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Abstract: We study the discrete and discrete fractional representation of a pharmacokinetics - pharmacody-
namics (PK-PD)model describing tumor growth and anti-cancer e�ects in continuous time considering a time
scale hNh0, where h > 0. Since the measurements of the tumor volume in mice were taken daily, we consider
h = 1 and obtain the model in discrete time (i.e. daily). We then continue with fractionalizing the discrete
nabla operator to obtain the model as a system of nabla fractional di�erence equations. The nabla fractional
di�erence operator is considered in the sense of Riemann-Liouville de�nition of the fractional derivative. In
order to solve the fractional discrete system analytically we state and prove some theorems in the theory of
discrete fractional calculus. For the data �tting purpose, we use a new developed method which is known
as an improved version of the partial sum method to estimate the parameters for discrete and discrete frac-
tional models. Sensitivity analysis is conducted to incorporate uncertainty/noise into the model. We employ
both frequentist approach and Bayesian method to construct 90 percent con�dence intervals for the param-
eters. Lastly, for the purpose of practicality, we test the discrete models for their e�ciency and illustrate their
current limitations for application.

Keywords: Discrete Fractional Calculus, Parameter Estimations, Data Fitting, Sensitivity Analysis, Markov
Chain Monte Carlo, RandomWalk Metropolis, Delayed Rejection Adaptive Metropolis
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1 Introduction
Mathematicalmodeling of pharmacokinetics (PK) and pharmacodynamics (PD) dealswith (i) the distribution
and elimination of a drug, the pharmacokinetics [17], and (ii) the therapeutic e�ect of a drug on a speci�c tar-
get, the pharmacodynamics [24]. Mathematical PK-PDmodels became an essential part in drug development
and clinical pharmacology in the last 20-30 years. The U.S. Food and Drug Administration recognized such
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computational modeling and simulation tools as an improvement of the e�ciency for developing safe and
e�ective drugs [18].

Historically, clinicians and pharmacists [15], [16] realized very early that mathematical models are useful
tools to answer pharmacological questions. However, it is important to point out that the development of
the mathematical PK-PD modeling theory was quite independent from the mathematical community. PK-PD
modeling is a �eld where the representation of pharmacological concepts in the models is the main focus.
Therefore, clinical interpretation of model parameters can be made and reasonable model behavior can be
used for simulations. In the last 2-3 decades, mathematicians started to contribute with valuable input to the
PK-PD �eld. Moreover, a small mathematical community that promotes more advanced mathematical and
computational approaches has been established within the PK-PD �eld [25].

The main purpose of a PK-PD model is to be a tool to answer speci�c clinical questions. More precisely,
Allen et al. [1] pointed out recently that the success of mathematical modeling, for example in the biopharma
industry, depends on getting the (i) right question, (ii) right model, and (iii) right analysis. Usually, PK-PD
models are formulated by ordinary di�erential equations and can be developed in a more data-driven ap-
proach, i.e. simply characterizing available data, or in a more mechanistic approach, where detailed under-
lying physiological mechanisms are represented. In this paper, we consider a PK-PDmodel for tumor growth
and anti-cancer drug e�ects that can be considered as a hybrid of both approaches, which is often also called
a semi-mechanistic model. In general, the complexity of the PK-PD model structure strongly depends on
available data, prior knowledge and most important on the speci�c questions that need to be answered.

Mathematical modeling of tumor growth started in the 1960s by A. K. Laird [23] with the application of
the Gompertz function [19] to �t data from di�erent animals, see e.g. Bonate et al. [13] for more details. It
turned out that this sigmoidal curve �ts well to the general tumor growth behavior which usually has three
phases, exponential growth in the beginning followed by linear growth and �nally saturation. Nowadays the
Gompertz function is a common tool in PK-PD modeling although it is a more data-driven than mechanistic
approach. Themajor goal in anti-cancer drug development is to assess the anti-cancer e�ect of di�erent drug
candidates and consequently to early identify promising drug candidates Therefore, the PK-PD models have
to characterize the drug potency and need the capability to perform simulations of tumor growth behavior
for di�erent doses. For these reasons, tumor growth models were extended with (i) PK models describing the
drug concentration, and (ii) e�ect models relating the action of the drug on the tumor growth [26], [21], [22]
and again see Bonate at el. [13] for a broader overview.

Development of advanced and e�ective mathematical models which describe and predict tumor growth
kinetics is an ongoing research area for scientists, especially for appliedmathematicians [2], [6]-[10], [14]-[19],
and [21]-[29]. Motivated by recently studied models in fractional calculus [14, 28], we aim (i) to discretize a
PK-PD model in continuous time and obtain a system of fractional di�erence equations in discrete time, and
(ii) to investigate the properties of the discrete and discrete fractional model representation.

For the purpose of analyzing the estimated parameters, sensitivity analysis is conducted to incorporate
uncertainty/noise into themodel. Uncertainty could be resulted frommeasurements and/or intrinsic variabil-
ity in experimental units and environment. By accounting for uncertainty in a mathematical model, applied
mathematicians can attach measures of reliability to estimated quantities using experiment data sets. The
standard procedure involves obtaining con�dence intervals for model parameters. In this study, we employ
both frequentist approach and Bayesian method to construct 90 percent con�dence intervals for the param-
eters.

The plan of the paper is as follows: In Section 2, we give some preliminaries so that the reader will be
familiar with themathematical formulations in the later sections.We state and prove some theorems that will
serve as main tools to obtain the explicit solutions of the system of discrete fractional equations. In Section 3,
we �rst demonstrate the construction principle of our continuous tumor growthmodel and present important
model properties. Then we obtain both discrete and discrete fractional models after discretizing the PK-PD
model in continuous time. For estimating parameters, we use the improved version of the partial summethod
after solving each model explicitly. A pseudo-code for the discrete fractional model outlines the algorithm
we write in Mathematica-11. We close this section by presenting our �ndings with sensitivity analysis on the
model parameters. In Section 4, we discuss limitations and advantages of the discrete model representation.
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In the models, we consider a nabla (backward) discrete fractional operator of Riemann-Liouville type.
We refer the reader to some recent work by Atıcı and co-authors [3]-[5] for the use of the discrete fractional
operators inmodeling and a book by Goodrich and Peterson [20] for the theory of discrete fractional calculus.

2 Preliminaries
In this section, we present su�cient fundamental de�nitions and formulas so that the article is self-
contained. In addition, we state and prove some theorems in discrete fractional calculus so that we explicitly
solve the discrete fractional models introduced in the later sections.

De�nition 2.1. Let a ∈ R. Thebackwarddi�erence operator, or nabla operator (∇) for a function f : Na −→ R
is de�ned by

(∇f ) (t) = f (t) − f (t − 1),

where Na = {a, a + 1, a + 2, . . .} .

De�nition 2.2. Let µ be any real number. The rising factorial power tµ (read ‘t to the µ rising’) is de�ned as

tµ = Γ(t + µ)Γ(t) ,

where t ∈ R \ {..., −2, −1, 0}, 0µ = 0 and Γ denotes the Gamma function.

Lemma 2.1. ([20]) The formula

∇(t − a)µ = µ(t − a)µ−1

holds whenever the expressions on each side of the equality are sensible.

We consider the ν-th order fractional sum of f de�ned as

∇−νa f (t) =
t∑
s=a

(t − ρ(s))ν−1
Γ(ν) f (s) (2.1)

where ν ≥ 0, ρ(t) = t − 1, and t ∈ Na. Further, we consider the ν-th order fractional di�erence (a Riemann-
Liouville fractional di�erence) of f de�ned by

∇ν f (t) = ∇n(∇−(n−ν)f (t)) (2.2)

where ν > 0, n − 1 < ν < n, n denotes a positive integer.
Let λ, c ∈ R and ν ∈ (0, 1). We study the following the initial value problem (IVP)

∇ν0y(t) = λy(t − 1) for t = 1, 2, 3, ..., (2.3)

∇−(1−ν)0 y(t)|t=0 = y(0) = c. (2.4)

Theorem 2.3. The solution of the IVP (2.3)- (2.4) is uniquely determined.

Proof. We use the de�nition of the fractional nabla di�erence operator (2.2) to obtain the following iteration
schema.
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∇ν0y(t) = λy(t − 1)

∇∇−(1−ν)0 y(t) = λy(t − 1)

∇
t∑
s=0

(t − ρ(s))−ν
Γ(1 − ν) y(s) = λy(t − 1)

t∑
s=0

(t − ρ(s))−ν
Γ(1 − ν) y(s) −

t−1∑
s=0

(t − 1 − ρ(s))−ν
Γ(1 − ν) y(s) = λy(t − 1)

y(t) = −
t−1∑
s=0

(t − ρ(s))−ν−1
Γ(−ν) y(s) + λy(t − 1),

for t = 1, 2, . . .. This iteration schema ensures that the solution of the IVP (2.3)- (2.4) is uniquely determined.

Theorem 2.4. The unique solution of the initial value problem (2.3)-(2.4) is given by

y(t) = c
t∑
n=0

λn(t − n + 1)(n+1)ν−1
Γ((n + 1)ν) . (2.5)

Proof. We show that

c
t∑
n=0

λn(t − n + 1)(n+1)ν−1
Γ((n + 1)ν)

satis�es the IVP (2.3)- (2.4). Indeed, we have

∇ν0c
t∑
n=0

λn(t − n + 1)(n+1)ν−1
Γ((n + 1)ν)

= c∇∇−(1−ν)0

t∑
n=0

λn(t − n + 1)(n+1)ν−1
Γ((n + 1)ν)

= c∇
t∑
s=0

(t − ρ(s))−ν
Γ(1 − ν)

s∑
n=0

λn(s − n + 1)(n+1)ν−1
Γ((n + 1)ν)

= I.

Next we interchange the order of sums and obtain

I = c∇
t∑
n=0

t∑
s=n

λnΓ(t − s + 1 − ν)Γ(s − n + nν + ν)
Γ(1 − ν)Γ(t − s + 1)Γ(s − n + 1)Γ(nν + ν)

= c∇
t∑
n=0

t−n∑
s=0

λnΓ(t − s − n + 1 − ν)Γ(s + nν + ν)
Γ(1 − ν)Γ(t − s − n + 1)Γ(s + 1)Γ(nν + ν) .

By using the formula
(
t
r

)
= Γ(t + 1)
Γ(r + 1)Γ(t − r + 1) and the de�nition of the rising factorial power we get,

I = c∇
t∑
n=0

t−n∑
s=0

(
t − n
s

)
λnΓ(t − s − n + 1 − ν)Γ(s + nν + ν)
Γ(1 − ν)Γ(t − n + 1)Γ(nν + ν)

= c∇
t∑
n=0

λn
Γ(t − n + 1)

t−n∑
s=0

(
t − n
s

)
(1 − ν)t−s−n(nν + ν)s
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= c∇
t∑
n=0

λn
Γ(t − n + 1) (nν + 1)

t−n

= c∇
t∑
n=0

λn
Γ(nν + 1) (t − n + 1)

nν ,

where we used the identity
t−n∑
s=0

(
t − n
s

)
(1 − ν)t−s−n(nν + ν)s = (nν + 1)t−n.

Next we apply the following rule to the above expression

∇
t∑
n=0

f (t, n) =
t∑
n=0
∇f (t, n) + f (ρ(t), t).

Hence, we have

I = c
t∑
n=0
∇ λn
Γ(nν + 1) (t − n + 1)

nν + cλn
Γ(nν + 1) (t − n + 1)

nν|t=t−1,n=t

= c
t∑
n=0

λn(t − n + 1)nν−1
Γ(nν)

= cλ
t−1∑
n=0

λn(t − n)(n+1)ν−1
Γ((n + 1)ν)

= cλy(t − 1).
Uniqueness of this solution follows from Theorem 2.3.

Theorem 2.5. Assume λ ∈ R. The fractional di�erence equation of order ν where ν ∈ (0,1)

∇ν0y(t) = λy(t − 1) + f (t − 1) for t = 1, 2, 3, ..., (2.6)

has the general solution

y(t) = ŷλ(t)c +
t−1∑
s=0

ŷλ(t − s − 1)f (s), t = 0, 1, 2, ..., (2.7)

where c is constant and

ŷλ(t) =
t∑
n=0

λn(t − n + 1)(n+1)ν−1
Γ((n + 1)ν) .

Proof. A direct substitution gives that
t−1∑
s=0

ŷλ(t − s − 1)f (s) is a particular solution of equation

∇ν0y(t) = λy(t − 1) + f (t − 1).

We show that

∇ν0
t−1∑
s=0

ŷ(t − s − 1)f (s) = λ
t−2∑
s=0

ŷ(t − s − 2)f (s) + f (t − 1).

Using the de�nition of the nabla fractional di�erence operator we have

∇ν0
t−1∑
s=0

ŷλ(t − s − 1)f (s) = ∇∇−(1−ν)0

t−1∑
s=0

ŷλ(t − s − 1)f (s)

= ∇
t∑
u=0

(t − ρ(u))−ν
Γ(1 − ν)

u−1∑
s=0

ŷλ(u − s − 1)f (s) = I.
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Next we interchange the order of sums and obtain

I = ∇
t−1∑
s=0

t∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν) ŷλ(u − s − 1)f (s).

Next we apply the following rule to the above expression

∇
t−1∑
s=0

f (t, s) =
t−2∑
s=0
∇f (t, s) + f (t, t − 1). (2.8)

Hence, we have

I =
t−2∑
s=0
∇

t∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν) ŷλ(u − s − 1)f (s)

+
t∑

u=s+1

(t − ρ(u))−ν
Γ(1 − ν) ŷλ(u − s − 1)f (s) |t=t,s=t−1

=
t−2∑
s=0
∇

t∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν) ŷλ(u − s − 1)f (s) + f (t − 1)

since ŷλ(0) = 1.
Next we use the substitution u − s − 1 = τ, we obtain

t∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν) ŷλ(u − s − 1) =

t∑
τ=0

(t − (τ + s + 1 − 1))−ν
Γ(1 − ν) ŷλ(τ)

= ∇−(1−ν)0 ŷλ(t − s − 1).

Thus,

I =
t−2∑
s=0
∇∇−(1−ν)0 ŷλ(t − s − 1)f (s) + f (t − 1)

=
t−2∑
s=0
∇ν0 ŷλ(t − s − 1)f (s) + f (t − 1)

= λ
t−2∑
s=0

ŷλ(t − s − 2)f (s) + f (t − 1).

We use Theorem 2.4 to complete the proof.

Theorem 2.6. Assume λ ∈ R\{−1}. The �rst order nabla di�erence equation

∇y(t) = λy(t − 1) + f (t − 1) for t = 1, 2, 3, .., (2.9)

has the general solution

y(t) = (1 + λ)tc +
t−1∑
s=0

(1 + λ)t−s−1f (s), t = 0, 1, 2, ..., (2.10)

where c is constant.

De�nition 2.7. Let a ∈ R and h ∈ R+. The backward h-di�erence operator for a function f : hNha −→ R is
de�ned by

f∇(t) = f (t) − f (t − h)h , t = a + h, a + 2h, . . .

where hNha = {a, a + h, a + 2h, . . .} .
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Theorem 2.8. [12] Assume λ ∈ R\{− 1h }. The �rst order nabla h-di�erence equation

y∇(t) = λy(t − h) + f (t − h) for t = h, 2h, 3h, .., (2.11)

has the general solution

y(t) = (1 + hλ)
t
h c + h

t
h −1∑
s=0

(1 + hλ)
t
h −s−1f (sh), t = 0, h, 2h, ..., (2.12)

where c is constant.

For further reading on time scale calculus which includes hNha, we refer the reader to a book by Bohner and
Peterson [11].

3 The tumor growth inhibition model with drug e�ect

3.1 Development of the continuous tumor growth inhibition model

Replacing the unperturbed growth component of the PK-PD model in [21] with the Gompertz growth compo-
nent, results in the following representation of the PK-PD model in continuous time

x′1(t) = (a − bln(x1(t)))x1(t) − k2c(t)x1(t), x1(0) = w0

x′2(t) = k2c(t)x1(t) − k1x2(t), x2(0) = 0
x′3(t) = k1x2(t) − k1x3(t), x3(0) = 0
w(t) = x1(t) + x2(t) + x3(t),

where a, b, k1, k2 are model parameters to estimate and c(t) represents the drug concentration in plasma
described by mono- or bi-exponential PK models [22].

During anticancer treatment it is assumed that the growth dynamics of the tumorwill be perturbed by the
anticancer drug e�ect described with the model parameter k2. Due to drug action, proliferating cells become
non-proliferating depending on the drug concentration. Themodel assumes that cells a�ected by drug action
immediately stop proliferating and pass through apoptotic stages (x2, x3) with a rate k1 before they die. Since
these non-proliferating cells still add to total tumor mass, total tumor volume w(t) is the sum of proliferating
x1 and non-proliferating tumor cells (x2, x3).

The tumor growth inhibitionmodel was constructed in such away that two fundamental properties hold:

(P.1) During drug administration, i.e. c(t) > 0, the tumor growth will be inhibited.
(P.2) The tumor volume will never become negative, i.e. w(t) > 0 for all t ≥ 0.

We �rst discretize the above model considering the time scale hNh0 with h > 0. Hence we have

u∇(t) = a − bu(t − h) − k2c(t − h), x1(0) = w0

x∇2 (t) = k2c(t − h)x1(t − h) − k1x2(t − h), x2(0) = 0

x∇3 (t) = k1x2(t − h) − k1x3(t − h), x3(0) = 0
w(t) = x1(t) + x2(t) + x3(t),

where u(t) = ln x1(t).
We solve the above system of di�erence equations by using Theorem 2.8. Hence we have

u(t) = (1 − hb)
t
h u(0) + h

t
h −1∑
s=0

(1 − bh)
t
h −s−1(a − k2c(sh)), t = 0, h, 2h, ...,
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x1(t) = eu(t) t = 0, h, 2h, . . . .

x2(t) = hk2

t
h −1∑
s=0

(1 − hk1)
t
h −s−1(c(sh)x1(sh)), t = 0, h, 2h, ...,

x3(t) = hk1

t
h −1∑
s=0

(1 − hk1)
t
h −s−1x2(sh), t = 0, h, 2h, ....

If h = 1, the perturbed discrete tumor growth model with three compartments reads:

∇u(t) = a − bu(t − 1) − k2c(t − 1), x1(0) = w0

∇x2(t) = k2c(t − 1)x1(t − 1) − k1x2(t − 1), x2(0) = 0
∇x3(t) = k1x2(t − 1) − k1x3(t − 1), x3(0) = 0
w(t) = x1(t) + x2(t) + x3(t),

where u(t) = ln x1(t) and a, b, k1, k2 are model parameters to estimate.
We solve the above system of di�erence equations by using Theorem 2.6. Hence we have

u(t) = (1 − b)tu(0) +
t−1∑
s=0

(1 − b)t−s−1(a − k2c(s)), t = 0, 1, 2, ...,

x1(t) = eu(t) t = 0, 1, 2, . . . .

x2(t) = (1 − k1)tx2(0) + k2
t−1∑
s=0

(1 − k1)t−s−1(c(s)x1(s)), t = 0, 1, 2, ...,

x3(t) = (1 − k1)tx3(0) + k1
t−1∑
s=0

(1 − k1)t−s−1x2(s), t = 0, 1, 2, ....

The perturbed discrete fractional tumor growth model with three compartments reads:

∇νu(t) = a − bu(t − 1) − k2c(t − 1), x1(0) = w0

∇νx2(t) = k2c(t − 1)x1(t − 1) − k1x2(t − 1), x2(0) = 0
∇νx3(t) = k1x2(t − 1) − k1x3(t − 1), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = ln x1(t) and ν, a, b, k1, k2 are model parameters to estimate. Here we assume that ν is a real
number such that ν ∈ (0, 1).

For the �rst equation in the above system, we use some properties of the nabla-di�erence operator and
the Gamma function, we obtain the following iteration formula for u(t).

u(t + 1) = a − bu(t) − k2c(t) −
t−1∑
s=−1

(t − s + 1)−ν−1
Γ(−ν) u(s + 1),

for t = 0, 1, 2, . . . .
We use Theorem 2.5 as a tool to obtain the solutions.

u(t) = ŷ−b(t)u(0) +
t−1∑
s=0

ŷ−b(t − s − 1)(a − k2c(s)), t = 0, 1, 2, ...,

x1(t) = eu(t) t = 0, 1, 2, . . . .
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x2(t) = ŷ−k1 (t)x2(0) + k2
t−1∑
s=0

ŷ−k1 (t − s − 1)[c(s)x1(s)], t = 0, 1, 2, . . .

x3(t) = ŷ−k1 (t)x3(0) + k1
t−1∑
s=0

ŷ−k1 (t − s − 1)x2(s), t = 0, 1, 2, . . . .

3.2 Tumor growth and drug concentration data

Data was taken from the supplemental material of [21]. These data describe the tumor volumemeasurements
in Xenograft mice treated with di�erent compounds. For more details see [21].

3.3 Parameter Estimations

In our study we used the improved partial sum method in Mathematica to estimate the parameters for the
discrete and discrete fractional models. We include a pseudo-code of the algorithm for discrete fractional
model in Algorithm 3 (see Appendix). This algorithm outlines how the improved partial sum method ([7])
works for the system of equations. In Table 1, we list the parameter estimates and residual sum of squares
(RSS) values for the discrete and the discrete fractional PK-PD models. Comparing the RSS values between
the discrete and the discrete fractional model, the discrete fractional model results in better �tting for all
drugs.

Table 1: Parameter estimates and RSS values for the discrete and the discrete fractional models

Model â b̂ k̂1 k̂2 ν̂ RSS
DrugA2 − 120

Discrete 0.0602508 0.0310842 0.428171 0.00017402 0.055199
DiscreteFractional 0.0841445 0.00344602 0.737472 0.000525139 0.97 0.0352125

DrugA1 − 180
Discrete 0.0879982 0.00515473 2.02997 0.000124896 0.107967

DiscreteFractional 0.0921663 0.0000332075 1.87965 0.0000951145 0.9924 0.0972591
DrugB − 100

Discrete 0.103846 0.0733249 0.471986 0.00075884 0.0053611
DiscreteFractional 0.155291 0.0481064 0.214043 0.00442623 0.97619 0.00218639

DrugC − 100
Discrete 0.087694 0.0147851 0.00378922 0.000102413 0.044971

DiscreteFractional 0.104413 0.000148219 0.00676393 0.000825508 0.9917 0.0441995
DrugC − 150

Discrete 0.129083 0.0105822 0.391106 0.00042877 0.0213876
DiscreteFractional 0.142964 0.0000000796487 0.367953 0.000697642 0.9813 0.0183728

3.4 Analyzing the Model Statistically

After the model parameters are estimated, sensitivity analysis is conducted to incorporate uncertainty/noise
into the model. Uncertainty could be resulted from measurements and/or intrinsic variability in experimen-
tal units and environment. By accounting for uncertainty in mathematical model, applied mathematicians
can attachmeasures of reliability to estimated quantities using experiment data sets. The standard procedure
involves obtaining point estimates for the model parameters and then either obtain the corresponding stan-



Discrete Fractional PK-PD Model | 19

dard error of the estimates or construct con�dence intervals. In this study, we employ both the frequentist
approach and Bayesian method to construct 90% con�dence intervals for the model parameters.

We assume that n scalar longitudinal observations are represented by the statistical model

Wj = fj(β) + ϵj; j = 1, ..., n, (3.1)

where fj(β) is the model for the observations in terms of the state variables and β ∈ Rp is a vector of theoret-
ical true parameter values. The error terms ϵj , j = 1, ..., n represent noise, measurement error, or uncontrol
variables that can potentially in�uence the deterministic relationship represented by fj(β).

For our statistical model of the observation ormeasurement process (3.1) we assume that the errors ϵj , j =
1, 2...n, are independent identically distributed randomvariableswithmean E[ϵj] = 0 and constant variance
Var[ϵj] = σ20, where σ20 is unknown.

Thus we use the realized data wj from observations of three-compartment model to seek a value β̂ that
minimizes

SS(β) =
n∑
i=1

(fj(β) − yj)2. (3.2)

The estimator β̂(W) is a random variable whose realized value depends on the observed data wj of ran-
dom variablesWj. The distribution of β̂(W) (through repeated sampling) is called the sampling distribution.
Knowledge of this sampling distribution provides uncertainty information (e.g., standard errors) for the nu-
merical values of β̂ obtained using a speci�c data set. Under the regularity assumptions, as the sample size
n approaches in�nity, the sampling distribution of β̂(W) is approximately Np(β, σ20[χT(β)χ(β)]−1), where χ(β)
is a n × p sensitivity matrix with elements

χjk(β) =
∂fj(β)
∂βk

; j = 1, ..., n; k = 1, ..., p.

Since β and σ0 are not known, we must approximate them using the parameter estimates to obtain the esti-
mate for the variance-covariance matrix Σ0 = σ20[χT(β)χ(β)]−1

Σ0 ≈ Σ(β̂) = σ̂2[χT(β̂)χ(β̂)]−1,

where σ̂2 is given by

σ20 ≈ σ̂2 =
1

n − p

n∑
i=1

(fj(β̂) − yj)2.

Standard errors of the estimate β̂k are thus given by SE(β̂k) =
√
Σkk(β̂), k = 1, ..., p. Then a (1 − γ)100%

con�dence interval for βk is readily given by β̂k± tn−p,γ/2*SE(β̂k), where the critical value tn−p,γ/2 is computed
from the Student’s t distribution with n − p degrees of freedom.

The 90% con�dence intervals for the parameters in the model is computed as follows: The least squares
estimates â, b̂, k̂1, and k̂2 for parameters a, b, k1 and k2 of the discrete model and estimates â, b̂, ν̂, k̂1, and
k̂2 for parameters a, b, ν, k1 and k2 of the discrete fractionalmodel are obtained from iterative computational
scheme. Then the sensitivitymatrix χ(β̂) canbederived. The results of 90%con�dence intervals of parameters
for the discrete model are included in Table 2 and those for the discrete fractional model are in Table 3.

After obtaining the sensitivity matrix, we utilize the Markov Chain Monte Carlo (MCMC) technique which
constructs the Markov chain whose stationary distribution is the posterior distribution of the model param-
eters. The speci�c algorithm is called the Delayed Rejection Adaptive Metropolis [27]. The algorithm starts
with an initial vector β0 and is iterated M times. In each iteration, a new candidate β* is chosen from a Nor-
mal distribution that centers at the value β from the previous iteration and the variance-covariance matrix
Σ(β̂) where β̂’s are the estimates of the parameters.Whether this candidate is either accepted as the new value
for β or not depends on howmore likely the candidate is compared to the previous value of β with respect to
the posterior distribution. If the candidate is rejected, the delayed rejection algorithm provides a mechanism
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for constructing alternative candidate β rather than retaining the previous value. Also, during a nonadaptive
period of length k0, chain values β are computed using the initial covariance matrix Σ(β̂). Once adaptation
starts, the variance-covariance matrix is adapted according to the covariance matrix of the accepted candi-
dates βs in the previous steps. The results of 90% Bayesian interval estimates of parameters for two models
are included in Table 2 and 3.

Based on Table 2 and 3, we can see that in most cases, the model parameters are signi�cant (con�dence
intervals do not contain zero). Also, the Bayesian approach gives remarkably narrower con�dence intervals in
most cases considered. The reason is that the construction of con�dence intervals using frequentist approach
is based upon the asymptotic theory of estimators which assumes that the sample size has to be su�ciently
large. When the sample size is not large enough, the frequentist asymptotic con�dence interval is relatively
wide. On the other hand, in the Bayesian inference, the sample size is often not of concern.

Table 2: Con�dence intervals of parameters for discrete model, A2-120 drug.

Parameter β̂ FrequentistCI BayesianCI
a 0.0602508 (0.0438067, 0.0766949) (0.04483548, 0.07527723)
b 0.0310842 (0.0163216, 0.0458468)) (0.01691371, 0.04493783)
k1 0.428171 (−0.638645, 1.49499) (0.02814296, 1.1982126)
k2 0.00017402 (−0.0000380704, 0.00038611) (0.0000801619, 0.00040083)

Table 3: Con�dence intervals of parameters for discrete fractional model, A2-120 drug.

Parameter β̂ FrequentistCI BayesianCI
a 0.0841445 (0.0348417, 0.133447) (0.03514273, 0.12066398)
b 0.00344602 (−0.0528842, 0.0597763) (−0.03928112, 0.05883459)
ν 0.97 (0.913687, 1.02631) (0.9299219, 1.0178996)
k1 0.737472 (0.30457, 1.17037) (0.3790513, 1.1573647)
k2 0.000525139 (0.00045256, 0.000597718) (0.0004778875, 0.0005829522)

4 Limitations in Discrete Models
Fractionalization of mathematical models in the PKPD �eld is not new [28, 30] but has not really prevailed.
One reason might be the raising mathematical complexity and consequently the di�culties in numerical
implementation for the user and probably also in run-time. We have to keep in mind that, e.g. in a clinical
settingwith a population consisting of several hundreds of patients run-time is an issue. Aswe are presenting
here, �rst discretizing and then fractionalizing a PK-PD model is an approach which can be resulted in a
simple explicit solution for which direct implementationwithout any numerical solvers is possible. However,
simulations of the discrete model (h = 1) showed some limitations of the discretiziation approach which will
be discussed in this paragraph:

First, property (P.1) (tumor growth is always inhibited during treatment) partially fails in discrete mod-
els. Simulations showed that for increasing doses the tumor volume can be slightly increased in the very
beginning of the treatment and then decreases during treatment as illustrated in Figure 1. In discrete mod-
els, because of the nature of the solutions, the e�ect of the drug occurs in the following day after the drug is
administered. The graph in discrete time does not decrease immediately after drug administration.
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Second, property (P.2) (tumor volume will never become negative) holds for the discrete model on hNh0
with h = 1

24 , and does not hold for the discrete model (h = 1). As in Figure 2, the simulations showed that
for strongly increasing doses the tumor volume can become negative. On one hand this is obviously not rea-
sonable from a biological perspective. On the other hand, the model on hNh0 recovers the property (P.2) as
illustrated in Figure 3. In addition to all these, we also want to point out that in practice model predictions
are usually only reliable for a local range of parameters.

Third, since the PK is on a di�erent time scale than the PD, this may have an impact on the chosen dis-
cretization step size. Please note, an absorption compartment in a PK model is necessary, if it takes some
time for the drug to reach the blood. Typical examples are orally administered drugs with a delay between
administration and appearance in blood of e.g. several hours. In contrast, intravenously administered drugs
appear immediately in blood. In this paper, we simpli�ed the PK from [21] and omitted the absorption compo-
nent for two reasons: First, absorption was rapid and can be neglected from a pharmacological perspective.
Second, we have to be aware that the drug was administered every day and at the same time when the tu-
mor was measured. Because c(t) describes the drug concentration in blood, c would be zero at the time of
administration, since it takes a very short time to reach the blood due to the absorption component. Hence,
without an absorption component, c at the time of administration characterizes always the peak of the drug
concentration. Because the discrete models always evaluate c every day, this ensures that we always use the
maximal drug concentration at the discretization steps. Without this modi�cation, c would be always zero
in the discrete models. However, it is possible to take such characteristic of c(t) into account in the discrete
model on hNh0 by choosing h in a smaller value.

Forth, the solution representation introduces the restriction of λ ≠ −1 (as stated in Theorem 2.6) which is
then translated to our discrete tumor growth model for the parameters b and k1.

In summary, the discrete model (h = 1) looses some necessary properties that hold in the continuous
model representation. As we illustrated in Figure 3, the second property can be recovered by a model on hNh0
which reads c(t) in every hour not only one time in a day as in the discrete model. However the graph of
the model in hN0 increases immediately at the time of drug administration starts. This issue may lead to the
question that maybe the discretization of the continuous model has to be constructed in a di�erent way to
assure that (P.1) and (P.2) become valid in the discrete model (h = 1) and no jump occurs for the hNh0 model.

A Appendix
Algorithm 1
Input: Unperturbed data: Array L of tumor volume.

Output: L′

/* This code takes unperturbed data L and �lls all missing data on each time unit using Gombertz curve and
FindFit in Mathematica */

De�ne model = eloge(a)−e
b(e−c)t

/*Determine a, b, and c using FindFit in Mathematica*/
FindFit[L,model,{a, b, c},t]
For(i=0 to |L|)

if L[i] has no data
L′[i] = model[i]

else
L′[i] = L[i]

Algorithm 2
Input: Array L computed by Algorithm 1. Values in L are between �rst day of experiment and last day in
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Continuous Discrete 

        Figure 1.  Tumor growth and the effect of drug concentration are shown for the continuous and discrete 

    (h=1) model. Drug concentration c(t) was multiplied with factor 0, 1, 2 and 3. 

Continuous                                                                    Discrete 

        Figure 2. Tumor growth and the effect of drug concentration are shown for the continuous and discrete 

 (h=1) model. Drug concentration c(t) was multiplied with factor 10. 

Hourly time scale model 

         Figure 3.  Tumor growth and the effect of drug concentration is shown for the model on hN (h=1/24). 

         Drug concentration c(t) was multiplied by a factor 10 in the hourly time scale model. 

which CT is 0.

Output: a and b
We refer the improved partial sum algorithm

Algorithm 3
Input: Array L computed by Algorithm 1. Array CT of drug concentration rate, and constants a, b, and ν
determined by Algorithm 2
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Output: k1, k2, and RSS
X1[1] = L[1]
U1[1] = Loge(X1[1])
De�ne Y1[t] := a − b * U1[t − 1] − 1

Γ[−ν]
∑t−2

s=0
Γ[t−ν−s−1]
Γ[t−s] U1[s + 1] − k2CT[t − 1]

For j = 2 to |L|
X1[j] = eY1[j]

De�ne Y2[t] :=
∑t

s=1(
∑t+1−s

n=1 (−k1)n−1 Γ[t+1−s−n+nν]
Γ[t+2−n−s]Γ[nν] k2CT[s − 1]X1[s − 1])

For j = 1 to |L|
X2[j] = Y2[j]

De�ne Y3[t] :=
∑t

s=1(
∑t+1−s

n=1 (−k1)n−1 Γ[t+1−s−n+nν]
Γ[t+2−n−s]Γ[nν] k1X2[s − 1])

For j = 1 to |L|
X3[j] = Y3[j]

S = X1 + X2 + X3
For j=1 to |L|

WS[j] = X1[j] + X2[j] + X3[j]

/* After certain index, say k, values in WS are functions of k1, k2 Using FindRoot in Mathematica determine
k1, k2 values for inVa1 and inVa2. We have chosen these initial values by trial and error */
For inVa1=n1 to n2 by incrementing ϵ

For inVa2=m1 to m2 to by incrementing γ

For index=k to |L| − 2
Determine k1, k2 for each index. Replace k1, k2 in WS
RSS =

∑|L|
i=1(S[i] − L[i])

2, where L[i] is measured data
Return minimum RSS with corresponding k1, k2 values
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