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Abstract: We develop a computational method for simulating the nonlinear dynamics of an elastic tumor-
host interface. This work is motivated by the recent linear stability analysis of a two-phase tumor model with
an elastic membrane interface in 2D [47]. Unlike the classic tumor model with surface tension, the elastic in-
terface condition is numerically challenging due to the 4th order derivative from the Helfrich bending energy.
Here we are interested in exploring the nonlinear interface dynamics in a sharp interface framework.We con-
sider a curvature dependent bending rigidity (curvature weakening [22]) to investigate metastasis patterns
such as chains or �ngers that invade the host environment. We solve the nutrient �eld and the Stokes �ow
�eld using a spectrally accurate boundary integral method, and update the interface using a nonsti� semi-
implicit approach. Numerical results suggest curvature weakening promotes the development of branching
patterns instead of encapsulated morphologies in a long period of time. For non-weakened bending rigidity,
we are able to �nd self-similar shrinkingmorphologies based onmarginally stable value of the apoptosis rate.

Keywords: Avascular solid tumor growth, Sharp interface model, Boundary integral method, Stokes-�ow,
Darcy-�ow, Elastic membrane, Moving boundary problems

1 Introduction
Amalignant tumor usually develops in a sequence of increasingly aggressive stages: carcinogenesis, avascu-
lar growth, angiogenesis and vascular growth [35]. Avascular growth occurs as tumor cells proliferate and
form an in situ cancer. Prior to vascularization of the tumor, nutrients (e.g oxygen/glucose) are supplied
through di�usion in the surrounding microenvironment, which limits the size of a tumor spheroid. Morpho-
logical instability, however, brings more available nutrients to the tumor by increasing its surface area to
volume ratio. In particular, regions where instability �rst occurs continue to grow at a faster rate than the
rest of the tumor tissue. Such di�usional instability is induced by non-uniform cell proliferation and migra-
tion according to a heterogeneous distribution of nutrients. The tumormorphology is thus determined by the
dominant nutrient levels where proliferation would be favored [11].

In the past several decades, mathematical models based on �uid mechanics were developed to under-
stand the bio-mechanical properties of the tumor and itsmetastasis patterns. For example, the originalmodel
using Darcy’s law (�ow through a porousmedia) [19, 43] is composed of two parts. One is the concentration of
a generic nutrient (e.g. oxygen or glucose) function σ satisfying a reaction di�usion equation σt = D∆σ− λuσ,
where D is the di�usion constant and λu is the uptake rate; the other part is the internal pressure �eld p
for tumor cell proliferation, which is related to cell velocity v by the Darcy’s law v = −µ∇p, where µ is the
cell mobility. The two is linked by the mass conservation of incompressible tumor cells∇ · u = λp(σ), where
λp(σ) = bσ − λA is the cell proliferation rate. λM = bσ∞ and λA are the rates of mitosis (cell birth) and apop-
tosis (cell death), respectively. This model is closed by introducing the Laplace-Young condition for internal
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pressure (p)∂Ω = γκ (derived from the surface energy of the tumor-host interface), far-�eld boundary condi-
tion for nutrient (σ)∂Ω = σ∞, and the normal velocity of the moving interface V = −µ(∇p)∂Ω · n , where γ is
the surface tension coe�cient and κ is the mean curvature. The Darcy �ow model, though simple in formu-
lation, captures fundamental features of tumor mechanics and serves as a foundation for developing more
sophisticated models, e.g. bifurcation behavior of the tumor growth by Stokes equation [16, 17].

In [41], we introduced a two-phase Stokes model and treated tumor and its host as viscous �uids with
di�erent viscosity. The viscosities re�ect the combined properties of cell and extracellular matrix mixtures.
The tumor cell population is assumed to be homogeneous and cell proliferation produces a pressure �eld for
tumor growth. Under the quasi-steady state assumption, this two-phase tumor model consists of a modi�ed
Helmholtz equation for nutrient di�usion in tumor and a Stokes equation for tumor dynamics. In [47], we ex-
tended the two-phase Stokes model by introducing an elastic tumor-host interface governed by the Helfrich
bending energy [23]. We derived a modi�ed Laplace-Young condition of the stress jump across the interface
for the Stokes equation using an energy variation approach, and performed a linear stability analysis to show
how physical parameters such as viscosity, bending rigidity and apoptosis contribute to the morphological
instability. Linear results suggest that increased bending rigidity versus mitosis rate contributes to a more
stablemorphological behavior, and theremay exist �ngering patterns for increasing tumor viscosity or apop-
tosis rate. Comparison with experimental data on glioblastoma spheroids shows good agreement, especially
for tumors with high adhesion and low proliferation.

In this paper, we investigate the nonlinear dynamics of an elastic tumor-host interface. We introduce the
bending rigidity coe�cient as a function of local mean curvature, referred as curvature weakening model
to describe broken intermolecular bonds and reduced sti�ness of the interface [22]. This is also motivated
by results from recent studies that changes in sti�ness of extracellular matrix may lead to increased mitosis
and migration [37]. We reformulate the nutrient and Stokes equations as boundary integrals, and develop
a sharp interface approach to explore the nonlinear instability of the interface. Note that in the sharp in-
terface framework, we have to compute the 4th order derivative in the interface condition explicitly. After
reformulation, the original two-dimension problem is reduced to one-dimensional curve integrals, which
can be evaluated using spectrally accurate quadratures. To add more e�ciency to the whole algorithm, a
non-sti� interface updating scheme based on the small scale decomposition is implemented [24]. Our nu-
merical method is spectrally accurate in space and 2nd order accurate in time. Nonlinear simulations show
that curvature weakening promotes the development of branching patterns and inhibits encapsulated mor-
phologies. For non-weakened bending rigidity, there exist self-similar shrinking morphologies once the time
dependent apoptosis rate (marginally stable value of the apoptosis rate) is applied. Though preliminary, the
self-similar idea helps shed light on the strategy for morphological control, as a time dependent apoptosis
might be enforced by a well-designed chemo- or radiotherapy.

This paper is organized as follows. In Sect. 2, we formulate the sharp interface model and non-
dimensionalize the resulting PDE systems. In Sect. 3, we develop BIM formulation and present our numerical
method including layer potential evaluations for boundary integrals and small-scale decomposition to re-
move sti�ness. In Sect. 4, we show numerical results, and then we conclude with Sect. 5.

2 Mathematical model
We consider an avascular two-dimensional tumor as illustrated in Fig. 1. Let Ω1(t) be the tumor and Ω2(t)
be the host tissue. The tumor-host interface Γ(t) is considered to be sharp and modeled as an elastic mem-
brane. At the interface, a homogeneous elastic bending energy has beenwidely used to describe the interface
dynamics either in a sharp or di�use interface framework, see e.g. [38, 1, 18, 13, 14, 48, 12, 46, 32] among
many others—i.e., the elastic bending energy, EH = 1

2

∫
Γ(t)

ν0κ2ds, where ν0 is the constant bending rigidity

coe�cient, κ is the local mean curvature, and arc-length s parameterizes the interface. In general, one may
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consider a space dependent energy EW = 1
2

∫
Γ(t)

ν(κ)κ2ds, where the bending rigidity ν is given by a curvature

weakening model [22, 49],
ν(κ) = ν0

(
Ce−λ

2
c κ

2
+ 1 − C

)
, (1)

where 0 ≤ C < 1 is the rigidity fraction and λc is the characteristic radius beyond which ν(κ) decays signi�-
cantly. When κ gets large, parameter ν(κ) approaches to its lower bound (1 − C)ν0. The largest rigidity limit
ν0 can be reached by setting C = 0. Performing domain variation in normal direction, i.e. compute variation
δE
δΓn :=

d
dϵ E(x + ϵϕn), we obtain

δEH
δΓn

= − ν0
(
1
2 κ

3 + κss
)
,

δEW
δΓn

= −
(
1
2 ν

′′ + 2ν′κ + ν
)
κss −

(
1
2 ν

′′′κ2 + 3ν′′κ + 3ν′
)
κ2s −

(
1
2 ν

′κ + 1
2 ν
)
κ3,

(2)

where the subscript s denotes a derivative with respect to the arclength parameter s and the prime notation
is for a derivative with respect to κ.

2.1 The two-phase Stokes tumor model

Nutrient �eld.

Figure 1: Illustration of the computation domain of a three-mode tumor-host interface

Similar to the Darcy’s model [10], here the nutrient �eld in Ω1(t) is governed by a reaction di�usion equation:

σt = D∆σ − λuσ in Ω1(t), (3)
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whereD and λu are thedi�usion constant anduptake rate, respectively. For simplicity,we assume thenutrient
concentration σ is constant in Ω2(t) and continuous across the interface Γ(t):

σ = σ∞ in Ω2(t),
[σ] = 0 on Γ(t).

(4)

Flow �eld.
The mass conservation in Ω1(t) and Ω2(t) reads:

∇ · v = λM
σ
σ∞

− λA in Ω1(t),

∇ · v = 0 in Ω2(t),
(5)

where λM and λA are the mitosis and apoptosis rate, respectively. The Stokes equations in both domains are

∇ · Ti = 0, in Ωi(t), i = 1, 2, (6)

whereTi = µi
(
∇vi + (∇vi)T

)
+µi (∇ · vi) I−piI are stress tensors for the interior tumor (i = 1) andexterior host

(i = 2), pi are pressures, and parameters µi and µi are respectively the shear and bulk viscosity coe�cients
[47, 41]. The stress jump condition across the interface is given by the bending energy variation in Eq. (2),

[Tn] = δEHδΓn
n or δEW

δΓn
n. (7)

Note that the stress tensors take into account the rate of strain, dilatation and pressure. The normal velocity
is simply V = u · n at the interface. Here we assume the cell velocity v is continuous across Γ(t), i.e. [v] = 0.

2.2 Non-dimensionalization

Following [47, 41], the dimensional variables are scaled by their characteristic values to yield the following
non-dimensional parameters:

x̃ = x
L , t̃ = λR t, σ̃ = σ

σ∞ , p̃i =
pi
P1

, T̃i =
Ti
T1

, s̃ = s
L , κ̃ = Lκ, i = 1, 2, (8)

where L =
√

D
λu , λ

−1
R = λ−1M , and σ∞ are the characteristic di�usion length, time, and nutrient concentration

scales, respectively. Also, P1 = T1 = µ1λM . Since the tumor volume doubling time scale is typically much
larger than the di�usion time scale (e.g. days vs.minutes), we assume λM � λu, which leads to a quasi-steady
reaction di�usion equation for nutrient �eld in the tumor tissue. Dropping all tildes, the nondimensional
Stokes-�ow system is given by:

• In the tumor region Ω1(t), we have:

Modi�ed Helmholtz equation for nutrient �eld
∆σ = σ. (9)

Stokes equation for flow �eld
∇ · T1 = 0, (10)

where T1 = ∇v1 + (∇v1)T − p1I, p1 = p1 − λ∇ ·v1 is a modi�ed pressure and λ = µ1
µ1 is the ratio between

two interior viscosity.
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Conservation of tumor mass.
∇ · v = σ −A, (11)

whereA = λA
λM represents the relative rate of cell apoptosis to mitosis.

• In the host tissue region Ω2(t), we have a constant nutrient �eld:

σ = σ|Γ(t) = 1, (12)

and divergence free condition for velocity and stress tensor:

∇ · v2 = 0,
∇ · T2 = 0,

(13)

where T2 = λ
(
∇v2 + (∇v2)T

)
−p2I and λ = µ2

µ1 is the ratio between the exterior host and interior tumor
viscosities.

• On the tumor-host interface Γ(t), we have no-jump boundary conditions for nutrient and velocity �eld:

[σ] = 0,
[v] = 0,

(14)

and a jump boundary condition for the stress tensor:

[Tn] = −S−1
(
1
2 κ

3 + κss
)
n from EH , (15)

[Tn] = − S−1
[(

1
2 ν

′′ + 2ν′κ + ν
)
κss +

(
1
2 ν

′′′κ2 + 3ν′′κ + 3ν′
)
κ2s +

(
1
2 ν

′κ + 1
2 ν
)
κ3
]

n from EW ,
(16)

where parameter S−1 = ν0
µ1λML3

represents the relative strength of bending rigidity.

Ideally, one would like to rewrite the Stokes system to the standard one, in which the velocity �elds are
divergence free in both the tumor and host regions. This is helpful in the design of numerical methods. To do
this, we rede�ne the tumor cell velocity in Ω1(t) as

u1 = v1 −∇σ +
Ax
d , (17)

where d = 2 is the spatial dimension. Using the modi�ed Helmholtz equation (9) and the identity∇ · x = d,
equation (11) becomes divergence free:

∇ · u1 = 0. (18)

Thus the PDE system in Ω1(t) becomes:
Incompressibility∇ · u1 = 0,
Stokes equation ∆u1 = ∇p̃1,
Nutrient equation ∆σ = σ,

(19)

where p̃1 is the renamed interior pressure p̃1 = p1 −∇ · v1 − σ.
The PDE system in Ω2(t) is: 

Incompressibility∇ · v2 = 0,
Stokes equation λ∆v2 = ∇p2,
Nutrient equation σ = 1.

(20)

Consequently, the boundary conditions can be rewritten as:
σ = 1
v2 (x)

∣∣
Γ(t) − u1 (x)

∣∣
Γ(t) = ∇ σ|Γ(t) −

AxΓ(t)
2

T2n − Tu1n = −S−1f (κ)n + 2∇∇σn − 2σn − A
d (2 − d)n

(21)
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where Tu1 = ∇u1 + (∇u1)T − p̃1I, f (κ) = 1
2 κ

3 + κss for EH and f (κ) =
(1
2 ν

′′ + 2ν′κ + ν
)
κss +(1

2 ν
′′′κ2 + 3ν′′κ + 3ν′

)
κ2s +

(1
2 ν

′κ + 1
2 ν
)
κ3 for EW . The reformulation requires an explicit evaluation of∇∇σn,

which can be expressed in terms of the normal derivative of σ by Eq. (9)as

s · (∇∇σ(s)n) = d
ds (n ·∇σ(s)),

n · (∇∇σ(s)n) = 1 − κn ·∇σ(s),
(22)

where s is the arclength representation of the tumor-host interface. Since the exterior velocity �eld is already
divergence-free, it is unnecessary to reformulate the exterior problem. Note that the reformulated velocity
�eld becomes discontinuous across the interface.

Notice that although in Eqs. (19), (20) both the velocity and the nutrient �eld are governed by time-
independent PDEs, the boundary itself and the boundary conditions in Eq. (21) are time-dependent, which
results in a moving boundary problem.

2.3 Review of linear stability analysis.

Though a linear stability analysis could be performed using a weakened bending rigidity, the calculation is
very tedious and cumbersome. For brevity, we focus on a constant bending energy case [47] and mainly use
our numerical solvers to study the curvature weakening model. For a circular tumor spheroid of radius R(t),
the interface evolves as:

dR
dt = I1(R)I0(R)

− AR
2 , (23)

where I0(R) and I1(R) are the modi�ed Bessel functions of the �rst kind with indices 0 and 1, respectively.
Figure 2 shows the rate of change of a tumor spheroid with respect to the radius R for di�erentA. Rs(A) is the
linear steady radius associated with A satisfying dR/dt = 0. Large A causes more cell death and therefore
limits the size of the tumor spheroid, whereasA = 0 indicates an unbounded growth.

Figure 2: Growth rate from Eq. (23) for the radially symmetric tumor as a function of R.
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For a slightly perturbed circular interface, r(α, t) = R(t) + ϵδ(t) cos(lα), where α is the polar angle, δ(t) is
the time-dependent perturbation, ϵ � 1, and integer l ≥ 2 is the perturbation mode. The shape perturbation
for Stokes-�ow with a uniform bending energy evolves as

d
(
δ
R

)
dt =

(
δ
R

)(
λ

1 + λA −
lS−1
4R3

(
l2 − 3

2

)
+ 1
1 + λ

(
1 − I1(R)Il+1(R)I0(R)Il(R)

)
− 2
R
I1(R)
I0(R)

)
, (24)

where the shape factor δ
R measures the deviation of the tumor shape from a circle of varying radius, thus de-

scribing tumormorphological stability. Note that the normal contribution of the term∇∇σ in the stress jump
is focused here. The shape perturbation depends on A, S−1, l and λ. Observe that the right hand side of Eq.
(24) increases with increasing A(high cell death) and decreases with increasing S−1 (high membrane rigid-
ity), implying thatA promotes shape instability while S−1 stabilizes it. The morphological stability is mainly
determined by the competition between these two important parameters. The parameter λ may promote or
reduce instability, depending on the values of l and the radius of the tumor R. In the result section, we will
do a parameter study on the critical value of the sti�ness S−1 and examine the full nonlinear dynamics.

3 Numerical method
We use the boundary integral methods to solve (1) the nutrient �eld in tumor domain; (2) the 2D Stokes equa-
tion for the �uid velocity �eld in both domains. We then update the position of the interface Γ(t) by a nonsti�
2nd order multistep method. The algorithm presented below is an extension of the approach developed in
[41] for interfacial �ows with surface tension. For completeness, we outline the main ideas here. A rigorous
convergence and error analysis of the boundary integral method for the tumor problem can be found in [21].

3.1 Boundary integral formulation

The nutrient �eld.
Consider a Green’s function for the modi�ed Helmholtz equation in Ω1(t):

∆Gσ − Gσ = δx, (25)

where Gσ = Gσ(x, x′), x ∈ Ω1(t) is the source point, x′ is the �eld point, and δx(x, x′) is the Dirac delta
function. Thus the fundamental solution for Eq. (9) is the modi�ed Bessel function of the second kind

Gσ(x, x′) = − 1
2π K0(r), (26)

where r = |x − x′|. Using potential theory [28], we de�ne a single-layer potential for the modi�ed Helmholtz
equation:

(Sσ[ζ ])(x) :=
∫
Γ

Gσ(x, x′)ζ (x′)ds′, (27)

where ζ is the layer potential. The nutrient σ can thus be written as a double-layer potential:

σ(x) = (Dσ[ζ ])(x) :=
∫
Γ

∂Gσ(x, x′)
∂n′ ζ (x′)ds′, (28)

where n′ is the unit outward normal to Γ(t). By the uniform nutrient condition (21), we may repose Eq. (9) as
a second-kind Fredholm integral equation with an unknown density ζ on Γ(t):

(−12 +Dσ)[ζ ] = 1. (29)

The term ∂σ
∂n (normal derivative of double-layer potential) can be computed using

∂σ
∂n (s) =

d
dsSσ [ζs] − n(s) · Sσ[nζ ]. (30)
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The Stokes-flow �eld.
Following [41], let G be the Stokeslet and T be the tensor stresslet, then the single layer potential at the inter-
face Γ is

S[f]
(
x|Γ
)
= 1
4π

∫
Γ

G
(
x′ − x|Γ

)
f
(
x′
)
ds′, (31)

and the double layer potential at Γ is

D[u]
(
x|Γ
)
= 1
4π P.V .

∫
Γ

u
(
x′
)
T
(
x′ − x|Γ

)
n
(
x′
)
ds′, (32)

where P.V . indicates the principle value integral. Assuming that the �ow vanishes at the far-�eld, the bound-
ary integral representation of the velocity v2 approaching the interface from the exterior domain Ω2 is

v2
(
x|Γ
)
= −2S [f2]

(
x|Γ
)
+ 2D [v2]

(
x|Γ
)
, (33)

and the velocity u1 approaching the interface from the interior domain Ω1 is

u1
(
x|Γ
)
= 2S

[
fu1
] (

x|Γ
)
− 2D [u1]

(
x|Γ
)
, (34)

where fi denote the interior and exterior normal stress at the interface
(
λ−1T2n = f2 and Tu1n = fu1 ). Since we

do not know Ti individually, we rewrite Eqs. (33) and (34) in terms of T2 − Tu1 and make use of Eq. (21). To
start, we multiply Eq. (33) by λ and add it to Eq.(34) to get

λv2
(
x|Γ
)
+ u1

(
x|Γ
)
− 2D [λv2 − u1]

(
x|Γ
)
= −2S

[
T2 − Tu1

] (
x|Γ
)
, (35)

where the term T2 − Tu1 is explicitly given in Eq. (21). At the interface, from Eqs.(14), (17), the interior and
exterior velocities are related by

v2
(
x|Γ
)
− u1

(
x|Γ
)
= ∇ σ|Γ −

A x|Γ
2 . (36)

Putting Eqs. (35) and (36) together, we get

v2
(
x|Γ
)
− 2 λ − 1λ + 1D [v2]

(
x|Γ
)
= 1
λ + 1F, (37)

where the force term

F = −2S
[
T2 − Tu1

] (
x|Γ
)
+ 2D

[
∇ σ|Γ −

Ax |Γ
2

] (
x|Γ
)
+∇ σ|Γ −

A x|Γ
2 . (38)

Note that in 2D, v2 = (v1, v2) , n = (n1, n2) , and F = (F1, F2) . Using the formulas of the double and single
layer potentials [42], equation (37) can be explicitly rewritten as

vj
(
x|Γ
)
− 2 λ − 1λ + 1

1
4π

∫
Γ

vi
(
x′
)
Tijk

(
x′, x|Γ

)
nk
(
x′
)
ds′ = 1

λ + 1Fj
(
x|Γ
)
, j = 1, 2 (39)

where

Fj
(
x|Γ
)
= − 2 1

4π

∫
Γ

fi
(
x′
)
Gij
(
x′, x|Γ

)
ds′ + 2 1

4π

∫
Γ

hi
(
x′
)
Tijk

(
x′, x|Γ

)
nk
(
x′
)
ds′ + hj

(
x|Γ
)
, (40)

h
(
x|Γ
)
= ∇σ

(
x|Γ
)
− A x|Γ

2 , Gij =
∑d

i

(
−δij ln r + x̂i x̂j

r2
)
and Tijk =

∑d
i,k

(
−4 x̂i x̂j x̂k

r2
)
with r = |x̂| and x̂ = x′(s) −

x|Γ (s). Hence, the explicit forms of the single layer and double layer potentials are

∫
Γ

fi
(
x′
)
Gij
(
x′, x|Γ

)
ds′ =


∫
Γ

(
−f ′1 log r + f ′1

x̂21
r2 + f

′
2
x̂1 x̂2
r2
)
ds′ j = 1,∫

Γ

(
−f ′2 log r + f ′2

x̂22
r2 + f

′
1
x̂1 x̂2
r2
)
ds′ j = 2,

(41)
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and∫
Γ

vi
(
x′
)
Tijk

(
x′, x|Γ

)
nk
(
x|Γ
)
ds′ =

{ ∫
Γ
−4
r4
(
v′1 x̂31n1 + v′1 x̂21 x̂2n2 + v′2 x̂21 x̂2n1 + v′2 x̂1 x̂22n2

)
ds′ j = 1,∫

Γ
−4
r4
(
v′1 x̂21 x̂2n1 + v′1 x̂1 x̂22n2 + v′2 x̂1 x̂22n1 + v′2 x̂32n2

)
ds′ j = 2,

(42)
where x̂1 = x(s(α)) − x

(
s
(
α′
))
, x̂2 = y(s(α)) − y

(
s
(
α′
))
, v′i = vi

(
x
(
s
(
α′
)))

and ni = ni(x(s(α))). In Eq. (41),
the only singularity in the integrand comes from the logarithmic kernel. This can be analyzed in the following
subsection.

3.2 The evaluation of the boundary integrals [30]

With the integral formulation above, we assume the interface Γ is analytic and given by
{
x(α, t) =

(x(α, t), y(α, t) : 0 ≤ α ≤ 2π
}
, where x is 2π-periodic in the parametrization α. The unit tangent and nor-

mal (outward) vectors can be calculated as s = (xα , yα)/sα, n = (yα , −xα)/sα, where the local variation of the
arclength sα =

√
x2α + y2α. Subscripts refer to partial di�erentiation. We track the interface Γ by introducing N

marker points to discretize the planar curves, parametrized by αj = jh, h = 2π
N , where N is a power of 2.

Computation of the single-layer potential.
In Eqs. (27) and (41), the single-layer potential type integrals contain the Green functionswith the logarithmic
singularity at r = 0. They can be rewritten as the following form under the parametrization α:∫

Γ

Φ(α, α′)ϕ(α′)sα(α′)dα′, (43)

whereΦ are the Green functions G or Gσ, ϕ is the layer density η or ζ . We decompose the Green functions as:

G(α, α′) = − 1
2π ln r = − 1

2π

(
ln 2

∣∣∣∣sin α − α′2

∣∣∣∣ + [ln r − ln 2 ∣∣∣∣sin α − α′2

∣∣∣∣]) , (44)

Gσ(α, α′) = − 1
2π K0(r) = −

1
2π

(
I0(r) ln 2

∣∣∣∣sin α − α′2

∣∣∣∣ + [K0(r) − I0(r) ln 2 ∣∣∣∣sin α − α′2

∣∣∣∣]) , (45)

where I0 is a modi�ed Bessel function of the �rst kind, r = |x(α) − x′(α′)|. The square bracket on the right-
hand side of Eqs.(44) and (45) has removable singularity at α = α′, since r = sα

∣∣α − α′∣∣√1 + O(α − α′) =
sα
∣∣α − α′∣∣ (1 +O(α − α′)) for α ≈ α′, where O(α − α′) denotes a smooth function that vanishes as α → α′, and

since K0 has the expansion

K0(z) = −
(
log z2 + C

)
I0(z) + Σ∞n=1

ψ(n)
(n!)2

( z
2
)2n

.

As a result, for an analytic and 2π-periodic function f (α, α′), a standard trapezoidal rule or alternating point
rule can be implemented to evaluate the integral

2π∫
0

f (α, α′) ln r
2
∣∣sin α−α′

2
∣∣dα′ (46)

and achieve spectral accuracy. The �rst term on the right-hand side of Eqs.(44) and (45) is still singular and
can be evaluated using the following spectrally accurate quadrature [27]:

2π∫
0

f (αi , α′) ln 2
∣∣∣∣sin αi − α′2

∣∣∣∣dα′ ≈ Σ2m−1j=0 q|j−i|f (αi , αj), (47)



34 | Min-Jhe Lu et al.

where m = N
2 , αi = πi

m for i = 0, 1, ..., 2m − 1, and weight coe�cients

qj = −
π
mΣ

m−1
k=1

1
k cos

kjπ
m − (−1)jπ

2m2 , for j = 0, 1, ..., 2m − 1. (48)

The derivative d
dα in Eq. (43) is approximated using Fast-Fourier-Transform spectral derivatives thus main-

taining spectral accuracy.

3.2.0.1 Computation of the double-layer potential.
In Eq. (28), the double-layer potential type integrals contain the Green functions with logarithmic singularity
at r = 0. It can be rewritten as the following form under the parametrization α:∫

Γ

∂Φ(α, α′)
∂n(α′) ϕ(α′)sα(α′)dα′, (49)

where Φ stands for the Green function Gσ and ϕ is the layer density ζ .
Since ∂Gσ

∂n has logarithmic singularity, we decompose it as below:

∂Gσ(α, α′)
∂n(α′) = −h(α, α′)K1(µir) = g1(α, α′) ln 2

∣∣∣∣sin α − α′2

∣∣∣∣ + g2(α, α′), (50)

where g1(α, α′) and g2(α, α′) are analytic and 2π-periodic functions with

g1(α, α′) = −h(α, α′)I1(µir), (51)

g2(α, α′) = −h(α, α′)
[
K1(µir) − I1(µir) ln 2

∣∣∣∣sin α − α′2

∣∣∣∣] . (52)

We have used the fact d
drK0(r) = −K1(r). Since K1 has the expansion

K1(z) =
1
z +

(
log z2 + C

)
I1(z) −

1
2

∞∑
n=0

ψ(n + 1) + ψ(n)
n!(n + 1)!

( z
2
)2n+1

,

the square bracket on the right-hand side of Eq. (52) also has a removable singularity at α = α′, thus the
integral involving g2(α, α′) can be evaluated by a standard trapezoidal rule or alternating point rule. Note
that

g2(α, α) = −
h(α, α)
r = − 1

4π
xαyαα − xααyα

x2α + y2α
. (53)

The �rst term on the right-hand side of Eq. (52) is still singular and can be evaluated through the quadrature
given in Eqs. (47) and (48).
To summarize, using Nyström discretization with the Kress quadrature rule [20] described above, we dis-
cretize the boundary integral equations for the nutrient and Stokes �elds into two dense linear systems with
unknowns as the layer densities ζ and η on Γ(t), which can be solved using an iterative solver, e.g., GMRES
[44].

3.3 The evolution of the interface

As indicated in [24], the curvature driven motion introduces high-order derivatives, both non-local and non-
linear, into thedynamics through theLaplace-Young conditionat the interface. Explicit time integrationmeth-
ods su�er from severe numerical stability constraints and implicit methods are di�cult to apply since the
sti�ness enters non-linearly. Hou et al. resolves these di�culties by adopting the θ − L formulation and the
small-scale decomposition (SSD) which we will follow in this paper.
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θ − L formulation.
This description makes the application of an implicit method straightforward and may circumvent the prob-
lem of point clustering. Consider a point x(α, t) = (x(α, t), y(α, t)) ∈ Γ(t). Denote the normal and tangent
velocity by V(α, t) = u ·n and T(α, t) = u · s respectively, where u = xt = Vn+ Ts describes the motion of Γ(t).
The tangent angle that the planar curve Γ(t) forms with the horizontal x-axis, called θ, satis�es θ = tan−1 yα

xα .
The unit tangent and normal vectors become s = (cos θ, sin θ) and n = (sin θ, − cos θ). The length of one
period of the curve is L(t) =

∫ 2π
0 sαdα. Di�erentiating these two equations of θ, sα in time, we obtain the

following evolution equations:
θt = κT − Vs =

1
sα
(θαT − Vα), (54)

sαt = (Ts + κV)sα = Tα + θαV , (55)

where the curvature is evaluated by κ = θs = θα
sα . Instead of using the (x, y) coordinates, we are able to repose

the equation of motion in terms of dynamical variables (L, θ). To gain more e�ciency and accuracy, one may
choose a tangent velocity T (independent of the morphology of the interface) such that the marker points are
equally spaced in arclength to prevent point clustering:

T(α, t) = α
2π

2π∫
0

θα′V ′dα′ −
α∫

0

θα′V ′dα′. (56)

It follows that sα is independent of α and thus is everywhere equal to its mean:

sα = 1
2π

2π∫
0

sα(α, t)dα = L(t)2π . (57)

The procedure for obtaining the initial equal arclength parametrization is presented in Appendix B of [2]. The
idea is to solve the nonlinear equation

αj∫
0

sβdβ =
j
N L (58)

for αj usingNewton’smethod and evaluate the equal arclengthmarker pointsx(αj) by interpolation in Fourier
space. We may recover the interface by simply integrating

xα = xssα = L(t)2π (cos θ(α, t), sin θ(α, t)). (59)

Small scale decomposition (SSD).
The idea of small scale decomposition (SSD) is to extract the dominant part of the equations at small spa-
tial scales [24]. To remove the sti�ness, we use SSD in our problem and develop an explicit, non-sti� time
integration algorithm. Through the analysis of the single-layer and double-layer terms, the only singularity
in the integrands comes from the logarithmic kernel. Following [24] and noticing the curvature terms in the
stress-jump condition in Eq. (21) and Eq. (39), one can show that at small spatial scales [46],

V(α, t) ∼ 1
s2α

H[θαα], (60)

whereH(ξ ) = 1
2π
∫ 2π
0 ξ ′ cot α−α′2 dα′ is the Hilbert transform for a 2π-periodic function ξ .

We rewrite Eq. (54),
θt =

1
s3α

H[θααα] + N(α, t), (61)

where the Hilbert transform term is the dominating high-order term at small spatial scales, and N = (κT −
Vs) − 1

s3α
H[θααα] contains all other lower-order terms in the equation of motion. This splitting reveals that an
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explicit time-stepping method has the high-order constraint
(
h
sα

)3
, where ∆t and h are the time-step and

spatial grid size, respectively. The e�ciency has been demonstrated numerically in the seminal work [24]
and later in [31, 50] for a Hele-Shaw problem. For the tumor growth problem, the semi-implicit time-stepping
scheme (see Eq. (60)) requires ∆t = O(h) instead of explicit schemes which would require ∆t = O(h3). In
section 4, we shownumerical examples using N = 2048. In the simulation, we could use ∆t as ∆t = 1.0×10−2
for stability instead of ∆t < 10−6 for an explicit scheme.

3.4 Semi-implicit time-stepping scheme

Taking the Fourier transform of Eq. (61), we get

θ̂t = −
(
|k|
sα

)3
θ̂(k, t) + N̂(k, t). (62)

In Fourier space, we solve Eq. (62) using a second order accurate linear propagator method in the Adams-
Bashforth form and then apply the inverse Fourier transform to recover θ. Speci�cally, we discretize Eq. (62)
as

θ̂n+1(k) = ek(tn , tn+1)θ̂n(k) +
∆t
2 (3ek(tn , tn+1)N̂n(k) − ek(tn−1, tn+1)N̂n−1(k), (63)

where the superscript n denotes the numerical solutions at t = tn and the integrating factor

ek(t1, t2) = exp

−|k|3 t2∫
t1

dt
s3α(t)

 . (64)

Note that by setting the integrating factors in Eq. (63) to 1, we recover the classical Adams-Bashforth explicit
time-stepping method. The integrating factors in Eq. (63) can be evaluated simply using trapezoidal rule,

tn+1∫
tn

dt
s3α(t)

≈ ∆t
2

(
1

(snα)3
+ 1
(sn+1α )3

)
,

tn+1∫
tn−1

dt
s3α(t)

≈ ∆t
(

1
2(sn−1α )3 + 1

(snα)3
+ 1
2(sn+1α )3

)
. (65)

To compute the arclength sα, equation (55) is discretized using the explicit 2nd-order Adams-Bashforth
method,

sn+1α = snα +
∆t
2 (3Mn −Mn−1), (66)

where M is calculated using M = 1
2π
∫ 2π
0 V(α, t)θαdα.

Note that the second order linear propagator and Adams-Bashforth methods are multi-stepmethods and
require two previous time steps. The �rst time step is realized using an explicit Euler method for s1α and a �rst
order linear propagator of a similar form for θ̂1.

To reconstruct the tumor-host interface (x(α, tn+1), y(α, tn+1)) from the updated θn+1(α) and sn+1α , we �rst
update a reference point (x(0, tn+1), y(0, tn+1)) using a second-order explicit Adams-Bashforthmethod to dis-
cretize the equation of motion xt = Vn̂ (with the tangential part dropped since it does not change the mor-
phology)

(x(0, tn+1), y(0, tn+1)) = (x(0, tn), y(0, tn)) + ∆t2
(
3V(0, tn)n̂(0, tn) − V(0, tn−1)n̂(0, tn−1)

)
. (67)
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Once we update the reference point, we obtain the con�guration of the interface from θn+1(α) and sn+1α by
integrating Eq. (59) following [24]

x(α, tn+1) = x(0, tn+1) + sn+1α

 α∫
0

cos(θn+1(α′))dα′ − α
2π

2π∫
0

cos(θn+1(α′))dα′
 ,

y(α, tn+1) = y(0, tn+1) + sn+1α

 α∫
0

sin(θn+1(α′))dα′ − α
2π

2π∫
0

sin(θn+1(α′))dα′
 , (68)

where the inde�nite integration is performed using the discrete Fourier transform.
We use a 25th order Fourier �lter to damp the highest nonphysical mode and suppress the aliasing error

[24].We also use Krasny �ltering to prevent the accumulation of round-o� errors during the computation [26].

4 Results
We have computed a number of di�erent cases which illustrate and expand upon the linear stability analysis
in [47]. First, we examine stability of a perturbed interface through the full nonlinear simulations. We then
take into account the curvature weakening of the bending rigidity and examine its e�ects on the pattern
formation. Finally, we examine the existence of possible self-similar solution.

The correctness of implementations of boundary integral methods for both Stokes �ow and the modi�ed
Helmholtz equationwas checked in a number ofways. This includes growing/shrinking of a circular interface
to the steady radius predicted by Eq. (23). Agreement of the nonlinear evolution of perturbationswas also ver-
i�ed with linear solution for a slightly perturbed circular interface in Eq. (24). This is assessed by comparing
the corresponding linear and nonlinear shape factors. The linear shape factor is calculated by solving Eqs.
(23) and (24), and the nonlinear shape factor is calculated numerically using

δ
R = max

j
(|xjR |

2 − 1)1/2, j = 1, ..., N, (69)

where xj denotes the discrete points that describe the tumor/host interface and R denotes the e�ective radius
of the tumor, which is the radius of a circle with the same area as the tumor.

4.1 Growth or shrinkage through marginally stable curve S−1M (A = 0.5)

A marginally stable (or critical) value of the rigidity parameter S−1M (l,A, R, λ) is obtained by setting the time
derivative of δ

R in Eq. (24) to zero and thus separates stable (S−1 > S−1M ) from unstable regime (S−1 < S−1M ).
Recall that S−1 is proportional to membrane rigidity. In Fig. 3 [a], we illustrate this behavior by plotting S−1

with A = 0.5, mode l = 3 for various viscosity ratios λ = 0.5, 1.5, 2.5 against R. When A = 0.5, the steady
radius is Rs ≈ 3.326. We consider the dynamics of tumors that may grow or shrink depending upon their
initial radius. We take two membrane rigidity parameters S−1 = 0.001 and S−1 = 2, two initial tumor radii
R(0) = 1.988 and R(0) = 4.5, and vary the viscosity ratio λ.

Speci�cally, we consider in Fig. 3 [a] evolution from the points P1(1.988, 0.001), P2(4.5, 0.001),
Q1(1.988, 2), Q2(4.5, 2) where the �rst coordinate represents the initial tumor radius R(0) and the second
represents the membrane rigidity parameter S−1. When A = 0.5, linear theory predicts that a circular inter-
facewill evolve to its stationary radius Rs ≈ 3.326,while the stability of a perturbed interface depends on S−1.
As seen from Fig. 3 [a], linear theory predicts that starting from the point P1(1.988, 0.001), P2(4.5, 0.001),
wheremembrane rigidity is low, the 3-mode perturbationwill be unstable as the tumor grows or shrinks to the
stationary radius Rs. We point out that the e�ective tumor radius will actually grow/shrink to the stationary
radius Rs(A = 0.5) ≈ 3.326 for a while and turn out to be larger than this predicted size due tomorphological
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instability. However, starting from the point Q1(1.988, 2), Q2(4.5, 2) where the membrane rigidity is higher
(S−1 = 2), the simulation shows tumor will grow or shrink to R ≈ 3.326 and is stable.

In Fig. 3 [b] and [c], we show the nonlinear evolution of tumors starting from points P1 and Q1, re-
spectively. In each case, the initial tumor/host interface is a 3-mode perturbation of a circle given by r =
1.988 + 0.05 cos(3α). Similar computations for P2 and Q2 are shown in Fig. 3 [d] and [e] with initial shape
r = 4.5 + 0.05 cos(3α). The viscosity ratio is varied from λ = 0.5, 1.5, 2.5 as labeled in the plots. The non-
linear shape factors are plotted as functions of time, and the corresponding tumor morphology at the �nal
time tf of each simulation are shown as insets. We also plot the linear solution for λ = 0.5 (dashed line) in
Fig. 3 [b] and [d]. Note that the calculations for Fig. 3 [b] and [d] stop because higher numerical resolution is
needed to resolve high curvature regions.

When the membrane rigidity is small (S−1 = 0.001), Fig. 3 [b] show that the shape perturbation starting
from the point P1 grows rapidly, especially for small viscosity ratio, indicating an unstable growth. This is
consistent with the predictions of linear stability theory (Fig. 3[a]). On the other hand, when the membrane
rigidity is increased to S−1 = 2, nonlinear simulations from point Q1 converge to a �nal circular morphology
for all three cases and the tumor grows stably to its di�usion limited size Rs ≈ 3.326, as shown in Fig. 3[c].
Simulations of points P2 and Q2 in Fig. 3 [d] and [e] show similar unstable and stable shrinking behavior,
respectively.

In Fig. 3 [f], using the point P1, we compare the shape perturbation between the non-weakening bending
model (constant bending sti�ness plotted using solid lines) and curvature weakening bending model (plot-
ted using dashed lines). Here we set λc = 1.25, C = 0.95 in Eq. (1). For small viscosity ratio λ = 1.5, the
curvature weakening e�ect dramatically slows down the process of unstable growth and leads the interface
morphology to branching patterns. However, as λ increases, the weakening e�ect is reduced and we get the
usual encapsulated morphology. These results highlight the level of complexity and sensitivity of interface
dynamics in �uid due to inhomogeneous elasticity.

4.2 Growth in nonlinear regime (A = 0.7)

We next increase the apoptosis rate A from 0.5 to 0.7 and focus only on the viscosity ratio λ = 1.5 case.
Beyond the parameter regime of linear prediction, in Fig. 4 [a] the interface evolves far away from the steady
radius Rs(A = 0.7) = 1.988. Notice that in this case based on its initial 3-mode perturbation, i.e. r = 1.988 +
0.05 cos(3α), the interface develops further splitting and �ngering patterns due to the curvature weakening
e�ect as shown in Fig. 4 [c]. The evolving morphology changes from a compact shape with inward splitting
shown in Fig. 4 [b] to a �ngering pattern with a tendency of outward splitting as shown in Fig. 4 [c]. Here we
use curvature weakening parameters λc = 1.25, C = 0.95.

We also compute the evolution of a complex initial shape in Fig. 5, where r = 1 + 0.05
1.988 cos(2α) +

0.1
1.988 cos(3α) + 0.08

1.988 sin(4α) + 0.12
1.988 cos(5α). In Fig. 5 [a], tumor evolution with complex initial shape

grows unstably with appearance of long and slim zigzags inside the tumor; while for the one with curvature
weakening e�ect (λc = 1.25, C = 0.95) in Fig. 5 [b] such pattern disappears, and it takes much longer time
to reach the size in Fig. 5 [a].

4.3 Self-similar patterns (Time-varyingA)

In Fig. 6, we demonstrate the existence of linear self-similar growth/shrinkage of a tumor with a 3-fold per-

turbation. Here we choose A such that the evolution of the shape factor d(
δ
R )
dt = 0, following Eq. (24). That

is δ
R (t) = δ

R (0). To get this shape preserving evolution, the relative rate of cell apoptosis to mitosis Amust be
time (or size) dependent. As plotted in Fig. 6 [a], A is decreasing/increasing function for growth/shrinkage,
respectively. Snapshots of a self-similar sequence are plotted in Fig. 6 [b] and [c]. Although preliminary, the
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[a]

[b]

[c]

Figure 3: [a] The marginally stable value of the membrane rigidity parameter S−1 as a function of unperturbed radius R for
di�erent viscosity ratios (as labeled) with A = 0.5 and mode l = 3. The four points P1(1.988, 0.001), P2(4.5, 0.001),
Q1(1.988, 2), Q2(4.5, 2) indicate parameter values at which nonlinear simulations will be performed (see Fig. 3 [b], [c], [d],
and [e]). [b] Unstable growth corresponding to the point P1 in Fig. 3[a]. [c] Stable growth corresponding to the point Q1. The
initial interface r = 1.988 + 0.05 cos(3α) for P1 and Q1, and r = 4.5 + 0.05 cos(3α) for P2 and Q2. We set S−1 = 0.001 for P1 and
P2, and S−1 = 2 for Q1 and Q2. The viscosity ratios are λ = 0.5, 1.5, 2.5 labeled with red, black and blue color respectively.
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[d]

[e]

[f]

Figure 3: [d] Unstable growth corresponding to the point P2. [e] Stable growth corresponding to the point Q2. [f] Comparison
between the uniform bending and curvature weakening bending.
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[a]

[b]

[c]

Figure 4: Shape factor evolution[a] of the growth of Stokes-flow model with non-weakening[b]/weakening[c] bending energy
beyond the linear prediction with a simple tumor initial shape; the parameters are set as: mesh points N = 2048, time step
dt = 0.01, bending rigidity S−1 = 0.001, viscosity ratio λ = 1.5, apoptosisA = 0.7, initial shape: r = 1.988 + 0.05 cos 3α.
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[a]

[b]

Figure 5: Growth of Stokes-flow model with non-weakening[a]/weakening(λc = 1.25, C = 1)[b] bending energy beyond the
linear prediction with a complex initial shape; the parameters are set as: mesh points N = 2048, time step dt = 0.01, bending
rigidity S−1 = 0.001, viscosity ratio λ = 1.5, apoptosisA = 0.7, initial shape: r = 1+ 0.05

1.988 cos(2α)+
0.1

1.988 cos(3α)+
0.08
1.988 sin(4α)+

0.12
1.988 cos(5α).



Nonlinear simulation of an elastic tumor-host interface | 43

self-similar idea helps shed light on the strategy for morphological control, as a time dependent apoptosis
might be enforced by a well-designed chemo- or radiotherapy.

[a]

[b]

[c]

Figure 6: [a] The time evolution of the relative rate of cell apoptosis to mitosisA to keep the self-similar shape of tumor in [b]
and [c]. [b]/[c] Self-similar growth[b]/shrinkage[c] of Stokes-flow model with non-weakening bending energy by the prediction
of morphological stability in Eq. (24). Here we set viscosity ratio λ = 0.5 for [b] and 7.5 for [c]. ApoptosisA is time-varying such
that the shape factor δ

R = 0 in linear regime. Initial shape: r = 2 + 0.2 cos 3α for [b] and r = 3.5 + 0.35 cos 3α for [c].
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[a]

[b]

Figure 7: Growth with Darcy-flow model with [a] isotropic bending energy and [b] curvature weakening bending (sti�ness frac-
tion C = 1, characteristic length λc = 1); the parameters are set as: mesh points N = 2048, time step dt = 0.01, bending
rigidity S−1 = 0.15, apoptosisA = 0.7, initial shape: r = 2 + 0.05 cos(2α).
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5 Conclusion
In this paper, we performed nonlinear simulations of a 2D, non-circular tumor with isotropic or curvature
weakened bending rigidity growing in a host tissue. The interior tumor and exterior host were modeled by
the Stokes �ow, and the tumor-host interface was modeled by an elastic membrane governed by the Helfrich
bending energy. Using boundary integral formulations of the Stokes �ow and the nutrient �eld, we developed
a spectrally accurate sharp interfacemethod.We then investigated the nonlinear dynamics of the tumor-host
interface.

The linear stability analysis suggests that an increase in bending rigidity contributes to an increase in
morphological stability for an isotropic bending rigidity. Nonlinear simulation con�rms this and moreover,
curvatureweakening bending helps improve the stability by slowing down the growth of shape perturbations
and promotes branching or tip-splitting �ngering patterns rather than encapsulated morphologies for small
viscosity ratio, In fact, not only for the Stokes model, our recent preliminary results using the Darcy’s model
suggest more pronounced �ngering patterns if a curvature weakening bending is implemented, as shown in
Fig. 7. We can see the self-branching morphology is enhanced with curvature bending energy as reported in
[49] for a Hele-Shaw interface. It is also observed that an increase in the apoptosis leads to an overall increase
in shape instabilities.

In experiments, thermal andmechanical stresses have been found to be important in regulating cell fates
and motility, proliferation and apoptosis rates. In future work, we will consider these e�ects. We will also
consider adding a stochastic component to the current model. Although our 2D results are expected to hold
qualitatively in three dimensions as suggested by the linear stability analysis (at least for Darcy’s model), we
would like to perform full 3D simulations to con�rm this.

Wehave chosen the initial shape as a perturbed circle since that that in vitro tumor growsnearly spherical
at early times. It is reasonable to assume that, in vivo, tumor at its initial stage of avascular growth is nearly
spherical. As the tumor continues to grow,morphological instabilities come in and the tumor starts to develop
protruding shapes. In this work we focus on the morphological instability of the interface and our numerical
scheme can handle even complex tumor morphologies as indicated in Fig. 4[a] and Fig. 5[a] with spectral
accuracy in space. For studies involving simulation beyond topological changes, we plan to use phase-�eld
or level-set formulation, which is our future work.
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