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Abstract: This article consists of a detailed and novel stochastic optimal control analysis of a coupled non-
linear dynamical system. The state equations are modelled as an additional food-provided prey–predator
system with Holling type III functional response for predator and intra-specific competition among pre-
dators. We first discuss the optimal control problem as a Lagrangian problem with a linear quadratic
control. Second, we consider an optimal control problem in the time-optimal control setting. We initially
establish the existence of optimal controls for both these problems and later characterize these optimal
controls using the Stochastic maximum principle. Further numerical simulations are performed based
on stochastic forward-backward sweep methods for realizing the theoretical findings. The results obtained
in these optimal control problems are discussed in the context of biological conservation and pest
management.
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1 Introduction

Millions of species coexist in this universe where the survival of each species is meticulously woven with
respect to other species. The survival of one species (e.g. predator) is dependent on the existence of other
species (e.g. prey). The very first mathematical models of such interactive species were given by Lotka [16]
and Volterra [31]. In the last century, various mathematical models were proposed and their behaviours
were studied.

One of the primary components in defining the prey–predator dynamics is the functional response. The
functional response is the rate at which each predator captures prey [13]. A type III functional response is a
sigmoidal response [12] that has predators foraging inefficiently at low prey densities. The Holling type III
functional response is displayed bymany organisms in nature [7,8,17,21]. Some studies involving additional
food-provided prey–predator systems with Holling type III and type IV functional responses can be found in
the study by Srinivasu et al. [28,29]. Recently, Ananth and Vamsi [1–3] have studied controllability of
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additional food systems with respect to quality and quantity of additional food as control variables for type
III and type IV systems.

Also, in real world situations, some of the parameters involved in the model always fluctuate around
some average value due to continuous variation in the environment. A large number of researchers intro-
duced a stochastic environmental variation using the Brownian motion into parameters in the deterministic
model to construct a stochastic model. Belabbas et al. [4] proved that a stochastic prey–predator model with
a protection zone has a unique stationary distribution which is ergodic. Sengupta et al. [24] obtained
stochastic permanence for a stochastic prey–predator system with Holling type III functional response.
Guo and Ruan [10] dealt with a Holling type II stochastic prey–predator model with additional food that has
an ergodic stationary distribution. Li and Zhao [14] studied the deterministic and stochastic dynamics of a
modified Leslie-Gower prey–predator system with a simplified Holling type IV scheme. Qin et al. [20] dealt
with the survival and ergodicity of a stochastic Holling type III prey–predator model with Markovian
switching in an impulsive polluted environment. In recent times, optimal control theory is being applied
on various stochastic models in order to achieve optimal control values, which minimize the cost. Also to
our knowledge very limited research exists on stochastic optimal control theory for additional food- pro-
vided stochastic prey–predator systems involving different functional responses.

Motivated by the above discussions, in this article, we study two optimal control problems for an
additional food-provided prey–predator system with Holling type III functional response for predator.
We also consider the intra-specific competition among the predators to avoid their unbounded growth in
the absence of target prey [28,30]. This system is a coupled non-linear dynamical system. The first optimal
control problem is a Lagrange problem. This has applications for biological conservation of species where
we find the optimal quality and quantity of additional food to be provided to predators to maximize the
populations of predator and prey [6,9,15]. The second optimal control problem is a special kind of optimal
control problem, known as time-optimal control problem, where we determine the optimal additional food
to be provided to the system to reach the final state in minimum time. This has several applications to pest
management [1–3,25,26].

The rest of the article is organized as follows. In Section 2, we formulate the stochastic model for an
additional food-provided system involving Holling type III response. Section 3 deals with the discussion on
corresponding linear quadratic optimal control problems with applications to biological conservation with
reference to quality and quantity of additional food as stochastic control variables. Later in Section 4 we
deal with the time optimal control problems for these systems with applications to both biological con-
servation and pest management. Numerical simulations are also done to validate the theoretical findings in
Sections 3 and 4. Finally in Section 5, discussion and conclusions are given.

Table 1: Description of variables and parameters present in the systems (1), (2), and (3)

Parameter Definition Dimension

T Time Time
N Prey density Biomass
P Predator density Biomass
A Additional food Biomass
r Prey intrinsic growth rate Time−1

K Prey carrying capacity Biomass
c Rate of predation Time−1

a Half saturation value of the predators Biomass
g Conversion efficiency Time−1

m Death rate of predators in absence of prey Time−1

d Predator intra-specific competition Biomass−1 time−1

α Quality of additional food Dimensionless
ξ Quantity of additional food Biomass2
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2 Stochastic model formulation

In this work, we consider the following deterministic prey–predator model with Holling type III functional

response (i.e.
+

cN
a N

2

2 2 ) and additional food for predator given by:

⎜ ⎟

( )
( )⎛

⎝

( ) ⎞
⎠

( ) ( )
( )

( ) ⎛
⎝

( )
( )

⎞
⎠

( ) ( ) ( )

= − −

+ +

=

+

+ +

− −

N t
t

rN t N t
K

cN t P t
a N t αηA

P t
t

g N t ηA
a N t αηA

P t mP t P t

d
d

1 ,

d
d

d .

2

2 2 2

2 2

2 2 2
2

(1)

Here, the parameter g denotes the conversion efficiency that represents the rate at which prey biomass gets
converted into predator biomass and can be obtained as a ratio of nutritive value of prey and the handling
time of predator [30]. The term α denotes the ratio of the maximum growth rates of the predator when it
consumes the prey and additional food, respectively. This term can be seen to be an equivalent of quality of
additional food. The term η represents the ratio of the search rate of the predator for additional food and
prey, respectively. The term ( )− P td 2 accounts for the intra-specific competition among the predators to
avoid their unbounded growth in the absence of target prey [28,30]. The biological meaning for all the
parameters involved in system (1) is enlisted and described in Table 1. Further details regarding the
derivation of the functional response, model formulation, and the parameters can be found in the study
of Srinivasu et al. [30].

To reduce the complexity in the analysis, we now reduce the number of parameters in model (1) by
introducing the transformations = =N ax P, ay

c . Then system (1) gets transformed to:
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where =γ K
a , ( )=ξ η A

a

2
, =δ da

c . Here the term ξ denotes the quantity of additional food perceptible to the
predator with respect to the prey relative to the nutritional value of prey to the additional food. Hence, this
can be seen to be an equivalent of quantity of additional food.

As in previous studies [4,24], we now suppose that the intrinsic growth rate of prey and the death rate of
predator are mainly affected by environmental noise such that

( ) ( )→ + → +r r σ W t m m σ W td , d ,1 1 2 2

where ( ) ( )=W t i 1, 2i are the mutually independent standard Brownianmotions with ( ) =W 0 0i and σ1 and σ2
are positive constants and they represent the intensities of the white noise. Hence, system (2) with the
environmental noise for parameters r and m and the Holling type III predator functional response now gets
modified to
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2.1 Existence of global positive solution

Theorem 1. For any initial value �( ) ∈
+x y,0 0

2
there exists a unique solution ( ( ) ( ))x t y t, of system (3) on ≥t 0

and the solution will remain in �+
2
with probability 1.
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The aforementioned theorem for the existence of solutions of (3) can be proved in similar lines to the proof
in the study by Sengupta et al. [24] using the Lyapunov method.

3 Stochastic optimal control problem

In this section, we theoretically establish the existence of an optimal control for system (3)with both quality
and quantity of additional food as stochastic controls, respectively. Later we use the stochastic maximum
principle to find this optimal control. We then numerically simulate and depict the same with applications
to biological conservation.

3.1 Quality of additional food as a stochastic optimal control

In this section, we wish to achieve biological conservation of maximizing prey and predator population for
system (3) with quality of additional food as a control variable (for a fixed quantity of food) with minimum
supply of the food.

To attain this we consider the following objective functional along with the state equation (3)
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where A A,1 2, and A3 are positive constants.
Here our goal is to find an optimal control ∗α such that ( ) ( ) ( )≤ ∀ ∈

∗J α J α α t U, , whereU is an admissible
control set defined by { ( )∣ ( ) ( ]}= ≤ ≤ ∀ ∈U α t α t α t t0 0, fmax , where �∈

+αmax .

Now we use the existence theorem in the study of Yong and Zhou [34] for establishing the existence of
an optimal control for the stochastic control system (3). Drawing parallels with the theorem, we see that
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Also we let, ( ( ) ( )) ( ) ( ) ( )
= − − +f t X t u t A x t A y t A, , α t
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denotes the Lagrangian.

3.1.1 Existence of a stochastic optimal control w.r.t. quality (α) as control
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in �⊆C 7. Therefore, from Theorem 5.3 in the study of Yong and Zhou [34], the existence of optimal control
is guaranteed. □

3.1.2 Characteristics of stochastic optimal control w.r.t. quality (α) as control

We now find the characteristics of stochastic optimal control using the stochastic maximum principle as
in [34].

As the diffusion term σ in (6) is independent of the control, the solution of the second-order adjoint
equations will not be helpful in calculating the optimal control values.
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The solutions of the aforementioned equation (8) gives ( ( ) ( ))p t p t,1 2 , which are the co-state vectors.
Now from the study of Yong and Zhou [34], we see that the Hamiltonian for system (3) is given by:

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

( ) [ ] ( ) ( )
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( ) ( ) ⎛
⎝

( )
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⎞
⎠

⎡

⎣
⎢

⎛
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⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
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⎛

⎝
( )⎛

⎝
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⎠
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⎠
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⎝
( )⎛

⎝

( )
( )

⎞
⎠

( ) ( )⎞

⎠
( )

( ) ( )
( )

= ⟨ ⟩ + + + −

= ( ) + + + −

= + + + + + −

= − −

+ +

+

+

+ +

− −

+ + + + −

H t X u p q p b q σ A x t A y t A α t

p t p t
b t
b t

q t q t
q t q t

σ x
σ y A x t A y t A α t

p t b p t b q σ x q σ y A x t A y t A α t

rx t x t
γ

x t y t
x t αξ

p t gy t x t ξ
x t αξ

my t δy t p t

q σ x q σ y A x t A y t A α t

, , , , , tr
2

tr 0
0 2

2

1
1 1

2
.

T
1 2 3

2

1 2
1

2

1 2

3 4

1

2
1 2 3

2

1 1 2 2 1 1 4 2 1 2 3
2

2

2 1
2

2
2

2

1 1 4 2 1 2 3
2

Now from the Hamiltonian maximization condition as in the study of Yong and Zhou [34], we have

�

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟

( ( ) ( )) ( ( ) ( ))

⎛

⎝
( )⎛

⎝

( ) ⎞
⎠

( ) ( )
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⎠

⎛

⎝
( )⎛

⎝
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⎠

( ) ( )⎞

⎠
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⎛
⎝
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( ) ⎞

⎠
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( ) ( ( )) ( ( ) ) ( ( ) )

=

⇒

∂

∂

=

⇒

∂

∂
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+

∂

∂

+

+ +

− −

+

∂

∂

+ + + − =

⇒

+ +

−

+

+ +

− =

⇒ + + + + + + − =

∈

t X t α t H t X t α t

H
α

α
rx t x t

γ
x t y t
x t αξ

p
α

gy t x t ξ
x t αξ

my t δy t p t

α
q σ x q σ y A x t A y t A α t

ξx yp
x αξ

ξgyp x ξ
x αξ

A α

A ξ α A ξ x α A x α ξgyp x ξ ξx yp

, ¯ , ¯ max , ¯ ,

0

1
1 1

2
0

1 1
0

2 1 1 0.

α U

2

2 1
2

2
2

2

1 1 4 2 1 2 3
2

2
1

2 2
2

2

2 2 3

3
2 3

3
2 2

3
2 2

2
2 2

1

Now from Descartes’ rule of signs, we see that the above cubic equation admits a positive α only
if ( )+ − <gp x ξ x p 02

2 2
1 .

On solving the aforementioned cubic equation, we see that the optimal quality control is given by

( )
=

+ −
∗α x c ξ

c ξ
1

3
,

2
0

2

0
2 (9)

⎛

⎝
⎜

( ) ( ) ⎞

⎠
⎟ ( )=

− +

+ +

− +

+ = + −c x
ξ

yc
A ξ

c y x
A ξ

y c
A ξ

c gp x ξ x ywhere 10 1 27
2

1
2

108 1 729 and0
2 3

3
1

3

1
2 2

3
4

2
1
2

3
2 2 1 2

2 2

1
3

3.2 Quantity of additional food as a stochastic optimal control

In this section, we wish to achieve biological conservation of maximizing prey and predator population for
system (3) with quantity of additional food as a control variable (for a fixed quality of food) with minimum
supply of the food.

To attain this we consider the following objective functional with the state equation (3)

⎜ ⎟( )
⎡

⎣
⎢
⎢

⎛
⎝

( ) ( )
( ) ⎞

⎠

⎤

⎦
⎥
⎥

∫= − − +J u E A x t A y t A ξ t t
2

d ,
T

0

1 2 3
2

(10)

where A A,1 2, and A3 are positive constants.
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Here our goal is to find an optimal control ∗ξ such that ( ) ( ) ( )≤ ∀ ∈
∗J ξ J ξ ξ t U, whereU is an admis-

sible control set defined by { ( )∣ ( ) ( ]}= ≤ ≤ ∀ ∈U ξ t ξ t ξ t t0 0, fmax where �∈
+ξmax .

Now comparing the cost functional (10) with cost functional in the study of Yong and Zhou [34], we
see that

( ( ) ( )) ( ) ( )
( )

( ( ))= − − + =f t X t u t A x t A y t A ξ t h X T, ,
2

and 0.1 2 3
2

3.2.1 Existence and characteristics of stochastic optimal control w.r.t. quantity (ξ) as control

Theorem 3. For any �( ) ∈
+x y, 2
, if ( )∗J u is finite, then the stochastic optimal control problems (3) and (10)

admit an optimal control.

Proof. The above theorem for the existence of optimal control for systems (3) and (10) can be proved in
similar lines to the proof of Theorem 2. The cost functional (10) at optimal control is also finite owing to the
finite Lagrangian in (10). □

Since ∂

∂

f
x
and ∂

∂

f
y
are independent of control parameter ξ , the adjoint equations are same as (8) in the previous

subsection.
Hence from the stochastic maximum principle as in the study of Yong and Zhou [34], there exist a

stochastic process given by

� � ⎜ ⎟ ⎜ ⎟( ( ) ( )) ( ) ( ( )) ( ) ⎛
⎝
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( ) ⎛
⎝
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⎠
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⎠
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( ) ⎤

⎦
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( ) ( )
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+
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+

= −

−

+ +

+

+
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+

= =

p t r x
γ

xy αξ
x αξ

p t gxy α ξ
x αξ

p t σ q A t q t W t

q t W t

p t x
x αξ

p t g x ξ
x αξ

m δy p t σ q A t q t W t

q t W t
p T p T

d 1 2 2 1
1

2 1 1
1

d d
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d
1 1

2 d d

d
0, 0.
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2
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(11)

The solutions of equation (11) give ( ( ) ( ))p t p t,1 2 , which are the co-state vectors.
Now from the study of Yong and Zhou [34], we see that the Hamiltonian for system (3) is given by:

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

( ) [ ] ( ) ( )
( )

( ) ( ) ⎛
⎝

( )
( )

⎞
⎠

⎡

⎣
⎢

⎛
⎝

( ) ( )
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⎠

⎛
⎝
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⎠

⎤

⎦
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( )
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( )

⎛

⎝
( )⎛

⎝

( ) ⎞
⎠
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( )

⎞

⎠
( ) ⎛

⎝
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⎝

( )
( )

⎞
⎠
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( )
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( )
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H t X u p q p b q σ A x t A y t A ξ t
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b t
b t

q t q t
q t q t

σ x
σ y A x t A y t A ξ t

p t b p t b q σ x q σ y A x t A y t A ξ t

rx t x t
γ

x t y t
x t αξ

p t gy t x t ξ
x t αξ

my t δy t p t

q σ x q σ y A x t A y t A ξ t

, , , , , tr
2

tr 0
0 2

2

1
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2
.

T
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1

2
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3 4

1

2
1 2 3
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Now from the Hamiltonian maximization condition as in the study of Yong and Zhou [34], we have
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�( ( ) ( )) ( ( ) ( ))=

⇒

∂

∂

=

∗ ∗

∈

∗t X t ξ t H t X t ξ t

H
ξ

, , max , ,

0

α U

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟

⎛

⎝
( )⎛

⎝

( ) ⎞
⎠

( ) ( )
( )

⎞

⎠

⎛

⎝
( )⎛

⎝

( )
( )

⎞
⎠

( ) ( )⎞

⎠
( )

⎛
⎝

( ) ( )
( ) ⎞

⎠

( )
( ( ) )

( )
( ) ( ( )) ( ( ) ) ( ( ( ) ))

⇒

∂

∂

− −

+ +

+

∂

∂

+

+ +

− −

+

∂

∂

+ + + − =

⇒

+ +

+

+ −

+ +

− =

⇒ + + + + − + + − =

ξ
rx t x t

γ
x t y t
x t αξ

p
ξ

gy t x t ξ
x t αξ

my t δy t p t

ξ
q σ x q σ y A x t A y t A ξ t

αx yp
x αξ

gyp α x
x αξ

A ξ

A α ξ A α x ξ A x ξ x yp α gyp α x

1
1 1

2
0

1
1 1

1
0

2 1 1 1 1 0.

2

2 1
2

2
2

2

1 1 4 2 1 2 3
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2
1

2 2
2

2

2 2 3

3
2 3

3
2 2

3
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2

Now from Descartes’ rule of signs, we see that the above cubic equation admits a positive ξ only
if ( ( ) )+ + − >x yp α gyp α x1 1 02

1 2
2 .

On solving the above cubic equation, we see that the optimal quantity control is given by

( )
=

+ +
∗ξ x c α

c α
1

3
,

2
1

2

1
2 (12)

⎛

⎝
⎜

( ) ( ) ⎞

⎠
⎟

( ( ) )

=

− +

− +

+

+

= + + −

c x
α

c
A α

x c
A α

c
A α

c x yp α gyp α x

where 10 1 27
2

1
2

108 1 729

and 1 1 .

1
2 3

3
2

3
2

2 3
2

3
5

2
2

3
2 4

2
2

1 2
2

1
3

3.3 Numerical simulations

In this section, we numerically illustrate the theoretical findings of the aforementioned sections with
application to biological conservation.

Using the Taylor series expansion, the optimal control problems are simulated and plotted using the
Stochastic Forward and Backward Sampling approach. The state equation (3) and the adjoint equations (8)
and (14) are solved using the forward and backward processes, respectively. The forward process is simu-
lated using the Euler-Maruyama scheme [18]. Among the various methods available to discretize the back-
ward process, we chose an implicit scheme with a back propagation of the conditional expectations, which
is of order 1/2 [35]. These methods are implemented in Python using Sympy, Numpy, and Matplotlib
packages.

The sub plots present in Figures 1 and 2 give the optimal state trajectories, optimal co-state trajectories,
phase diagram, and optimal control trajectories, respectively. These examples reiterate the importance of
additional food as a control variable in the context of ecological conservation.

4 Stochastic time-optimal control problem

In this section, we wish to achieve pest eradication of nearly prey-elimination stage for system (3) with
quality and quantity of additional food as control variables in minimum time.

To attain this goal, we consider the following time optimal control problem with the following objective
functional along with the state equations (3)

( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫=J u E t1d .
T

0

(13)
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Here our goal is to find optimal controls ∗α and ∗ξ such that ( ) ( ) ( ( ) ( ))≤ ∀ ∈
∗ ∗J α ξ J α ξ α t ξ t U, , , , , where

U is an admissible control set defined by

�{( ( ) ( ))∣ ( ) ( ) ( ]} ( ) ( )= ≤ ≤ ≤ ≤ ∀ ∈ ∈
+U α t ξ t α t α ξ t ξ t t α ξ, 0 , 0 0, , where , .fmax max max max

2

Now comparing the cost functional (13) with cost functional in [34], we see that ( ( ) ( )) =f t X t u t, , 1
and ( ( )) =h X T 0.

4.1 Existence and characteristics of stochastic optimal controls w.r.t. quality (α)
and quantity (ξ) as controls

Theorem 4. For any �( ) ∈
+x y, 2
, the stochastic optimal control problem (3), (13) admits an optimal control.

Proof. The above theorem for the existence of optimal control for systems (3) and (13) can be proved in
similar lines to the proof of Theorem 2. The cost functional (13) at optimal control is also finite owing to the
finite Lagrangian in (13). □

Figure 1: The optimal trajectory of the optimal control problem discussed in Section 3.1 with the objective to drive the system
from the initial state 5, 1( ) to the terminal state 7, 0.25( ). The parameter values for these plots are chosen to be r 1= , γ 7= ,
g 0.4= , m 0.37= , δ 0.1= , ξ 0.1= , A A A 11 2 3= = = . The terminal value of co-state variables is p T p T, 0, 01 2( ( ) ( )) ( )= . The
intensities of noise are chosen as σ σ 0.021 2= = . In order to account the randomness, the stochastic control problem is
simulated for 5,000 times and the average is plotted in these figures. This example depicts the optimal quality of additional
food required to achieve biological conservation, for a fixed quantity of food. The optimal control plot shows that the predators
have to be given high quality of additional food initially and then the lower quality of food in order to conserve both the species
from extinction. The desired terminal state is reached in T 87= units of time.
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Hence from the stochastic maximum principle as in the study of Yong and Zhou [34], there exist a stochastic
processes given by

� � ⎜ ⎟ ⎜ ⎟( ( ) ( )) ( ) ( ( )) ( ) ⎛
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⎜ ⎟ ⎜ ⎟
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⎜
⎜
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⎟
⎟
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⎠
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⎜
⎜
⎜
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⎠

⎟
⎟
⎟

⎤

⎦

⎥
⎥
⎥
⎥

⎛
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⎞
⎠
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⎞
⎠
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∂

∂

∂

∂

∂

∂

∂

∂
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∂

∂

∂

∂

+
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b
x

b
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b
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b
y

p t
p t

σ t X t u t q t σ t X t u t q t

f
x
f
y

t

q t q t
q t q t

W t
W t

p T p T

d
d

, ¯ , ¯ , ¯ , ¯ d

d
d

0, 0.

X
T

X
T1

2

1 2

1 2

1

2

1
1

2
2

1 3

2 4

1

2
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Substituting = =
∂

∂

∂

∂

0, 0f
x

f
y and the values of b σ σ, ,X X X

1 2 from (5), (6), we see that the adjoint equations for
the optimal controls ( )∗ ∗α ξ, are given as:

Figure 2: The optimal trajectory of the optimal control problem discussed in Section 3.2 with the objective to drive the system
from the initial state 5, 1( ) to the terminal state 7, 0.25( ). The parameter values for these plots are chosen to be r 1= , γ 7= ,
g 0.4= , m 0.37= , δ 0.1= , α 2= , A A A 11 2 3= = = . The terminal value of co-state variables is p T p T, 0, 01 2( ( ) ( )) ( )= . The
intensities of noise are chosen as σ σ 0.021 2= = . In order to account the randomness, the stochastic control problem is
simulated for 5,000 times and the average is plotted in these figures. This example depicts the optimal quantity of additional
food required to achieve biological conservation, for a fixed quality of food. The optimal control plot shows that the predators
have to be given high quantity of additional food initially and then the lower quantity of food in order to conserve both the
species from extinction. The desired terminal state is reached in T 84= units of time.
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⎦
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On further simplification, we see that

⎜ ⎟

⎜ ⎟
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(14)

The solutions of the above equations (8) give ( ( ) ( ))p t p t,1 2 , which are the co-state vectors.
Now from the study of Yong and Zhou [34], we see that the Hamiltonian for system (3) is given by:
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Now from the Hamiltonian maximization condition, we have
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Similarly considering
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Hence, the optimal quality and quantity variables for the stochastic time optimal control problem are
given by
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4.2 Numerical simulations

In this section, we numerically illustrate the theoretical findings of the above time optimal control problem
with application to both biological conservation and pest management.

Using the Taylor series expansion, the time optimal control problem is simulated and plotted using the
Stochastic Forward and Backward Sampling approach. The state equations (3) and the adjoint equations (8)
and (14) are solved using the forward and backward processes, respectively. The forward process is simu-
lated using the Euler-Maruyama scheme [18]. Among the various methods available to discretize the back-
ward process, we chose an implicit scheme with a back propagation of the conditional expectations, which
is of order 1/2 [35]. These methods are implemented in Python using Sympy, Numpy, and Matplotlib
packages.

The subplots present in Figures 3 and 4 give the optimal state trajectories, optimal co-state trajectories,
phase diagram, and optimal control trajectories, respectively. These examples reiterate the importance of
additional food as control variables in the context of both ecological conservation and pest management.

5 Discussion and conclusions

The provision of additional food has proven to be very effective in conserving endangered species [11,19,22]
as well as controlling invasive or harmful species [23,32,33]. A significant amount of theoretical work was
also done on the impact of additional food in various ecosystems [25,27]. Both theoretically and experi-
mentally, the technique of providing additional food for biocontrol seemed to be very effective. Nowadays
researchers are also focusing on the optimal additional food to be given to the predators. Some of the
findings in this direction show that the quality and quantity of additional food provided play a crucial role
in these optimal studies [30]. For instance, previous studies [1,3] worked on the deterministic Holling type
III predator-prey systems and found the optimal quality and quantity of additional food required to drive
the system to a desired terminal state.

It is a well-known fact that the real-life systems behave more chaotic. Stochastic setting can be an ideal
tool to capture such random system dynamics better than that of deterministic system dynamics. Motivated
by the above discussions, in this work, we studied a stochastic predator-prey system with additional food
for predator exhibiting Holling type III functional response which in a way can be considered to be a
generalization of the work [1,3]. We have also incorporated the intra-specific competition among predators
in the model to make the model more realistic.
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In this work, we initially considered a Lagrangian optimal control problem with a cost that is linear
w.r.t. state and quadratic w.r.t. control with the end goal of biological conservation of both the species. We
considered two cases with the quality of additional food and the quantity of additional food as control
variables, respectively. We initially established the existence of optimal controls and later characterized
these optimal control values using the stochastic maximum principle. We then numerically simulated using
the Forward-Backward Sampling method. These results showed that biological conservation of the system
can be achieved by the optimal control strategy of providing the quality and the quantity of additional food
high initially and further reducing them over the time.

Second, we studied a time-optimal control problem with the end goal of biological conservation of both
the species and also to achieve the goal of pest management in minimum time. In this problem, we worked
with a multi-dimensional control involving both the quality and quantity of additional food as control
variables. We initially established the existence of optimal controls and later characterized these optimal
control values using the stochastic maximum principle. We also plotted these solutions for two different
sets of parameters, one applied to biological conservation and the other to pest management. In case of
biological conservation, both the controls did not exhibit any switch over the time. In case of pest

Figure 3: The optimal trajectory of the time-optimal control problem discussed in Section 4 with the objective to drive
the system from the initial state 5, 1( ) to the terminal state 6.75, 0.3( ) in minimum time. The parameter values for these
plots are chosen to be r 1= , γ 7= , g 0.4= , m 0.37= , δ 0.1= , α 2= , ξ 0.5= . The initial value of co-state variables is
p p0 , 0 0, 01 2( ( ) ( )) ( )= . The intensities of noise are chosen as σ σ 0.021 2= = . In order to account the randomness, the stochastic
time-optimal control problem is simulated for 5,000 times and the average is plotted in these figures. This example depicts the
optimal quality and quantity of additional food required to achieve biological conservation. The optimal control plot shows that
the predators have to be given constant quantity of additional food (1 unit) and the constant quantity of additional food (1 unit)
in order to conserve both the species from extinction. The desired terminal state is reached in T 63= units of time.
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management, optimal quality of the additional food remained low and constant throughout. The optimal
quantity of additional food fluctuated initially and remained high throughout.

The present stochastic optimal control studies can further be improved by incorporating alley effect and
even multiple prey and predator species to make the model more realistic. Also, the model presented here
does not account for time delay. As diffusion term in this system is independent of control, the results
obtained will be similar to that of deterministic case. It will be very interesting to take up problems with
control in the diffusion. Since the current systems are of higher orders of non-linearity, it turns out that the
numerical methods play a crucial role in understanding the chaotic behaviours. Hence, the study of higher-
order numerical methods such as stochastic Runge-Kutta methods will enhance the output. Also not much
work has been done where multiple noise is added simultaneously. We aim to take up these studies in the
future.

Figure 4: The optimal trajectory of the time-optimal control problem discussed in Section 4 with the objective to drive the
system from the initial state 4.5, 5( ) to the terminal state 0.26, 7.41( ) in minimum time. The parameter values for these plots are
chosen to be r 0.7= , γ 5= , g 1.2= , m 0.19= , δ 0.05= , α 1.4= , ξ 1.4= . The initial value of co-state variables is
p p0 , 0 9, −61 2( ( ) ( )) ( )= . The intensities of noise are chosen as σ σ 0.021 2= = . In order to account the randomness, the sto-
chastic time-optimal control problem is simulated for 5,000 times and the average is plotted in these figures. This example
depicts the optimal quality and optimal quantity of additional food required to achieve pest management. The optimal control
plot shows that the predators have to be given a constant quality of additional food (0.67 units) and a high quantity of
additional food throughout for reducing the pest population effectively. This example suggests that even with low quality of
additional food and high quantity, the prey (pest) can be reduced to a threshold level at which they no longer cause significant
damage to the ecosystem. The desired terminal state is reached in T 100= units of time.
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