurcation points
Or1 = 3.303214 and 0y; = 3.303214, respectively.

Figures 4, 5, and 6 depict the periodic oscillations of model (4). This periodic oscillation suggests that the
species in the ecosystem exhibit cyclic fluctuations, indicating that their populations are not permanently
stable and do not face immediate extinction. Instead, these oscillations imply that the species remains in
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Figure 4: (a) Limit cycle at Hopf point 6; = 3.303214, and (b) limit cycle behaviour at second Hopf bifurcation point 6, = 7.236080.
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Figure 5: The figures (a), (b), and (c) are time series plots that ensure periodic oscillation of the model (4) at Hopf point 6 = 3.3032143.

existence over time despite the recurrent population fluctuations. Hence, we can say from the figure that all
the species of prey, susceptible predator, and infected predator exist in the form of recurrent population
fluctuations.

6.3 Phase portrait in the different region of the Allee parameter

The phase portraits are plotted for the different region of the Allee parameter, and the all other parameters are
the same as fixed. Figure 2 shows three Allee parameter region 3.302872 < 0 < 4.172, 4.172 < 6 < 7.236080,
and 6 > 7.236080.

In Figure 7, it is depicted that after passing the second Hopf bifurcation point, marked as 65, = 7.236080,
the system exhibits periodic oscillations. When we increment the value of 8 in the system, we observe that the
amplitude of the limit cycle also undergoes an increase. Figure 8 represents two phase portraits Figure 8(a) for
3.302872 < 0 < 4.172, which shows that two interior exist in which one is locally stable and other is unstable,
Figure 8(b) for 4.172 < 6 < 7.236080 shows that one stable interior equilibrium exists. The equilibrium point is
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Figure 6: The figures (a), (b), and (c) are time series plots that ensure periodic oscillation of the model (4) at Hopf point 6, = 7.236080.
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Figure 7: This figure shows the limit cycle behaviour after Hopf bifurcation point (hy) at (a) 8 = 10.1, (b) 8 = 12, and (c) 6 = 17,
respectively. All other parameters are the same as those in Table 1.
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Figure 8: (a) The phase portrait indicates that there are two interior equilibria, one of which is stable and the other is unstable.
Furthermore, it demonstrates that the trivial equilibrium is stable when 8 = 3.5. In addition, (b) the phase portrait for 8 = 4.5 reveals that
only one stable equilibrium point exists, while all other parameters remain the same as those in the fixed parameters set in Table 1.

denoted by dot in the given figures. Figures 9(a) and 10(a) illustrate that for the given parameters, all nearby
trajectories converge towards the equilibrium point. This indicates that both the axial and disease-free
equilibrium points are asymptotically stable. The Allee parameter destabilised the disease-free equilibrium

as it converted stable (Figure 10) to oscillatory behaviour (Figure 11).

Now discuss the phase portrait about the axial and boundary equilibrium points for different sets of
parameters mentioned in the caption of Figure 9 and 10, respectively.
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Figure 9: (a) A phase portrait showing that the axial equilibrium E;(1, 0, 0) is stable. (b) A time series plot with initial conditions xo = 3.15,
Yy = 0.202, L,(0) = 1.7 and the parameter values a = 0.5, 6 = 3, 8 = 0.142, r = 0.0372, d; = 0.7, d, = 0.01056, b, = 0.75, and b, = 0.2.
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Figure 10: (a) A phase portrait showing that the disease-free equilibrium point Ey(x*, y*, 0) is stable; and (b) a time series plot with the
parameter values as a = 0.79,0 = 2.5, 8 = 0.16,r = 1.2, d; = 0.6868, d, = 0.71, b, = 0.015, and b, = 0.010158.
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Figure 11: (a) A phase portrait for the Hopf threshold value 6 = 1.4458113 that shows the limit cycle. (b) A time series plot that shows the
periodic oscillation of the disease-free population, taking other parameters that are the same as Figure 10.
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Figure 12: (a) The stable limit cycle behaviour around the unstable equilibrium point, and (b) the periodic oscillation for the same. Taken
0 = 8, and all other parameters are the same as those in Table 1.

7 Discussion and conclusions

The Allee effect has huge impact on the eco-epidemiological model and also gives a good understanding of
ecology and epidemiological issues. This article investigated all possible biologically feasible steady states of
model (4) and also studied the stability of model (4) for every feasible equilibrium state. The ability for all
species to coexist in a stable or oscillatory manner is dependent upon a set of parametric restrictions, with the
Allee effect playing a significant part throughout the system. The Allee effect can destabilise the system; see
the bifurcation diagram 2. The stability of the model about the interior equilibrium points switches, and the
system appeared to be Hopf bifurcation, where the Allee effect plays an important role as a bifurcation
parameter (Figure 2). The asymptotic stability of the system was examined for all possible equilibrium states.
The investigation has been conducted on the presence of Hopf bifurcation in nearby areas of both the disease-
free and interior equilibrium states. Figures 5 and 6 shows that all species exist together in oscillatory motion
in presence of the Allee effect and diseases. All the species (prey, susceptible predator, and infected predator)
co-exists and stable together for the Allee parameter 6 = 4.5 (Figure 8). The survival of predators can also be
facilitated when prey populations experience the Allee effect. The Allee effect has a notable impact on the
stability of equilibrium points in ecosystems where multiple species coexist. The one-dimensional bifurcation
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analysis has been studied, where the Allee effect is taken as a bifurcation parameter. The diagram describes
the different types of local bifurcation such as Hopf bifurcations, transcritical bifurcation, and saddle-node
bifurcation (Figure 2). This article is primarily focused on comparing it with article [32]. The study by Shaikh
and Das [32] shows that the Allee effect controls the chaotic behaviour of the model. In the present article, the
chaotic oscillation is not obtained for the Allee parameter. Our model illustrates only stable and oscillating
behaviour. The functional response change the dynamics of the model as chaotic oscillation is not obtained in
the present article. Most of the results are similar to that of the article by Shaikh and Das [32]. The stability and
oscillatory behaviours of the disease-free equilibrium point are shown in the phase portraits in Figures 10 and
11, respectively. Furthermore, limit cycle and periodic oscillation behaviours at Hopf bifurcation points about
interior equilibrium point are shown in the phase portraits in Figures 4-6 respectively. The purpose of this
article is to make important contributions to the progress of research in ecology, eco-epidemiology, and other
related fields, especially when it comes to protecting biodiversity and putting effective management plans into
action. In further research efforts, it is possible to investigate the possibility of incorporating gestation delay as
a means of enhancing the existing model. Significantly, the examination of pattern-forming instabilities in
reaction-diffusion systems is now emerging as a significant and interesting area of study [39]. With the help of
important recent work [16,21,36], the researchers may modify this model using delay differential equation for a
more realistic model, as well as modify this model using fractional operators as part of future work.
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