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Abstract: Quality Assessment (QA) plays an important role in protein structure prediction. Traditional multi-
model QA method usually su�er from searching databases or comparing with other models for making pre-
dictions, which usually fail when the poor quality models dominate the model pool. We propose a novel
protein single-model QA method which is built on a new representation that converts raw atom informa-
tion into a series of carbon-alpha (Cα) atoms with side-chain information, de�ned by their dihedral an-
gles and bond lengths to the prior residue. An LSTM network is used to predict the quality by treating each
amino acid as a time-step and consider the �nal value returned by the LSTM cells. To the best of our knowl-
edge, this is the �rst time anyone has attempted to use an LSTM model on the QA problem; furthermore,
we use a new representation which has not been studied for QA. In addition to angles, we make use of se-
quence properties like secondary structure parsed from protein structure at each time-step without using any
database, which is di�erent than all existed QA methods. Our model achieves an overall correlation of 0.651
on the CASP12 testing dataset. Our experiment points out new directions for QA problem and our method
could be widely used for protein structure prediction problem. The software is freely available at GitHub:
https://github.com/caorenzhi/AngularQA

1 Introduction
Protein folding prediction proves to be amajor hurdle inmodern biology (Wei and Zou 2016).While the rate at
which genomes canbe sequencedhas grown rapidlywith the advent of automated systems, protein structures
have still been limited to expensive, experimental observation through Nuclear Magnetic Resonance or X-ray
crystallography (Jacobson and Sali 2004). While great progress has been made in computational prediction
methods with the help of machine learning techniques (Manavalan et al. 2017; Lai et al. 2017; Peterson et al.
2017; Shin, Christo�er, and Kihara 2017; D. Li, Ju, and Zou 2016; Wei et al. 2015; Dao et al. 2018; C.-Q. Feng et
al. 2018; Chen et al. 2019; Tang et al. 2018; Yang et al. 2018; Huang, Smolensky, et al. 2018; Huang, Zhang, et
al. 2018; Manavalan, Basith, et al. 2018; Basith et al. 2018; Manavalan, Shin, et al. 2018; Chen et al. 2017; P.-M.
Feng et al. 2013), a long journey still remains.

As biology and medicine progresses, the need for a method of reliably and e�ciently predicting tertiary
protein structures becomes more apparent. Perhaps the most promising use of ab initio folding prediction is
in the use of functional prediction and drug discovery (Jacobson and Sali 2004).
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The prediction process can be divided into two parts, �rst generating a model of the target based on its
sequence, and then determining how accurate the generated model is (J. Li, Cao, and Cheng 2015).

Protein structureprediction is usually categorized asbeing either template-basedmodeling suchasDeep-
Fold (J. Li, Cao, and Cheng 2015; Liu et al. 2017), FALCON (Wang et al. 2015), MTMG (J. Li and Cheng 2016),
and I-TASSER (Roy, Kucukural, and Zhang 2010); or template-free (ab initio) modeling such as QUARK (Roy,
Kucukural, and Zhang 2010; Xu and Zhang 2012) and UniCon3D (Bhattacharya, Cao, and Cheng 2016).

Especially with ab initio modeling, the challenge is then to assess and rank the generatedmodels to help
improve prediction, and to knowwhen an acceptable model has been generated (J. Li, Cao, and Cheng 2015).

Furthermore, these QA methods can be subdivided into two distinct approaches. The �rst is consensus,
which considers many generated models and seeks out patterns to predict which one is the best. This has
been shown to work very well with a good dataset generated by multiple di�erent methods, but can be a bad
predictor with a poor data-set or small pool and is computationally costly, often requiring O(n2) computa-
tions where n is the number of models (Cao et al. 2016) (Cao, Wang, and Cheng 2014). Such methods include
Pcons5 (Wallner and Elofsson 2005) and ModFOLDClust2 (McGu�n, Buenavista, and Roche 2013).

The second form of QA, the focus of our research, is single protein assessment. Rather than attempting to
score a protein relative to others, the goal is to consider it alone and predict how close it is to the unknown,
native structure. Suchmethods of single-protein assessment include DeepQAwhichmakes use of deep belief
networks (Cao et al. 2016; Zou et al. 2019), ProQ3 which combines the results from Rosetta energy functions
using full-atom and centroid models and the ProQ2 SVM (Uziela et al. 2016), SVMQA which uses a support
vector machine to process 19 extracted features (Manavalan and Lee 2017), RFMQA (Manavalan, Lee, and Lee
2014) which ranksmodel based on random forest, and GMQ (Shin et al. 2017)evaluates local quality based on
spatially neighboring residues using a graph representation.

What makes AngularQA especially interesting, is it bypasses most of the costs associated with using two
or three dimensional data, reducing a complicated protein with thousands of atoms into a sequence of amino
acids, angles, secondary structure, and proximity counts. In addition, only observable features are used in
our method further cutting setup costs. The ability of AngularQA is that of its features, without reliance on
other, unreliable predictions. This combined with its newmethods and use of new features makes it not only
a novel approach to single protein quality assessment, but alsomeans it should be of high value to composite
QA approaches.

2 Method and Implementation
The core of our machine learning model, is a LSTM network which processes each residue and its associated
information as a time-step before �nally generating an estimated score of the model accuracy. To the best of
our knowledge, we are the �rst to use a recurrent neural network in protein QA.

2.1 Initial Data Preparation

All data used in training comes from 3DRobot decoys generated by The Yang Zhang Lab (Deng, Jia, and Zhang
2016) and from CASP 9, 10, and 11 (Moult et al. 1995). These have 92,535, 36,083, 15,901, and 14,193 models
respectively fromwhichwe draw for training. Validation occurs on the CASP12, of whichwe use 6,790models
across 40 targets (Moult et al. 1995).

We begin by �ltering all the models. During this process we verify the residue sequences in the predicted
structures line up correctly with the native structure, and throw out any predicted models with gaps in the
center. We also trim the beginnings and ends of the model to line up with the native. In addition, We throw
out anymodels for which we do not have the native structure. After �ltering, we are left with a total of 128,439
models with 121,875 training models and 6564 validation models.
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We then calculate the global distance test (GDT) scores using the Local-Global Alignment programwhich
superimposes two protein models and assesses the similarity between them (Zemla 2003). Presently, we do
not use local alignment scores in training or validation of our method and focus on global quality prediction.
All scores are calculated by comparing a given model to the native structure.

Next, we calculate the angles and bond lengths along the backbone and side-chain as was described by
UniCon3D; the result is a sequence of angle and bond length information provided for each residue follow-
ing along the carbon backbone (Bhattacharya, Cao, and Cheng 2016). This representation is central to our
method, and has not been extensively studied for its usefulness in QA applications. Because the length of
the angle sequence is the same as the length of the protein sequence, the angle information �ts well with a
recurrent neural network which can work well with inputs of varying lengths (Hochreiter and Schmidhuber
1997).

The proximity counts are also calculated at this time by counting the number of Cα atoms within a set
radius of each residue’s Cα atom. We perform this calculation for all radii in the discrete range [5Å, 15Å].

Finally the secondary structures are calculated for all the models using the DSSP program which does
not predict the structure, but interprets what is displayed in the predicted model [DSSP]. From its output, we
extract only the secondary structure, one of Alpha Helix, Beta Bridge, Strand, Helix-3, Helix-5, Turn, Bend, or
if no structure is assigned, Random Coil. The result, is for each residue in the sequence, there is assigned the
secondary structure it forms.

2.2 Run-Time Data Preparation

With the great variance allowed for by the PDB format, sometimes one of the initial steps fails for a certain
model or group of models, we have added error checking and handling when loading the data to catch incon-
sistencies and cases where one or more parts may be outright missing. These cases impact less than 1% of
models, so we have chosen to identify them, and ignore them. The CASP12 dataset has proven a convenient
exception to these challenges, and from our experience, has no such issues.

Before we use the data, we normalize all the angle values we calculate to be in the range [0, 1] and trim
the �rst and last residues from eachmodel. The values at both ends we found to have extreme values inmany
cases which are not related to the sequence.

Additionally, because proteins have di�erent numbers of residues, we pad the data to make the lengths
consistent for training; themodel itself latermasks zero values to counteract this.We choose to pad at a length
of 500 as most proteins in our dataset are shorter. Of the 688 targets in our dataset (including CASP12), they
have a distribution of N(180.0, 119.6) with only 13 longer than 500 (This average is based on the length of the
observed structures which are sometimes missing a few residues at the front or end.). Those few which are
longer drop the last residues.

A notable bene�t to our representations, is their small space requirement; when loaded, all our datasets
combined, roughly 160,000 models, use less than 4GB of memory even when padded to a length of 500
residues.

2.3 Features

Each time-step includes information about that residue. The amino acid type is considered one of the most
fundamental and is included with all tests.

The core features we use are the angles between residues. To verify this new representation is of value,
we calculated the correlation between the di�erent angles—Tau, Theta, Phi, and Delta—and the related GDT
score �nding weak correlations for both Cα angles (rτ = 0.373, rΘ = 0.427) and lesser correlations for both
side-chain angles (rϕ = 0.187, rδ = 0.299); these results indicate the angles within and between residues could
be a good feature for assessing predicted structures.
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DSSP determines the secondary structures at each of the residues based on their 3D form and is then fed
in along side the amino acid in addition to the results from Proxcalc, an in-house program to calculate and
count the residues within a given radius (Joosten et al. 2011).

We have tried di�erent combinations of these, and for now have settled on using the amino acid, theta,
tau, the secondary structure, protein properties, and proximity counts for radii of 8 Å and 12 Å.

2.4 LSTM Network

The network begins by masking the zero values of padded proteins. Followed after, the data for each time-
step is separated into three parts: the amino acid, the secondary structure, and physical protein properties
(hydrophobic, polar, or charged) and the angles and bond lengths. The amino acid and secondary structure
are then converted to dense-vector encodings, mapping the value to n-dimensional space—in both cases we
use four dimensions.

With the vectorized values, they are then reunited with the other data, forming the true LSTM input
for each time-step. The LSTM layers vary in breadth and depth, but a common con�guration we test which
achieves highly, is a [64, 32, 10] arrangement. The �rst two layers return a sequence of values, one for each
time step, while the �nal layer outputs a single value at the end of the residue series. Each LSTM cells uses a
hyperbolic tangent activation with a hard sigmoid recurrent activation.

The output of the �nal layer then gets run through a single layer of perceptrons with sigmoid activation
and learned weights before being converted to a single value in the range (0, 1).

The network is trained using RMSprop with a learning rate of 0.0001. Stochastic gradient descent and
Nadam were also tried, but neither proved as stable or e�ective. The �nal output value would be predicted
GDT score for input protein structure.

3 Results and Discussion
Thus far, we have achieved an overall correlation of 0.684 on CASP12 with an average loss of 0.122. These
results were found using three LSTM layers in the con�guration [128, 64, 32] which was trained for less than
154 epochs on all models from 3DRobot and CASP 9, 10, and 11.

Table 1 and Table 2 demonstrate the Pearson Correlation and loss before and after trimming Stage 1 and
Stage 2 datasets for CASP12. We found a surprising di�erence between running on the CASP12 data which
had been trimmed to the native structure (If the native was missing part of the sequence at the beginning or
end, it was removed for all trimmed tests.) versus our results with the raw predictions. Of course, using the
trimmed data requires more information than is available in real-world and thus represents no more than an
interesting comparison.

In addition, we compare performance of our method AngularQA with few selected top performing meth-
ods from CASP12. Table 3 describes the average per-target Pearson Correlation and loss for our method An-
gularQA and four selected top performing single-model QA methods on Stage 1. We could see that DeepQA
method achieves the best performance among all methods on average correlation metric. It is not very sur-
prising that DeepQA performs better than our method, because our method only uses the information from
the model, such as angle information. DeepQA ustilized 16 features with the help of deep belief network to

Table 1: Comparison of correlations between datasets on Stage 1 and Stage 2 of CASP12. Overall correlation uses all data
points while the average correlation is the mean of correlation scores.

Dataset Overall Corr. Avg. Corr. Avg. Corr. on Stage 1 Avg. Corr. on Stage 2
CASP12 trimmed 0.684 0.469 0.545 0.393
CASP12 untrimmed 0.651 0.439 0.502 0.377
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Table 2: Comparison of loss scores between datasets on Stage 1 and Stage 2 of CASP12.

Dataset Ave. Loss Loss on Stage 1 Loss on Stage 2
CASP12 trimmed 0.122 0.116 0.128
CASP12 untrimmed 0.138 0.148 0.128

Figure 1: Diagram of the LSTM network components and data flow.

achieve the best performance. We did not even use the secondary structure prediction from the sequence,
which is usually a very useful feature for model quality assessment. We did that so that our method runs
much faster than any other methods, and our method could be used to generate new features for future new
tools. At the same time, we also �nd out that AngularQA performs better than other two methods Wang1 and
QMEAN. The similar pattern is found in Stage 2 datasets, which is shown in Table 4. Overall, based on our
experiment, our AngularQA method demonstrated a great potential of using angle information for model
quality assessment, and our method could be even furtherly used as a feature for top performing QAmethod
and improve the accuracy of these QA method.

We would like to mention the importance of secondary structure feature in our model contributes more
in the output. For example, without using secondary structure feature, the average correlation score on our
testing CASP dataset is 0.24 with a loss 0.11, and the performance signi�cantly improves with the help of
secondary structure feature. At the same time, wewould like to highlight that the secondary structure feature
we used is di�erent than all othermethods. Our secondary structure feature is only based on protein structure
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Figure 2: Representation of angles and bond-lengths. Each Cα is interpreted as an individual time-step for the network.

model without using any protein secondary structure prediction from protein sequences, so that our method
is much faster than all other methods, which makes it possible to rank a large number of protein structure
models. In addition, the output score generated by ourmethod could be considered as a new feature for future
QA method development.
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Table 3: The performance of the global quality predictions of our AngularQA method and four selected CSP12 methods in terms
of average correlation, and average loss of top 1 models ranked by each method, evaluated on CASP12 Stage 1 targets.

Avg. Correlation on Stage 1 Avg. Loss on Stage 1
AngularQA 0.545 0.116
ProQ3 0.638 0.048
DeepQA 0.654 0.078
Wang1 0.462 0.170
QMEAN 0.342 0.174

Table 4: The performance of the global quality predictions of our AngularQA method and four selected CSP12 methods in terms
of average correlation, and average loss of top 1 models ranked by each method, evaluated on CASP12 Stage 2 targets.

Avg. Correlation on Stage 2 Avg. Loss on Stage 2
AngularQA 0.393 0.128
ProQ3 0.616 0.068
DeepQA 0.578 0.100
Wang1 0.256 0.144
QMEAN 0.292 0.125

4 Conclusions
Our results show great promise for the use of both angle information in QA, as well as recurrent neural net-
works. The angle correlations we calculated show they can be a useful metric in protein quality assessment.
Our work demonstrates these values are generalizable between models of the same target, and more impor-
tantly to new, unseen targets.

Interestingly, before we added the secondary structure information, the overall correlations between the
true and predicted scores for all attempted networks were below 0.3 before adding the secondary structure
information and were often closer to 0.15. This indicates the secondary structure helps the model assess the
validity of angles and determine if the overall is coherent.

While we have tested di�erent combinations and ablations of both features and layer setups, much work
remains to optimize the system as a whole. The thing we found to have had the largest impact beyond the
features and data, was the learning rate which we ended up reducing by a two factors of ten. Before doing so,
we found themodels trained in very few epochs, somewhere between 10 and 40 inmost cases. Since reducing
the learning rate we have found the network to perform less well on training data, but to performmuch better
on testing data, and begin over�tting after a couple hundred epochs.

To help reduce the rate of drift in training, we wanted to increase the number of models we were using
for validation, however, when we tried blindly splitting the training set for validation, we found the model
scored very highly while training it, but when we went to test it against only CASP12, its performance was far
worse than without the extra testing data points. This indicates it was able to recognize similar structures to
what it was trained on and adequately assess them. To reduce this issue, we could make sure data splits take
entire targets at a time rather than individual models preventing it from training on models from some of the
same targets it will later be validated on.

In future, new features could be added to further help the system, such as the physical properties of the
amino acids or contact information. We have also considered changing the way it runs, possibly adding a
bidirectional LSTM system to consider the sequence from both ends. In addition, it is also interesting to train
a model for di�erent type of protein in future.

Overall, there are many possibilities left to try, and our work shows QA based on angles and using recur-
rent neural networks has great promise.
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