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Abstract: The COVID-19 pandemic has resulted in more than 65.5 million infections and 15,14,695 deaths in
212 countries over the last few months. Di�erent drug intervention acting at multiple stages of pathogenesis
of COVID-19 can substantially reduce the infection induced,thereby decreasing themortality. Also population
level control strategies can reduce the spread of the COVID-19 substantially. Motivated by these observations,
in this work we propose and study a multi scale model linking both within-host and between-host dynam-
ics of COVID-19. Initially the natural history dealing with the disease dynamics is studied. Later comparative
e�ectiveness is performed to understand the e�cacy of both the within-host and population level interven-
tions. Findings of this study suggest that a combined strategy involving treatment with drugs such as Arbidol,
remdesivir, Lopinavir/Ritonavir that inhibits viral replicationand immunotherapies likemonoclonal antibod-
ies, along with environmental hygiene and generalized social distancing proved to be the best and optimal
in reducing the basic reproduction number and environmental spread of the virus at the population level.
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1 introduction

The pandemic COVID-19, caused by SARS-CoV-2, spread its tentacles through out the world by taking lives of
15,14,695 people and livelihood of many more across the globe. Research communities across the world are
racing against time in contributing their piece of knowledge in tackling this virus [1].

Mathematicalmodels play a crucial role in this journey as they are helpful inmulti-fold. Firstly, they help
in Understanding the dynamics of infection and its spread in the society. They help in studying the success
of various control measures that can be implemented in order to avoid further damage. Secondly, the within-
host mathematical modeling helps to study the dynamics of virus in the human body and can help us in
understanding e�cacy of di�erent drug intervention acting at multiple stages of pathogenesis which in turn
can help in identi�cation of potential vaccine candidates. Some of the works dealing with population level
studies and within-host studies for diseases such as Dengue, HIV, In�uenza include [6, 16, 5] and references
within. Recentworks dealingwith population level studies andwithin-host studies for COVID-19 canbe found
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in [7, 8, 9, 10, 15]. The transmission dynamics for various viruses like Nipha virus and Ebola virus are studied
using mathematical models to study the e�ciency of various control interventions[2, 12].

In addition to these, there aremulti scalemodels linkingwithin-host and between-host population scales
which helps us understand not only the e�cacy of the intervention at individual level but also the e�ective-
ness at the population level. Broadly there are �ve di�erent categories of multi scale models. As enlisted in
[6], they are Individual-based multi scale model, nested multi scale model, embeddedmulti scale model, hy-
bridmulti scalemodel and coupledmulti scalemodel. Fewworks involvingmulti scalemodeling approaches
for diseases include [6, 17]. To the best of our knowledge, there is no work dealing with multi scale modeling
approach for COVID-19.

Motivated by the above in this study, we propose and study a nested multi scale model. Using the tech-
nique of comparative e�ectiveness. We study the e�ectiveness of drug interventions and population level
control measures at varied e�cacy levels. The multi scale model and the corresponding interventions study
which is being attempted here is the �rst of its kind for COVID-19.

2 The Multi Scale Model Formulation

The multi scale model for COVID-19 disease dynamics across two scales that are within-host and between-
host. The model consists of eight compartments involving susceptible epithelial cells Sh, infected epithelial
cells Ih, SARS-CoV-2 viral load Vh at within-host scale and susceptible human population Sp, exposed popu-
lation Ep, infected population Ip, recovered populations Rp and environmental viral load Vp at between-host
scale. The assumptions for the proposed model include the following.

1. The within-host dynamics are assumed to occur at fast time scale swhile the dynamics of the between-
host scale variables is assumed to occur at slow time scale t.

2. We assume that SARS-CoV-2 virus can be transmitted only through environmental(indirect) transmis-
sion.

3.We do not consider the asymptomatic patients for this study as there is no su�cient evidence of within-
host dynamics of asymptomatic patients. We employ the basic SEIR model at between-host level.

Based on the above assumptions we propose the following multi scale model for COVID-19.

dSh(s)
ds = −βSh(s)Vh(s)

dIh(s)
ds = βSh(s)Vh(s) − (d1 + d2 + d3 + d4 + d5 + d6)Ih(s) − µIh(s)

dVh(s)
ds = αIh(s) − (b1 + b2 + b3 + b4 + b5 + b6)Vh(s) − αhVh(s)

dSp(t)
dt = πp − µpSp(t) −

ηpSp(t)Ip(t)
Np(t)

− ηwSp(t)Vp(t)

dEp(t)
dt = ηpSp(t)Ip(t)Np(t)

+ ηwSp(t)Vp(t) − (ωp + µp)Ep(t)

dIp(t)
dt = ωpEp(t) − (τp + µp)Ip(t)

dRp(t)
dt = τp Ip(t) − µpRp(t)

dVp(t)
dt = Vh(s)αh Ip(t) − πVp(t) (2.1)

The �rst compartment in the model 2.1 deals with the dynamics of susceptible epithelial cells Sh(s). They
decrease at a rate β following contact with the virus. The second compartment deals with the dynamics of
infected epithelial cells. They are increased through infection of susceptible cells and are decreased through
clearance by cytokines and chemokines such as IL-6, TNF-α, CCL5, CXCL8, CXCL10 at the rate d1, d2, d3, d4,
d5 and d6 respectively and through natural death at a rate µ. Compartment three deals with SARS-CoV-2 viral
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load. The viral load is increased due to reproduction of virus in the infected cells at the rate α. This viral load
is decreased due to clearance by cytokines and chemokines such as IL-6, TNF-α, CCL5, CXCL8, CXCL10 at the
rate b1, b2, b3, b4, b5 and b6 respectively and they are released into environment at a rate αh. The term αh
links within-host and between-host scales in a uni-directional way.

We assume that the total human population Np in the between-host dynamics is divided into four sub-
groups denoted by Sp, Ep, Ip and Rp which represent respectively, the susceptible, exposed, infected and
recovered or the removed population. Compartment 4 in the model (2.1) describes the dynamics of suscep-
tible humans. They are assumed to be supplied at a constant rate πp through birth and are removed at the
natural death rate µp. They are also reduced by interaction with infected cells and virus in the environment
through the terms ηpSp(t)Ip(t)Np(t) and ηwSp(t)Vp(t) respectively. Compartment 5 describes the dynamics of exposed
humans. Theybecomeexposeddue to contactswith either infectedpeople or virusparticles through the terms
ηpSp(t)Ip(t)

Np(t) and ηwSp(t)Vp(t) respectively. They are removed at the natural death rate µp and the rate at which
they become infected through ωp. Compartment 6 describes the dynamics of infected humans. Exposed hu-
mans become infected after the incubation period at the rate ωp. They are reduced through medication or
natural death at the rate τp and µp respectively. Compartment 7 describes the dynamics of recovered individ-
uals. Infected humans are recovered at the rate τp and are removed due to natural death at the rate µp. Finally
compartment 8 describes the dynamics of viral load in the environment.The viral load in the environment is
contributed by infected cells at the rate αhVh through coughing/sneezing. The virus particles cannot live in
environment without invading into host cell for long time. The virus will get killed at the rate π. The values
for a few within-host parameters are not available with respect to COVID-19. Since COVID-19 is similar to IAV
as can be seen from [13], we chose these parameter values from IAV models [6]. The values for these various
parameters is given in table 1.

Table 1: Table describing the parameter values

Variable Description Value Units Source
πp Birth rate 248.62 d−1 [11]
µp Natural mortality rate 0.062 d−1 [11]
ηp Contact rate 0.274 d−1 [11]
ηw Disease transmission coe�cient 0.000001231 d−1 [8]
ωp Incubation Period 0.1961 d−1 [3]
τp Removal or recovery of Ip 0.14 d−1 [3]
π Removal rate of virus from environment 2.88 d−1 [6]
β Rate at which healthy Pneumocytes are infected 0.55 d−1score−1 [10]
µ Natural death rate of Type II Pneumocytes 0.11 d−1 [10]
α Burst rate of virus particles 0.24 d−1 [10]
αh shedding rate of virus from infected human 5.36 d−1 [10]

Rate at which infected Pneumocytes
d1,d2,d3,d4,d5,d6 are removed because of the release of 0.01533 cell−1 d−1 [6]

cytokines IL-6,TNF-α,CCL 5,
CXCL 8,CXCL-10,INF-α respectively

Rate at which viral particles
b1,b2,b3,b4,b5,b6 are removed because of the release of 250 cell−1 d−1 [6]

cytokines IL-6,TNF-α,CCL 5,
CXCL 8,CXCL-10,INF-α respectively

The initial values for the di�erent between-host human population are listed in the table 2.
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Table 2: Table describing the initial values for between-host compartments

Variable Description Initial Values Source
Sh(s) Susceptible target cells 3.2 × 105 [16]
Ih(s) Infected target cells 0 Assumed
Vh(s) Viral load within infected cells 3.0 [16]
Sp(t) Susceptible Individuals 4000 [11]
Ep(t) Exposed Individuals 0 Assumed
Ip(t) Infected Individuals 10 [11]
Rp(t) Recovered Individuals 0 Assumed
Vp(t) Community Viral load 100 Assumed

3 The reduced-order multi scale model

There are two di�culties in working with the proposed multi scale model.

1. Time scale mismatch: The within-host scale is in terms of a fast time scale s, while the between-host
scale is in terms of a slow time scale t.

2. Transient Vh(s) : Vh(s) remains non-zero only for a short period since the infection remains only for
few days.

These problems can be overcome by changing the measure of host-infectiousness from Vh(s) to a new
quantity Nh (the area under the viral load curve). If we denote sd1 and sd2 as the times at which viral load
takes the value of detection limit at the beginning and at the end of the infection, then sd2 − sd1 can be taken
as the duration of host infectiousness. Then the amount of virus produced Nh is given as :

Nh =

sd2∫
sd1

Vh ds

We follow the approach given in [6] to derive the expression for Nh.
We get the reduced multi scale model as

dSp(t)
dt = πp − µpSp(t) −

ηpSp(t)Ip(t)
Np(t)

− ηwSp(t)Vp(t)

dEp(t)
dt = ηpSp(t)Ip(t)Np(t)

+ ηwSp(t)Vp(t) − (ωp + µp)Ep(t)

dIp(t)
dt = ωpEp(t) − (τp + µp)Ip(t)

dRp(t)
dt = τp Ip(t) − µpRp(t)

dVp(t)
dt = Nhαh Ip(t) − πVp(t) (3.1)

where
Nh =

R0

β

[
1 − e−R0 −R0e−2R0

]
with the initial conditions Sp(0) ≥ 0, Ep(0) ≥ 0, Ip(0) ≥ 0, Rp(0) ≥ 0 and Vp(0) ≥ 0.

The basic reproductive number for the within-host scale sub model in model 2.1 is given by

R0 =
αβS0

(b1 + b2 + b3 + b4 + b5 + b6 + αh)(d1 + d2 + d3 + d4 + d5 + d6 + µ)
(3.2)
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Adding the compartments for the submodel 3.1, we get the dynamics of total population governed by the
following equation.

dNp(t)
dt = πp − µpNp(t)

The feasible region for the model (3.1) is given by

Ω =
{(

Sp(t), Ep(t), Ip(t), Rp(t)
)
∈ R4

+ : Np(t) ≤
πp
µp

, Vp(t) ∈ R+ : Vp(t) ≤
Nhαh
π

πp
µp

}

4 Stability Analysis of the reduced multi scale model
In this section, we do the stability analysis for the reduced multi scale model 3.1.

4.1 Disease free equilibrium and R0

The disease-free equilibrium for the model 3.1 is given by

E0 =
(
S0p , E0p , I0p , R0p , V0

p
)
=
(
πp
µp

, 0, 0, 0, 0
)

We now calculate the basic reproduction number of the multi scale model 3.1 using the next generation
matrix approach [14].

The Jacobian evaluated at the disease-free equilibrium, E0, is given by

J(E0) =

−(ωp + µp) ηp ηwπp
µp

ωp −(τp + µp) 0
0 Nhαh −π


The J(E0) can be decomposed into two matrices F and V such that J(E0) = F − V , where F is the transmission
and non-negative matrix describing the generation of secondary infections and V is the transition and non-
singularmatrix, describing the changes in individual states such as removal by death, recovery and excretion
of SARS-CoV-2 into the environment by infected human in the community. Since the environment acts as a
reservoir of the infective pathogen, we have,

F =

0 ηp ηwπp
µp

0 0 0
0 Nhαh 0

 , V =

(ωp + µp) 0 0
−ωp (τp + µp) 0
0 0 π


The basic reproductive number is given by the spectral radius (dominant eigenvalue) of thematrix FV−1.

So in this case, we have the basic reproduction number of the system 3.1 to be

R0 =
ηpωp +

√
(ηpωp)2 + 4ηwπpNhαhωp(ωp+µp)(τp+µp)

µpπ

2(ωp + µp)(τp + µp)
(4.1)

Theorem 1: The DFE E0 of the system 3.1 is locally asymptotically stable if R0 < 1.
Proof: The Jacobian matrix evaluated at E0 is given by

J(E0) =


−µp 0 −ηp 0 − ηwπpµp
0 −(ωp + µp) ηp 0 ηwπp

µp
0 ωp −(τp + µp) 0 0
0 0 τp −µp 0
0 0 Nhαh 0 −π


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From the above jacobianmatrix, it can be seen that the two of the eigen values are given by -µp (repeated
twice). The rest can be obtained through the characteristic equation given below.

λ3 + a1λ2 + a2λ + a3 = 0,

where

a1 = π + ωp + τp + 2µp
a2 = (ωp + µp)(τp + µp) + π(ωp + τp + 2µp) − ωpηp

a3 = (ωp + µp)(τp + µp)π − ωp(πηp +
ηwπpNhαh

µp
)

When R0 < 1, a2, a3 are positive. Since a1 has all positive terms, all the coe�cients of the characteristic
equation are positive when R0 < 1. Further, by Routh-Hurtwiz criterion for a third order polynomial, we get
that all the eigen values of the characteristic polynomial to be negative as a′is > 0, for i = 1, 2, 3.[4]. Hence
the DFE E0 is locally asymptotically stable when R0 < 1 as all the eigen values of the jacobian matrix are
negative.

4.2 Endemic equilibrium

Let E = (Sp , Ep , Ip , Rp , Vp) denote the endemic equilibrium point of the system 3.1. To get the endemic equi-
librium, we set the left-hand side of the equations of the model system 3.1 equal to zero and determine the
nontrivial solution of the resulting algebraic equations, which gives

Sp =
1
µp

[πp −
(ωp + µp)(τp + µp)

ωp
Ip],

Ep =
τp + µp
ωp

Ip ,

Ip =
πpωp

(ωp + µp)(τp + µp)
− ππpµp
ηpµpπ + ηwNhαhπp

,

Rp =
τp
µp
Ip ,

Vp =
Nhαh
π Ip . (4.2)

It can be seen from the de�nition of Ip that the endemic equilibrium E exists only when R0 > 1.
Theorem 2: The endemic equilibrium E of the system 3.1 is locally asymptotically stable if R0 > 1.
Proof: It can be seen from the above discussions that the endemic equilibrium E exists onlywhenR0 > 1.

And also from theorem 1 the DFE E0 is unstable in such a case. Moreover, as the system 3.1 admits only two
equilibria from the uniqueness and boundedness of solutions for the system 3.1we conclude that the endemic
equilibrium E is asymptotically stable whenever it exists i.e., whenever R0 > 1.

5 Numerical simulations
The multi scale model 2.1 is uni-directionally coupled such that only the within-host scale sub model in�u-
ences the between-host scale sub model without any reciprocal feedback. Owing to this, in this section, we
study and numerically illustrate the in�uence of the four within-host scale sub model parameters, namely β,
α, d(= d1 + · · ·+d6) and b(= b1 + · · ·+b6) on the between-host scale submodel variables ( Sp, Ep, Ip, Rp, Vp).

Figure 1 depicts that as the infected cell burst rate increases, SARS-CoV-2 transmission in the community
also increases. Therefore, drugs that inhibit viral replication (such as Arbidol, remdesivir, Lopinavir/Riton-
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(a) (b)

(c) (d)

(e)

Figure 1: E�ects of variation of production rate of virus from within-host infected cells (α).

avir) which in turn reduce the production rate of virus at within-host scale will likely reduce transmission of
SARS-CoV-2 at between-host scale.

Figure 2 depicts that the antiviral drugs (such as Hydroxychloroquine (HCQ)) that reduce infection rate of
susceptible epithelial cellsmayhave individual level bene�ts but have insigni�cant population level bene�ts.

Figure 3 depicts that as the rate of clearance of free virus particles increases, SARS-CoV-2 transmission in
the community also decreases. Therefore, treatments that increase the rate of clearance of free virus particles
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(a) (b)

(c) (d)

(e)

Figure 2: E�ects of variation of infection transmission probability (β).

in an infected individual have potential community-level bene�ts of reducing SARS-CoV-2 transmission at
between-host scale apart from bene�ts to the infected individual.

Figure 4 depicts that as the rate of killing of infected cells by immune system increases, SARS-CoV-2 trans-
mission in the community also decreases slightly. Therefore, immunotherapies such as monoclonal antibod-
ies that kill infected cells have potential community level bene�ts of reducing SARS-CoV-2 transmission at
between-host scale apart from bene�ts to the infected individual.
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(a) (b)

(c) (d)

(e)

Figure 3: E�ects of variation of clearance rate of virus by immune system (b).

6 Evaluating the comparative e�ectiveness of health interventions
dealing with within-host and between-host scales

In this section we do the comparative e�ectiveness studies. We consider the following four health interven-
tions dealing with within-host and between-host scales.



Control Intervention Strategies for Within-Host | 207

(a) (b)

(c)

Figure 4: E�ects of variation of rate of killing of infected cells by immune system (d).

1. Antiviral drugs:
a. Drugs that inhibit viral replication: Drugs such as Arbidol, remdesivir, Lopinavir/Ritonavir inhibit viral
replication in infected cells. So we choose α to be α(1 − ϵ).
b. Drugs that block virus binding to susceptible cells : Drugs such asHydroxychloroquine (HCQ) does this
job. So we choose β to be β(1 − γ).

2. Immunotherapies : In this intervention the rate of clearance of virus increases due to antibodies. This in
turn reduces the number of infected cells. So we choose (d1 + d2 +d3 + d4 + d5 + d6) to be (d1 + d2 +d3
+ d4 + d5 + d6)(1 + κ).

3. Environmental hygiene: Decontamination from frequently touched spaces like door handles etc., reduces
environmental virus. So we choose π to be π(1 + δ).

4. Generalized Social distancing:Nomass gatherings, prayermeetings and educational institutions reduces
contact with community viral load. So we choose ηw to be ηw(1 − σ).

R0 plays a crucial role in understanding the spread of infection in the individual and Vp determines the
infectivity of virus in an individual. Taking these four health interventions into consideration, we now have
modi�ed basic reproductive number RE and modi�ed virus count VE of the endemic equilibrium to be

RE = 1
2(ωp + µp)(τp + µp)

[
ηpωp(1 − σ) +

√
(ηpωp)2(1 − σ)2 +

4ηwπpNeαhωp
µpπ(1 + δ)

(ωp + µp)(τp + µp)
]

VE = Neαhπp
ωp

[
ωp

(ωp + µp)(τp + µp)
− π(1 + δ)µp
ηpµpπ(1 + δ)(1 − σ) + ηwNeαhπp)

]
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where, Ne is the modi�ed Nh given by,

Ne =
Re

β(1 − γ) [1 − e
−Re −Ree−2Re ],

Re =
αβ(1 − ϵ)(1 − γ)Sh(sd1 )

(b1 + b2 + b3 + b4 + b5 + b6 + αh)(µ + (d1 + d2 + d3 + d4 + d5 + d6)(1 + κ))

We now do the comparative e�ectiveness study of these interventions by calculating the percentage re-
duction of R0 and Vp for single and multiple combination of these interventions at di�erent e�cacy levels
such as (a) low e�cacy of 0.3, (b) medium e�cacy of 0.6, and (c)high e�cacy of 0.9.

Percentage reduction of R0 and Vp are given by

Percentage reduction of R0 =
[
R0−REj

R0

]
× 100,

Percentage reduction of Vp =
[
Vp−VEj
Vp

]
× 100

where j stands for ϵ, δ, κ, δ, σ or combinations thereof.
We now consider 20 di�erent combinations of these four health interventions. Then for each e�cacy

level, we rank the percentage reductions on R0 and Vp in ascending order from 1 to 20 corresponding to the
di�erent combinations of �ve health interventions considered in this study. The comparative e�ectiveness
is calculated and measured on a scale from 1 to 20 with 1 denoting the lowest comparative e�ectiveness
while 20 denoting the highest comparative e�ectiveness. In Table 3 and 4, the abbreviations a) CEL stands
for "Comparative E�ectiveness at Low e�cacy," which is 0.3, b) CEM stands for "Comparative E�ectiveness at
Medium e�cacy," which is 0.6, c) CEH stands for "Comparative E�ectiveness at High e�cacy," which is 0.9.

Table 3: Comparative e�ectiveness for R0

No. Indicator %age CEL %age CEM %age CEH
1 R0 0 1 0 1 0 1
2 REϵ 16.34 12 36.75 12 68.38 12
3 REγ

0 2 0 2 0 2
4 REκ 1.79 4 3.47 4 5.09 4
5 REδ 12.29 5 20.94 5 27.45 5
6 REσ 0.02 3 0.03 3 0.05 3
7 REϵδσ 26.62 15 50 15 77.06 15
8 REγδσ 12.29 7 20.94 7 27.45 7
9 REκδσ 13.86 10 23.69 10 31.14 10
10 REϵδ 26.62 13 49.99 13 77.06 13
11 REγδ 12.29 6 20.94 6 27.45 6
12 REκδ 13.86 8 23.69 8 31.14 8
13 REϵγδ 26.62 14 49.99 14 77.06 14
14 REϵκδ 27.93 18 51.74 18 78.23 18
15 REγκδ 13.86 9 23.69 9 31.14 9
16 REϵγκδ 27.93 17 51.74 17 78.23 17
17 REϵγδσ 26.62 16 50 16 77.06 16
18 REϵκδσ 27.93 20 51.74 20 78.23 20
19 REγκδσ 13.86 11 23.69 11 31.14 11
20 REϵγκδσ 27.93 19 51.74 19 78.23 19

The outcomes of the comparative e�ectiveness study suggest the following.
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Table 4: Comparative e�ectiveness for Vp

No. Indicator %age CEL %age CEM %age CEH
1 Vp 0 1 0 1 0 1
2 VEϵ 30.00 12 60.00 12 90.00 12
3 VEγ 0 2 0 2 0 2
4 VEκ 3.54 7 6.84 7 9.92 7
5 VEδ 0.01 5 0.01 5 0.01 5
6 VEσ 0.01 3 0.01 3 0.01 3
7 VEϵδσ 30.00 15 60.00 15 90.00 15
8 VEγδσ 0.01 6 0.01 6 0.01 6
9 VEκδσ 3.54 11 6.84 11 9.92 11
10 VEϵδ 30.00 13 60.00 13 90.00 13
11 VEγδ 0.01 4 0.01 4 0.01 4
12 VEκδ 3.54 9 6.84 9 9.92 9
13 VEϵγδ 30.00 14 60.00 14 90.00 14
14 VEϵκδ 32.48 18 62.74 18 91,00 18
15 VEγκδ 3.54 8 6.84 8 9.92 8
16 VEϵγκδ 32.48 17 62.74 17 90.99 17
17 VEϵγδσ 30.00 16 60.00 16 90.00 16
18 VEϵκδσ 32.48 20 62.74 20 90.99 20
19 VEγκδσ 3.54 10 6.84 10 9.92 10
20 VEϵγκδσ 32.48 19 62.74 19 90.99 19

1. When a single strategy is implemented, treatment with drugs such as Arbidol, remdesivir, Lopinavir/Ri-
tonavir that inhibits viral replication show signi�cant decrease of R0 relative to other four interventions
at all e�cacy levels. We deduced this with reference to the entries 2-6 in Table 3 and Table 4.

2. Considering the severity of this pandemic, one single strategy is not su�cient to tackle this infection
at the earliest. When environmental hygiene and generalized social distancing are implemented along
with treatment of single drug, treating with drugs that inhibits viral replication performs better again at
all e�cacy levels. We deduced this with reference to the entries 7-9 in Table 3 and Table 4.

3. Now that governments are accepting the fact that we have to live with the virus for long and planning for
unlock strategies, generalized social distancing like closure of schools does not seem practical. By con-
sidering only environmental hygiene, alongwith the drugs that inhibits viral replication seem to perform
twice better than other drugs at all e�cacy levels. We deduced this with reference to the entries 10-19 in
Table 3 and Table 4.

4. A combined strategy involving treatmentwith drugs such asArbidol, remdesivir, Lopinavir/Ritonavir that
inhibits viral replication and immunotherapies like monoclonal antibodies, along with environmental
hygiene and generalized social distancing seems to perform the best among all combinations considered
at all e�cacy levels. We deduced this with reference to the entry 20 in Table 3 and Table 4.

7 Discussion and Conclusions

In this work a novel nestedmulti scale model for COVID-19 is proposed and studied. We initially study the dy-
namics of this system and do the stability analysis. Later using the technique of comparative e�ectiveness we
study the e�cacy of four health interventions dealing with within-host and between-host scales. The results
suggest that a combined strategy involving treatment with drugs such as Arbidol, remdesivir, Lopinavir/Ri-
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tonavir that inhibits viral replication and immunotherapies like monoclonal antibodies, along with environ-
mental hygiene and generalized social distancing proved to be the best and optimal in reducing the basic
reproduction number and environmental virus at the population level.

With a lot of research happening in the �eld ofmulti-drug therapy, our results o�er some basic insights of
their e�ciency and e�ectiveness at population scale. These results can be helpful in public health measures
and policies. With more availability of data of within-host dynamics in COVID-19 patients, a better re�ned
and comprehensive models can be framed based on this that can be more closer to real life situations. The
multi scale modeling studies done here is the �rst of its kind for COVID-19.
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