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Abstract: The declaration of a nationwide lockdown in India led to millions of migrant workers, particularly
from Uttar Pradesh (UP) and Bihar, returning to their home states without proper transportation and social
distancing from cities such as Delhi, Mumbai, and Hyderabad. This unforeseen migration and social mixing
accelerated the transmission of diseases across the country. To analyze the impact of reverse migration on
disease progression, we have developed a disease transmission model for the neighboring Indian states of
Delhi and UP. The model’s essential mathematical properties, including positivity, boundedness, equili-
brium points (EPs), and their linear stability, as well as computation of the basic reproduction number R0( ),
are studied. The mathematical analysis reveals that the model with active reverse migration cannot reach a
disease-free equilibrium, indicating that the failure of restrictive mobility intervention caused by reverse
migration kept the disease propagation alive. Further, PRCC analysis highlights the need for effective home
isolation, better disease detection techniques, and medical interventions to curb the spread. The study
estimates a significantly shorter doubling time for exponential growth of the disease in both regions. In
addition, the occurrence of synchronous patterns between epidemic trajectories of the Delhi and UP regions
accentuates the severe implications of migrant plight on UP’s already fragile rural health infrastructure. By
using COVID-19 incidence data, we quantify key epidemiological parameters, and our scenario analyses
demonstrate how different lockdown plans might have impacted disease prevalence. Based on our obser-
vations, the transmission rate has the most significant impact on COVID-19 cases. This case study exem-
plifies the importance of carefully considering these issues before implementing lockdowns and social
isolation throughout the country to combat future outbreaks.
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1 Introduction

In the past, humanity has faced various epidemics that have posed threats to our existence. The most dire
situation in this context is a pandemic. In March 2020, COVID-19, caused by the SARS-CoV-2 virus, which
originated in Wuhan, China, in late 2019, had spread to over 203 countries. The outbreak was characterized
by symptoms such as cough, fever, fatigue, and shortness of breath, leading to severe pneumonia and
fatalities [29]. Despite this, it took theWorld Health Organization (WHO) 4 months to officially declare it as a
pandemic on March 11, 2020 [17]. As a result of this delayed declaration, planning and implementation of
strict precautionary measures against the spread of the virus in India were also delayed. In addition,
China’s refusal to provide accurate data on 174 positive cases it had identified made it difficult for WHO
to extract meaningful information. With limited information on disease symptoms and medications, WHO
published a manual on setting up treatment centers and infection screening facilities to optimize patient
care in affected regions.

India, with its high population density, has a high rate of human-to-human social contact, making it
challenging to control the pandemic in its early stages [4]. To prevent the spread over a larger area, the
Government of India (GoI) initiated screening of travelers at the seven busiest airports in the country [9].
However, with the limited clinical information about the disease, thermal screening was the only option for
detecting infected individuals. The first case of COVID-19 in India was reported on January 30, 2020, in
Kerala’s Thrissur district, by a student who had returned home from Wuhan University in China. In
February, the spread of the disease among international immigrants reached three cases [7]. While infection
rates were relatively low in February [25], positive cases spiked significantly in mid-March, reaching 100.
The primary cause for the surge in India was international travelers, many of whomwere asymptomatic and
undetectable through available detection techniques. Consequently, the disease spread across the country.
National media reports pointed out that due to WHO’s delayed characterization of COVID-19 as a pandemic,
India may have reacted too late in its decision to cut down on flights from other countries.

Due to India’s high population density and inadequate health infrastructure (with less than 1 doctor per
1,000 people), the authorities were unable to effectively respond to the unexpected situation due to a lack of
testing facilities, isolation wards, and healthcare professionals [24]. As a result, strict non-pharmaceutical
interventions (NPIs) such as quarantine, mobility controls, and social distancing were implemented. The
Government of India (GoI) declared the first nationwide lockdown with only 4 hours’ notice, starting from
midnight on March 25, 2020, and ending onmidnight on April 15, 2020. However, the timeframe (March 11 to
March 25, 2020) was insufficient for the authorities to educate socially and economically disadvantaged
populations on precautionary measures. The lack of disease awareness and information led to a large-scale
migration of workers returning to their native places (referred to as “reverse migration”), which signifi-
cantly increased the number of positive cases in India. Panic buying of essentials, the Tablighi Jamaat
event, and liquor sales during the lockdown also contributed to the rise in cases. Nevertheless, reverse
migration posed a major challenge for India, leading to a surge of patients across the country.

This study aims to analyze the lessons that India can learn from this experience. We assess the impact of
unidirectional reverse migration on disease propagation in the capital city of Delhi and the most populous
state of Uttar Pradesh (UP). To date, no specific mathematical model has been studied to describe the impact
of Delhi–UP migration during the first lockdown. Based on a report [13], the total population influx into Delhi
from UP was reported as 45.16% from 1991–2001, which was a crucial factor behind Delhi’s economic growth.
However, the disease-induced lockdown resulted in unemployment and uncertainty about livelihood, com-
pelling migrants to cross the Delhi border to reach their native places in order to survive the ordeal.

After all this, GoI increased testing, quarantine facilities, treatment facilities, and contact tracing and
extended the first lockdown three times until May 31, 2020, to mitigate the virus spread. However, these
efforts fell short in suppressing the pandemic. Despite the 68-day lockdown, statistics confirmed a signifi-
cant spike in these two neighbouring states and across India. Using COVID-19 data [19], a demonstration of
the spiked positive cases across Delhi, UP, and India is given in Figure 1.

The statistics presented in Table 1 confirm that Uttar Pradesh (UP) had a higher case load than Delhi
during the second phase of the lockdown (LD 2.0). During LD 2.0, Delhi had approximately 1.7 times the
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case load compared to LD 1.0, whereas UP had 3.3 times the case load compared to LD 1.0. These statistics
also suggest that the spread of COVID-19, which was initially concentrated in urban areas of India until the
first lockdown, likely reached rural areas of UP as migrant workers returned to their native places [22]. The
rural division of UP faced significant challenges, including shortages of medical equipment and health
facilities, limited medical staff, fear of mistreatment, social stigma, and quarantine concerns, while dealing
with COVID-19. In this study, we take the opportunity to model the impact of migration and anticipate the
potential implications of lockdown policies in India. Since the end of 2019, researchers worldwide have
formulated various epidemiological models to forecast the quantitative growth of COVID-19 in different
regions. In contrast to previous studies, this work mathematically analyzes the post-lockdown and post-
pandemic situation in the Delhi–UP region, providing insights into disease dynamics through synchroniza-
tion, which can elucidate how viruses evolve beyond their basic biological characteristics.

2 Model

The mathematical model used to describe the return of laborers from Delhi to UP is based on the SIR model.
The model equations take into account the population of Delhi and UP, which differ in population density,
economic condition, and healthcare facilities, but have similar living environments and disease transmis-
sion probabilities. The model assumes that the population is homogeneous and has homogeneous mixing.
Other significant assumptions of the model are as follows:

Spike in COVID-19 Confimed Cases during The First 68 Days of Lockdown
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Figure 1: Spike in confirmed COVID-19 cases.

Table 1: Spike in number of cases in Delhi–UP region and across India [19]

Phase Start date End date Days Surge in India Surge in Delhi Surge in UP

LD 1.0 25 March,20 14 April, 20 21 9,714 1,480 525
LD 2.0 15 April, 20 3 May, 20 19 28,541 2,561 1,752
LD 3.0 4 May, 20 17 May, 20 14 48,394 4,435 1,492
LD 4.0 18 May, 20 31 May, 20 14 85,974 8,495 2,840
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(1) The population is assumed to grow at a constant rate, b0, and decline at the natural death rate, d0.
(2) The total population of each state Ni (i 1, 2= ) is distributed into seven compartments with

N S E Q I I I R .i i i i A S I ii i i= + + + + + +

The description of each compartment is mentioned in Table 2.

(3) The standard incidence rate is used as βSI
N
, where β measures the combined effect of the infectiousness

of the disease and the contact transmission rates. The incidence function is assumed to be independent
of media coverage, as the role of media was negligible in communicating preventive measures to the
underprivileged population in the early stage of the pandemic.

(4) A parameter a is used to represent the fraction of susceptible population who are likely to roam around
and have effective contact with infectious individuals. Susceptible individuals acquire infection at a

rate of βS I ηI
aN

I( )+ , where η0 1< < is a modification parameter that accounts for the assumed reduction in

disease transmission by home-quarantined individuals. η measures the efficacy of isolation or treat-
ment given to the home-quarantined individuals, with perfect isolation if η 0= , leaky isolation if

η0 1< < , and completely ineffective isolation if η 1= [23].
(5) The exposed individuals are captured by the term βS I ηI

aN
I( )+ . These individuals are removed from the

susceptible compartment and added to the exposed compartment.
(6) The individuals in the exposed compartment remain there for the incubation period before becoming

infectious. The latent period is considered as
ε
1 , where ε is the rate of removal from the exposed

compartment to the infectious compartment [6]. The value of ε is determined by the incubation period,

Table 2: Description of compartments

Compartment Description

Susceptible (S) Entire population is assumed to be susceptible.
Exposed (E) Fraction who came in contact with COVID-19-infected person
Quarantined (Q) Fraction who were tested positive and facilitated the service from

government quarantine centers for 14 days
Asymptomatic infected IA( ) Fraction who had the disease but did not show symptoms

Symptomatic infected IS( ) Fraction with the disease symptoms

Home-quarantined infected II( ) Fraction who isolated themselves at their home for incubation period due to limited
number of government quarantine centres

Recovered R( ) Removed population either by death or recovery

Figure 2: A schematic diagram of COVID-19 model (1). All arrows indicate transition from one compartment to another.
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which is 5 days for COVID-19.
(7) The population in the infected and quarantine compartments increases over time but then reduces due

to recovery and death. The recovered population always increases by susceptible and migrant indivi-
duals after they leave the quarantine class. However, a low disease-induced death rate δ is considered
in the model [21].

(8) Migration between states occurs with a finite speed, and there is an associated delay of Ω1,2 in the
migration rate m, which is proportional to the geographic distance between the states.

(9) The recovery rate χ is calculated as 1
recovery period( )

, with a recovery period of 14 days after contact with a

confirmed case according to the literature [15].

A schematic diagram for the COVID-19 mathematical model is shown in Figure 2. With the aforemen-
tioned assumptions, the model equations for reverse migration from Delhi to UP are presented as follows:
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Table 3: Details of parameters used in the model simulation

Parameter Description of parameters Numerical value (sources)

b1,2 Birth rate 0.000024246, 0.0000717

d1,2 Death rate 0.000024246, 0.0000717

β1,2 Contact rate 0.191, 0.158

a1,2 Fraction of population which is susceptible 0.2, 0.3 (Calibrated)
k1,2 Rate of quarantine rates of exposed individuals 0.059, 0.09

ε Incubation period 1
5

α1,2 Rate of detection through contact tracing 0.069, 0.086

χ Rate of recovery 0.09871 [3]
ϕ1,2 Rate of quarantine of symptomatic individuals 0.122, 0.111

δ1,2 Disease-induced death rate 0.0026, 0.0025

Ω Delay in traveling 4.5
m Migration rate 0.0005
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For description of other parameters used in the proposed model, we provide Table 3, which lists the
explanation and numerical values of the chosen parameters.

3 Well-posedness

3.1 Positive invariance

Proposition 1. The non-negative space R 0
14
≥

is positively invariant by the system.

Proof. System (1) can be written in the following form:

S t b SIβ aN dS mS t
E t SIβ aN εI k E mE t
Q t kE αI χI Q
I t kεI E α χI I mI t
I t k εI E ϕI mI t
I t ϕI χI δ I
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where S S S, T
1 2[ ]= , E E E, T

1 2[ ]= , Q Q Q, T
1 2[ ]= , I I I,A A

T
A 1 2[ ]= , I I I,S S

T
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T
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Also a a a, T

1 2[ ]= , I I I ηI I I ηI,A S I A S I
T
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Again rewriting the system (2) in a more compact form:

x t b β y e x aN A x B x t
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with zero delay, system (3) can be rewritten as follows:
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where β x aN A B˜ diagi i
T

i y y1
2 1( )

((

∑ <

)

+ +

)=

− and A Bx x+ are Metzler matrices since x 0≥ . A Metzler matrix is
a matrix with off-diagonal entries non-negative [12,26]. Then, the plane R 0
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since it is well known that a linear Metzler system let invariant the non-negative space. This proves the
positive invariance of the non-negative space R 0

12
≥

by system 1, and this achieves the proof. □

3.2 Boundedness of trajectories

In order for the proposed system to hold epidemiological significance, it is crucial to establish that all of its
state variables are non-negative and remain within a bounded range throughout the entirety of the system’s
lifespan. To substantiate this claim, we propose the following proposition to demonstrate the boundedness
of trajectories.

Proposition 2. For ψ 0≥ , the simplex:

N S E Q I I I R R N t b b
d d
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is a compact forward invariant set for system (1).

Proof. Let the initial data be

S E Q I I I R0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0.A S I1,2 1,2 1,2 1,21,2 1,2 1,2( ) ( ) ( ) ( ) ( ) ( ) ( )> > > > > > >
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Then, it can be shown that the solutions

S E Q I I I R, , , , , ,A S I1,2 1,2 1,2 1,21,2 1,2 1,2( )

of system (1) are positive for all t 0> . Now, adding all equations in the differential system (1) gives
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Since d 01 > and d 02 > , therefore, it can be deduced that

N t b N t˙ d ,( ) ( )≤ −

where b b b1 2= + and d d dmin ,1 2( )= . It then follows that N tlimt
b
d( ) =

→∞
, which implies that the trajec-

tories of system (1) are bounded.

On the other hand, solving the differential inequality N t b N t˙ d( ) ( )≤ − gives

N t N t b
d

t0 exp d 1 exp d .( ) ( ) ( ) ( ( ))≤ − + − −

In particular, N t b
d( ) ≤ if N 0 b

d( ) ≤ . Thus, the defined simplex set is absorbing for ψ 0> . □

4 Existence of disease-free and endemic equilibria

The occurrence of a disease-free equilibrium or an endemic equilibrium in a population is dependent on the
value of the basic reproduction number (R0). However, it is possible to demonstrate this independently
through the use of a biologically meaningful initial condition.
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In this section, the governing equations of the model, which involve 14 compartments, are considered
without incorporating any delay term for the purpose of simplified calculations and enhanced comprehen-
sion. Specifically, Ω is taken as 0, indicating the absence of delays. It is known that for the steady state
equilibrium, we follow

P
t

P S E Q I I I R id
d

0 , , , , , , , for 1, 2 .i i i A S I ii i i { }{ }= ∀ ∈ ∈

The analytic solution of equilibrium points is obtained by equating the model equations (1) to zero. There
exists an unique non-trivial equilibrium point

E S E Q I I I R S E Q I I I R, , , , , , , , , , , , , ,EE A S I A S I1 1 1 1 2 2 2 21 1 1 2 2 2( )=

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

where each component of EEE is non-zero. However, the model (1) does not possess any disease-free
equilibrium for active reverse migration.

Suppose that the influx of migrants in UP from Delhi was nil, i.e., m 0= . In this case, the model (1)
possess its four non-trivial equilibrium points Ej, for j 1, 2, 3, 4{ }∈ in explicit form, which are as follows:

8  Shubhangi Dwivedi et al.



E S E Q I I I R b
d

E b
d

b
d

E S E Q I I I R S E Q I I I R

E b
d

S E Q I I I R

EE in Delhi DFE in UP

DFE in both regions

EE in both regions

DFE in Delhi EE in UP

, , , , , , , , , 0, 0, 0, 0, 0, 0 ,

, 0, 0, 0, 0, 0, 0, , 0, 0, 0, 0, 0, 0 ,

, , , , , , , , , , , , , ,

, , 0, 0, 0, 0, 0, 0, , , , , , , .

E E E
A

E
S

E
I

E E

E E E
A

E
S

E
I

E E E E E
A

E
S

E
I

E E

E E E
A

E
S

E
I

E E

1 1 1 1 1
2

2

2
1

1

2

2

3 1 1 1 1 2 2 2 2

4
1

1
2 2 2 2

1 1 1
1

1
1

1
1

1 1

3 3 3
1

3
1

3
1

3 3 3 3 3
2

3
2

3
2

3 3

4 4 4
2

4
2

4
2

4 4

⎜ ⎟

⎜ ⎟

( ) ( )

( ) ⎛

⎝

⎞

⎠

( )

( ) ⎛

⎝

⎞

⎠

( )

=

=

=

=

(7)

where components other than zero entries are non-negative. Two of the non-trivial fixed points E2 and E4 represent disease-free
equilibrium (DFE) and endemic equilibrium (EE), respectively. There may also be other implicit equilibrium points in the model.

However, their computation is complex due to the large dimension of the model.

Remark. Disease-free equilibrium for model (1) with m 0≠ offers initial evidence that a pandemic like
COVID-19 could be suppressed by strict lockdown only.

To gain a better understanding of the dynamics and stability of the system at various equilibrium
points, we plot the nullclines of the system’s trajectories with m 0= . As m 0= divides the model (1) into
two independent patches (which are identical but with distinct parameter values), it is adequate to plot the
nullclines of just one isolated patch to gain insight into how the intersection of state variables leads to an
equilibrium point. Furthermore, to plot the nullclines, we draw the susceptible and exposed compartments
and consider the other compartments as quasi-steady states. Figure 3 displays the nullclines for the S1 and
E1 compartments, along with an equilibrium point resulting from the intersection of these two nullclines.

4.1 Disease-free equilibrium of model with no migration

On the basis of the analysis conducted in Section 4, we consider the model equations with m 0= to assess
the stability of the disease-free equilibrium. Therefore, we analyze model (1) without the delay term, and
compute the Jacobian matrix to investigate its stability around the disease-free equilibrium. The Jacobian
matrix is obtained as follows:

Figure 3: Nullcline plot for susceptible and exposed compartments.
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J O
J J

Jacobian
1

,14 14
7 7
Delhi

7 7

7 7
UP

7 7
UP

⎛

⎝
⎜

⎞

⎠
⎟=

×

× ×

× ×

(8)

J

d m
β I I ηI

N a
S β

N a
S β

N a
S β η
N a

β I I I η
N a

ε k m
S β
N a

S β
N a

S β η
N a

k χ α
εk α χ m

ε k m ϕ
ϕ χ δ

χ χ χ d m

0 0

0 0

0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0

,

A S I

A S I

7 7
Delhi

1
1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1
1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1 1

1 1 1

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

( )

( ) ( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

( )

( )

=

− +

− + + − − −

+ +

− − −

−

− − −

− − − +

− +

− +

×

(9)

J

m
m

m
m

m

1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0

,7 7
UP

⎛

⎝

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟
⎟

=
×

(10)

and

J

d
β I I ηI

N a
S β

N a
S β

N a
S β η
N a

β I I I η
N a

ε k
S β
N a

S β
N a

S β η
N a

k χ α
εk α χ

ε k ϕ
ϕ χ δ

χ χ χ d

0 0

0 0

0 0 0 0
0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0
0 0 0

.

A S I

A S I

7 7
UP

2
2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

2 2
2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

2 2 2

2 2 2

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

( )

( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

( )

( )

=

−

− + + − − −

+ +

− +

−

− +

− −

− +

−

×

(11)

It is worth noting that the matrix (8) is a lower triangular block matrix, composed of (9) and (11). Conse-
quently, the eigenvalues of the Jacobian matrix (8) will be a combination of the eigenvalues of these
individual submatrices. The stability of the equilibrium points can be verified by calculating the Eigenva-
lues of the Jacobian matrix (8) of equations (1) at these points.

With strict lockdown (even a single individual cannot slip in UP from Delhi), the uncoupled
Jacobian matrices (9) and (11) (see Supplementary information) at the disease-free equilibrium

, 0, 0, 0, 0, 0, 0, , 0, 0, 0, 0, 0, 0b
d

b
d

1

1

2

2
( ) are as follows:

J

d c c c
ε k c c c

k χ α
εk α χ

ε k ϕ
ϕ χ δ

χ χ χ d

0 0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0
0 0 0

,7 7
Delhi,UP

DFE

1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2

1,2 1,2

1,2 1,2

1,2 1,2

1,2 1,2

1,2

∣

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

=

− − − −

− −

−

− −

− −

− +

−

×

(12)

where c b β
N a d1,2

1,2 1,2

1,2 1,2 1,2
=

−

.
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Next, model (1) with m 0= will be stable at disease-free equilibrium only if all the e-values of JDelhi
DFE∣

and JUP
DFE∣ will have negative real part. Therefore, since uncoupled patches Delhi and UP have identical

dynamics, we compute the e-values of JDelhi
DFE∣ as the same computation will work for the other patch. The

characteristic polynomial of JDelhi
DFE∣ is expressed as follows:

J λI λ d λ χ p λ p λ p λ p λ pDet ,Delhi
DFE 1

2
4

4
3

3
2

2
1 0( ∣ ) ( ) ( )[ ]− = − + + + + + + (13)

where

p
p ε a k δ χ ϕ
p ϕ χ δ ε k a χ χ δ ϕ ε k a χ εc

p ϕ χ δ ε k a χ χ δ ϕ ε k a χ εc k

εc k a χ ϕ δ
p ϕ χ δ ε k a χ εc k εc k a χ δ χ ϕ

1,
2 ,

,

1 2 ,
1 .

4

3 1 1 1 1

2 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

( )

( ( ) ( )( ) ( )( ) )

( ( )( ) ( )(( )( ) )

( )( ))

( )(( )( ) ) ( )( )( )

=

= + + + + −

= − + + + + + + − + + + −

= − + + + + + + − + + −

− − + + +

= − + + + − − − + + +

(14)

Obviously, equation (13) has three negative roots λ d d χ, ,1 1= − − − . Further, we consider the expression
in the square brackets

p λ p λ p λ p λ p .4
4

3
3

2
2

1 0+ + + + (15)

To ensure that all roots of equation (15) have negative real parts, the Routh-Hurwitz stability criterion [8]
requires

p p p p p p p p p0, 0, 0, .3 1 0 1 2 3 1 0 3
2( )> > > − > (16)

The inequalities in equation (16) hold when R 10 ≤ . On the basis of subsection, we show the inequalities in
equation (16) at the disease-free equilibrium.

First, we rewrite p3 as follows:

p ε a k δ χ ϕ2 ,3 1 1 1 1( )= + + + + − (17)

Thus, p 03 > , when

C ε a k δ χ ϕ: 2 .1 1 1 1 1[ ] ( )+ + + + > (18)

Further, let us re-write p1 as follows:

p ϕ χ δ ε k a χ ε k a χ εc k χ δ a χ ϕ δ
εc k a χ ϕ δ χ δ ε k a χ

2
2 2 .

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( (( )( ) ( )( )) ( ( ) ( )))

( ( ) ( )( )( ))

= − + + + + + + + + + + + + +

+ + + + + + + +

(19)

Thus, p 01 > , when

C εc k a χ ϕ δ χ δ ε k a χ
ϕ χ δ ε k a χ ε k a χ εc k χ δ a χ ϕ δ

: 2 2
2 .

2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

[ ] ( ( ) ( )( )( ))

( (( )( ) ( )( )) ( ( ) ( )))

+ + + + + + +

> + + + + + + + + + + + + +

Next, for p0,

p εc k ϕ a χ δ χ ϕ a χ ϕ χ δ ε k εc δ χ ϕ .0 1 1 1 1 1 1 1 1 1 1 1 1 1( ( )( )) ( )( ( )( ) ( ))= + + + + − + + + + + + (20)

Hence, p 00 > if

C εc k ϕ a χ δ χ ϕ a χ ϕ χ δ ε k εc δ χ ϕ: .3 1 1 1 1 1 1 1 1 1 1 1 1 1[ ] ( ( )( )) ( )( ( )( ) ( ))+ + + + > + + + + + +

As a first step toward proving the last inequality in equation (16), i.e., p p p p p1 2 3 0 3
2

> , it is sufficient to
establish the following two inequalities:

p p p p p p p p p2 , 2 .1 2 3 1
2

1 2 3 0 3
2

> > (21)

with condition C2[ ], we check the condition of positivity for the first expression p p p22 3 1− of equation (21)
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p p p ϕ χ δ ε k a χ ε k a χ εc k χ δ a χ ϕ δ

ε k a χ ε k a χ χ δ ε a k δ χ
ϕ ϕ χ δ ε k a εc
ϕ ε k a χ ε k a χ χ δ ε a k δ χ
ϕ χ δ ε k a εc εc k a χ ϕ δ χ δ ε k a χ

κ κ

2 2 2

2
2 ,

2
2 2 2 2 ,

2 3 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 2

( (( )( ) ( )( )) ( ( ) ( )))

((( )( ) ( )( ))( )

( ( ) ))

( (( )( ) ( )( )) ( )

( ( ) )) ( ( ) ( )( )( ))

− = + + + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + +

− + + + + + + + + + + + +

× + + + + + + + + + + + +

= −

(22)

where

κ ϕ χ δ ε k a χ ε k a χ εc k χ δ a χ ϕ δ

ε k a χ ε k a χ χ δ ε a k δ χ
ϕ ϕ χ δ ε k a εc

κ ϕ ε k a χ ε k a χ χ δ

ε a k δ χ ϕ χ δ ε k a εc
εc k a χ ϕ δ χ δ ε k a χ

2 2

2
2 ,

2 2
2 2 2 .

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

2 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( (( )( ) ( )( )) ( ( ) ( )))

((( )( ) ( )( ))( )

( ( ) ))

( (( )( ) ( )( ))

( )( ( ) ))

( ( ) ( )( )( ))

= + + + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + +

= + + + + + + +

+ + + + + + + + + +

+ + + + + + +

(23)

If C κ κ:4 1 2[ ] > , then the expression p p p p21 2 3 1
2

> will be positive with conditions C2[ ] and C4[ ].
Finally, to show the second condition of equation (21), we write p p p p p21 2 3 0 3

2
> as follows:

p p p p p2 0.3 1 2 0 3( )− > (24)
With condition C1[ ] if the expression p p p p2 01 2 0 3( )− > holds, then all the condition of equation (16) will
hold. Thus,

p p p p ϕ χ δ ε k a χ ε k a χ εc k χ δ a χ ϕ δ

ϕ χ δ ε k a εc εc k a χ ϕ δ

χ δ ε k a χ ε k a χ ε k a χ χ δ
a χ ϕ χ δ ε k εc δ χ ϕ

ε a k δ χ ϕ εc k ϕ a χ δ χ ϕ

εc k ϕ a χ δ χ ϕ ε a k δ χ

ϕ a χ ϕ χ δ ε k εc δ χ ϕ

ϕ χ δ ε k a χ ε k a χ

εc k χ δ a χ ϕ δ ε k a χ ε k a χ χ δ

ϕ χ δ ε k a εc εc k a χ ϕ δ χ δ ε k a χ
κ κ

2 2

2 2 2

2

2 2

2 2

2

2

2 2 2 ,
,

1 2 0 3 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

3 4

( (( )( ) ( )( )) ( ( ) ( )))

( ( ) ) ( ( )

( )( )( ))(( )( ) ( )( ))

( )( ( )( ) ( ))

( ) ( )( )

( ( ( )( )( )

( )( ( )( ) ( )))

( (( )( ) ( )( ))

( ( ) ( )))(( )( ) ( )( ))

( ( ) )( ( ) ( )( )( )))

− = + + + + + + + + + + + + +

× + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + +

× + + + + + + + + +

− + + + + + + + +

+ + + + + + +

+ + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

= −

(25)

where

κ ϕ χ δ ε k a χ ε k a χ εc k χ δ a χ ϕ δ

ϕ χ δ ε k a εc εc k a χ ϕ δ

χ δ ε k a χ ε k a χ ε k a χ χ δ
a χ ϕ χ δ ε k εc δ χ ϕ

ε a k δ χ ϕ εc k ϕ a χ δ χ ϕ

κ εc k ϕ a χ δ χ ϕ ε a k δ χ ϕ a χ ϕ χ δ ε k

εc δ χ ϕ ϕ χ δ ε k a χ ε k a χ

εc k χ δ a χ ϕ δ ε k a χ ε k a χ χ δ

ϕ χ δ ε k a εc εc k a χ ϕ δ χ δ ε k a χ

2

2 2 2

2
2 2 ,

2 2 2

2

2 2 2 .

3 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

( (( )( ) ( )( )) ( ( ) ( )))

( ( ) ) ( ( )

( )( )( ))(( )( ) ( )( ))

( )( ( )( ) ( ))

( ) ( ( ( )( )

( (( ( ( )( )( ) ( )( ( )( )

( ))) ( (( )( ) ( )( ))

( ( ) ( )))(( )( ) ( )( ))

( ( ) )( ( ) ( )( )( )))

= + + + + + + + + + + + + +

× + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + +

× + + + + + + + + +

= + + + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

(26)

If C κ κ:5 3 4[ ] > , then the expression p p p p p21 2 3 0 3
2

> will be positive with conditions C1[ ] and C5[ ]. It is
apparent that the isolated patch (Delhi) of the model with m 0= is stable around disease-free equilibrium
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point under conditions C j 0, 1, 2, 3, 4, 5j[ ] { }∀ ∈ .Thus, the disease would have eradicated if all the condi-
tions derived below were satisfied.

Note. Using a similar procedure, the stability of the endemic equilibrium of the model with m 0≠ can
also be verified by checking the signs of the eigenvalues at the endemic equilibrium point. However, due to
the complexity and lengthiness of the calculations involved in analyzing the stability of the endemic
equilibrium, the analytical calculations have been omitted in this study.

4.2 Basic reproduction number

The first half of the model represents the disease transmission for Delhi, while the second half, combined with the

first, represents transmission for UP. To find R0
Delhi, we consider the initial seven equations of the proposed model

system. In view of the aggressive movement of migrants during the first lock-down period, we consider the Delhi
patch with non-zero migration parameter. The disease-free equilibrium (E1) of model (1) for Delhi patch can be

considered in a partitioned form as E , 0, 0, 0, 0, 0, 0b
d m1

Delhi ( )=

+

. In the proposedmodel, progression from E to

IA or IS is not considered a new infection but rather a progression through various compartments. Following the
next-gen matrix technique [28], the transmission and transition matrices for Delhi can be given by

β S I I ηI
a N

b
β S I I ηI

a N
d S mS

ε k E mE
k E α I χQ

k εE α χ I mI
k εE φ I mI

φ I χ δ I
χ I I Q d R mR

0

0
0
0
0
0

1

.

A S I

A S I

A

A A

S S

S I

A I

1 1 1 1 1

1 1

1
1 1 1 1 1

1 1
1 1 1

1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

� �

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

( )
⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜⎜

( )

( )

( )

( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟⎟

=

+ +

=

− +

+ +

+ −

+ +

− − +

− + + +

− − + +

− + +

− + + + +

The infected compartments are E Q I I, , ,A S1 1 1 1, and II1, which gives us the order m 5= . Without loss of
generality, it can be assumed that at the disease-free state S N0 = . This implies

F

β
a

β
a

β η
a

V

ε k m
k χ α
k ε α χ m

k ε φ m
φ χ δ

0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0

0 0
1 0 0 0

0 0 0

.

1

1

1

1

1

1

1

1 1

1 1

1 1

1 1

⎛

⎝

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟
⎟

⎛

⎝

⎜

⎜

⎜

⎜
⎜

( )

⎞

⎠

⎟

⎟

⎟

⎟
⎟

= =

+ +

− −

− + +

− − +

− +

This gives

V

k m ε
k εα k m α χ

k m ε χ m α χ χ
α

χ m α χ
k ε

k m ε m α χ m α χ
k ε

k m ε m φ m φ
k εφ

k m ε m φ δ χ
φ

m φ δ χ δ χ

1 0 0 0 0

1 0 0

0 1 0 0

1 0 0 1 0

1
0 0 1 .

1

1

1 1 1 1

1 1

1

1

1

1 1 1

1

1 1 1

1 1

1 1 1

1

1 1 1

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

( )

( ) ( ) ( )

( )( )

( )

( )( )

( )

( )( )( ) ( )( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

=

+ +

+ + +

+ + + + + +

+ + + + + +

−

− +

+ + + +

−

− +

+ + + + + + +

−

Now, we know that R ρ FV0
1( )=

− , where ρ M( ) represents the spectral radius of a matrix A.
Thus,
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R
β ε

a k m ε
k

m α χ
k

m φ
ηφ δ χ

δ χ
1 .0

Delhi 1

1 1

1

1

1

1

1 1

1
⎜ ⎟

( )

⎛

⎝

( )

( )

( )

( )

⎞

⎠

=

+ + + +

+

−

+

− −

+

(27)

Using the parameter values provided in Table 3, R0
Delhi is estimated to be 2.5078.

Next, we consider the whole compartmental model to derive the expression of R0
UP. New infections

appear in precisely three compartments: exposed (E2), infected asymptomatic (IA2), and infected sympto-
matic (IS2). In a disease-free state, the susceptible population of Uttar Pradesh is considered equal to the

state’s total population. Hence, by using the next-generation matrix technique, we have
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Further at the disease-free state, the transmission part F and transition partV can be given as follows:
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To avoid the complications in the evaluation, we have substituted m φ m χ αΓ , ϒ , Φ1 1= + = + + =

k m ε χ δ, Ω 1+ + = + , and k k 11
0

1= − . Then V 1− can be partitioned as follows:
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Now,

R ρ FV ,0
1( )=

−

here, ρ is the slandered notation for spectral radius. Further calculation leads us to
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(28)

By using the estimated parameter values provided in Table 1 and the aforementioned expression, R0
UP is

estimated to be 1.5218.

Remark. The higher R0 for Delhi indicates a more severe outbreak in Delhi at the beginning. The reason
might be the influx of international migrants in Delhi from COVID-19-infected countries before March 2020.
However, the disease prevalence in UP was relatively low in the beginning due to the significantly low
influx of international migrants.

5 Doubling time during initial phases of lockdown

As per the previous section, both regions have a reproduction number greater than one, ensuring expo-
nential growth of diseases [19]. Consequently, it is evident that the number of cases will double in both
regions after a certain period of time. Therefore, we estimate the doubling time for the exponential growth
of disease in the Delhi–UP region using the data of positive cases for the first two phases of lockdown [19].
Following the methodology explained in [1], the SAS DATA step estimates the doubling time by using the
slope estimates at the end of the first lockdown (21 days) and the second lockdown (19 days), assuming that
the number of cases continues to grow at the estimated rate on the last day. The doubling time and epidemic
strength are inversely related, so if an epidemic declines, the doubling time increases.

In Figure 4, the count for positive cases in Delhi is predicted to double rapidly as the value of M is
higher for the region, whereas the count for UP is predicted to double slowly. The table corresponding to
Figure 4 indicates the doubling time for Delhi at 3.980 4≈ days and for UP at 4.647 5≈ days. According to
the State Census 2011 [2], Delhi is the nation’s most densely populated state with a density of 11,320 per
square kilometer, which might have significantly contributed to the COVID-19 surge with a shorter dou-
bling time.

We next examine the effectiveness of the second phase of complete lockdown by estimating the
doubling time during April 15, 2020 May 3, 2020, in the Delhi–UP region. The table in Figure 5 indicates
that Delhi’s doubling time increased significantly due to the 19-day second lockdown, during which mobi-
lity restrictions on the urban population had slowed down the spread (M 0.037= ). It is noteworthy that the
doubling time in UP and Delhi were equal, irrespective of Delhi’s high population density.

Figure 4: Cases during first phase of lockdown in Delhi–UP region.
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Even after two phases of lockdown, the cases in both regions continued to increase due to reverse
migration. This situation highlights that despite being the most populous state with a large rural division
and facing challenges such as lack of resources and reverse migration of workers, the UP government
effectively managed the case load. However, there seems to be a discrepancy between the estimated
doubling time for UP and the actual prevalence of the disease, as mentioned in Section 5.1. Several factors,
as outlined in the mentioned Section 5.1, could be responsible for this mismatch.

5.1 Factors for mismatch between real scenario and collected data

(i) Considering that Delhi is the capital city and has a smaller area, the available data can be considered
relatively more reliable. On the other hand, UP, with a population of 19.96 crores, faced challenges in
accurately consolidating data on active cases, particularly in its rural division.

(ii) As a union territory, Delhi is characterized by a high concentration of urban areas and a high literacy
rate. This has contributed to a higher awareness among the urban population, which in turn facilitated
the consolidation of data on COVID-19 cases. However, in UP, there has been a lack of awareness about
COVID-19 among rural populations, which, coupled with reluctance to undergo testing and treatment,
has hindered the proper collection of positive cases data.

(iii) The Arogya Setu application, which is used for contact tracing, was found to be effective in Delhi,
largely due to its usage among the privileged urban class. However, in UP, the majority of migrants
were daily wage workers, with limited access to smartphones. As a result, the Arogya Setu application
was not as effective in tracking down contacts among the rural and underprivileged populations of UP.

6 Migration-induced unintended synchrony

Previous studies, such as those by Borrego-Salcido et al. [5], Earn et al. [10], Qian et al. [20], and Zhang et al.
[30], suggest that infected individuals can spread epidemics from one community to another, resulting in
long-term synchrony. In the case of individuals passing from Delhi to UP, they create interlinks between the
two states. To investigate the synchrony of epidemic trajectories between the Delhi–UP region, we used the
methodology proposed by Pikovsky et al. [18]. We explored the change in mobility level during late March
2020 and considered both symptomatic and asymptomatic populations from both regions. We plotted the

Figure 5: Cases during second phase of lockdown in Delhi–UP region.
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phase synchronization coefficient (PSC) as the absolute value of the mean j θexp Δ( ), where a higher value of
PSC indicates anti-synchronization, and a lower value quantifies phase synchronization. By using Hilbert
transformation, we plotted PSC as a function of the migration rate for two sets of epidemic compartments:
I I,A A1 2( ), and I I,S S1 2( ). After calculating the phases of the time series, we characterize the synchronization
that contributes to more complex forms, such as anti-phase synchrony between the coupled regions.

In Figure 6(a), it can be observed that the phase synchronization coefficient (PSC) for trajectories of
asymptomatic infected individuals is relatively high even for weak levels of migration rate, but it starts
declining at high levels. This suggests that as the migration rate increased, asymptomatic individuals who
slipped through screening and reached UP contributed to phase synchrony between the regions. Since
Delhi had a higher R0-value with a significantly shorter doubling time, the Government of India (GoI)
should have respondedmore effectively to stop the migration and control the synchrony between IA1 and IA2.

In Figure 6(b), a critical point is displayed approximately at m 0.2= , below which simulations char-
acterize phase synchronization (PSC 0.525< ), and above which they are mainly anti-phase due to a higher
PSC. Due to a higher level of migration rate (m), symptomatic individuals held a significantly higher fraction
at one location than at the other. However, the predicted scenario highlights the burden of COVID-19 in UP
due to the influx of migrants who escaped from Delhi and introduced the disease to rural parts of UP. This
resulted in community transmission due to a lack of awareness about the disease, subsequently increasing
the case load in UP compared to Delhi.

6.1 Effective plan of action

The lack of coordination between the governments of Delhi and Uttar Pradesh in arranging transportation
for migrant workers resulted in a significant failure, leading to mass gatherings and chaos at the Delhi bus
stand. This setback undermined the effectiveness of non-pharmaceutical interventions (NPIs) in controlling
the spread of COVID-19. The consequences could have been mitigated if the central government had
intervened with effective strategies and precautions to restrict movement across Delhi. Such strategies
could have included raising awareness about the disease, improving healthcare infrastructure, enhancing
testing capacity, ensuring adequate food supply, and setting up large-capacity centralized quarantine
centers in Delhi. Instead of hastily arranging bus transportation, migrants could have been directed to
stay at designated quarantine centers in Delhi for 14 days during the incubation period. Through testing,
tracking, and tracing, asymptomatic migrants could have been released from the quarantine centers in
Delhi and transported back to Uttar Pradesh via properly arranged means of transportation.

Figure 6: Phase synchronization coefficient versus migration rates at various levels 0, 0.002, 0.004, 0.006, 0.008{ },
0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8{ } (a) I I,A A1 2( ) and (b) I I,S S1 2( ).
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7 Simulation and parameter estimation

7.1 Migration and epidemiological factors shaping disease dynamics

In Section 4.2, we derived the expression for the basic reproduction number and calculated its exact value
for both states using estimated parameter values. Here, we will investigate the combined impact of migra-
tion and other parameters on the basic reproduction number through numerical simulations.

Based on the analysis of Figure 7(a), it is evident that an increase in the migration coefficient, coupled
with the contact rate, directly amplifies the spread of the disease by increasing the basic reproduction
number in Delhi. However, as shown in Figure 7(b), when the rate of quarantine for exposed individuals is
increased along with the migration rate, the spread of the disease is mitigated compared to the previous
case. Further, Figure 8(a) displays the simultaneous impact of rate of detection through contact tracing in
Delhi patch and contact rate on basic reproduction number whereas Figure 8(b) displays the simultaneous
impact of rate of quarantine rates of exposed individuals in Delhi patch and contact rate on basic reproduc-
tion number. Figure 9 shows the simultaneous impact of the contact rates of Delhi and UP on the overall
basic reproduction number. It can be observed that as the values of contact rates β1 and β2 increase, the
value of R0 also increases. Our simulation results provide theoretical evidence that to curb the COVID-19
pandemic, the most feasible approach is to control the mixing of susceptible populations by reducing
contact as much as possible.

Figure 8: Simultaneous impact of (a) α2 and contact rate β2 on the basic reproduction number and (b) β2 and k2 on the basic
reproduction number.

Figure 7: Simultaneous impact of (a) migration rate m and contact rate β1 on the basic reproduction number and (b) migration
rate m and k1 on the basic reproduction number.
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7.2 Global sensitivity analysis of basic reproduction numbers

Section 7.1 highlights the dependency of R0 on two specific parameters, although the model (1) actually
depends on a total of 21 parameters. To identify the crucial parameters affecting R0, we conducted a global
sensitivity analysis using Latin hypercube sampling (LHS) - partial rank correlation coefficient (PRCC)
approach, which allows us to explore the entire parameter space of the model. LHS evenly samples the
parameter space, and PRCC identifies the most significant and sensitive parameters in terms of their impact

on R0
Delhi and R0

UP. The PRCC values, ranging from 1− to 1, quantify the variability in R0, with positive values
indicating that as a parameter increases, so does R0, and negative values indicating the opposite. PRCC
values of large magnitude (0.5 PRCC 1∣ ∣≤ ≤ ) characterize the most significant parameters [16]. Since the
response functions are given by equations (27) and (28), we assumed a uniform distribution for each
parameter in model (1). We conducted 300 simulations per LHS, using a 10% deviation from the baseline
values of the parameters mentioned in (3).

Figure 10 identifies five parameters that influence R0
Delhi and R0

UP the most, on which feasible control
could have curbed the virus spread.
– χ: rate of recovery,
– η: efficacy of isolation to home-quarantined individuals,
– ϕ :i rate of quarantine of symptomatic individuals, i 1, 2{ }∀ ∈ ,

– β :2 effective contact rate for UP.

Figure 10: Sensitivity of the basic reproduction numbers for Delhi and UP to changes in the model parameters using PRCC index.

Figure 9: Simultaneous impact of contact rates β1 and β2 on the basic reproduction number.
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The five parameters mentioned earlier, namely, χ 1
recovery period= , η, and ϕ1,2, exhibit a common positive

correlation with the values of R0 for both UP and Delhi, as shown in Figure 10. The dependency of R0 on χ
highlights that the longer an infected person remains sick, the higher the risk of transmission, resulting in
larger values of R0 for UP and Delhi. The significance of η is evident in indicating that effective home
quarantine measures could nullify the exposure of infected individuals to susceptible. Given the high
population density in these states, home quarantine was a sustainable option that balanced individual
freedom and public protection while conserving resources. However, initially, home quarantine was less
effective than centralized quarantine due to low awareness about the disease among the population [14].
The parameters ϕ1,2 show a negative correlation coefficient with R0 for both states, suggesting that a higher

quarantine rate for symptomatic individuals could have effectively curbed the infection. Finally, the posi-
tive PRCC value of β2 indicates a correlation with disease prevalence in UP, implying that a higher fraction
of capable contacts leading to infection would result in an increased estimated value of R0. Overall, this
analysis emphasizes the importance of improved treatment, better quarantine facilities, and enhanced
detection methods in curbing the spread of the disease. Therefore, it is essential to carefully consider these
five parameters while estimating R0 from data [14].

7.3 Parameter estimation using case reports

We estimate the parameters by fitting the model outputs to the observed counts of COVID-19 cases in the
Delhi and UP states. We used the case data from March 1 to May 31, 2020, which includes a countrywide
lockdown, and there was a migration of labours from Delhi to the state of UP. The lockdown occurred from
March 25 to May 31, carried out in four phases: March 25 to April 14, April 15 to May 3, May 4 to May 17, and
finally, May 18 to May 31, when the national lockdown was lifted. No further dates are considered because
both states significantly differ in their lockdown policies post-May 31. Moreover, since migration only began
after lockdown, we consider no migration (m 0= ) before March 25 to fit the model to the data.

The following are the parameters we have estimated:
The reporting probability, p, was different for the two states. We calibrate this using results from

Unnikrishnan et al. [27], which reflects the underreporting of COVID-19 cases in Indian states. The fraction

Figure 11: The model fits the daily confirmed COVID-19 cases in Delhi and Uttar Pradesh. The solid lines represent the model
simulated predictions, while the dots represent the actual number of daily confirmed cases. The initial conditions used for the
model are S a0 − 371 1( ) ( )= , E 0 01( ) = , Q 0 01( ) = , I 0 35A1( ) = , I 0 2S1( ) = , I 0 0I1( ) = , R 0 01( ) = , S a0 − 422 2( ) ( )= , E 0 02( ) = ,
Q 0 02( ) = , I 0 35A2( ) = , I 0 7S2( ) = , and I 0I2 = , R 02 = . The initial values of the number of symptomatic infected were taken from
actual data while the numbers of asymptomatic infected were estimated since there are no accurate data for asymptomatic
cases, and given their low detectability, the actual number of cases would be much higher.
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of cases reported is estimated from different case fatality ratios (CFRs), assuming that the number of
disease-induced deaths is correctly reported. We take the case where the CFR is 0.66%. For this assumption,
the percentage of cases reported for Delhi and UP are 31 and 39%, respectively. As depicted in the model fit
Figure 11, the model nicely captures the exponential growth pattern shown in the case data. Wemeasure the
goodness-of-fit R2 between the actual data and model output. The R2 values for Delhi output and UP output
are 0.857 and 0.881, respectively, which means that the model can explain 85.7 and 88.1% of the data.
These values indicate that the model fits the actual data reasonably well. The estimated values of the
parameters are given in Table 4.

7.4 Scenario analysis

In this subsection, we conduct scenario analysis based on two different scenarios picked from the estimated
parameters to judge migration’s impact and lockdown effectiveness for each state. Scenario (I) is the
initiation of lockdown on different dates. Four different scenarios were taken to observe how these impact
the number of cases: 20 days before official lockdown; 10 days before; 10 days after; and 20 days after, i.e.,
on March 5, March 15, April 1, and April 11, respectively. Our output shows that an earlier lockdown would
have resulted in a lower COVID-19 caseload, and there is a higher caseload when the lockdown implemen-
tation is later than the actual official lockdown. Also, there is a more significant effect of changing lockdown
dates in Delhi than in UP (Figure 12).

Scenario (II) is the absence of migration, and it was applied to each of the different lockdown scenarios.
For the dates on and after the official lockdown, the number of cases when there is no migration is lower for
both the states, though we can see that there is a slightly more significant effect on UP when there is no
influx of migrants. On the day of the official lockdown, the UP shows an 8.04% decrease without migration,

Figure 12: Scenario I analysis by taking different lockdown dates (a): for Delhi, (b): for UP.

Table 4: Estimated parameter values

Parameter Description Estimated values

β1,2 Contact rate 0.191, 0.158

k1,2 Rate of quarantine of exposed individuals 0.059, 0.09

α1,2 Rate of detection through contact tracing 0.069, 0.086

ϕ1,2 Rate of isolation of symptomatic individuals 0.122, 0.111

δ1,2 Disease induced death rate 0.0026, 0.0025

Ω Delay in traveling 4.5
m Migration rate 0.0005

22  Shubhangi Dwivedi et al.



Figure 13: Scenario analysis by taking different lockdown date (a) 20 days before lockdown, (b) 10 days before lockdown, (c) 10
days after lockdown, (d) 20 days after lockdown.
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and Delhi shows a 3.98% decrease. Similarly, the percentage decrease in cases for 10 days after lockdown
and 20 days after lockdown is 7.01 and 5.51% for UP and 5.15 and 4.68% for Delhi. Ten days before the
lockdown, the number of cases in Delhi without migration was slightly higher. The retention of migrants at
this particular date might have caused the increase in cases by 5.99%, while UP decreased by 6.42%. The
best results can be seen in the 20 days before lockdown. Delhi and UP case loads go down by 18.43 and
18.37%, respectively, which is the most significant decrease in infections among all the cases considered.
Therefore, having an earlier lockdown has the most advantageous effect in curbing the virus (Figure 13).

8 Discussion and conclusion

The emergence of the COVID-19 pandemic posed numerous challenges for governments worldwide due to
the incomplete understanding of the clinical presentation of the disease. In India, despite implementing a
stringent lockdown soon after the outbreak was declared a pandemic, there were failures in effectively
slowing down and curbing the spread of the virus, particularly due to the unknown symptoms and the
unplanned return of migrant workers from Delhi to their hometowns in Uttar Pradesh (UP) due to their
employment and economic situations.

To analyze the impact of reverse migration on the spread of COVID-19, we developed a deterministic
model based on the migration between Delhi and UP during the first lockdown. We mathematically demon-
strated the well-posedness and existence of equilibrium points in the model. The analysis of COVID-19 data
revealed short doubling times for exponential growth in Delhi, despite the complete closure of 21 days
during the lockdown. The synchrony effects confirmed the potential transmission risk to the UP region due
to population outflow from Delhi. Immediate control of migrant flow from Delhi was found to be necessary
to curb the spread within the community, as highlighted by the synchrony between infected individuals
from both regions. Remarkably, the analytical results for the transmission potential of the disease in both
states were in complete agreement with the actual scenario. In addition, the sensitivity analysis using
partial rank correlation coefficient (PRCC) identified that the effectiveness of home quarantine and recovery
rate could have reduced the R0 value.

For parameter estimation, we focused on key parameters, such as the contact rate β( ) and migration
rate m( ), which were used to model the lockdown and movement of migrants, respectively, emulating the
real-life situation. Maximum likelihood estimation (MLE) was used assuming a Poisson distribution for the
number of daily cases, considering the underreporting of cases using a reporting probability. Furthermore,
a stochastic element was introduced in the model by modeling it as a Poisson process. Our numerical
simulations aligned well with the analytical results, supporting the conclusion that reducing contact
among the population could have controlled the spread of the virus.

To conduct scenario analysis, we considered two cases: scenario (I) involved setting different dates for
the lockdown and scenario (II) involved the absence of migration at each of these different dates. These
scenarios were chosen to assess the effectiveness of an earlier lockdown in slowing down the number of
cases and to evaluate the role of migration in accumulating COVID-19 cases. Different values of β were used
to represent social behaviors such as gathering, mask-wearing, and social distancing, which could vary
before and after the lockdown. The findings indicated that implementing an earlier lockdown resulted in
fewer cases, suggesting that timely intervention could have been more effective in slowing the spread of the
virus. Furthermore, the cases were lower in the absence of migration.

During the course of this study, we recognized the limitations of data collection, particularly in
matching theoretical studies with real-time situations. With an estimated 83.33% rural population in UP,
data consolidation of cases was limited to the urban division by late March, which posed challenges in
designing short-term and long-term welfare measures to address future outbreaks [11].
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