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Abstract: A new CBSF empirical scoring function for the estimation of binding energies between proteins
and small molecules is proposed in this report. The �nal score is obtained as a sum of three energy terms
calculated using descriptors based on a simple counting of the interacting protein-ligand atomic pairs. All the
required weighting coe�cients for this methodwere derived from a pretrained neural network. The proposed
method demonstrates a high accuracy and reproduces binding energies of protein-ligand complexes from the
CASF-2016 test set with a standard deviation of 2.063 kcal/mol (1.511 log units) and an average error of 1.682
kcal/mol (1.232 log units). Thus, CBSF has a signi�cant potential for the development of rapid and accurate
estimates of the protein-ligand interaction energies.
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1 Introduction
Remarkable progress in the �eld of arti�cial intelligence and increasing availability of high-quality refer-
ence data have resulted in a rapid development of protein-ligand interaction scoring functions(Huang, Grin-
ter, & Zou, 2010; Nguyen, Zhou, & Minh, 2018; Yadava, 2018) using machine learning algorithms(Chen,
Engkvist, Wang, Olivecrona, & Blaschke, 2018) such as vector support machines or neural networks. Neu-
ral networks designed for the prediction of binding energies between receptors and ligands are typically
based on the pattern recognition and computer vision ideas and have deep architecture utilizing 2D- or 3D-
convolution(Gomes, Ramsundar, Feinberg, & Pande, 2017; Gonczarek et al., 2018; Ragoza, Hochuli, Idrobo,
Sunseri, &Koes, 2017; Stepniewska-Dziubinska, Zielenkiewicz, & Siedlecki, 2018; Sunseri, King, Francoeur, &
Koes, 2019) or graph-convolution(Feinberg et al., 2018; Lim, Ryu, Park, Choe, & Ham, 2019; Torng & Altman,
2018) approaches. Accordingly, thesemodels produce results by detecting nonlinear dependencies which are
hard to express in a functional form.

At the same time, machine learning techniques are able to �nd connections between input and output
data that can be explicitly represented by a simple functional form, e.g. linear correlation (Fracchia, Frate,
Mancini, Rocchia, & Barone, 2018; Sander, 2014). Theweights of these trainedmodelsmay be directly used as
constant coe�cients in the corresponding calculations if the data providing as variables is of the same type
as those used for the model training. In this regard, it is appealing to design a neural network for predicting
protein-ligand binding energies, the trained version of which amounts to a practically usable mathematical
formula. Such approach possesses important advantages: the resulted expression is essentially an empirical
scoring function, and empirical scoring functions are very fast and allow a rapid screening of a vast array
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of complexes(Huang et al., 2010), and usage of the neural network for producing of optimal constants for
empirical soring functions holds potential for the development of highly accurate models.

In this paper we propose a new empirical scoring function, which is based on counting the protein-
ligand interacting atom pairs as descriptors and contains certain weights retrieved from pre-trained neural
networks as constants. While the descriptors de�ned by the atom pair interactions are not uncommon in
the �eld(Ballester & Mitchell, 2010; Durrant, Friedman, Rogers, & McCammon, 2013; Durrant & Mccammon,
2011; Durrant & McCammon, 2010; Sotri�er, Sanschagrin, Matter, & Klebe, 2008; Wójcikowski, Ballester, &
Siedlecki, 2017) because of their simplicity, they also have been criticized for their insensitiveness to the lig-
and poses and to the protonation states of the molecules(Gabel, Desaphy, & Rognan, 2014). Distance depen-
dent terms and atom types as in Open Babel(Boyle et al., 2011) were incorporated into the model to address
these de�ciencies.

Several probe scoring functions were tested on 285 complexes of CASF-2016 benchmark set(Su et al.,
2019), and the most accurate scoring function named CBSF reproduces the reference binding energies with a
standard deviation of 2.063 kcal/mol (1.511 log units) and Pearson correlation coe�cient (R) of 0.718. There-
fore, the accuracy of our scoring function is comparable or higher than for most other known methods, both
classical (empirical, force-�eld and knowledge-based, R ∼ 0.4-0.7(Y. Li et al., 2014; Su et al., 2019)) and
machine-learning based (R ∼ 0.6-0.8)(H. Li et al., 2018; Y. Li et al., 2014; Su et al., 2019). We believe that
CBSF might �nd use in molecular docking software for this reason. The implemented approach to empirical
scoring function based on the neural network weights might also be of interest to further developments in
the �eld.

2 Methods

2.1 Datasets and Preprocessing of Data

Structures of protein-ligandbinding complexes and their correspondingbinding a�nitieswere obtained from
PDBBind database version 2018(Liu et al., 2015, 2017). A total of 4128 complexes were chosen from the “re-
�ned” subset for the training set of the neural networks while the CASF-2016 core set(Y. Li et al., 2014; Su et
al., 2019) consisting of 285 complexes was used to test and evaluate the performance of the neural networks
and the corresponding scoring functions. The criteria of the selection of the complexes for the training set is
provided below.

The cartesian coordinates of the protein atomswere extracted from the PDB �les containing the structure
of binding pockets, all watermoleculeswere removed. The coordinates of the ligand atomswere read from the
SDF�les. Theprotein-ligand atompairs and total numbers of atoms in ligandswere used as descriptors for the
scoring functions and the neural networks. The protein-ligand atom pair was initially de�ned as two atoms
within 5 Å and such atompairs were fed into the neural networks. At the same time, the neural networkswere
just the supplementary tools in the development of the scoring functions and one of their main tasks was to
determine better individual cuto�s for di�erent types of atompairs. Thereby the selection of atompairs for the
scoring functions was processed according to the cuto�s produced by means of the neural networks, these
values can be found among the project’s �les available at https://github.com/rsyrlyb/CBSF. We did not take
into account hydrogen atoms except those connected to oxygen atoms or nitrogen atoms of amino groups.
Atom types were assigned by the Open Babel software (Boyle et al., 2011). The atom pair labels were de�ned
by concatenating the atomic types of the contributing atoms sorted alphabetically with the semicolon symbol
used as a separator, e.g. ‘C+;C3’.

The input data for the neural networks was generated as follows. The descriptors collected from a single
protein-ligand complexwere initially organized in thematrix form (Figure 1), where each column contains all
protein-ligand distances for a certain protein-ligand atom pair type. Complexes that are not matching with
the complexes of the test set and with no more than 130 atom pairs of the same type were used for the model
training (that is, the inputmatrices hadnomore than 130 rows), which resulted in the �nal training set of 4128
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complexes. The resulting matrices were broadcasted to the same shape and stacked into a three-dimensional
table (number of samples × number of atom pair types (605) × 130). Further, atom pair types encountered in
molecules no more than 10 times were separated into additional matrix of lower dimensionality (number of
samples × number of rare atom pair types (474) × 10) for faster training of the neural networks. The obtained
distances were normalized by dividing their values by 5. In addition to this 3D structures, amatrix containing
the total numbers of atoms in ligands and target values of the binding energies (in kcal/mol) was used in the
training of the neural networks.

Figure 1: Example of a matrix prepared as input for the neural network and containing information about atom pairs in a single
complex.

2.2 Scoring Function

The proposed scoring function is based on three terms: (1) the number of atom-atom pairwise interactions
selected within a certain cuto� distance, (Figure 2); (2) number of interactions per atom of the ligand (further
denoted as the density of interactions), and (3) correction that takes into account the atomic pair types. The
overall free energy change according to our scheme is expressed as:

∆Gbind = E1 + E2 + E3 (1)

where ∆Gbind is the predicted binding free energy and E1 − E3 are the terms introduced above.

Figure 2: Dependence of the experimental binding free energy on the number of protein-ligand atom pairs selected within 5 Å
cuto�, the outliers were removed using the elliptic envelope approach. Colors in the plots represent the density of the points. A
95% con�dence interval for the slope and intersection are presented in the �gure.

Calculation of E1 . The term E1 is based on the linear dependence between the number of protein-ligand
atom pairs and the binding free energy. The scoring function ∆G is quite sensitive to this descriptor, and thus
the distance cuto�s used for selecting the atom pairs are very important. The individual cuto�s for each atom
pair type (605 in total) were determined using the neural network and applied in the scoring function. In a
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basic version of the scoring function:

E1 = a1Np + b1 (2)

Np =
∑
A∈L

∑
B∈P

H[R0(TA; TB) − RAB] (3)

H [x] =
{

0, x < 0,
1, x ≥ 0

(4)

where a1 and b1 are coe�cients of the linear equation, Np is the number of atompairs, A and B are the atoms
at the ligand (L)-protein (P) interface, RAB is the interatomic distance between atoms A and B, R0(TA; TB) is
the distance cuto� for the atom types of A (i.e. TA) and B (i.e. TB).

As a further modi�cation of themethod, the protein-ligand interatomic distances were divided into a cer-
tain number of intervals (K) and the pairs of (a1, b1) parameters were assigned individually to each interval.
The atom pairs from the intervals sharing the same sequential index are processed using the same (a1, b1)
parameters. The �nal equation is:

E1 =
K∑
i=1

(
a1,iNp,i + b1,i

)
(5)

Np,i =
∑
A∈L

∑
B∈P

{
H
[
R0i (TA; TB) − RAB

]
− H[R0i−1(TA; TB) − RAB]

}
(6)

where K is the number of intervals, Np,i is the total number of atom pairs from the i-th interval, R0i (TA; TB) is
the upper distance cuto� for the i-th interval for the atom types TA and TB, [note that R00 (TA; TB) = 0], and
(a1,i , b1,i) are the constants (a1, b1) assigned to the intervals i.

The upper limits of the intervals with the sequential number i make up an array of distances di = (di1,
di2, . . . , di605), the lower limits are determined by the array of the preceding intervals i-1, the �rst intervals
have no lower limits. The exact same intervals with their characteristic arrays were applied for calculations
of the rest two terms, as well. We explored the performance of several models that di�er only in the numbers
of used intervals (K = 1-4), which will be referred to as the basic scoring function (SF1), SF2, SF3 and CBSF
(SF4), respectively.

Calculation of E2. The term E2 is taking into account the buriedness of ligand as the ratio of atom pairs
to the total number atoms on the ligand. This term is calculated in a similar manner as the previous term:

E2 =
K∑
i=1

a2,iDi (7)

where a2,i are the �tting constants assigned to the i-th intervals and Di is the density of interactions calcu-
lated according to formula:

Di =
Np,i
NL

(8)

where NL is the total number of atoms in the ligand.
Equation 7 echoes the approach reported in (Spitzer, Cleves, Varela, & Jain, 2014), where the buriedness

was measured by taking the ratio of near-ligand protein atoms to the total number of heavy atoms on the
ligand.

Calculation of E3. The term E3 is calculated as a sum of contributions from each atom pair in the complex
depending on their types:

E3 =
K∑
i=1

605∑
j=1

nijwij (9)
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where nij is the number of atom pairs of j-th type in the i-th interval, wij is the distance-dependent energy
contribution assigned to the j-th atom pair in the i-th interval.

All required constants of the scoring functions, such as di, (a1,i , b1,i), a2,i , and wij, were determined by
training of the convergent neural networks.

2.3 Architecture of the Neural Networks

Several neural networkswere developed to generate the scoring functionswithdi�erentK value. Training and
the testing of the neural networks were performed using Keras(Chollet & others, 2015) with Tensor�ow(Abadi
et al., 2016) as the back-end using in-house software implemented in Python 3.7 programming language.

Neural network designed for the basic scoring function
The architecture of the neural network for obtaining of the parameters of the scoring function with one

interval of distances (K = 1) is presented on Figure 3. The neural network consists of two blocks, preliminary
and main. The preliminary block contains an input layer, followed by a noise layer adding Gaussian noise
with a standard deviation of 0.008 to the input data to prevent over�tting. The level of noise has been chosen
by testing the neural network using di�erent values of standard deviation of the noise distribution based on
comparison of performances of the models. The main block consists of layers 2-5 described below.

Figure 3: Architecture of the neural network for the basic scoring function. The data frames are shown in a transposed form for
convenience.

Layer 2 determines the relevant cuto�s for the atom pair types. The layer was trained to �nd a probability
whether the distances between atoms are close enough to be considered. The output of this custom layer with
custom hard sigmoid activation function F:

y = F(−RAB + w(2)
j ) (10)

wherew(2)
j is theweight of layer 2 assigned to the corresponding column of the input data frame. The hard sig-

moid function in this study has a transition zone of 0.1 Å, according to the features of the activation function:



126 | Raulia R. Syrlybaeva and Marat R. Talipov

y(x) =


0, x ≤ − 0.05
10x + 0.5, −0.05 < x ≤ 0.05
1, x > 0.05

(11)

Therefore, the weights w(2)
j are the maximum possible distances between the atoms making up the atom

pair. These values multiplied by 5 (denormalization) form the array of upper limits of distances d discussed
earlier.

The output values are summarized for counting of the total numbers of atom pairs of di�erent types nj in
the complex. These values are collected into a single table with rows corresponding to separate complexes.
The total number of atom pairs Np in the complex is found as a sum of elements of the row. This value is
passed to the regression layer 3 calculating the term E1. Besides, Np is used for the calculation of the density
of interactions D which is the input for the regression layer 4 designed for the obtaining of the term E2. Both
trainable weight and biase were used in the layer 3 and trainable weight in layer 4, the weight and the bias of
the layer 3 are relevant to the constants (a1, b1) of the scoring function (eq. 2) and the weight of the layer 4 is
a2,1 constant (eq. 7).

Parallelly, the term E3 taking into account the types of atom pairs is calculated by the regression layer 5.
As distinguished from the layers 3-4, the layer 5 takes multiple values as inputs and does not have a bias. The
weights of the layer 5 form increments w1j assigned to the atom pair types (eq. 9). The last operation of the
neural network is summarizing of the outputs of the layers 3-5.

Neural networks for scoring functions with several cuto� distance intervals
Neural networks for the scoring functions with more than one intervals of distances consist of the same

blocks as in the basic model, but the number of the main blocks is equal to the number of intervals and the
�nal predicted energy is the sum of the outputs of all these blocks (Figure 4).

Figure 4: Architecture of the neural networks with K intervals of distances.

Another di�erence is that the layers 3-5 of the main blocks process the atom pairs belonging to the corre-
sponding distance intervals only. This was organized in the following manner: the layers 2 de�ne the upper
limits d of the ranges (as described in the basic model) and select all atom pairs within the interval (0, d).
Output tables of the layers 2 of two subsequent main blocks i-1 and i contain the atom pairs from ranges (0,
di−1) and (0, di) respectively, and therefore, the atom pairs belonging to the interval (di−1, di) which have to
be processed by the layers 3-5 of the main block i are found by the pointwise subtraction of the tables. Neural
networks consist of 2-4 main blocks are denoted as NN-SF2, NN-SF3 and NN-SF4 further.

2.4 Training of the neural networks

Initial weights of the neural networks were set as follows:
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1) Minimal and maximal observed distances for each type of atom pair were retrieved from the prepro-
cessed data. The obtained ranges of distances were normalized and divided into K equal intervals, the upper
boundaries of these intervals were used as initial weights of the layers 2 of the main blocks.

1. Coe�cients (a1, b1) initially estimated using SciPy library and presented in Figure 2, were used as the
weight and bias of the layer 3 of the main blocks.

2. Weights of the layers 5 were set to zero.

The trainingswere carried out in three stages: theweights of the layers 3-4were optimized in the �rst step,
the otherweightswere frozen. Theweights of the layers 5were unfrozen in the second step, and optimizations
of all weights, including the weights of the layers 2, were provided in the step three. K-fold cross-validation
approach was used for each step of the training with k=9. The numbers of epochs for each round of learning
were 50, 50 and 40 in the base model and 20, 20, 15 in the models with a few intervals for the stages 1-3
respectively.The Adam optimizer was used to minimize the mean squared error during optimization.

2.5 Evaluation methods

Mean absolute error (MAE) and median error (median) were calculated using corresponding functions of
NumPy (van der Walt, 2011). Estimation of scoring power was carried out by calculating of Pearson’s corre-
lation coe�cient R and Standard deviation in �tting (σ). Ranking power is presented by means of Spearman
correlation coe�cient (SP), Kendall correlation coe�cient (τ) and predictive index (PI). Ready scripts for
these calculations were taken from CASF-2016 benchmark(Su et al., 2019).

3 Results and Discussion

3.1 Comparative analysis of the composition of the suggested scoring functions

Ourmethod is somewhat similar to the scoring functions based on counting of protein-ligand atom pairs, e.g.
NNScore(Durrant et al., 2013; Durrant & Mccammon, 2011; Durrant & McCammon, 2010), SFCscore(Sotri�er
et al., 2008) andRF-Score(Ballester &Mitchell, 2010;Wójcikowski et al., 2017). A brief review of suchmethods
can be found in (Guedes, Pereira, & Dardenne, 2018). Furthermore, some of these scoring functions, such as
RF-Score and NNScore, were developed by means of the machine-learning techniques. However, there are
signi�cant di�erences between these methods and our approach. In this section, we will discuss the main
ideas that distinguish our scoring function from the previous works.

The main di�erence is related to the cuto�s for selecting atom pairs. Typically, a single cuto� is used,
which is independent of the identity of interacting atoms. This approach could be augmented by introducing
several equally separated atom type-independent cuto�s that de�ne distance intervals with di�erent free
energy contributions. Types of the atom pairs tailed within the determined ranges of distances have a direct
crucial impact to the resulting output of the scoring function. Herein, we use an opposite approach, in which
distance cuto�s were dependent on the type of atom pair, but it was assumed that all types of atom pairs
make approximately the same contribution to the predicted energy value. The resulting distances are divided
into K ranges in the K-interval versions of the scoring functions, but again, the interval breaks are individual
for each type of atom pair. For example, in the scoring function SF5, the cuto� breaks of 2.55 Å, 3.69 Å, 4.61 Å
were used for the ‘C3;C3’ atom pair and 2.76 Å, 3.75 Å, 4.67 Å for ‘C3;Car’. Maximum possible equality of the
energy contributions of the atom pairs from the intervals with the same sequential number was requested
as the main goal during the choice of the borders of the ranges in our model training. Therefore, equations
2 and 3 for the calculation of terms E1 and E2 take the total number of all atom pairs from the intervals with
the same number as the variables, and the constants (a1,i , b1,i) or a2,i were independent of the types of atom
pairs.
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The types of atom pairs are directly included into the scoring function via the term E3. This term echoes
some of the features of the other methods mentioned before, but in our model this term is estimated as
a simple linear function, while similar descriptors are processed using nonlinear operations in the related
machine-learning based scoring functions. The term E3, to a greater extent, was inspired by the knowledge-
based scoring functions(Dittrich, Schmidt, P�eger, & Gohlke, 2019; Mirzaie & Sadeghi, 2010; Zheng et al.,
2011) in which the distance-dependent potentials are evaluated from continuous function based on an in-
verse Boltzmann approach. The di�erence from these potentials, besides the method of their retrieving, is
that the distance-dependent increments wij from our method are assigned to the intervals of distances. An-
other major di�erence is that the values of themost increments wij are close to zero, since, as it was indicated
earlier, the scoring functions were designed so that the term E3 has lowweight. Figure SI1 shows the distribu-
tion of the values of wij in the basic scoring function, the median and the standard deviation are -0.035 and
0.69 kcal/mol, respectively.

It should be noted here that both term E1 and term E3 are taking into account the impact of the atom
pairs on the binding energy. The di�erence is that E1 accounts this factor using average value of the poten-
tial assigned to all types of atom pairs – a1, meanwhile wj increments are essentially deviations of the full
potentials of particular atom pair types from that average impact. Therefore, these terms can be merged as
follows:

E1 + E3 =
K∑
i=1

605∑
j=1

(nij * a1,i + b1,i) +
K∑
i=1

605∑
j=1

nijwij =

=
K∑
i=1

605∑
j=1

(nij * (a1,i + wij) + b1,i) =
K∑
i=1

605∑
j=1

(nij *Wij + b1,i) (12) (12)

whereWij = a1,i + wij.
On the other side, introducing of two separate terms improves accuracy of the neural network: this e�ect

likely has the sameorigin as the e�ectiveness of the batchnormalization implyingnormalizing of eachneuron
into zero mean and unit variance, since the median for wij values is zero and |wij|<|Wij| in general. Besides,
such splitting can increase the speedof the calculations since the atompair typeswith lowwij canbe excluded
from calculations of the term E3.

An appealing feature of our scoring functions is their simplicity, as they are not overloaded with supple-
mentary terms present in other empirical scoring functions (counting hydrogen bonds and rotational bonds,
taking into account partial charges or electrostatic potentials and so on(Baek, Shin, Chung, & Seok, 2017;
Guedes et al., 2018; Jain, 1996; R. Wang, Lai, & Wang, 2002)) and do not contain terms from third-party scor-
ing functions (Pereira, Ca�arena, & Dos Santos, 2016; Tanchuk, Tanin, Vovk, & Poda, 2016; C.Wang& Zhang,
2017). The term E2, re�ecting the buriedness of ligands(Oprea & Marshall, 2005; R. Wang et al., 2002), is the
only conventional empirical term. But this factor is measured in a simple way: as the linear function of the
ratio of the total number of atom pairs to the number of ligand atoms. High values of the term E2 are charac-
teristic for ligands deeply buried in the protein structure.

The terms E1 are the main contributors in the scoring functions, as they accounted for 60-70% of the
overall binding energy (Table S1). The terms E2 and E3 have approximately same values of 15-30%. There is
no noteworthy di�erence in the proportions of the developed scoring functions with multiple intervals, the
in�uence of the terms are close in all models. The second term of the base model, unlike in other models, has
low contribution – 3%.

Due to the regression layers 3-5, our models can be presented as simple mathematical expressions, un-
like other scoring functions with hidden knowledge from the machine learning techniques. This simplicity
makes the calculations using the proposed scoring function more transparent, convenient, and robust, be-
cause there is no need in loading of the neural network requiring the strict preprocessing (preparing of the
input data of 2D dimensionality for each complex, in our case) and additional neural-network libraries.

As to drawbacks of the model, they are similar with problems of other methods based on counting of
atom pairs. Structural data of high quality is required to ensure high accuracy of the method during both
training and usage of themethod and only 13% of complexes of the training set have resolution better that 1.5
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Å currently. Besides, 161 atompair types are represented by less than10 instances, 72 of themhave interatomic
distances ranging within 0.5 Å – it is hard or impossible to determine proper values of cuto�s and increments
in such cases.

3.2 Performance of the scoring functions

Performance of developed scoring functions on the test set complexes comprisingmean absolute error (MAE),
median error, Pearson’s correlation coe�cient R, standard deviation (σ), Spearman correlation coe�cient
(SP), Kendall correlation coe�cient (τ) and predictive index (PI) are presented in Figure 5. These results were
comparedwith the assessment data on the known scoring functions reported in (Su et al., 2019) and obtained
using the same benchmark.

The scoring power of all developed scoring functions is higher than for themost known scoring functions.
So, even the basic version of the scoring function with a single set of distance cuto�s predicts the binding en-
ergies with the standard deviation of 2.129 kcal/mol and Pearson’s correlation coe�cient of 0.698, and these
results are more accurate than that of AutoDock Vina, GlideScore, DrugScore scoring functions and other
well-established methods (Table SI2). The scoring ability of the method improves with increased number of
intervals, but quickly reaches a limit due to increasing of the number of parameters for optimization: each
new interval adds 2 * number of considered atom pair types + 3 variables. Excess of the number of variables
over training samples leads to tremendous over�tting. So, the di�erence between the standard deviations of
the basic model and the best SF4 scoring function is 0.066 kcal/mol only, their performances are very close,
and in fact, the ranging power of SF1 is slightly better.

Figure 5: Accuracy of the scoring functions tested on CASF-2016 benchmark

The observed saturation of the model quality with increased number of cuto� intervals was the reason
for stopping at four intervals of distances for counting of the atom pairs. The resulting scoring function was
named CBSF (contacts-based scoring function) and is considered by us as the main version of the presented
scoring functions. The numerical assessment of the scoring power of CBSF (σ = 2.063 kcal/mol, R=0.718,
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SP=0.605) indicates a high accuracy of the method, and only ∆vinaRF20scoring function(Su et al., 2019; C.
Wang & Zhang, 2017)shows better scoring power. Considering the simplicity and accuracy of the scheme
together with its straightforward implementation, CBSF de�nitely overcomes the main shortcomings char-
acteristic for other schemes based on counting of the number of atom pairs and therefore represents a great
interest for practical use in relevant chemical software.

Theperformances of the convergent neural networks applied for thedevelopment of the scoring functions
are presented in Figure SI2. The accuracy of the neural network corresponding to CBSF (σ = 1.618 kcal/mol,
R=0.733, SP=0.626) is noticeably higher than that of CBSF, but the di�erences are not critical. This discrepancy
is due to the features of the hard sigmoid activation function (eq. 11) used in the neural network. The best
predicted binding energies are obtained using NN-SF3 model (σ = 1.612 kcal/mol, R=0.740, SP=0.640).

CBSF particularly can be implemented in docking programs or to be applied for rescoring of poses gen-
erated by other docking packages displaying lower accuracy in the scoring. The parameters of the scoring
functions, such as the cuto�s or the distance dependent increments can be utilized in the searching algo-
rithms. Besides, the approach used for developing of the suggested scoring functions is generally universal
and can �nd a use in further experiments in the �eld.

4 Conclusion
The new empirical scoring function named CBSF for estimating of the binding a�nity of protein-ligand com-
plexes with known three-dimensional structure is developed. CBSF outperforms most of the known scoring
functions, the standard deviation obtained during its testing on CASF-2016 is 2.063 kcal/mol, while Pearson’s
correlation coe�cient is 0.713. All parameters and coe�cients of the scoring function are found by means
of the neural network; this approach allowed to make considerable simpli�cations in the scoring function
without harm to its accuracy.
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Supporting information

Figure S.1: Distribution of values of increments w1j assigned to atom pair types de�ned for SF1 scoring function

Table S.1: Contribution fractions of terms E1-E3 to the overall sum according to formula (1)

No. of intervals E1 E2 E3
1 72% 3% 25%
2 59% 28% 13%
3 63% 16% 21%
4 56% 25% 19%
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Table S.2: Scoring and ranking powers evaluated on “CASF-2016” benchmark of the top 10 scoring functions producing the best
Pearson correlation coe�cients reported in (Su et al., 2019)

Ranka Rb SDc SPd τe PIf
∆VinaRF20 1 0.816 1.26 0.674 0.614 0.691
X-Score 2 0.631 1.69 0.595 0.523 0.625
X-ScoreHS 3 0.629 1.69 0.560 0.489 0.590
∆SAS 4 0.625 1.70 0.589 0.515 0.608
X-ScoreHP 5 0.621 1.70 0.566 0.509 0.596
ASP@GOLD 6 0.617 1.71 0.542 0.463 0.569
ChemPLP@GOLD 6 0.614 1.72 0.618 0.540 0.647
X-ScoreHM 7 0.609 1.73 0.611 0.536 0.642
Autodock Vina 7 0.604 1.73 0.470 0.414 0.512
DrugScore2018 7 0.602 1.74 0.596 0.505 0.633
DrugScoreCSD 8 0.596 1.75 0.591 0.505 0.626
ASE@MOE 9 0.591 1.75 0.435 0.365 0.459
ChemScore@SYBYL 9 0.590 1.76 0.542 0.474 0.572
PLP1@DS 10 0.581 1.77 0.584 0.505 0.614

aScoring functions are ranked by the Pearson correlation coe�cients.
bThe Pearson correlation coe�cient between the experimental binding data and computed binding scores.

cThe standard deviation (in log Ka units) in �tting the experimental binding data and computed binding scores.
dAverage Spearman correlation coe�cient between the experimental binding data and computed binding scores as obtained on

57 clusters.
eAverage Kendall correlation coe�cient between the experimental binding data and computed binding scores as obtained on 57

clusters.
fAverage predictive index between the experimental binding data and computed binding scores as obtained on 57 clusters.
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Figure S.2: Accuracy of neural networks used for developing of the scoring functions tested on CASF-2016 benchmark
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