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Abstract: The main purpose of this work is to study transmission dynamics of COVID-19 in Italy 2020, where
the first case of Coronavirus disease 2019 (COVID-19) in Italy was reported on 31st January 2020. Taking into
account the uncertainty due to the limited information about the Coronavirus (COVID-19), we have taken
the modified Susceptible-Asymptomatic-Infectious-Recovered (SAIR) compartmental model under fractional
order framework. We have formulated our model by subdividing infectious compartment into two sub com-
partments (reported and unreported) and introduced hospitalized class. In this work, we have studied the
local and global stability of the system at different equilibrium points (disease free and endemic) and calcu-
lated sensitivity index for Italy scenario. The validity of the model is justified by comparing real data with the
results obtained from simulations.

Keywords: Caputo fractional differential equation; COVID-19; SAIR compartmental model; Stability; Sensitiv-
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1 Introduction

The respiratory disease caused by novel Coronavirus was first observed in Wuhan City, Hubei Province, China
in December 2019. The outbreak of the disease is ongoing worldwide and the World Health Organization
named it Coronavirus disease 2019 (COVID-19) on 11 February 2020. On February 21, 2020, the first Italian
patient with COVID-19 was diagnosed, a 38-year-old man hospitalized at Codogno Hospital, Lodi, in north-
ern Italy. As of 3 September 2020, Italy has 28,915 active cases; during the elevation of the pandemic, Italy’s
number of active cases was one of the highest in the World. By 3 September, Italy had tested nearly 5,342,000
people. Due to the limited number of tests performed, the actual number of infected people in Italy, as in
other nations, is estimated to be higher than the official count [37]. Due to this reason we have considered
two sub classes, namely ‘reported symptomatically infected class’ and ‘unreported symptomatically infected
class’. Maria Van Kerkhove, the WHO’s technical lead on the COVID-19 pandemic, made it very clear that the
actual rates of asymptomatic transmission are not however known [36]. So, we have considered the fact that
asymptomatic class does not transmit disease and the main spreading of the Corona virus is happened due
to reported infected class and unreported infected class. Some proportion (critical conditions ) of reported
infected class should be transferred to hospitalized class. Hospitalization capacity is limited for every state,
especially ICU facilities and due to this hospitalization of COVID-19 patients have created a capital issue.
Introducing hospitalized class, we want to predict the number of COVID-19 patients would be hospitalized
which was a major issue in the beginning of pandemic in Italy 2020.

Fractional calculus can be regarded as the generalization of their order where fractional order is replaced
with integer order [24, 23]. In systematic study it has been observed that integer order model is a limited case
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of fractional order model where the solution of the fractional order system must converge to the solution of
integer order system as the order approaches to one [31]. In that respect there are many fields where fractional
order systems are more suitable than integer order systems. Phenomena, which are linked with memory prop-
erty and affected by hereditary property, cannot be expressed by integer order systems [11]. It is observed that
the data garnered from real life phenomena fit better with fractional order systems. We have already done
some works in fractional order dynamics [5, 6, 7, 8, 9]. Many researchers have contributed remarkably on
various models of COVID-19 [14, 17, 20, 26, 27, 28, 29]. Fractional order modeling is a beneficial approach
that has been used to study the nature of diseases because the fractional derivative is a generalization of
the integer-order derivative. Also, the integer derivative is local in nature, while the fractional derivative is
global. This behavior is very useful for modeling epidemic problems. In addition, the fractional derivative
serves to enhance the stability region of the system. The fractional order system provides extra parameter
which is useful for better numerical simulations. The previous models are very much productive for studying
the transmission of COVID-19 but these models do not contain hospitalized, reported and unreported classes
and also the pandemic situation of Italy is not mentioned in the previous research works. These facts along
with the advantages of fractional calculus motivate us to construct our model on COVID-19 in Caputo frac-
tional differential equation systems.

In this work, we have constructed a modified fractional order SAIR model for two sub compartment in-
fected classes (reported and unreported) and hospitalized class (section 2). Next, we have calculated basic
reproduction number of the model which is very important to know whether a virus is highly contagious or
not (section 3). Followed by the uniqueness, non-negativity, boundedness of the solutions have been shown
(section 4). We have analyzed local and global stability of our proposed system and also calculated sensitivity
indices (section 4). Further we have numerically analyzed the dynamical system with respect to the parameter
values connected with Italy scenario (section 5). Section 6 contains some important conclusions.

2 Model formulation

We have constructed the following six compartmental model under fractional order framework using Caputo
fractional differential equations:

£ DES(H) = A* - §°S(6) - (w12 UDOS(D) + w,“V(H)S(D), S(0) > 0,
¢ DEA(D) = (w1°UDS(6) + w2 V(£)S(D) - (6% + aMA(t), A(0) = 0,

£ DEU(E) = fo A(t) + n*V(E) - (€ + 8, + ) U(D), U(0) = 0,
0))]
EDFV(O) = (1 - f)o“A(t) - (™ + &%+ 8,“)V(D), V(0) = 0,

¢ DEH(E) = €°U(t) - (4% + 6,)H(t), H(0) > 0,

¢ DER(t) = p2U(t) + E*V(t) + v*H(t) - 6*R(t), R(0) 2 0.

where0 < a < 1, and E)D?‘ is the notation due to Caputo fractional derivative, to > O is the initial time (it is
assumed that to = 0). System (I) is dimentionally correct as both sides have same time dimension time™*. We
have ignored the upper script a of all parameters and the model becomes:
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Figure 1: Schematic diagram of system (1)

€ DES(t) = A - 8S(t) - (w1 UBS(E) + w2 V(H)S(E)), S(0) > 0,
[COD?‘A(t) = (w1 U®)S(t) + wo V(£)S(1)) - (6 + 0)A(t), A(0) = 0,

£ DRU(E) = faA(t) + V(D) - (€ + 6u + P)U(D), U(0) = 0,
(1)
EDEV(D) = (1-f)oA(D) - (n + &+ 6,)V(D, V(0) = 0,

EDEH(t) = eU(t) - (v + 8,)H(t), H(0) = 0,

¢ DER(t) = pU(t) + EV(6) + vH(t) - 8R(t), R(0) = 0.

It is assumed that § < 8y, bv, 8; i.e., the natural death rate (6) is lower than the disease induced death
rates (6, 6v, 65). Here S(t), A(t), U(t), V(t), H(t) and R(t) represent the susceptible, asymptomatically in-
fected, reported symptomatically infected, unreported symptomatically infected, hospitalized population
and recovered or removed population at time t respectively. The description of all parameters is given in
Table 1.

3 Equilibria and Basic reproduction number

System (1) has two equilibrium points.

1. Disease free equilibrium: Eq = (4, 0, 0, 0, 0, 0)
2. Endemic equilibrium: E; = (S*, A", U, V", H", R").
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Table 1: Parameters in the system (1)

Here

A Recruitment rate of S

) Natural death rate

bu Natural and disease induced death rate of reported class

bv Natural and disease induced death rate of unreported class

oy, Natural and disease induced death rate of hospitalized class
w1 Transmission coefficient for the reported symptomatically infected compartment U
w; | Transmission coefficient for the unreported symptomatically infected compartment V
¢ Recovery rate of class U

o Rate at which asymptomatic infected becomes symptomatic

f Fraction amount of population enters to

reported symptomatically infected class

€ Rate of hospitalization of symptomatic class

'3 Rate of recovery of unreported symptomatic class

~y Recovery rate of hospitalized class

n Rate of conversion from unreported symptomatic class to

reported symptomatic class by PCR testing

g - 6+ 0)A”

wlU*+w2V*

« A 6

_m_E)fU w,(1-f)o

1 201 -

WhereB:e+5u+¢+n+.{+6V
. foA”

e+ byt 2
V*z(l—f)foA*

n+&+6y

« €U

7+ 6h

« &V + U +HH
R=rr————

For E; to exist in feasible region RS, it is necessary and sufficient that

w1 fo w,(1-f)o
€+51u+¢+ r12+.§’+6v >(8+0)8

The basic reproduction number R provides the average number of secondary (infectious) cases produced
by one infective individual. It is calculated as the maximum eigenvalue of the next generation matrix FV !
at disease free equilibrium Eg [32], where
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(6 +0) 0 0
V= -fo €E+6u+ 9@ -n
-1-fo 0 n+&+6y

Thus, we get

A _wio@frafin) | @(-No
0| (m+&+6v)(e+bu+p) n+&+6y

Here the first part is due to reported symptomatically infected individuals and the second part is for unre-
ported symptomatically infected individuals. Clearly, each parameter depends on a and so Ry is a function of
a. For analysis purposes, we have fixed the value of a. If we change the value of a, then all other parametric
values will be changed and this will change the value of Ry. According to Figure 8, it is clear that the basic
reproduction number R, will be decreased if the value of a is diminished.

Ry (3)

4 Analysis of the model

In this section we have verified the existence, uniqueness, non-negative, boundedness criterion of the solu-
tion of system (1). Next we have performed stability analysis.

4.1 Preliminaries

Let us recall some basic theories that are needed for dynamical analysis.
Definition 1 [23] The Caputo fractional derivative with order a« > O for a function g € C"([ty, oo+),RR) is
denoted and defined as:

t

1 g"(s) )

I'(n-a) / (t—s) ™ ds,ac(n-1,n),neN
to

£ Dig(t) =

dn
ﬁg(t), a=n.

where I'(-) is the Gamma function, t > ty and n is a natural number. In particular, for a € (0, 1):

1 t g (s) d
Iri-a) / (t-5)°
to

¢ D¥g(h) =

Lemma 1 (Generalized Mean Value Theorem) [22] Let 0 < a < 1, (t) € C[a, b] and if gD‘t"l,b(t) is continu-

ous in (a, b], then
Px) = Pla) + ﬁ(x — a)®. §DM(()

where 0 < { < x, Vx € (a, b].

Remark: If gD‘t"l,[;(t) > 0 (SD‘t"x,b(t) < O) ,t € (a,b), then Y(t) is a non-decreasing (non-increasing)
function for t € [a, b].
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Definition 2 [24] One parametric and two parametric Mittag-Leffler functions are described as follows:

oo

k o k
w w
Bw) = 0 gy 1y 21 B ) = 0 gy gy Where @ anr 2 € e

Theorem1[18] Let @ > 0,n—1 < a < n, n € N. Assume g(t) is continuously differentiable function up to order
(n-1)on|ty, o) and nt" derivative of g(t) exists with exponential order. If [COD?g(t) is piecewise continuous on
[to, =), then

n-1
Z {tCoD‘?g(t)} =s"F(s) - Y _s" 77 gto),
=0
where F(s) = . {g(t)} denotes the Laplace transform of g(t).

Theorem 2 [16] Let C be the complex plane. For any a1, a> € R, and M € C, then
a—1 a1 Sal —®
f{t Eal,az(Mt )}=m,
for %(s) > | M| ﬁ, where Z(s) represents the real part of the complex number s, and Eq, ,q, is the Mittag-Leffler
function.

Theorem 3 [23] Consider the following fractional-order system:
tCOD’t"X(t) =¥Y(X), X, = (x}o,xﬁ), ey x’fo),xfo >0,i=1,2,..,n

with 0 < a < 1, X(t) = (xX(), x2(t), ..., x"(t)) and ¥(X) : [to, o) — R™". The equilibrium points of this
system are evaluated by solving the following system of equations: ¥(X) = 0. These equilibrium points
a(l}/l9 ‘{,2) ceey llln)

are locally asymptotically stable iff each eigenvalue A; of the Jacobian matrix J(X) = A X))

calculated at the respective equilibrium points satisfy |arg(/\i)} > %.
4.2 Existence and uniqueness
Lemma 2 [19] Consider the system:
6 DEx(E) = g(t, %), 1 > 0 4)

with initial condition x(to) = x;,, where a € (0, 1], g : [to, o) x Q — R", Q C R", if local lipschitz condition
is satisfied by g(t, x) with respect to x, then there exists a solution of (4) on [tg, =) x Q which is unique.

To study the existence and uniqueness of system (1), let us consider the region Q x [tq, v],where Q =
{(S,A,U,V,H,R) € R® : max(|S|, |A|,|U]|,|V]|,|H|,|R|) < M} and v < +oo. Denote X = (S,A, U, V,H,R)
and X = (5,4, U, V, H, R). Consider a mapping L(X) = (L1(X), L,(X), L3(X), L4(X), L5(X), L¢(X)), where

L1(X) = A - 65 - w1SU - w,SV
Ly(X) = w,SU + w,SV — (5 + 0)A
L3(X) = foA +nV - (€ + 6y + P)U
LX) = (1-)oA - (n+&+6,)V
Ls(X) = €U - (y + 6,)H

Le(X) = £V + ¢U + ~H - 6R
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Forany X, X € Q:
00 - LD
= |L1(X) - L1 ()| + |Lo(X) - LX)| + [L3(X) - L3(K)| + [L4(X) - L4 (X)|
+|Ls(X) - Ls(X)| + |Le(X) - Le(X)|
= |-6S - w1 (US - US) - w,(VS - V5)|
+| w1 (US - UB) + w, (VS - 75) - (6 + 0)(A - A)|
+fo(A-A) +n(V-T) = (e+6u+ P)U-T)| + |1 -fo(A - A) - (n + 6, + &)U - D)
+|e(U-10) - (v +6,)(H - H)|
+ €WV =)+ ¢(U - ) +A(H - ) - 5R - R)|
<6|S-5|+2w, |US-5U|+2w, |VS-SV|+ (6 +20) |A- A
+{2e+6u+2¢} [U-U|+{2n+ 28+ 6,} |V -V
+{2y+ 6} |[H-H|+6|R-R|
< (6+2w1M + 2w, M) |S - S| + (6 +20) |A - A
+{2e+6u+2¢ + 201 M + 20, M} U - U| +{2n + 28 + 64} |V - V|
+{2y+ 6} |[H-H|+6|R-R|
<F1|S-S|+F,|A-A|+F3|U-U|+F4|V-V|+Fs|H-H|+Fs|R-R|

<F|X-X

,where F = max{Fi, F,, F3, F4, F5, F¢},

and
Fl = (6 + 20)1M + 20)2M)

F2 = (5+ 20')
F3={2€+6u+2¢p+2wiM+2w,M}
Fy={2n+2&+6v}

Fs = {2y + 6y}

Fg=6
Hence L(X) satisfies Lipschitz’s condition with respect to X. Therefore, Lemma 2 confirms that there exists
a unique solution X(t) of system (1) with initial condition X(0) = (5(0), A(0), U(0), V(0), H(0), R(0)). The
following theorem is the consequence of this result.

Theorem 4. There exists a unique solution X(t) € Q of system (1) for all ¢t > 0 with initial condition X(0) =
(5(0), A(0), U(0), V(0), H(0), R(0)) € Q = {(S,A, U, V,H,R) € R® : max(|S|, |A|, |U|, |V|, |H|, |R|) < M}.
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4.3 Non-negativity and boundedness

In this section we have established the criterion for feasibility of the solution of system (1). Suppose R. stands
for the set of all non-negative real numbers and I'y = {(S VAU V,H,R) € IRE} .

Theorem 5 The solutions X(t) = (S,A,U,V,H,R) of system (1) remain in I if X(0) =

(5(0), A(0), U(0), V(0), H(0), R(0)) € I.
Proof:

fDES(D)] g0 =4 >0 (i)

§DFAW)] 40 = W1US + Wy VS (if)

§DFUO)] o = fOA + NV (iii)

§DEV(O)| 0 = (1 - NOA (iv)

gD‘tXH(t)‘H(t):O =eU (V)

gD?R(t)|Rm=o =&V + U +~H (vi)

From (i), we have
£,D5(0)]s(9-0 = A > 0.

From Lemma 1, we can say S(t) is increasing in a neighborhood of time ¢t where S(t) = 0 and S(t) cannot cross
the axis S(t) = 0. Hence, S(t) > 0 for all ¢t > 0. Now, we claim that the solution A(t) starts from I'; and remains
non-negative. If not then there exists 7, such that A(t) crosses A(t) = 0 axis at t = 71 for the first time and the
following conditions hold

A(t)>0, forO<t<T1q,
A(Tl) = 0,
A(17) <O0.

From (ii), we have (C)Df‘A(t)|Pl(Tl):0 =w,U(11)S(11) + w2 V(11)S(11).

Now, two cases arise.
Casel: If w,U(11)S(11) + w2 V(11)S(71) > O then by the remark of Lemma 1 we can say that A(t) is non-
decreasing in a neighborhood of ¢t = 71 and which concludes A(77) = 0. Hence, we have arrived at a contra-
diction.
Case2: In this case we have w1, U(11)S(11) + w, V(11)S(11) < 0, which implies any one or both of U(t4), V(11)
must be negative. Now we have two sub-cases.
Sub-casel: If V(1) < 0, then there exists a 7, such that 0 < 7, < 71 with

V(t)>0, forO<t< Ty,
V(ry) =0,
V(t3) < 0.

From (iv), we have
§DEV(D)| 0 = (1 - N)OA(T2) > 0

which contradicts our assumption that V(73) < 0. Therefore, we have V(t) = 0, Vt € [0, ).

Sub-case2: If U(1,) < 0, then we can find a 73 such that 0 < T3 < T, < 71 with

U(t) >0, forO<t< T3,
U(TB) = 0’
U(t3) < 0.
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From (iii), we have
§DEU)] yr, )0 = fOA(T3) + NV (13) > 0

which contradicts our assumption that U(r3) < 0. Therefore, we have U(t) > 0,Vt € [0, o) and also
A(t) 20,Vt € [0, o0).

Again from (v),(vi) we have H(t), R(t) = 0, Vt € [0, o)
Thus, all solutions of system (1) starting in I'. are confined in the region I';.

Theorem 6 (Boundedness). Solutions X(t) = (S, A, U, V, H, R) of system (1) are uniformly bounded.
Proof: From first equation of (1), it is noted that
EDEx(t) < A - 6S
Taking Laplace transforms on both sides, we have

sz {S(t)} - s¥15(0) + 6.7 {s(0} < %, where . {-} is the Laplace transform operator

Sa—(1+a) Sa—l
= 280} =g + SO0

Taking inverse Laplace transforms (using Theorem 2):

S(t) < S(O)Ea,l(_‘Sta) + AtaEa,aJrl(_(sta) (5)
- S(t) < My[Eq1(~8t%) + 6t*Eq 01 (~6t%)] = % - My,

where M; = max { %1, S(O)} and since from the properties of Mittag Leffler function [15]:

Eqp(2) = ZE 4 44p(2) + %ﬁ)

In this case 1

Ea,l(_ata) = (_Sta)Ea,aH(_ata) + e

(6)
Let, N(t) = S(¢) + A(t) + U(t) + V(t) + H(t) + R(t) represents the total population, then
SDEN(t) = D2S(t) +§ DRA(E) +§ DEU(E) +§ DLV (t) +§ DEH(t) +§ DER(t)
=A-{6S(t) + 6A(t) + 6uU(t) + 6, V(t) + 6, H(t) + 6R(1)}
< A - 6mN(t), where 6, = min{buy, 6v, 6y, 6}

Therefore,
SDEN(E) + 6mN(t) < A

Applying Laplace transformation, we have (using Theorem 1):

SYF(s) - s IN(0) + 8mF(s) < %, where F(s) =.# {N(t)}

-1 a-1 a-1 a—-(1+a)
~F(s)<A s N N(0)s _S N() As
S®+8m ST+ 6m S+ 6m S+ 8,

Taking inverse Laplace transforms (using Theorem 2):
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N(t) = N(O)E,1(—=6mt”) + At"Eq g1 (~6mt®) (7)
From (6) and (7), we get
M
N(t) < Mz[Ea,l(_5mta) + 5mtaEa,a+1(—5mta)] = le) =M,,
A
where M, = max {5—, N(0)
m
Thus S(t), N(t) are bounded and hence the solutions X(t) = (S, A, U, V, H, R) are bounded uniformly in
{S,A,U,V,H,R)[IS+A+U+V+H+R<M,;S<M;}fort € [0, o) 0

4.4 Local stability

For stability analysis, let us reduce system (1) by discarding last two equations as H, R do not appear in first
four equations of system (1). If we study the dynamics of S, A, U, V, then the dynamics of H, R also be ob-
tained from them. The reduced system is as follows:

EDES(H) = A - 8S() - (w1 UMBS(D + w, V(1)S(E)), S(0) > 0,

g)D?A(t) = (w1 U)S(t) + wa V(6)S(8)) - (6 + 0)A(t), A(0) = O,

8
gD?U(t) = foA(t) + nV(t) - (e + 8u + P)U(t), U(0) = O, ®
LDIV(D) = (1 - f)oA(t) - (n + & + 8,)V(8), V(0) 2 0.
The equilibrium points of (8) are as follows:
1. Disease free equilibrium: Ej = (4,0, 0, 0)
2. Endemic equilibrium: E] = (", A", U", V).
Here .
s (6+0)A
T w0 U+ w, V*
‘5137 f (1-9
_ w1JO woyl—-J)o
whereB—€+5u+¢+n+§+6V 9)
«  foA”
U=+ Sut
. (1-f)foA
rl + { + 5V

For E; to exist in feasible region R%, it is necessary and sufficient that

wifo | w,(1-f)o

A €E+0u+ n+&+6y

>(6+0)8

To analyze the local stability of endemic equilibrium E}, we need the followings:

1

Definition 3 [13]: The discriminant V(f) of a polynomial f(x) = x" + a1 x" ! + a;x"2 + ... + an is defined by

nin-1)
V) =1 2 [Salf, [

Sn(f, g) is the Sylvester matrix of f(x) and g(x) of order (n+1) x (n+1) where g(x) = x' + B1x!" 1+ Box "2 + ...+ B,.
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For n = 3, we have f(x) = x> + a1x> + apx + a3 and f'(x) = 3x% + 2a1x + a,.

1 a; ar a3 0

0 1 a1 A as
2

1S3(f, f))| = 320 a0 0l -18a1 003 — (a1 @2) + 4adas + 4as + 2703

0O 3 2a09 a, O

0 0 3 2a1 an

Hence V(f) = -[S3(f, f')| = 18a1aza3 + (@10,)? - 4a3as - 4a3 - 27a3

Lemma 3 [2]: If V(P) is the discriminant of the characteristic equation P(A) = A" + a1 A" ! + a,A" 2 + ... + an
of Jacobian matrix of system (1) evaluated at equilibrium point, then for n = 3 the system is asymptotically
stable if any of the following conditions hold:

V(P)>0,a;, >0,as >0and aia, > as
V(P)<0,a;20,a,20,a3 >0and a < §
V(P)<0,a; >0,a; >0,a1a, = az and a € (0, 1).

Forn=4,PQA) =2* + 1> + auA2 + asA + a,

1 a a as a 0 0
0 1 ag aj as ay 0
0 0 1 ai aj as ay
V(P) =4 3a; 22a as 0 0 0
0 4 3a; 2a as 0 0
0 0 4 3a; 2a; as 0
0 0 0 4 3a 2a, as

Lemma 4 [21]:

1.

Ifv(P)>0,a; >0,a; <0and a > %, then the equilibrium point is unstable.

Ifv(P)<0,a;>0,a,>0,a3 >0,a, >0and a < %, then the equilibrium point is asymptotically stable.

IfV(P)<0,a1 <0,a;>0,a3<0,a4 >0and a < 1, then the equilibrium point is unstable.

IfVv(P)<0,a; >0,a, >0,a3 >0,a, >0and a, = % + %, then the equilibrium point is asymptoti-
3 1
cally stable for a € (0, 1).

a, > 0 is the necessary condition for the equilibrium point E” is to be locally asymptotically stable.

At the disease-free equilibrium point Ej, the Jacobian matrix is given by
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-6 0 —%wl —%wz
A A
]{<2,0,0,0>}= 0 -(8+0) gwl sz
0 fo —(e+6u+¢) n
0 (-fo 0 1+ §+8))]

Characteristic equation of this matrix is: (1 + d)P(A) = 0, where P(A) = A> + c1A% + coA + c3,

C1 = —(K1 +I(5 +I(3)
Cy = K11<5 + K1K9 + K5K9 - I<2K4 - I<3K7 - I<6K8

C3 = —I<1K5[<9 + KII<6K8 + I(2K4I(9 - I<21<61<7 - K3I<4K8 + I<3K7I<5

and
Ki=-(6+0)
K2 = %aﬁ
A
K5 = ng
K, =f0
Ks =—-(e+6u+¢) (10)
K¢ =n
K;=(1-f)o
Kg=0

Kg=-(E+n+6y)

So, A;,i =1, 2, 3, can be found from the equation: P(1) = A3 + 1A% +c,A+¢3 = 0. Suppose V(P) = 18c1¢,¢3 +
(c1¢2)* - 4¢3 cs - 4¢3 - 27¢3, then by Lemma 3 the disease-free equilibrium point Ey is locally asymptotically
stable if any of the following conditions holds good :

1. V(P)>0,c1>0,c3>0andcicy > ¢3
2. V(P)<0,c¢120,c,20,c3>0and a < 3
3. V(P)<0,¢1>0,c >0,c1c =czand a € (0, 1)

The following theorem is the consequence of these discussions.
Theorem 7

The disease free equilibrium Ej, of system (1) is asymptotically stable if any of the following conditions
hold:

1. V(P)>0,c1 >0,c3>0andcicy > c3
2. V(P)<0,c120,c,20,c3>0anda < 2
3. V(P)<0,¢1>0,c3 >0,cic =czand a € (0, 1)

where V(P) = 18¢1cyc3 + (c1¢2)? - 4c2c3 - 4c3 - 27¢3,

C1 = _(Kl + K5 +I(3)
€2 = K1Ks + K1 Ko + KsKo — KoKy — K3K; — KK

C3 = —I<1K5I<9 + K11<6K8 + I<2K4I<9 - K2K6K7 - K3I<4K8 + I(3K7I(5

where K;,i =1, 2...,9 are given in (10).
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Now, Jacobian matrix of system (1) at endemic equilibrium E] is given by
b11 b1, bis b14

by b by3 by,
JS, AU, V) = , where

b11 =-6- (wlU* + (UzV*)

b12 =0

b13 = —S*a)l

b14 = S*(Uz

bzz = —(6 + O')

b23 = S*a)l

b24 = S*(Uz

b31 =0 (11)
b3, = fo

b3z = (e +6u+¢)
bi1=n

by1=0

by =1 -f)o

b43 =0

by =~ +n+6y)

Characteristic equation of this matrix is: Q(A) = A* + d1A° + d2A? + d3A + d4 = 0, where

di = —-(b11 + b12 + b13 + b1y)

dy = -b1yb31 — b13b31 — by3
+b3y + b2ab3z — b1absr = bosbsy — b3gbyz + (baa + b33)bas + b11(baz + b33 + bys)

d3 = b11(by3bsa — baobss + bosbso + b3sbys)

+b14(b22b41 + b3zbs1 — barbuy — b31bs3) + bas(b3zbay — b3y bys)

+b34(b22b43 — ba3bar) — bas(b11b22 — bazbszy + (b11 + by2)b33)

+b13(=b21b32 = b34bs1 + b31(b2y + bus)) + b12(=b23b31 — basbay + br1(b33 + bas))

(12)

dy = b12by1(b2sb3s — ba3bss) + b11bsa(bazbss — baybss)

+b24bs3(b3yb11 = b12b31) + b3sbyz(b12ba1 — b11b22) + b14{b23(b32bs1 — b31bsr)

+b21(b33bsy — b32by3) + baa(b31bsz — b3sby1)} + {b12(b23b31 — ba1b33) + b11(ba2bsz — b3aby3)}
+b13{b22(b34bs1 — b31b4s) + bra(b31bsr — b3obaq) + br1(b32bas — b3sbs)}

Therefore, we have the following theorem:

Theorem 8 The endemic equilibrium E] of system (1) is asymptotically stable if any of the following condi-
tions hold:

1. Ifv(Q)<0,d1 >0,d, >0,d3 >0,d, >Oanda<%
did, ds
& + 4 for a € (0, 1),

where Q(A) = A* + d;A% + d,A? + d3A + d, is the Jacobian matrix at endemic equilibrium E] and d;’s (i=1,2,3,4)
can be found from (11) and (12).

2. Ifv(Q)<0,d; >0,d, >0,d3 >0,d, >0and d, =
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4.5 Global Stability

First, let us state the following important lemmas.

Lemma 5 [19] Suppose u(t) € R.be a continuous and differentiable function, then for any time t > ¢,
* * u(t u* *
€ [u() ~u* ~u'In Lf)} < (1 - @> € DSu(t), u” € Rs, Va € (0, 1).

Lemma 6 [10](Uniform Asymptotic Stability Theorem) Consider the non-autonomous system
6DEx(t) = f(t,x), x € Q CR" (13)

Let x" be an equilibrium point of the system (x" € Q@ C R™) and @(t, x(t)) : [0, o) x Q — R be a continuously
differentiable function such that

§DEa(t, x(1)) < -03(x),
61(x) < @O(t, x(t)) < O,(x), Ya € (0, 1), Vx(t) € Q

where 0;, i = 1,2, 3, are continuous positive definite functions in Q. Then the equilibrium point x" of
system (13) is globally stable.

Theorem 9. The disease free equilibrium E, 8 of system (8) is globally asymptotically stable if w; M1 < (€ + 6y +
¢) and woM; < (n + & + 8v), where M; = max {%, S(O)}.
Proof: We have considered a positive definite function:
L=A+U+V

Clearly L > 0 and L = 0 only at (0, 0, 0).
Taking a order Caputo derivative { D¥ of L along the solution of system (8), we have

6D{L = §D{A +§DEU + §DFV
s (WiMU+w, M V)-(6+0)A+foA-(e+6u+P)U+(1-f)gA-(n+&+6,)V (since S < My)
=-0A+[wiM; - (e+6u+ DU+ [waM; —(n+&+6)]V

Hence, CD‘["L <0ifwiMy < (e+6u+¢)and woMy < (n+&+6y).
Therefore, using Lemma 6:
lim A(¢) = lim U(¢t) = lim V(¢) = 0.
t—ro0 t—oo t—oo

Hence in the limit S(¢) is given by the solutions of S D{S(t) = A - 88S. Since S(0) > 0, the theorem follows. 0

Theorem 10. The endemic equilibrium E;(S", A", U", V") of system (8) is globally asymptotically stable.

Proof: Consider a positive definite function:

* * S * * A
V= (S—S -S lnb,*) + (A—A -A lnA*)

(14)
+c1<U—U*—U*1nl(]]*> +c2<V—V*—V*anV*>,
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.Itis observed that V > 0 and V = 0 only at E. Taking

a)ls*U* (UZS*V* cy = CUzS*V*
foA* > qv* [’ 2T (1-foA”
a order Caputo derivative D% of V and using Lemma 5, we have

EDa(V) < (1 - ‘Z)S’D?s + (1 - i)ng‘A

where ¢; = min {

(15)
U* V*
+Cq (1 - U)SD}"U+ ) (1 - V)ng‘V
From steady-state of equilibrium point (9), we have
A=6S" +wSU +w,SV
w1SU +w, SV =(6+0)A"
(16)
fUA* + 11V* =(e+6y+ ¢)V*
(1-f)oA" =(n+&+6,)V
Let
oS gl AUV
_S*s _A*’ _U*) _V*
From (15) and (16), we have
EDU(V) < -5y _ 8(5-S)-w(US-U'S") - wr(VS-V'S")
ot = S 1 2
(1 - ‘Z) w1SU + w,SV — (w1, S'U” +BZS*V*)%
U _ (foA" +nV)U v ~ _((@-HoAV
+C1 <1 U*) foA +nv — T +C3 (1 V*) {(1 floA #}
_ 6 *\2 * ok 1 1 1
--3(5-5)V +wiS'U [(1 D -sw+(1- su-(1 E)a}
* * 1 1 1
+wSV {(1 - g)(1 -sv)+(1- E)sv -(1- E)a}
* 1 * 1 * 1
+c1foA"[(a - u)(1 - E)] +canV (v -u)(1 - E)] +c2(1 - f)oA [(a-v)(1 - ;)]
6 *\2 - 1 su a
S—E(S—S) +CU1US (3_5_0_11)
+wZS*V*<4_u_1_SV_V_a_1> (17)
s a u v v
since ¢; = min WSV 7w25*V* Cy = 76025*‘/*
1 fG,A* ’ rIV* ’ 2 (1_f)O_A*
Using the inequality A.M. > G.M., we have: 3 - 1_su_a <0;6-u-— 1 sv v a 1 < 0. From relation
s a u s a u v v

(17) it is clear that {D¥(V) < 0 and thus §D¥(V) is negative definite with respect to E;. Thus E] is globally
asymptotically stable by Lemma 6. 0



DE GRUYTER Stability analysis of a fractional ordered COVID-19 model =——— 37

Table 2: Parametric values of system (1) corresponding to the situation in Italy

Parameters Values

A 1183¢

6 0.0006%
Ou 0.0007¢
by 0.0007¢
n 0.00067%
w1 (0.1 x1075)%
w- (0.1x1075)
) 0.05¢%

o 0.07¢

f 0.5

€ 0.001%

& 0.05%

~ 0.06%

n 0.1¢

o 0.85

Table 3: Sensitivity indices of different parameters of system (1) corresponding to Table 2

Parameters | sensitivity index

+1

+1
+0.8290
+0.1710
-0.8018
-0.1664
-0.0033
-0.1064
-0.0022

S|o=w|e| 8|8 |al>

4.6 Sensitivity analysis

The basic reproduction number (R,) depends on several parameters and value of Ry = 2.6784 according to
Table 2. To examine the sensitivity of Ry to any parameter (say, 8), normalized forward sensitivity index with
respect to each parameter has been computed as follows [3, 32]:

ORy 6

06 Ry

The sensitivity index may depend on some system parameters but also can be constant or independent of
some parameters. These values are very much important to estimate the sensitivity of parameters which
should be done cautiously, since a small perturbation in a parameter causes relevant quantitative changes.
Merely in the estimation of a parameter with lower value of sensitivity index does not demand to deal
cautiously, because a small perturbation in that parameter causes small changes. Since we cannot control
bu, 6, 6v, we have concentrated on the parameters w1, w;, 0, ¢, ¢, €, 17, f. Now, Qg" = +1 indicates that in-
creasing (decreasing) 6 by a given proportion increases (decreases) Ry by same proportion and Qg‘) = -1
means that increasing (decreasing) 6 by a given proportion decreases (increases) R by same proportion. The
values of sensitivity indexes for the parameters w;, w», 0, ¢, &, €, 17, f corresponding to Table 2 is given in
Table 3.

Ro _
QB =
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Table 4: Day wise Reported and Death cases between 1st March 2020 and 20th April 2020

Day Reported Cases | Deaths
1/3/20 1528 12
6/3/20 3919 41
11/3/20 8518 169
16/3/20 20607 369
21/3/20 37859 629
26/3/20 57469 714
31/03/20 75744 840
5/04/20 91137 683
10/04/20 98129 572
15/04/20 105252 580
20/04/20 10804 455

5 Numerical simulations

For numerical simulations, we have used MatLab interface along with Predictor-corrector PECE method for
fractional differential equations introduced by Roberto Garrappa [12]. We have considered Table 2 for the sce-
nario of Italy due to COVID-19 in the period 1st March 2020 to 20th April 2020. We have performed numerical
simulations to compare the results of our model with the real data from various reports published by WHO
[33] and worldometer [4]. The total population of Italy is around 6.04 x 107 [35]. We have taken ¢ = 1 day as
time unit and ¢ = 50 as the final time. The recruitment rate has been calculated as %f;‘g;m = 1183
per day. In Italy, birth rate per 1000 inhabitants is 7.2 [30]. Table 4 recommends the reported symptomatically
infected cases and deaths from 1st March 2020 to 20th April 2020, we have taken 5 days gap between two
successive reports [4]. We have considered system (I) rather than system (1) for numerical simulations as the
parameters of system (I) contains a which gives better results. From Figure 2, it has been observed that in
initial stage the time series of reported class is fitted with actual data and for death rate the time series is rel-
evant for first 15 days (Figure 3). Next, we have simulated our model with estimated parametric values (Table
2) from 3rd September (present scenario in Italy) to 31st October (60 days) (Figure 5-6). Figure 4 indicates that
for a = 0.85 the time series of reported class is closer to the realistic scenario. The death cases have been
computed at time t due to COVID-19 as 6, U(t) + 6, V(t) + 6, H(t). The number of death cases according to the
time series on 6/03/20,11/03/20,16/03/20, 21/03/20 are 29, 168, 327, 435 which are quite close to the real
data. Similarly, on 21/03/20, 26/03/20, 31/03/20, 5/04/20 number of reported cases according to time se-
ries are 36370, 59150, 78430, 93500. Figure 7 depicts that for slight changes in 1 the reported cases increases,
but the unreported cases decreases rapidly and number of hospitalized class is also increased. The variation
of Ry with order of derivative is depicted in Figure 8.

6 Conclusion

Fractional calculus plays an important role in real dynamical processes, including the cases of epidemic
spreading. Here we have studied on the evolution of a modified SAIR epidemic model, incorporating memory
effects. We have taken the hospitalized class and subdivided symptomatically infected class into two sub-
classes, one is reported class and other is unreported class. Our model is giving a well approximation of the
reality of Italy outbreak and predicting daily number of confirmed cases due to COVID-19. The number of
hospitalized persons is relevant to provide an approximation of the Intensive Care Units (ICU) required. The
model we have studied for Italy can also be employed to study the reality of the other countries. The value of
order of derivative a may vary region to region. It is observed that the dynamics of the system (1) depends on
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Figure 2: Time series of symptomatically infected class (both reported and unreported) system (1) for Table 2 and real data
(from 1st march 2020 to 20th April 2020)
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Figure 3: Time series of hospitalized(H), recovered (R) , death classes and real death cases from 1st march 2020 to 20th April
2020 with correspondence to Table 2
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Figure 4: Time series of symptomatically infected variable (reported) system (1) for Table 2 different « = 0.8, 0.85, 0.9
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Figure 5: Time series of symptomatically infected (reported and ) with correspondence to Table 2 from 3rd September 2020
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Figure 6: Time series of hospitalized, recovered and death cases with correspondence to Table 2 from 3rd September 2020
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Figure 7: Time series of hospitalized, infected cases (reported and unreported) with correspondence to Table 2 from 1st March
2020 to 20th April 2020 for different values of n = 0.1, 0.3, 0.5
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Figure 8: Variation of Ry with a according to Table 2

the robustness of memory effects, which is controlled by the order of fractional derivative a. The results will
be different if we change the order of derivative for same set of parametric values (Figure 4). This shows that
order of derivative plays an important role in simulations of system (1). From Table 2, it is clear that the values
of parameter depends on order of derivative a. We will get different sets of parametric values if we change the
value of a. In our context, we have fixed the value of differentiation at 0.85 which is more suitable for the real
scenario. From Figures 5-6, we can conclude that the number of reported case will be decreasing at the end
of October 2020. The morbidity rate will also be under control in the last week of October 2020. Rapid PCR
(Polymerase Chain Reaction) will increase the reported cases which may convey the situation under control.

No model is perfect for COVID-19 scenario. There are many factors required to be considered for modeling
COVID-19. The situation in different countries in this pandemic is unlike. From analytical study of our model
it seems to us that if we are able to decrease disease transmission rates (w1, w,), then we will achieve
disease-free state quickly. These are also consistent with the conditions of stability (see Theorem 9). The
social distancing, mobility of asymptomatic individual, herd immunity, vaccination, improvement of health
conditions are the key factors and essential in complex and accurate modeling. Though our model has these
limitations, but even then this model can ray on the research on Mathematical study of COVID-19 spreading.
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