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Abstract: Nuclear Magnetic Resonance (NMR) experiments can be used to calculate 3D protein structures
and geometric properties of protein molecules allow us to solve the problem iteratively using a combinatorial
method, called Branch-and-Prune (BP). The main step of BP algorithm is to intersect three spheres centered
at the positions for atoms i - 3,1 - 2, i — 1, with radii given by the atomic distances d;_5 ;, di_; i, di-1,i, re-
spectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances d;_3 ;
should be represented as interval distances [d;_; ;, Hi_3,,~], where d; 5 ; < dj3; < H,-_gy,-. In the literature, an
extension of the BP algorithm was proposed to deal with interval distances, where the idea is to sample val-
ues from [d; ; ;, ai_3,i] . We present a new method, based on conformal geometric algebra, to reduce the size
of [d; 3 ;, d;_3 ], before the sampling process. We also compare it with another approach proposed in the
literature.

Keywords: Molecular Distance Geometry Problem, Branch-and-Prune, Conformal Geometric Algebra, NMR
data

MSC: 51K05, 15A66, 92E10

1 Introduction

Nuclear Magnetic Resonance (NMR) experiments provide short distance values between atoms of a protein
molecule. The Molecular Distance Geometry Problem (MDGP) asks to realize the 3D protein structure using
this partial distance information [4, 5, 31].

Precisely, the MDGP concerns with a graph G = (V, E, d), where V is a set of vertices representing the
atoms and E is a set of edges representing the atomic pairs for which a distance is available, given by the
function d : E — (0, o). The problem amounts to find an embedding x: V — R3 such that

[|Xu — xv|| = du,v, v{u,v} € E, (€]

where xy = x(u), xv = x(v), du,v = d({u, v}), and ||xy — xv|| is the Euclidean norm.
The classical approach to the MDGP is based on global optimization methods [29], where a MDGP solution
is associated to the global minimizer of the problem

’
min f(Xl ceey XTI)’ (2)
X1,..,Xn €ER3

where f is a function f : R3" — [0, oo) defined by

fos = Y (bl - )’

{u,v}€E
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Note that x4, ..., xn € R? is a MDGP solution if, and only if, f(x1, ..., Xn) = O.

We may furnish the set V of vertices with an ordering V = {vq, ..., va} [9, 15, 23, 25] so that the MDGP
can be solved iteratively using a combinatorial method, namely the Branch-and-Prune (BP) method [8, 28]. In
this situation, the MDGP is called the Discretizable Molecular Distance Geometry Problem (DMDGP) [19, 20],
which can be stated as follows, where we use x; instead of xy, and d; ; in place of dy,,;:

(DMDGP) Given a simple undirected graph G = (V, E, d) in which the vertex set V is ordered as V =
{V1, ..., Vn}, whose edges are weighted by d : E — (0, o0), subject to the following three constraints:

1. For the initial three vertices vy, v, v3 € V, there exist points x1, X2, X3 € R? satisfying equations (1);
2. For each v;, withi > 3,
{Vi—3’ Vi}9 {Vi—Z’ Vi}’ {Vi—ly Vi} S E; (3)

3. For each v;, withi > 3,
dizip+diyiq1>diziq; (4)

find amap x: V — R> such that
Y{vi,vj} € E, |Ix; - xj]| = d; ;.

Geometrically, the requirements (3) and (4) imply that, at each iteration of the BP algorithm, we intersect
three spheres centered at the positions for vertices v;_s, v_,, v;_; withradius d;_s ;, di_» i, di_1,;, respectively,
resulting in two possible positions for v;, i > 3. Distances d;_; ; and d;_, ; are considered precise values, and
known a priori, since they are related to bond lengths and bond angles of a protein [20]. However, distances
d;_3,; may be obtained from NMR experiments, and instead of being represented by real numbers, they should
be given as interval distances [d; ;3 ;, d;_3,;], where d; 5 ; < d;_3; < d;_3 ;. In this situation, we have the inter-
section of two spheres with a spherical shell, giving two arcs, instead of two points in R>.

In [21], an extension of the BP algorithm was proposed to deal with interval distances, called iBP, where
the idea is to sample values from [d; 5 ;, d;_3,i] [16]. Computational results presented in [10, 11, 32] confirm
what it should be expected: sampling many values, the search space increases exponentially, and for small
samples, a solution may not be found.

For a given vertex v;, i > 4, if another distance d; ; (j < i - 3) is detected by NMR, another spherical shell
must be considered. This new information can be used to reduce the size of the interval distance [d; 3 ;, d;_; il
before applying the sampling process.

Computational results presented in [14, 26] confirm the improvement of iBP algorithm when such kind
of interval reduction is implemented, before sampling values. Without interval reduction, it is necessary to
select a distance value from the interval [d; ;5 ;, E,-,g’,-] in order to calculate a position for vertice v;. From
positions for vertices v;_1, v;_», v;, we calculate a position for vertice v;,;, making another selection from
interval [d;_, ;,1, di-2,i+1], and so on. A DMDGP solution is obtained when such selections allow us to reach
the last vertex of the DMDGP order such that all positions x1, ..., x» satisfy the equations (1). The main cost
of the iBP algorithm is related to backtracking in the search tree, when “wrong” distance values are selected.
When interval distances are reduced, we also decrease the probability of selecting “wrong” distance values.

Using Conformal Geometric Algebra (CGA), we present a new way to make this reduction that simplifies
the process considerably, compared to other approaches proposed in the literature.

2 Methods for reducing [d;_; ;, di_3,]

This section first describes a recent method proposed for reducing [d; 3 ;, d;_3 ;] [26], which is an extension
of the ideas presented in [14]. Then, we explain the new approach motivated by the results given in [6, 7].
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Figure 1: Parameterization of the circle with radius r.

2.1 Using polar coordinates

DMDGP definition allows us to fix positions for vy, v,, v3. Requirements (3) and (4) define a system with up
to two possible positions for v;, i > 3, given by

[1Xi —xicall = di1,i
[xi = xi2ll = diais 5)
lxi = x5l = dis,

where x;_1, X;_3 Xj_3 € RR? are previously calculated. When an additional edge {vj,vi} € Eisgiven, j<i-3,
we have an extra equation to the system (5):

[1xi = x| = dj,;. 6)

If the points x;, x;_1, X;_», X;_3 € R3 are not coplanar, we get a unique solution x; for v;, supposing Hx; - Xxj|| =
d; ;. However, both positions for v; may not satisfy (6) and, in this case, must be pruned. Then, we have to
consider the other possible positions for v;_; and repeat the procedure until a DMDGP solution is found [20].
Foralli > 3, the solution of the first two equations of the system (5) is a circle, as the result of intersection
of two spheres, centered at x;_1, x;_, € R> with radii di_1,i, di-2,; € R, respectively.
Using a fixed point c on the circle, in the same plane defined by the points x;_1, x;_», x;_3 and nearest to
.= Xiaexi, . - - . .
Xi_3, and defining w = X122 -5 = pI’O]W(C - Xi-2),P=Xj_y+ S,and z = prOJW(xH - p), the circle can

[Ixi-1=xi2[]°

be described by (see Fig. 1)

—
v

, 7

x(t)=p+ rcos(t)ﬂ + rsin(t)

for t € [-m, rt], where
r= ||C_pH’

N
- _ (Xi3-p)-z
U= —"—-"—"—-—+,
|(xi-3 = p) - z||
and
- = =
V=UxWw.

To check this, replace x(t) in the first equation of (5),

— . —
IX(®) = xi4]> = |I(p-xi1) + rcos(Ou +rsin(t)v]|?

llp — xi-1] |2 +2r(p - xi_1) - (cos(t)ﬂ) + sin(t)7)

[|r cos()u + rsin(t)7\ 12,

+
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and note that p — x;_; is orthogonal to Yand v:
[1%(6) = xi-|? = |lp = xia P+ 72 = diz—l,i'

A similar argument gives
[1X(O) = Xi2|I* = |lp = Xial [ + 1% = dF 5 .

From (7) and by the fact that p — x;_3 is orthogonal to 7, we obtain

IX(®)-xis|? = disie
5
D = xi3||* +2rcos(O(u - (p-x;3) +7r* = dij; &
di 5 ;-1 -|lp - x5/
=
2r(u - (p — xi_3))

cos(t)

implying that the solution for
|[x(6) = xi-3]| = di-3,i
is given by
di ;-1 - |lp - x5
21 - (p - xi3)

cos(t) = , (8)
for t € [-m, ml.

Due to NMR uncertainties, the distance d;_; ; can be an interval [d; ; ;, d;_3 i]. Assuming that dis; 2
||x(0) - x;_3|| (the minimum distance between the circle and the point x; 3) and d; 3; < ||x(71) - x;_3]| (the
maximum distance between the circle and the point x;_3), and using expression (8), we obtain that the solu-
tion for

di 5 < ||x(t) - xi5]| < dis,

is given by
x(t)=p+ rcos(t)ﬂ> + rsin(t)7, t € [-B,-alUla, Bl,

for a, B € [0, ] such that

<(di—3,i)2 -r’-|p- Xi—3||2>
arccos ,

a = =
2r(u - (p = xi3))

5 - amms(wkwf—ﬂ—|p—mgw>_
2r(u - (p - xi-3)

From this point, iBP algorithm samples values from [d; 3 ;, d;_s3 ;] for solving system (5) and continues the
search. However, if there is a pair of atoms {v;, v;} (j < i - 3) that is close enough, NMR experiments provide
other interval distance [d; ;, d;,;] that should be used before sampling values from [d; ; ;, d;3,;], in order to
try to reduce the size of [d; 5 ;, d;_3,;].

Using the point x; instead of x;_3, another parameterization of the circle defined by the first two equations

of the system (5) must be defined, for t € [-m, 7],
X{t)=p+ rcos(t)ﬂ; + rsin(t)?},

with {u, v} replaced by {LT;, v_;-}, where Z = proj. (x; - p), 17; = %, and v_; = 17] X W.
X-p)-Zj
To describe the solution of

d;; < |1X'(6) - x;|| < dj;,

in terms of the first parameterization, it is necessary to obtain the coordinates of x’(0) - p in terms of U and
— . . .
v [26], which results in (see Fig. 2)
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Figure 2: Two parameterizations for the circle.

te [w—ﬁ’,y—a’]u[y+a’,7+ﬁ’],
where
v = arctan2 ((x/(O) -p)- v, (X(0) -p)- 7) )
, ((d,-,l-)z—rz—|p—x,-|2>
a arccos — ,
2r(u; - (p - x;)

q. )2 2 2
arccos((dj,i) - )
2r(u1- . (p - Xj))

ﬁ/

Finally, the solution of the system
1Xi = Xi—a | = di-1,i,

l1xi = xi-2|| = di-2,i>
di 5 <|IX;i—xis]| < dis;
d;; < |Ix;i - x| < dj

. . 3 3 3 . .
forj<i-3,xi1,Xi2,Xi3, X € R°,and d;_1,;, di 2,5, di_3 1, di-3,i5 dj 1, dj,i € [0, ), is given by

x(t)=p+ rcos(t)l_f + rsin(t)7,

where
te(-B,-aJula,Bl) andt e ([y-pB,v-aluly+a’,v+pB]).

The next subsection describes a new model for the 3D space, where spheres are basic objects like points
and planes.This model also provides a way to intersect spheres by defining a product among them.

2.2 A conformal geometric algebra approach

The Euclidean space R can be represented by the conformal model [27], adding two extra dimensions ey and
e, Where a point x € R? is represented in R” by

1
X=x+ep+ §HXHZQN,

with a new metric defined by

€; -e]- = 61']" i,j= 1,2,3,
€€ = ew+e=0, i=1,2,3,
€0°€0 = Eoo'Coo=0,

€€ = -1,
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where the usual Euclidean metric still holds for e, e>, es3.
An interesting property of the conformal model is that the inner product X - Y (X, Y € R®) is the squared
Euclidean distance between x, y € R3, up to a constant factor:

XY = (x+eo+%|\x||zew)-(y+€0+%\|yuze°°)
= xey— R+ Ly
- xy=(GIxP + 3m07)
- -3lx-yIP.

From this result, a sphere in R? is encoded as a vector S € R® [12], given by

where C is the conformal representation of the sphere center ¢ € R> and r € R is its radius. To see this, we
use

1
X oo = <x+eo+ 5\|x||2e°o> oo = —1

to get
2
XS = X-(C—?eoo>
= X-C—ﬁ(X-em)
2
- DT,
which implies that

X-S=0s|x-c|®=r"
A spherical shell with center ¢ € R? and radiir,7 € R, 0<r <7, is simply given by
2

S=C_%e°°a re&,?]’

where C € R’ is the conformal representation of ¢ € R3.
Sphere intersections can also be encoded in the conformal model if a more general product (associative
and distributive), called geometric product [18], is introduced by

eej+eje; = 261']',
€o€; = —€i€o,
€lj = —€;Coo,

e§ = eX=0,
€0€oo + €cly = -2,

fori,j=1,2,3.
From the geometric product, the inner product defined above can be given by

a-b= %(ab+ba)
and another product, called outer product [18], is defined by

anb= %(ab—ba),
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Figure 3: Solution of equations and inequalities.

fora, b e R°.

The intersection of distinct spheres is given by the outer product of their vector representations. For ex-
ample, the intersection between two spheres, given in the conformal model by g1, 0, € R, is the circle given
by [12]

0=01A0,. 9

It is important to emphasize that in the general case, the result of the intersection of spheres in R> using
(9) may result in an element geometrically interpreted as an imaginary circle when no finite point is shared
by the spheres, a tangent plane (or point circle with attitude) when the spheres share a single finite point or
a real circle. But due to molecular structure restrictions, only point circles and real circles are expected as a
result of the intersections.

Let us analyze geometrically the solution of the system

l1xi = xi-1|] = di-1,i

l1xi = Xi-2|| = di-2,15 (10)
d; 3 < |1x; = Xi3]] < dis,i
d;; < |Ix;i - x| < dj
forj <i-3,Xi_1,Xi-2, Xi_3, X; € R?, and di_1 ;, di2,1» d; 35 di-3,i, d; 1, dj; € [0, 00).
From Fig. 3, we see that this solution is a subset of the union of two arcs of a circle defined by

x(t)=p+ rcos(t)ﬂ + rsin(t)v,
where
te (-B,-alula,Bl) andt e ([y-p,v-adTuly+a',v+p1),
as explained in subsection 2.1.

Let us denote by i??? and i}?} the arcs obtained from the intersection of spheres S;_; ;, S;_» ; with the
spherical shell S;_5 ; (see Fig. 3), given by

daz . .

i-1,i
Sic1i = Xia- €,

daz . .

i-2,i
Si2,i = Xia-— €oo,

d2

i-3,i =
Sizg = Xisz- ecs, di_zi € d; 3 disl,

2
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Figure 4: Auxiliary spherical shells.

where X;_1, X;_», X;_3 are the conformal representation of the points x;_1, X;_», ;3 € R> and di_1,i, di—2is
d; 3 EHJ are the respective radii.

Motivated by the geometry of the problem (see Fig. 4), we define two more spherical shells, with the same
center x;, and with interval radii given by the distances between x; and P, PT) and the distances between x;
and P}, PTl

2

SO = X] - %Oeoo, To € [m, %]’ (11)
with
ro = min{m, \/ﬁ},
7o = max{\/ﬂ, \/ﬁ},
and
r —
Sl = X] - ?eoo, r e [r715 rl]; (12)
with
o= min{\/ﬂ, \/ﬁ},

These new spherical shells are of the essence of the problem, which implies that the solution of the system
(10) is given by (see Fig. 5)

[Sic1,i A Si2,i A SRl USiz1,i A Sicayi A Sl (13)
with
%=X - Bewandst-x,-
i = j—jeoo an i = 1—5600,
to € [max{ro, d; ;}, min{7y, d; ;}] and t, € [max{ry, d;;}, min{71, d; ;}],
where [Q]-’i s E,-,,-] is the interval radius associated to the pair {v;, v;}, j <i- 3.

The first part of the union in (13) is a subset of the arc i?P?, and the second is a subset of the arc PiPTl
(see Fig. 5).
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Figure 5: Solution of the problem using CGA.

The intervals [max{ro, d; ;}, min{7o, E,.,,-}] and [max{ry, d; ;}, min{ry, Hj,,-}] are obtained using the fol-
lowing property:
t € [a,a]l N [b, b] & max{a, b} < t < min{a, b}.
If one of these intervals is empty, we simply remove it from the calculation (see example in the next
section).
The CGA approach has, at least, two advantages. The first one is related to the fact that the geometric
interpretation of the problem that must be solved, given by

l1xi = xi-1|] = di-1,i

[1Xi = Xi—2|| = di-2,is (14)
di 5 <|Ix = xi3]| < di3
d;; < |Ixi — x5l < dj s,

forj <i-3, Xi1,Xi-2, X3, X; € R?, and di_y 3, di_2,» d;_3 1> di-3,i» d; 1, d; ; € [0, o), can be described in the

language of the CGA, which allowed a better “view” of the problem, in addition to solve it just comparing
distance values. The second advantage is based on the possibility to solve problems in higher dimensions,
where sphere intersections are also involved [1].

3 Example

To illustrate the difference between the two approaches, let us consider a DMDGP instance defined by the
graph G = (V, E, d), given by

<
1

{v1,V2,V3, V4, Vs},

E = {{vi,va}, {vi,vs}, {vi,va}, {v1, vs},
{va,v3}, {va, va}, {va, vs},
{vs,va}, {v3, vs}

{Vq, V5}}’
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and

d1,2 = \6, d1,3 = \/5, d1’4 =1.0, d1,5 c [0.8,0.9],

dy3 = V2, dy 4 =1.0, dy5€0.7,1.0],
dss = 1.0, ds35=1.0,
d4,5 = 1.0.

0 0 1
x1=| 0 |,x= 1 |,x3=] 0 |,x4=
1 0 0

Using the polar coordinates approach, we first calculate

¢ =(0.5,0.8660254, 0.0)7,

W _ Xa—X3 _ (-1, 0, O)T,
x4 = x31|
S = proj;v»(c - x3) =(-0.5,0,0)7,

p=x3+ S = (0.5,0,0)7,

Z = proj_.(x, - p) = (-0.5,0,0)",
r=||c-pl|| = 0.8660254,
(x-p)- 2
. )
u-= M = (0) 1,0)T:
[[(x2 = p) - z||
V=uxw-=(0,0,-1)7,

which implies that the circle defined by the system

X5 = X4]| = da,s

x5 = x3|| = d35

can be described by
x(t)=p+ rcos(t)ﬁ + rsin(t)7,

for t € [-m, rt], and that the solution of
dy 5 < ||x(t) - x2|| < days

is given by

te[-p,-alula,pl,

where

S
1

2r(u - (p - x2))
(32,5)2 -r- [Ip - X2||2

2r(id - (p - X2))

B = arccos(

do 2 =1 —1lp = xo 112
arccos((2’5) 1P =2l = 0.511934,

) =0.955317.

DE GRUYTER

(15)

(16)
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For the interval distance d; 5, another parameterization is obtained as

X)) =p+ rcos(t)ﬂ; + rsin(t)7j,

where
17; = (0) 0, 1)T!
v_; = (0) 1, O)TS

implying that the solution of the system
X5 = X4 = da,5

x5 = x3[| = d3,5
dy s <||xs —x3|| < das
dy s <||xs—xq|| <dis
is given by R
v

x(t)=p+ rcos(t)ﬂ + rsin(t)

>

for
te((y-p,v-adluly+ad,v+BDn([-B,-alUla, B]) = [-0.903017, -0.757421],

where

2
Il

arctan 2 ((x’(o) —p)-V,((0)-p)- 7) - -1.5708,

(dy,s)* -7~ llp —xa®
! arccos( L3
2r(u; - (p - x1))

T2 2 iy |2
arccos ((d1’5) _}r llp — x| ) =0.813379.
2r(u; - (p - x1))

Now, let us see how to solve the example using the CGA approach.

|
1

) =0.667783,

Bl

99

17)

From the intersections of spheres S, sAS3 5ASy 5 and Sy 5AS3 5ASy, 5, with radii givenbyd, s, d3 5, ds 5, dy s,

respectively, we obtain the arcs Pf‘s)Pig and PiPi%, defined by the points

P? = eo+0.5e1 +0.755e; - 0.4242e;3 +0.5€,
Ps = eg+0.5e1 +0.755€; +0.4242e5 + 0.5€,
P? = eo+0.5e; +0.5e; - 0.7071e;3 +0.5€,
F% = eo9+0.5e1 +0.5e, +0.7071e3 + 0.5€c.

The radii of the spherical shells Sy (11) and S; (12), centered at X1, are

ro = min{m,\/—ZXl-Fg}=min{1.69,1.07}=1.07

To = max{\/m, v/ -2X; Fg} =max{1.69,1.07} = 1.69
and

rp = min {, /-2X1 - PL,\/-2X, -Fg} = min{1.85,0.765} = 0.765

o= max{m, V-2X4 -17;} - max{1.85,0.765} = 1.85,
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implying that
tO S [max{m’ 41,5}, min{%, a1,5}] = (Z)

and
t1 € [max{ry, d, 5}, min{ry, di5}]=[0.8, 0.9].

Hence, the solution of the system
|1x5 = X4|| = da,5

X5 = x3|| = d35 (18)
dy 5 <|lxs —Xz|| < days

dy 5 <||xs —x1|| <dys

is given by
Su5 A S3,5 A St s,
where
dZ
84,5 = X4- %eoo, d4,5 =1,
d2
S35 = X3- 732’5 e, d35 =1,
1 t?
S15 = Xi1- jleoo, to €[0.8,0.9].

The superscript 1in S} 5 indicates that the solution is a subset of the arc P%P?

Doing the calculations, the size of the interval associated to the distance?z, 5 changed from [0.7, 1.0] to
[0.861,0.963].

All the calculations were done using GAALOP [17].

4 Conclusions

NMR experiments do not provide precise distances between atoms in a protein molecule and dealing with
interval distances is a big challenge for DMDGP solution methods [30].

Based on Conformal Geometric Algebra (CGA), we present a new approach that allows us to incorporate
the geometry involved when uncertainties must be taken into account, in addition to simplify the understand-
ing of the problem.

Other results that also apply CGA in the DMDGP can be found in [2, 3, 13, 22, 24].
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