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Abstract: Nuclear Magnetic Resonance (NMR) experiments can be used to calculate 3D protein structures
and geometric properties of proteinmolecules allow us to solve the problem iteratively using a combinatorial
method, called Branch-and-Prune (BP). The main step of BP algorithm is to intersect three spheres centered
at the positions for atoms i − 3, i − 2, i − 1, with radii given by the atomic distances di−3,i , di−2,i , di−1,i, re-
spectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i
should be represented as interval distances [di−3,i , di−3,i], where di−3,i ≤ di−3,i ≤ di−3,i. In the literature, an
extension of the BP algorithm was proposed to deal with interval distances, where the idea is to sample val-
ues from [di−3,i , di−3,i] . We present a new method, based on conformal geometric algebra, to reduce the size
of [di−3,i , di−3,i], before the sampling process. We also compare it with another approach proposed in the
literature.

Keywords: Molecular Distance Geometry Problem, Branch-and-Prune, Conformal Geometric Algebra, NMR
data
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1 Introduction
Nuclear Magnetic Resonance (NMR) experiments provide short distance values between atoms of a protein
molecule. The Molecular Distance Geometry Problem (MDGP) asks to realize the 3D protein structure using
this partial distance information [4, 5, 31].

Precisely, the MDGP concerns with a graph G = (V , E, d) , where V is a set of vertices representing the
atoms and E is a set of edges representing the atomic pairs for which a distance is available, given by the
function d : E → (0,∞). The problem amounts to �nd an embedding x : V → R3 such that

||xu − xv|| = du,v, ∀{u, v} ∈ E, (1)

where xu = x(u), xv = x(v), du,v = d({u, v}), and ||xu − xv|| is the Euclidean norm.
The classical approach to theMDGP is based onglobal optimizationmethods [29],where aMDGP solution

is associated to the global minimizer of the problem

min
x1 ,...,xn∈R3

f (x1, ..., xn), (2)

where f is a function f : R3n → [0,∞) de�ned by

f (x1, ..., xn) =
∑

{u,v}∈E

(
||xu − xv||2 − d2u,v

)2
.
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Note that x1, ..., xn ∈ R3 is a MDGP solution if, and only if, f (x1, ..., xn) = 0.
We may furnish the set V of vertices with an ordering V = {v1, ..., vn} [9, 15, 23, 25] so that the MDGP

can be solved iteratively using a combinatorial method, namely the Branch-and-Prune (BP) method [8, 28]. In
this situation, the MDGP is called the Discretizable Molecular Distance Geometry Problem (DMDGP) [19, 20],
which can be stated as follows, where we use xi instead of xvi and di,j in place of dvi ,vj :
(DMDGP) Given a simple undirected graph G = (V , E, d) in which the vertex set V is ordered as V =
{v1, ..., vn}, whose edges are weighted by d : E → (0,∞), subject to the following three constraints:

1. For the initial three vertices v1, v2, v3 ∈ V, there exist points x1, x2, x3 ∈ R3 satisfying equations (1);
2. For each vi, with i > 3,

{vi−3, vi}, {vi−2, vi}, {vi−1, vi} ∈ E; (3)

3. For each vi, with i > 3,
di−3,i−2 + di−2,i−1 > di−3,i−1; (4)

�nd a map x : V → R3 such that
∀{vi , vj} ∈ E, ||xi − xj|| = di,j .

Geometrically, the requirements (3) and (4) imply that, at each iteration of the BP algorithm, we intersect
three spheres centered at the positions for vertices vi−3, vi−2, vi−1 with radius di−3,i , di−2,i , di−1,i, respectively,
resulting in two possible positions for vi, i > 3. Distances di−1,i and di−2,i are considered precise values, and
known a priori, since they are related to bond lengths and bond angles of a protein [20]. However, distances
di−3,imaybe obtained fromNMRexperiments, and instead of being represented by real numbers, they should
be given as interval distances [di−3,i , di−3,i], where di−3,i ≤ di−3,i ≤ di−3,i. In this situation, we have the inter-
section of two spheres with a spherical shell, giving two arcs, instead of two points in R3.

In [21], an extension of the BP algorithm was proposed to deal with interval distances, called iBP, where
the idea is to sample values from [di−3,i , di−3,i] [16]. Computational results presented in [10, 11, 32] con�rm
what it should be expected: sampling many values, the search space increases exponentially, and for small
samples, a solution may not be found.

For a given vertex vi, i > 4, if another distance dj,i (j < i − 3) is detected by NMR, another spherical shell
must be considered. This new information canbeused to reduce the size of the interval distance [di−3,i , di−3,i],
before applying the sampling process.

Computational results presented in [14, 26] con�rm the improvement of iBP algorithm when such kind
of interval reduction is implemented, before sampling values. Without interval reduction, it is necessary to
select a distance value from the interval [di−3,i , di−3,i] in order to calculate a position for vertice vi. From
positions for vertices vi−1, vi−2, vi, we calculate a position for vertice vi+1, making another selection from
interval [di−2,i+1, di−2,i+1], and so on. A DMDGP solution is obtained when such selections allow us to reach
the last vertex of the DMDGP order such that all positions x1, ..., xn satisfy the equations (1). The main cost
of the iBP algorithm is related to backtracking in the search tree, when “wrong” distance values are selected.
When interval distances are reduced, we also decrease the probability of selecting “wrong” distance values.

Using Conformal Geometric Algebra (CGA), we present a new way to make this reduction that simpli�es
the process considerably, compared to other approaches proposed in the literature.

2 Methods for reducing [di−3,i, di−3,i]

This section �rst describes a recent method proposed for reducing [di−3,i , di−3,i] [26], which is an extension
of the ideas presented in [14]. Then, we explain the new approach motivated by the results given in [6, 7].
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Figure 1: Parameterization of the circle with radius r.

2.1 Using polar coordinates

DMDGP de�nition allows us to �x positions for v1, v2, v3. Requirements (3) and (4) de�ne a system with up
to two possible positions for vi, i > 3, given by

||xi − xi−1|| = di−1,i ,
||xi − xi−2|| = di−2,i , (5)
||xi − xi−3|| = di−3,i ,

where xi−1, xi−2,xi−3 ∈ R3 are previously calculated. When an additional edge {vj , vi} ∈ E is given, j < i − 3,
we have an extra equation to the system (5):

||xi − xj|| = dj,i . (6)

If the points xj , xi−1, xi−2,xi−3 ∈ R3 are not coplanar, we get a unique solution x*i for vi, supposing ||x*i − xj|| =
dj,i. However, both positions for vi may not satisfy (6) and, in this case, must be pruned. Then, we have to
consider the other possible positions for vi−1 and repeat the procedure until a DMDGP solution is found [20].

For all i ≥ 3, the solution of the �rst two equations of the system (5) is a circle, as the result of intersection
of two spheres, centered at xi−1, xi−2 ∈ R3 with radii di−1,i , di−2,i ∈ R, respectively.

Using a �xed point c on the circle, in the same plane de�ned by the points xi−1, xi−2, xi−3 and nearest to
xi−3, and de�ning

→
w = xi−1−xi−2

||xi−1−xi−2|| ,
→
s = proj→w (c − xi−2), p = xi−2 +

→
s , and

→
z = proj→w (xi−3 − p), the circle can

be described by (see Fig. 1)

x(t) = p + r cos(t)
→
u + r sin(t)

→
v , (7)

for t ∈ [−π, π], where
r = ||c − p||,

→
u = (xi−3 − p) −

→
z

||(xi−3 − p) −
→
z ||

,

and
→
v =

→
u ×

→
w .

To check this, replace x(t) in the �rst equation of (5),

||x(t) − xi−1||2 = ||(p − xi−1) + r cos(t)
→
u + r sin(t)

→
v ||2

= ||p − xi−1||2 + 2r(p − xi−1) · (cos(t)
→
u + sin(t)

→
v )

+ ||r cos(t)
→
u + r sin(t)

→
v ||2,
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and note that p − xi−1 is orthogonal to
→
u and

→
v :

||x(t) − xi−1||2 = ||p − xi−1||2 + r2 = d2i−1,i .

A similar argument gives
||x(t) − xi−2||2 = ||p − xi−2||2 + r2 = d2i−2,i .

From (7) and by the fact that p − xi−3 is orthogonal to
→
v , we obtain

||x(t) − xi−3||2 = d2i−3,i ⇔

||p − xi−3||2 + 2r cos(t)(
→
u · (p − xi−3)) + r2 = d2i−3,i ⇔

cos(t) =
d2i−3,i − r2 − ||p − xi−3||2

2r(
→
u · (p − xi−3))

,

implying that the solution for
||x(t) − xi−3|| = di−3,i

is given by

cos(t) =
d2i−3,i − r2 − ||p − xi−3||2

2r
→
u · (p − xi−3)

, (8)

for t ∈ [−π, π].
Due to NMR uncertainties, the distance di−3,i can be an interval [di−3,i , di−3,i]. Assuming that di−3,i ≥

||x(0) − xi−3|| (the minimum distance between the circle and the point xi−3) and di−3,i ≤ ||x(π) − xi−3|| (the
maximum distance between the circle and the point xi−3), and using expression (8), we obtain that the solu-
tion for

di−3,i ≤ ||x(t) − xi−3|| ≤ di−3,i

is given by
x(t) = p + r cos(t)

→
u + r sin(t)

→
v , t ∈ [−β, −α] ∪ [α, β],

for α, β ∈ [0, π] such that

α = arccos
(
(di−3,i)2 − r2 − ||p − xi−3||2

2r(
→
u · (p − xi−3))

)
,

β = arccos
(
(di−3,i)2 − r2 − ||p − xi−3||2

2r(
→
u · (p − xi−3))

)
.

From this point, iBP algorithm samples values from [di−3,i , di−3,i] for solving system (5) and continues the
search. However, if there is a pair of atoms {vj , vi} (j < i − 3) that is close enough, NMR experiments provide
other interval distance [dj,i , dj,i] that should be used before sampling values from [di−3,i , di−3,i], in order to
try to reduce the size of [di−3,i , di−3,i].

Using the point xj instead of xi−3, another parameterization of the circle de�ned by the �rst two equations
of the system (5) must be de�ned, for t ∈ [−π, π],

x′(t) = p + r cos(t)
→
uj + r sin(t)

→
vj ,

with {
→
u ,

→
v } replaced by {

→
uj ,

→
vj}, where

→
zj = proj→w (xj − p),

→
uj =

(xj−p)−
→
zj

||(xj−p)−
→
zj ||

, and
→
vj =

→
uj ×

→
w .

To describe the solution of
dj,i ≤ ||x

′(t) − xj|| ≤ dj,i ,

in terms of the �rst parameterization, it is necessary to obtain the coordinates of x′(0) − p in terms of
→
u and

→
v [26], which results in (see Fig. 2)
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Figure 2: Two parameterizations for the circle.

t ∈ [γ − β′, γ − α′] ∪ [γ + α′, γ + β′],

where

γ = arctan2
(
(x′(0) − p) ·

→
v , (x′(0) − p) ·

→
u
)
,

α′ = arccos
(
(dj,i)2 − r2 − ||p − xj||2

2r(
→
uj · (p − xj))

)
,

β′ = arccos
(
(dj,i)2 − r2 − ||p − xj||2

2r(
→
uj · (p − xj))

)
.

Finally, the solution of the system
||xi − xi−1|| = di−1,i ,

||xi − xi−2|| = di−2,i ,

di−3,i ≤ ||xi − xi−3|| ≤ di−3,i

dj,i ≤ ||xi − xj|| ≤ dj,i ,

for j < i − 3, xi−1, xi−2, xi−3, xj ∈ R3, and di−1,i , di−2,i , di−3,i , di−3,i , dj,i , dj,i ∈ [0,∞) , is given by

x(t) = p + r cos(t)
→
u + r sin(t)

→
v ,

where
t ∈
(
[−β, −α] ∪ [α, β]

)
and t ∈

(
[γ − β′, γ − α′] ∪ [γ + α′, γ + β′]

)
.

The next subsection describes a new model for the 3D space, where spheres are basic objects like points
and planes.This model also provides a way to intersect spheres by de�ning a product among them.

2.2 A conformal geometric algebra approach

The Euclidean spaceR3 can be represented by the conformal model [27], adding two extra dimensions e0 and
e∞, where a point x ∈ R3 is represented in R5 by

X = x + e0 +
1
2 ||x||

2e∞,

with a new metric de�ned by

ei · ej = δij , i, j = 1, 2, 3,
e0 · ei = e∞ · ei = 0, i = 1, 2, 3,
e0 · e0 = e∞ · e∞ = 0,
e0 · e∞ = −1,
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where the usual Euclidean metric still holds for e1, e2, e3.
An interesting property of the conformal model is that the inner product X · Y (X, Y ∈ R5) is the squared

Euclidean distance between x, y ∈ R3, up to a constant factor:

X · Y =
(
x + e0 +

1
2 ||x||

2e∞
)
·
(
y + e0 +

1
2 ||y||

2e∞
)

= x · y −
(
1
2 ||x||

2 + 1
2 ||y||

2
)

= −12 ||x − y||
2.

From this result, a sphere in R3 is encoded as a vector S ∈ R5 [12], given by

S = C − r
2

2 e∞,

where C is the conformal representation of the sphere center c ∈ R3 and r ∈ R is its radius. To see this, we
use

X · e∞ =
(
x + e0 +

1
2 ||x||

2e∞
)
· e∞ = −1

to get

X · S = X ·
(
C − r

2

2 e∞
)

= X · C − r
2

2 (X · e∞)

= −12 ||x − c||
2 + r

2

2 ,

which implies that
X · S = 0 ⇔ ||x − c||2 = r2.

A spherical shell with center c ∈ R3 and radii r, r ∈ R, 0 < r < r, is simply given by

S = C − r
2

2 e∞, r ∈ [r, r],

where C ∈ R5 is the conformal representation of c ∈ R3.
Sphere intersections can also be encoded in the conformal model if a more general product (associative

and distributive), called geometric product [18], is introduced by

eiej + ejei = 2δij ,
e0ei = −eie0,
e∞ei = −eie∞,
e20 = e2∞ = 0,

e0e∞ + e∞e0 = −2,

for i, j = 1, 2, 3.
From the geometric product, the inner product de�ned above can be given by

a · b = 1
2(ab + ba)

and another product, called outer product [18], is de�ned by

a ∧ b = 1
2(ab − ba),
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Figure 3: Solution of equations and inequalities.

for a, b ∈ R5.
The intersection of distinct spheres is given by the outer product of their vector representations. For ex-

ample, the intersection between two spheres, given in the conformalmodel by σ1, σ2 ∈ R5, is the circle given
by [12]

σ = σ1 ∧ σ2. (9)

It is important to emphasize that in the general case, the result of the intersection of spheres inR3 using
(9) may result in an element geometrically interpreted as an imaginary circle when no �nite point is shared
by the spheres, a tangent plane (or point circle with attitude) when the spheres share a single �nite point or
a real circle. But due to molecular structure restrictions, only point circles and real circles are expected as a
result of the intersections.

Let us analyze geometrically the solution of the system

||xi − xi−1|| = di−1,i ,

||xi − xi−2|| = di−2,i , (10)

di−3,i ≤ ||xi − xi−3|| ≤ di−3,i
dj,i ≤ ||xi − xj|| ≤ dj,i ,

for j < i − 3, xi−1, xi−2, xi−3, xj ∈ R3, and di−1,i , di−2,i , di−3,i , di−3,i , dj,i , dj,i ∈ [0,∞) .
From Fig. 3, we see that this solution is a subset of the union of two arcs of a circle de�ned by

x(t) = p + r cos(t)
→
u + r sin(t)

→
v ,

where
t ∈
(
[−β, −α] ∪ [α, β]

)
and t ∈

(
[γ − β′, γ − α′] ∪ [γ + α′, γ + β′]

)
,

as explained in subsection 2.1.
Let us denote by P0i P0i and P1i P1i the arcs obtained from the intersection of spheres Si−1,i , Si−2,i with the

spherical shell Si−3,i (see Fig. 3), given by

Si−1,i = Xi−1 −
d2i−1,i
2 e∞,

Si−2,i = Xi−2 −
d2i−2,i
2 e∞,

Si−3,i = Xi−3 −
d2i−3,i
2 e∞, di−3,i ∈ [di−3,i , di−3,i],
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Figure 4: Auxiliary spherical shells.

where Xi−1, Xi−2, Xi−3 are the conformal representation of the points xi−1, xi−2, xi−3 ∈ R3 and di−1,i , di−2,i ,
di−3,i , di−3,i are the respective radii.

Motivated by the geometry of the problem (see Fig. 4), we de�ne twomore spherical shells, with the same
center xj, and with interval radii given by the distances between xj and P0i , P0i and the distances between xj
and P1i , P1i :

S0 = Xj −
r20
2 e∞, r0 ∈ [r0, r0], (11)

with

r0 = min
{√

−2Xj · P0i ,
√
−2Xj · P0i

}
,

r0 = max
{√

−2Xj · P0i ,
√
−2Xj · P0i

}
,

and
S1 = Xj −

r21
2 e∞, r1 ∈ [r1, r1], (12)

with

r1 = min
{√

−2Xj · P1i ,
√
−2Xj · P1i

}
,

r1 = max
{√

−2Xj · P1i ,
√
−2Xj · P1i

}
.

Thesenewspherical shells are of the essence of theproblem,which implies that the solution of the system
(10) is given by (see Fig. 5)

[Si−1,i ∧ Si−2,i ∧ S0j,i] ∪ [Si−1,i ∧ Si−2,i ∧ S1j,i], (13)

with
S0j,i = Xj −

t20
2 e∞ and S1j,i = Xj −

t21
2 e∞,

t0 ∈ [max{r0, dj,i}, min{r0, dj,i}] and t1 ∈ [max{r1, dj,i}, min{r1, dj,i}],

where [dj,i , dj,i] is the interval radius associated to the pair {vj , vi}, j < i − 3.
The �rst part of the union in (13) is a subset of the arc P0i P0i , and the second is a subset of the arc P1i P1i

(see Fig. 5).
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The intervals [max{r0, dj,i}, min{r0, dj,i}] and [max{r1, dj,i}, min{r1, dj,i}] are obtained using the fol-
lowing property:

t ∈ [a, a] ∩ [b, b] ⇔ max{a, b} ≤ t ≤ min{a, b}.

If one of these intervals is empty, we simply remove it from the calculation (see example in the next
section).

The CGA approach has, at least, two advantages. The �rst one is related to the fact that the geometric
interpretation of the problem that must be solved, given by

||xi − xi−1|| = di−1,i ,

||xi − xi−2|| = di−2,i , (14)

di−3,i ≤ ||xi − xi−3|| ≤ di−3,i
dj,i ≤ ||xi − xj|| ≤ dj,i ,

for j < i − 3, xi−1, xi−2, xi−3, xj ∈ R3, and di−1,i , di−2,i , di−3,i , di−3,i , dj,i , dj,i ∈ [0,∞), can be described in the
language of the CGA, which allowed a better “view” of the problem, in addition to solve it just comparing
distance values. The second advantage is based on the possibility to solve problems in higher dimensions,
where sphere intersections are also involved [1].

3 Example
To illustrate the di�erence between the two approaches, let us consider a DMDGP instance de�ned by the
graph G = (V , E, d), given by

V = {v1, v2, v3, v4, v5},
E = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5},

{v2, v3}, {v2, v4}, {v2, v5},
{v3, v4}, {v3, v5}
{v4, v5}},
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and

d1,2 =
√
2, d1,3 =

√
2, d1,4 = 1.0, d1,5 ∈ [0.8, 0.9],

d2,3 =
√
2, d2,4 = 1.0, d2,5 ∈ [0.7, 1.0],

d3,4 = 1.0, d3,5 = 1.0,
d4,5 = 1.0.

The �rst four vertices can be �xed at

x1 =

 0
0
1

 , x2 =

 0
1
0

 , x3 =

 1
0
0

 , x4 =

 0
0
0

 .

Using the polar coordinates approach, we �rst calculate

c = (0.5, 0.8660254, 0.0)T ,
→
w = x4 − x3

||x4 − x3||
= (−1, 0, 0)T ,

→
s = proj→w (c − x3) = (−0.5, 0, 0)T ,

p = x3 +
→
s = (0.5, 0, 0)T ,

→
z = proj→w (x2 − p) = (−0.5, 0, 0)T ,

r = ||c − p|| = 0.8660254,

→
u = (x2 − p) −

→
z

||(x2 − p) −
→
z ||

= (0, 1, 0)T ,

→
v =

→
u ×

→
w = (0, 0, −1)T ,

which implies that the circle de�ned by the system

||x5 − x4|| = d4,5

||x5 − x3|| = d3,5 (15)

can be described by
x(t) = p + r cos(t)

→
u + r sin(t)

→
v , (16)

for t ∈ [−π, π], and that the solution of

d2,5 ≤ ||x(t) − x2|| ≤ d2,5

is given by
t ∈ [−β, −α] ∪ [α, β],

where

α = arccos
(
(d2,5)2 − r2 − ||p − x2||2

2r(
→
u · (p − x2))

)
= 0.511934,

β = arccos
(
(d2,5)2 − r2 − ||p − x2||2

2r(
→
u · (p − x2))

)
= 0.955317.
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For the interval distance d1,5, another parameterization is obtained as

x′(t) = p + r cos(t)
→
uj + r sin(t)

→
vj ,

where
→
uj = (0, 0, 1)T ,
→
vj = (0, 1, 0)T ,

implying that the solution of the system
||x5 − x4|| = d4,5

||x5 − x3|| = d3,5 (17)

d2,5 ≤ ||x5 − x2|| ≤ d2,5

d1,5 ≤ ||x5 − x1|| ≤ d1,5

is given by
x(t) = p + r cos(t)

→
u + r sin(t)

→
v ,

for
t ∈ ([γ − β′, γ − α′] ∪ [γ + α′, γ + β′]) ∩ ([−β, −α] ∪ [α, β]) = [−0.903017, −0.757421],

where

γ = arctan2
(
(x′(0) − p) ·

→
v , (x′(0) − p) ·

→
u
)
= −1.5708,

α′ = arccos
(
(d1,5)2 − r2 − ||p − x1||2

2r(
→
uj · (p − x1))

)
= 0.667783,

β′ = arccos
(
(d1,5)2 − r2 − ||p − x1||2

2r(
→
uj · (p − x1))

)
= 0.813379.

Now, let us see how to solve the example using the CGA approach.
From the intersectionsof spheres S2,5∧S3,5∧S4,5 and S2,5∧S3,5∧S4,5,with radii givenby d2,5, d3,5, d4,5, d2,5,

respectively, we obtain the arcs P05P05 and P15P15, de�ned by the points

P05 = e0 + 0.5e1 + 0.755e2 − 0.4242e3 + 0.5e∞,
P15 = e0 + 0.5e1 + 0.755e2 + 0.4242e3 + 0.5e∞,

P05 = e0 + 0.5e1 + 0.5e2 − 0.7071e3 + 0.5e∞,
P15 = e0 + 0.5e1 + 0.5e2 + 0.7071e3 + 0.5e∞.

The radii of the spherical shells S0 (11) and S1 (12), centered at X1, are

r0 = min
{√

−2X1 · P05,
√
−2X1 · P05

}
= min{1.69, 1.07} = 1.07

r0 = max
{√

−2X1 · P05,
√
−2X1 · P05

}
= max{1.69, 1.07} = 1.69

and

r1 = min
{√

−2X1 · P15,
√
−2X1 · P15

}
= min{1.85, 0.765} = 0.765

r1 = max
{√

−2X1 · P15,
√
−2X1 · P15

}
= max{1.85, 0.765} = 1.85,
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implying that
t0 ∈ [max{r0, d1,5}, min{r0, d1,5}] = ∅

and
t1 ∈ [max{r1, d1,5}, min{r1, d1,5}] = [0.8, 0.9].

Hence, the solution of the system
||x5 − x4|| = d4,5

||x5 − x3|| = d3,5 (18)

d2,5 ≤ ||x5 − x2|| ≤ d2,5

d1,5 ≤ ||x5 − x1|| ≤ d1,5

is given by
S4,5 ∧ S3,5 ∧ S11,5,

where

S4,5 = X4 −
d24,5
2 e∞, d4,5 = 1,

S3,5 = X3 −
d23,5
2 e∞, d3,5 = 1,

S11,5 = X1 −
t21
2 e∞, t0 ∈ [0.8, 0.9].

The superscript 1 in S11,5 indicates that the solution is a subset of the arc P15P15.
Doing the calculations, the size of the interval associated to the distance d2,5 changed from [0.7, 1.0] to

[0.861, 0.963].
All the calculations were done using GAALOP [17].

4 Conclusions
NMR experiments do not provide precise distances between atoms in a protein molecule and dealing with
interval distances is a big challenge for DMDGP solution methods [30].

Based on Conformal Geometric Algebra (CGA), we present a new approach that allows us to incorporate
the geometry involvedwhenuncertaintiesmust be taken into account, in addition to simplify the understand-
ing of the problem.

Other results that also apply CGA in the DMDGP can be found in [2, 3, 13, 22, 24].
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