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Abstract: In this article, the behavior of an susceptible exposed infected recovered (SEIR) epidemic model with
nonlinear incidence rate and Holling type II treatment function is presented and analyzed. Reproduction number
of the model is calculated. Equilibrium points are determined. Disease-free equilibrium exists when RO is below 1.
Behavior of disease-free equilibrium is examined at RO = 1. Endemic equilibrium exists when RO crosses 1. Stability
of both equilibrium points is investigated locally and globally. Simulation is provided to support the result.
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1 Introduction

Infectious diseases have been a part of human life for a long time already. Evidence tells us that epidemics
often end up causing mass deaths. It was after the increase in healthcare, for a certain period of time, the
health burden diminished of infectious diseases. However, in recent years, it has emerged that the chal-
lenge still exists, especially, in our rapidly changing world since every nation has limited resources to treat
the infected. Emerging diseases pose a continuing threat, for example, human immunodeficiency virus in
the twentieth century, acute encephalitis syndrome, malaria, cholera, and more recently COVID-19-coro-
navirus, causing mortality that has proven the necessity of having optimal resources to control an epidemic.
Various mathematical models for infectious diseases proposed by many authors (see [1-9,16,18]). To figure
out this problem, many treatment functions have been proposed by various researchers [13,14].

Zhang and Xianning [17] introduced the saturated treatment function for the better analysis of real
system through the epidemic model. This function is widely known as Holling type II treatment function,

al
h(D) = s
D 1+ bl

where a > 0 is a cure rate and b > 0 measures the magnitude of the consequence of the infected person
being held for treatment. The specialty of this function is that it is defined as continually differentiable and
characterizes the situation of limited medical resources.

Whenever we talk about epidemic or pandemic, the incidence rate of the disease in a population is first
to be discussed. Previously, bilinear incidence rate SSI was being used more often to assess the new
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infections per unit of time in a population of susceptible. But while pondering about incidence rate, some
significant factors must always be considered, like the inhibitory effects caused by the sudden spread of
disease in a population. Pathak et al. [11] proposed such saturated incidence rate. This modified incidence

rate is defined using sociological and psychological parameters a; and a,, respectively, given by H(ﬁﬁ
1: 2

The introduction of these parameters by authors is a modified saturation effect.

In this article, we propose an susceptible exposed infected recovered (SEIR) model with modified satu-
rated incidence rate and Holling type II treatment function. Then, for the model, we calculate RO, find out the
equilibrium point, and discuss the local and global stability of disease free equilibrium (DFE) and endemic
equilibrium (EE). We check the stability of equilibrium at RO = 1. In the next section, we provide simulation to
assist theoretical results. In the last section, we discuss the aspects of the proposed model.

2 Proposed mathematical model

The epidemic model we propose and study in this work is an SEIR model with saturated incidence rate and
Holling type II treatment function using nonlinear ordinary differential equations (Figure 1).

E:A_L_Hs,

dt 1+ as + aol
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where S(t) + E(t) + I(t) + R(t) = N(t).

In equation (2.1), S(t), E(t), I(t), and R(t) denote the susceptible, exposed, infected, and recovered
number of individuals at time ¢t. Other parameters used in the system are infection rate f, recruitment rate
A, natural death rate p, natural recovery rate §, progression rate y, sociological parameter &; > 0, psycho-
logical parameter a, > 0, cure rate a > O, and magnitude of the consequence of delaying treatment for an
infected individual by b > 0.

Since the first three equations are free from R, we can reduce system (2.1) into:

s _, BSI

dar _1+als+a21_ys’
e pSI
dt 1+ aS + wl v+ WE, (22)
BSI y 1+bl \\\
A 1+ ays + ayl YE ‘ )
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ol
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Figure 1: Transfer diagram of the presented model.
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al

dr
— =yE-(6+ Wl - )
YE - (6 + ) Y,

dt

Lemma 2.1. Theset Q = {(S,E,,R) : S+ E+ I+ R < %, S>0,E>0,I>0,R > O} is a positively invariant
system of system (2.1).
From (2.2), we obtain:

al
<A-u(S+E+I+R)<A-uN.
Y, M ) u

%(S+E+I+R)=A—y(S+E+I+R)—51—

Solving the aforementioned equation and applying lim,_, . N(t), we obtain N(t) < %.

Thus, feasible region invariant with system (2.2) is given by Lemma 2.1.

3 Main results

Reproduction number RO is calculated using the method by van den Driessche and Watmough [12]. The
DFE of system (2.2) is at Dy = (%, 0,0). For calculating RO, we focus on infected compartments E and I only;

thus, the system furthermore reduces to:

dE SI
dE_ BTy e,
dt 1+ aS + al
dI al
— =yE-(6+ Wl - . 3.1
a “YET @l G-
Let x = (E, I)T,
_ Bt v+ WE
F=|1+aS+wl |and V = .
0 —VE + (6 + I + 1flb1
Jacobian matrix of F and V at Dy= (%, 0,0) is given by:
BA
F - 0 prad |, Vi = +mn 0 .
0O 0 -y (@G+w+a
The next-generation matrix is given by:
yBA BA
EVi'= | (u+ o)y + (@ +p+a) (u+amA)S+u+a)l
0 0
Reproduction number RO is the dominant eigen value of F,V;!
A
RO = VA (3.2)

M+ aA)y + W6 +u+a)

3.1 Equilibriums of the system

Setting all rates to zero in system (2.2), that is, setting i—f =0, Y-, ¥ _ 0, we obtain:

> dt > dt
T
A_L_yszo,
1+ as + ol
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BSI
_— - E =0, 3.3
1+ oS+ ol v+ (33)
al
E - (6 ]- —— =0.
YE-(6+p) P,

From (3.3), we obtain:

I=0or— 5 ((5+y)+ a )

A+aS+aDy+p) o) = O

3.2 Disease-free equilibrium (DFE)

Taking I = 0 in the remaining equations of system (3.3), we obtain the values of S and E as follows:
s=4,
U
E=0.
Thus, we determined the DFE:

Dy = (é, 0, 0). (3.4)
J7i

3.3 Endemic equilibrium (EE)

«_ _ (w0 + o)A + bI*)6 + ) + a;
By(1 + bI*) = (y + wa{(1 + bI*)(8 + p) + a}’
_ A — uS*
y+mw'

E>1>

Substituting the value of S* in the first equation of system (3.3) yields cubic equation of I*:
Y3+ P, + It + 1, = 0, (3.5)
where
Yy = Byb(y + W6 + W) — aab*(y + X6 + W2,

Y, = 2bBy(y + (8 + p) + abPy(y + p) — 2eub(y + (6 + W)? - 2abay(y + W8 + p) + abu(y + p)(6 + p)
- ABb?y? + Aayy(y + u)(6 + wb?,

Yy = By(y + W6 + ) + aPy(y + p) — au(y + W6 + u)? — 2aey(y + W6 + p) — a’ey(y + w6 + p)
+ ou(y + (6 + W) + au(y + w) — 2AbB + 2Abayy(y + u)(6 + p) + Aabayy(y + W),
Y, =a+ uly + u) — ABy? + Aary(y + u)(6 + ) + Aaayy(y + p.

Now, unique positive real root of equation (3.5) exists [15] if:

iy, >0, ¥,>0, tP;>0andy, <0,

ii.y, >0, ,>0, P;<0andy, <O,

iii. >0, P,<0, P;<O0andy, <O,

where i, > 0. We can estimate S* and E* after we obtain the value of I*. Thus, there exists a unique EE if
the aforementioned inequalities are satisfied under the following conditions.

Letustakem=(y + y), n=(6+ p),
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" > 0, when2bfymn + abBym + aobumn + Aagymnb? > 2uubm?n? + 2abaym®n + ABb?y?
?| < 0, when2bBymn + abfym + aubumn + Aaiymnb? < 2abm®n? + 2aboym®n + ABb?y2,

> 0, whenfymn + aflym + a;umn + a,um + 2Abajymn + Aabajym
> aym?n? + 2acm®n + a’aym?n + 2AbB

< 0, whenfymn + aflym + aoumn + aoum + 2Abajymn + Aabajym
< oym®n? + 2acgm®n + a’aym’n + 2Abg,

¥s

> 0, whena + um + Aagym(n + a) > ABy?
*| < 0, whena + um + Aayym(n + a) < ABy>.

Thus, EE D* = (5%, E*, I'*) exists when the aforementioned conditions are satisfied.

3.4 Stability analysis of equilibria
Theorem 3.1. For RO <1, DFE D, = (%, o, 0) is locally asymptotically stable and unstable for RO >1.

For this, we construct a Jacobian matrix of system (2.2) at DFE as follows:

U+ A
Xo) = A . 3.6
6= o e P (3.6
U+ A
0 y ~(6+p) -a
Thus, [J(Xo) — Al| is given by:
-u - A 0 i
U+ A
A =0.
o —grw-a 2
U+ A
0 % -U+6)-a-47
That implies
A+ +Qu+b+y+a)d+(y+wu+68+a) - (1-R0)}=0. 3.7)

First eigen value of matrix is u < 0, and other two eigen values are zeros of the equation:
A +pl+qg=0,
wherep=2u+y+6+a>0,
qg=@+nr)(u+6+a - RO).
If RO <1, then g > 0, so both zeros of equation are negative. So, all the eigen values of the Jacobian

matrix at DFE are negative. Therefore, by the Routh—Hurwitz criterion, Theorem 3.1 is proven.
Now, we analyze the global stability of DFE. For this, define:

YBA

RO? = —.
(u+ aA)y + (6 +p+ (a/1 + b(;)))

(3.8)
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Theorem 3.2. DFE, D, is globally asymptotically stable if RO? < 1, implying RO < 1.

Proof. From the first equation of system (2.1), we have % <A - uS. Solution of % = A - pux is a maximal
solution of S(t) and x — A/p ast — co. By the comparison theorem, S(¢) < A/u and from set Q in Lemma

2.1, we obtain I(t) < A/p.
Let us define the Lyapunov function:

L=yE+ (y+ Wl

Therefore,
dL [  yBs ( a )
= | 6 1
dt |1+ oS+ al v+ +y+1+bI ]
rras e Rl )
< - 6 I
| 1+ oS + ol v+w +u+1+b1 |
YBA a ]
<|l— - 6 —F— || <O,
o+ A (“")( +”+1+b(A/u))_

and £ - 0iffI = 0.
dt

dL
{(Ss Ea I) € Q’ E

cally stable globally. O

= 0} is the singleton set. Thus, by the Lasalle-Lyapunov theorem, DFE is asymptoti-

Theorem 3.3. DFE, D, is unstable at RO = 1; thus, a positive equilibrium is found when RO crosses 1.

To check the stability of DFE, we make use of center manifold theory [12]. To do this, let us suppose:
X =S, % =E, and x3 = I. Define X = (;, %, x3) in such a way that system (2.2) can be written as

% = F(x), where F = (f;, f, f3). Therefore,
% Brixs

—A- P8 = f,
dt 1+ o + 03 wa = fi
dx XX
2 L _ (y + H)XZ :f2, (39)
dt 1+ apgq + ax3
dx ax;
- e Grme - =J5 3.10
dt )29 ( l’l) 3 1+ bX3 f3 ( )
_ _pr _ (uraA)y+ W@ +pu+a
Now, at RO=1,8 = p* = 7 .
Let J* be the Jacobian matrix at RO =1 and 8 = *. Then,
_ -BA
H 0 U+ mA
" =10 -y + ) pa . Let w = [wy, wp, w3] and u = [uy, uy, us]” be the left and right eigen
U+ A

0 y -(6+u-a
vectors of J* correlating with zero eigen value. Then,

[wi, wa, ws] = [0, ¢ 1] and [w, wp, ws]" = [ A A 1].

y+p’ praA’ e+t mA)’
Now, to obtain the bifurcation coefficients @; and a,, the nonzero partial derivatives of system (3.9)
calculated at D, are as follows:

Ff _ P _ Fh _ __ wh Pk _ 20uprA 3 2mppA 3 _ 3% _ @
x0x3 Mx0x o (u+mA)?’ a3 u+aAd)?’ a3 (u+mA)?’ dxqdxs  dxsdx (u+ mA)?°
f; b

>

ng 2
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ax,-ax,-

3
%y
a = Z Wkuiu,-( s
k, 1, j=1 Do

a = - ZY}JﬁA 2 B + +£<O.
v+ + aA) | (U + @A) 2

If @ satisfiesg < 2yup A {( B 0(2}, (3.11)
U

+
 + W+ aA)? | (4 + mA)
¥ o A ?h A
Bt T (u+mA)’ It (u+mA)’
3
0%fi )
Q= z Wkui( vl
k,i=1 0xi0B* ),
- YA :(6+y+a)>0.
¥ + W+ mA) B*

Since a; < 0 when (3.11) is satisfied and a, > 0, Dy becomes unstable and a positive equilibrium is found
when RO crosses 1.

3.5 Endemic equilibrium (EE)

Theorem 3.4. EE, D* = (S*, E*, I*), is locally asymptotically stable when RO >1

BS*

a
if 1) . 3.12
' f(y o @+ bI*)z) < (1 + oS* + al*)? (3.12)

Jacobian matrix at EE:
B+l 0 _ BS* (1 + aSY)
(1 + (Xls* + aZI*)Z (1 + (Xls* + aZI*)Z
ﬂl*(l + (XzI*) ﬂS*(l + als*)

J(D*) = i ret) T )
@) (1 + aS* + al*)? v+ (1 + aS* + awl*)?
a
0 - —2
v O ey

Characteristic equation of J(D*) is given by:
13+ SiK2 + Sk + 53 =0,

where

a N BI*(1 + aol*)
A+ bI')? 1+ St + wl*)?’

a Br(1 + apl*) a
—fou+s _a__ P+ o) 5+ —9
52 ( HEOTYV Ty bI*)z)(H " ((1 TS+ aZI*)Z)) " ”(“ O bz*)z)

+ +0+ a - ps*
Ul A+bI?) A+ aS +al)|

B a BI*(1 + aol*) _a
3=+ }1)(}1 tox a+ bI*)z)((l + ouS* + azl*)z) ’ H[H(H o a+ bI*)z)

a BS*
" y{(“ oy bI*)z) T 0+ S+ azl*)z}]'

S =3Uu+0+y+
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Using the Routh-Hurwitz criterion, clearly, s; > 0, also s, > 0, s3> 0, and A = 55, — s3 > 0 when
inequality (3.12) holds. Thus, D* = (S*, E*, I*) is locally asymptotically stable when RO > 1.

Theorem 3.5. EE, D* = (S*, E*, I*), is globally asymptotically stable when RO > 1.
For system (2.2), Jacobian matrix is as follows:

B BI + apl) B B BS(1 + aS)
(1 + a15 + (XzI)z (1 + a15 + azl)z
I(1 I 1
J= BI(A + D) “y+ ) BS( + &S)
(1 + a18 + (XzI)Z (1 + a15 + a2[)2
a
0 -6+u) - —
y 6+mw A b7
Second compound matrix is as follows:
B+ al) 2 — BS(1 + aS) BS(1 + aS)
(1 + (X15 + a21)2 H-y (1 + 0(18 + (Xz])z (1 + a15 + a21)2
jo - y B+ a 0
1+ &S + al)? (1 + bI)?
I(1 I
0 M _(6 + y + 2‘u) — L
1+ @S + al)? (1 + bI)?
Choosing
1 0 O 1 0 O
K=|0 E/I O |impliesK'=|0 I/E 0
0 0 E/I 0O 0 I/E
0O o 0
E'I-EI'
Thus, K = |0 ~ 7 0
0 o0 EII—ZEI
0 0 0
o E_I ¢
Therefore, KK = E T
E T
0 0 F-7
BI(+ al) 2 BSA+aS) 1 BS(A+awS) I
T A+ aS+al)? K=Y A+aS+awl)’E (1+aS+awl)?E
1 _ E BIA + al) a
BIA + axl) _ __a
0 A+ oS + al)? (6 rys ZH) (1+bI)?
Now,
B = KK + KJ°K™! implies
_ ﬂl(l + (XzI) _ _ BS(l + als) i BS(l + alS) i
1+ &S + al)? Y 1+ aS+wl?E 1+ aS+awlE
! !
JE E_I__pOiah 0
B I E I (1+a&S+ wl)?
__a
(1 + bI)?
! !
O M E_I__(5+y+2’1)_#
1+ &S + al)? E I (1 + bI)?

In block form:
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B; B
B:[ 11 12]’

By By
where
BI(1 + aul) BSA+aS) I PSA+aS) I yE
Bu=|-——c—"5-2u-y|Bu= > s=Ba=|"11
1+ S + aol) AQ+aS+mI)’E (1+aS+ al)?E
! !
E_I__M_zy_(s_# O
B E I (1 + aIS + (XzI)Z (1 + bI)Z
2= , ,
M E_I__(6+y+2’l)_L
1+ &S + al)? E I (1 + bI)?

If vectors of R? are given by (p, ¢, r). Then, norm in R> can be selected as|p, g, r| = max {|p|, |q|, /r/}. Let
7 (B) < supij;, j,}, where % denotes Lozinski measure [10] and j,= % (By) + |B1), j,= #(Bx) + |Bal.

S(1+aS) I E
Byl = o0 aS) I g\ E

1+ aS +wl)?E I
- I(1 + aol
jf(Bll):_B(—Z)z_zy_y,

1+ aS + al)

E T a
FBp)=—-—=-06+24) - ———,
(B2) ] ( 1) 1+ by

1(1 + arl SA+aS) 1
oo BlareD . pSO+aS) I
1+ S + al) 1+ aS +al)’E
E E T a
h=y—+— - —-(6+2u) - ——.
R A AR (1 + bI)?

Second and third equations of system (2.2) can be rewritten as:

E' BSI

Zoyape— P 3.13
E Y+ 1+ a1s + w)E (3.13)
I a E
LI _a _= 3.14
ORI T G.14)

Substitution of (3.13) and (3.14), respectively, in j; and j, results in:

,_E’_ _ BIA + @) BS(1 + aol) I<£'_
h=7% a4+ aS + wl)? E P

(1 + aIS + azl)zf B

. E' a E'
== _ & <=
h=% ”+(1+b1)2—}5 K,

iffﬁ <.
Thus, 7(B) < sup{j, jr} < & - .
And so,
;
[7®ds - n

0

E(t) N 1

F(B)ds <1 —
#(B)ds < nE(t’) t

_ 1
Y2:?

o%n

t
implies, ¥, = tlirglo supsup%_[oﬁ (B)yds < -u <0
implies j, < 0.

Thus, D* = (8%, E*, I*) is globally asymptotically stable.
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4 Example

For understanding the model better, we provide an example through the simulation of data. First, we
consider the scenario when RO < 1. For this, we take A =7, u = 0.2, § = 0.5, 6§ = 0.12, y = 0.03, &; = 0.3,
a, =0.3,a =1, and b = 1 when RO = 0.1504. The initial values of all the four compartments in population
are S(0) = 10, E(0) = 5, I(0) = 5, and R(0) = 5. Then, we obtain Dy = (So, Iy, Eg) = (35, 0,0). The following
results can be seen in Figure 2. In this case, it can be clearly seen that DFE D, is approached and sustains as
per Theorems 3.1 and 3.2. A whole lot of population is susceptible in less time when an infectious disease

Susceptible
Exposed
Infectious
Recovered

Population

20 30 40 50 60 70 80 90 100
Time t

Figure 2: Behavior of S, E, /, and R when RO < 1.

131

Susceptible
12 Exposed
Infectious
Recovered

M"Mr

10

Population
oo

0 10 20 30 40 50 60 70 80 90 100
Time t

Figure 3: Behavior of S, E, /, and R when RO < 1.
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131

— With Holling Type Il Treatment
— Without Holling Type Il Treatment |

Infected population |

4 1 1 1 1 1 1 Il 1 1 ]
0 10 20 30 40 50 60 70 80 90 100
Time t
Figure 4: Effect of the introduced treatment on infected.
Mr
a=0.3
a=06|
a=0.9
c
Q
kS
=
a
o
a
ke
2
8]
Q
£
4 1 1 1 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70 80 90 100
Time t

Figure 5: Effect of cure rate.

emerges but due to lower reproduction number, the average number of exposed and infected population
remains low and approaches DFE.

For the case, when RO>1,A=7,u=0.2,=1,6=0.12,y =0.3,y=0.3,00=0.3,a = 0.3, b = 0.4
results in RO =2.9453 with initial values S(0) = 10, E(0) = 5, I(0) = 5, R(0) = 5, which results in EE
D* = (S, E*, I*, R*) = (3.14, 12.74, 10.07, 9.05) when inequality (3.12) is satisfied. Susceptible population
decreases over time as a result of increased exposed and infected population, which also achieves a
constant rate as they approach EE, which can be seen in Figure 3.
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12
—b=04|
—b=0.8
—b=12
c
o
kS
=]
o
o
%
o
5
o
Q2
=]
4 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time t
Figure 6: Effect of delay in treatment.
With Holling Type Il treatment and non linear incidence rate Without Holling Type Il treatment and non linear incidence rate
Susceptible Susceptible
12k Exposed 14— Exposed [—
Infectious 13 Infectious L
Recovered Recovered
1"r 12
1"
10
10
9 9
5 5
3 g °
2° 2
[¢] [} 7
o o
7 6
5
6
l 4
5 3
2
s
(N
3 n n n n n n n n n ] 0 ! | 1 ! | ! L 1 | )
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time t Time t

Figure 7: Comparison of the introduced model with classic SEIR model.

In this article, we have called out Holling type II function as a better strategy to read out treatment of
infected population since there is a significant difference. In the same time frame, while using the function,
the infected number of individuals is less as compared to not using the function (Figure 4). As cure rate
increases, we see a significant drop in infected population. Thus, in order to eradicate a disease, higher cure
rate is absolutely essential (Figure 5). The longer it takes to treat the infected, the higher the number of
infected; as a result of slow recovery, infectious disease spreads more widely (Figure 6).

We also discuss the difference in results with Holling type II function and nonlinear incidence rate,
which is used in this article for all the compartments with the classic SEIR model in Figure 7. We can
observe that with the introduction of the aforementioned functions when RO > 1, there is a significant
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increase in susceptible and recovered population, whereas there is a noticeable drop in exposed and
infected. Thus, taking psychological and sociological effect into consideration helps us to curtail the
infection by reducing the exposed population. Also, timely treatment reduces the infected individuals
and joins the healthy recovered population.

5 Discussion

In this work, we investigated the SEIR model with saturated incidence rate and Holling type II treatment
rate. With the aid of the expression, we derived in (3.8), we measured the RO value to determine the
probability of epidemic and checked the behavior of population in the same time frame using graphs
with the help of MATLAB. Note that the reproduction number RO relies only on social behavior parameter
a; related to susceptible individual, not on psychological impact a;, of infected in population. This indicates
that the reduction of social awareness in infected and rise in protective measure in susceptible are likely to
have an effect on transmission of disease in the population. In order to grasp the psychological effect of the
model, we make some further estimates by checking the existence and stability of EE. RO also relies on the
cure rate a of infected individuals, implying higher the value of a, lesser the RO and lesser the amount of
infected. So, cure rate should be higher to control epidemic. Sooner the infected people receive appropriate
medical help, the quicker they heal and lot quicker we can control the epidemic. In this model, RO does not
depend on the magnitude of the consequence of the infected individual being delayed for treatment b; to
understand this impact, we did further assessment through EE and found that more delay in treatment of
the infected will lead to slow recovery and they remain infected for longer time period causing the breakout
of disease. Thus, to control an epidemic, authorities should be well equipped with proper resources to avoid
the delay.

The model can be used to describe the behavior of infectious diseases with latency period, such as
COVID-19, influenza, and smallpox.
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