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Abstract: A new method is proposed to provide guaranteed lower bounds for eigenvalues of general second
order elliptic operators in any dimension. This method employs a novel generalized Crouzeix—Raviart element
which is proved to yield asymptotic lower bounds for eigenvalues of general second order elliptic operators,
and a simple post-processing method. As a byproduct, a simple and cheap method is also proposed to obtain
guaranteed upper bounds for eigenvalues, which is based on generalized Crouzeix—-Raviart element approxi-
mate eigenfunctions, an averaging interpolation from the generalized Crouzeix-Raviart element space to the
conforming linear element space, and an usual Rayleigh—Ritz procedure. The ingredients for the analysis con-
sist of a crucial projection property of the canonical interpolation operator of the generalized Crouzeix—Raviart
element, explicitly computable constants for two interpolation operators. Numerical experiments demon-
strate that the guaranteed lower bounds for eigenvalues in this paper are superior to those obtained by the
Crouzeix—Raviart element.
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1 Introduction

Finding eigenvalues of partial differential operators is important in the mathematical science. Since exact eigen-
values are almost impossible, many papers and books investigate their bounds from above and below. It is well
known that upper bounds for the eigenvalues can always be found by the Rayleigh—Ritz method and conforming
subspaces. While the problem of obtaining lower bounds is generally considering more difficult. The study of
lower bounds for eigenvalues can date back to several remarkable works, including the intermediate method,
the Kato and Lehmann-Goerisch methods, and the homotopy method, see [25] for a review.

The finite element method can effectively approximate eigenvalues with a comprehensive analysis on error
estimation, see [3, 30]. Conforming finite element methods can provide upper bounds for eigenvalues. While,
some nonconforming finite element methods can give lower bounds of eigenvalues directly when the meshsize
is sufficiently small, see [15, 33]. In [15], Hu, Huang and Lin gave a comprehensive survey of the lower bound
property of eigenvalues by nonconforming finite element methods and proposed a systematic method that can
produce lower bounds for eigenvalues by using nonconforming finite element methods. The theories [15] were
limited to asymptotic analysis and it is not easy to check when the meshsize is small enough in practice. Follow-
ing the theory of [21, 30], Liu and Oishi [26] proposed guaranteed lower bounds for eigenvalues of the Laplace
operator in the two dimensions. The main tool therein is an explicit a priori error estimation for the conforming
linear element projection. However, for singular eigenfunctions, it needs to compute the explicit a priori error
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estimation by solving an auxiliary problem. Moreover, it is difficult to generalize the idea therein to general
second order elliptic operators. Similar guaranteed lower bounds for eigenvalues of both Laplace and bihar-
monic operators in two dimensions were given by Carstensen et al., see [5, 6], through using the nonconforming
Crouzeix—Raviart and Morley elements, respectively. Liu [24] proposed an idea to give guaranteed lower bounds
for self-adjoint differential operators and dropped the mesh size condition used in [5, 6]. The generalization to
any dimensions can be found in [16]. Recently, some direct lower bounds are obtained by hybrid high-order
methods, stabilized nonconforming finite elements and weak Galerkin methods, see [4, 7-11].

The aim of this paper is to propose new methods which are able to obtain both guaranteed lower and
upper bounds for eigenvalues of general second order elliptic operators in any dimension. The method for
guaranteed lower bounds is derived from asymptotic lower bounds for eigenvalues produced by a generalized
Crouzeix—Raviart (GCR hereafter) element proposed herein, and a simple post-processing method. Unlike most
methods in the literature, this new method only needs to solve one discrete eigenvalue problem but not involves
any base or intermediate eigenvalue problems, and does not need any a priori information concerning exact
eigenvalues either. The method can be regarded as an extension to the general second order elliptic operators
in any dimension of those due to [26] and [5, 6]. The new method has higher accuracy than those from [26]
and [6, 16], see comparisons in Section 7.1. Moreover, this paper drops the mesh-size conditions in [16, Theorem
3.1] for variable coefficients. The approach for guaranteed upper bounds is based on asymptotic upper bounds
which are obtained by a postprocessing method firstly proposed in [18, 29], see also [32], and a Rayleigh—Ritz
procedure. Compared with [27], this new method does not need to solve an eigenvalue or source problem by
a conforming finite element method. The ingredients for the analysis consist of a crucial projection property of
the canonical interpolation operator of the GCR element, explicitly computable constants for two interpolation
operators. Numerical experiments demonstrate that the guaranteed lower bounds for eigenvalues in this paper
are superior to those obtained by the Crouzeix-Raviart element [6].

The remaining paper is organized as follows. Section 2 proposes the GCR element. Section 3 proves asymp-
totic lower bounds for eigenvalues. Section 4 presents the guaranteed lower bounds for eigenvalues of general
elliptic operators. Section 5 provides asymptotic upper bounds for eigenvalues. Section 6 designs guaranteed
upper bounds for eigenvalues. Section 7 will give some numerical tests.

2 Preliminaries

In this section, we present second order elliptic boundary value and eigenvalue problems and propose a gen-
eralized Crouzeix—Raviart element for them. Throughout this paper, let @ ¢ R" denote a bounded polyhedral
Lipschitz domain.

2.1 Second Order Elliptic Boundary Value and Eigenvalue Problems

Given f € L%(Q), second order elliptic boundary value problems find u ¢ Hé(Q) such that

(AVU, V)12 = (f, V)120)  forany v € Hy(Q). (VX))
Here, A is a matrix-valued function on Q and satisfies

(@ Dr2o) < (Aq, Qrre) forany q e (LA(Q)",

where p < g abbreviates p < Cq for some multiplicative mesh-size independent constant C > 0 which may be
different at different places. Define

1
IVvlla = (AVY, VW) 2 g

Hence ||V - || is a norm of H(l)(Q). The matrix A(x) is supposed to be symmetric for all x € Q and each component
of A is piecewise Lipschitz continuous on each subdomain of domain Q.
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Second order elliptic eigenvalue problems find (4, u) € R x H})(Q) such that
(AVU, VV)120) = A(U, V)12(q) foranyv e H(l)(Q) and flull = llullzzg) = 1. 2.2)
Problem (2.2) has a sequence of eigenvalues
0<AQ1 <A <A3< -+ 2 +00,

and corresponding eigenfunctions
Ug, Uz, U3, -« vy

which can be chosen to satisfy
(Ui, U2y = 64, L,j=1,2,... .

Define
E, = span{us, uy, ..., ue}. 2.3

Eigenvalues and eigenfunctions satisfy the following well-known Rayleigh—Ritz principle:

. (AVV, VV)LZ(Q) (AVu, VU)LZ(Q)
Ak = min max — ) —mpax (2.4
dim Vi=k, Vi cH1(@) VeV (V,V)12() ueE, (U, U)2(g)

2.2 The Generalized Crouzeix-Raviart Element

Suppose that Q is covered exactly by shape-regular partitions T consisting of n-simplices in n dimensions. Let
& denote the set of all (n — 1)-dimensional subsimplices, and £(Q) denote the set of all the (n — 1)-dimensional
interior subsimplices, and £(0Q) denote the set of all the (n — 1)-dimensional boundary subsimplices. Given
K € 7, hg denotes the diameter of K and h := maxXge hg. Let |K| denote the measure of element K and |E| the
measure of (n — 1)-dimensional subsimplex E. Given E € &, let vg be its unit normal vector and let [ - ] be jumps
of piecewise functions over E, namely

V] == V|g+ = V|k-

for piecewise functions v and any two elements K* and K~ which share the common (n — 1)-dimensional sub-
simplex E. Note that [ - ] becomes traces of functions on E for boundary subsimplex E.

Given K € T and an integer m > 0, let P,;(K) denote the space of polynomials of degree < m over K. The sim-
plest nonconforming finite element for problem (2.1) is the Crouzeix—Raviart (CR hereafter) element proposed
in [14]. The corresponding element space Vg over T is defined by

Ver = {v € L*(Q) : V| € P1(K) for each K € 7, j[v] ds=0forall E € £(Q)
E
and Jv dE=0forallE € 8(69)}.
E

Since the CR element cannot be proved to produce lower bounds for eigenvalues of the Laplace operator on
general meshes when eigenfunctions are smooth, see [1, 17]. Hu, Huang and Lin [15] proposed the enriched
Crouzeix—Raviart (ECR hereafter) element which was proved to produce lower bounds for eigenvalues of the
Laplace operator in the asymptotic sense. The asymptotic expansions of eigenvalues for the ECR element were
established in [19]. The ECR element space Vecy is defined by

n
Vicr := {v € LY(Q) : v|g € P1(K) + span { fo} for each K € T, J[v] ds =0forall E € &(Q)
i-1 7

and Jvds =0forallE € £(0Q) }
E
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However, the ECR element cannot produce lower bounds for eigenvalues of general second order elliptic
operators, which motivates us to generalize the ECR element to more general cases. To this end, let A be a piece-
wise positive-definite constant matrix with respect to 7, which is an approximation of A. For example, we can
choose Al to be equal to the value of A at the centroid of K or the integral mean on K. Suppose

ayp; iz -+ Qin
_ az1 Az --- d2n
Alg = ) . ) . (2.5)
an1 Qn2 -+ Qnpn
Let B denote the inverse of A as follows:
b1 bz -+ bip
_ . by by -+ ban
Blg=A"g = . . . . (2.6)
bnl an e bnn

The centroid of K is denoted by mid(K). The coordinate of mid(K) is denoted by (Mj, My, ..., My). The vertices
of K are denoted by a, = (x1p, X2p, ..., Xnp), 1 < p < n + 1. Define

n
H=Y bii ) (Xip—Xig)* +2) by Y (Xip = Xig) (jp = Xjq)
=1 p<q iy  p<q
and
n+2 nn+1)>2n+2)
bk = -
2 2H
For two dimensions, the constant H and function ¢x are presented as follows, respectively:

(x — mid(K))T Blx (x - mid(K)) . @7

H = by Z(le - x19)* + b2 Z(XZp — X29)* + 2b12 Z(le = X1q)(X2p — X2q) (2.8)
p<q P<q p<q
and 36
P =2 = 7 (b1 (1 = Ma) + byo(xa = M2)” + 2b1a(x1 = M1)(xz = My)). 2.9)
Lemma 2.1. Given K € T, there holds that
1
dx =1.
I J Px
Moreover; for any (n — 1)-dimensional subsimplex E c 0K, there holds that
J i ds =0
E

Proof. Let 0; = 0j(x), 1 <j < n+1, denote the barycentric coordinates of K associated to vertex a;. For any
integers aj > 0,1 <j < n+1, one has

alag!--- apeq'n!
Jefl 6% ... 0% dx = e IKI.
(a1 +az+--+ apy1 +n)!
K
This leads to
n+1 n+1

I(X, M;)(xj — Mj) dx = J
K K

1
n+1) qzl<9q_ n+1>X’qu

|K| n+1
m(z = 3 v

p#q

p=1

. x e v v
ST 2n+2) qu(le Xiq)(Xjp = Xjq)-
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By the definition of ¢ ¢ in (2.7), this yields

1 j n+2 1 nn+1)%*n+2) K| d
— | ¢ dx = - > Y by(xip - Xig) (Xjp - Xjq)
IK| ) 2 |K| 2H (n+1)%(n+2) {21 p<q
n+2 n
T2 2H
=1.

Given an (n - 1)-dimensional subsimplex E ¢ 9K such that 61|¢ = 0. A similar equality holds

a! - dpp1!(n-1)!
05 ... 0%t ds = El.
I 2 n+l (az+~~-+01,,+1+n—1)!I |

E

A direct calculation yields

' ‘ . ' ~ X[] n+1 1 . le n+1 1 ‘
J(X"Ml)(XJ‘Mﬂds—J(‘nn+Z("P‘m)"l!’)(‘n+1+Z<9q‘m)xm ds

E E p=2 =2
|E| (n+1
=2 Z NXipXjp = Z XipXjq
nn+1)*\ 5 pEa
|E|
= g ). (Xip — Xig) (Xjp — Xjg)-
(n+1)*(n+2) p<q
This shows that )
n+2 nn+1)*(n+2) |E|
ds = E|- H=0,
J‘pK $=—7 |F 2H  n(n+ 12
E
which completes the proof. O

Lemma 2.1 allows for the definition of the following bubble function space:
Vpi={vel*Q):v|g e span{@g} for all K € T}.
The GCR element space Vg is then defined by
Veer := Ver + V3. (2.10)
IfA(x) =1,then by = 85, H=Y,.,lap - aql* and

_ n+2_n(n+1)2(n+2)

. R VAY
ox = — S0 Y (xi = My)* € ECR(K).

i=1

Hence, in this case, Vgcr = Vecr. The GCR element has the following important property.
Lemma 2.2. Givenv € Vger, AVV - vg is a constant on E for all E € €.

Proof. GivenE € &,x - vgisa constant on E. The fact that B is the inverse of 4, (2.7) and (2.10) imply that AVv - vg
isaconstanton E. O

2.3 The GCR Element for Second Order Elliptic Boundary Value Problems

The generalized Crouzeix—Raviart element method of problem (2.1) finds ugcr € Viger such that
(AVNC UGCR, VNcV)LZ(Q) = (f, V)LZ(Q) for anyv € VGer. (2.11)
Since _[E[V] ds=0forall E € £(Q) and jE vds =0forall E € £(0Q). From the theory of [20], there holds that

IVNe(u - uger)ll < IVu = Mo Vull + osc(f),
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where ITp denotes the piecewise constant projection, and the oscillation of data reads
1
- Z
ose(f) = ( h ( inf [f - fI ))
K;.r Nfery 7 HE
with arbitrary r > 0. The optimal convergence of the GCR element follows immediately.
Remark 2.3. Thanks to the definition of (2.10), ugcr can be written as ugcr = Ucr + Ug, where ucg € Veg and

up € V. When A is a piecewise constant matrix-valued function, an integration by parts yields the following
orthogonality:

(AVucr, VOx) 2 = (- div(AVucr), @x)r2 k) + Z JAVMCR “VEQg ds = 0. (2.12)
ECK
This leads to
(AVUB, V¢K)LZ(K) = (f, ¢K)LZ(K) for anyK eJ (213)
and
(AVNCuCR, VN(;V)LZ(Q) = (f, V)LZ(Q) for anyv ¢ Ver. (2.14)

Consequently, ucg is the discrete solution of problem (2.1) by the CR element. Hence we can solve the GCR element
equation (2.11) by solving (2.13) on each K and (2.14) for the CR element, respectively. For general cases, the
orthogonality (2.12) does not hold. However, up can be eliminated a prior by a static condensation procedure.

2.4 The GCR Element for Second Order Elliptic Eigenvalue Problems

We consider the discrete eigenvalue problem: Find (Agcr, Ugcr) € R X Vger such that

(AVncUger, VneV)rz@) = Acer(Uacr, V)12(@) for any v € Vger and lugerll = 1. (2.15)

Let Z = dim Vgcgr. The discrete problem (2.15) admits a sequence of discrete eigenvalues
0 < A1,6er < A2,6er < +*+ < AzGer
and the corresponding eigenfunctions
U1,GCRs U2,GCRs - - - s UZ,GCR-
Define the discrete counterpart of E, by
Ee¢Ger = span{us ger, Uz,Gers - - - » Ue,GeR}- (2.16)

Then we have the following discrete Rayleigh—Ritz principle:

P . (AVncV, VNeV)12(9) (AVncl, VncU)r2 ()
K,GCR = min max - max

(2.17)
dim Vi=k, Vi cVger VEVK (V, V)LZ(Q) MEE)(,(;CR (u, u)LZ(Q)

According to the theory of nonconforming eigenvalue approximations [2, 15], the following a priori estimate
holds true.

Lemma 2.4. Let u be eigenfunctions of problem (2.2) and let ugcr be discrete eigenfunctions of problem (2.4).
Suppose u € H}(Q) n H*S(Q) with 0 < s < 1. Then

lu - ugerll + h¥ Ve (U - Ugcr)lla < h*|ulys. (2.18)

We introduce the interpolation operator Ilgcr : H},(Q) — Vier by

JHGCRV ds=|vds foranyE €&,

(2.19)
vdx foranyK e 7.

[ S | W—

E
j Igcrv dx =
K
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Given w € Vgcr, an integration by parts yields

(AVNc(v - TgerV), VneW)r2(g) = —(v — Hgerv, divnc(AVNeW))r2(o) + z z J(V — IgerV)AVW - VE ds.
KeJ ECoK
E

Since divyc(AVncw) is a piecewise constant on Q and Lemma 2.2 proves that AVw - v is a constant on the
(n - 1)-dimensional subsimplex E, for any v € H})(Q), the following orthogonality holds true:

(AVNc(V - HGCRV), VN(:W)LZ(Q) =0 for any w € Vicer.- (2.20)

This orthogonality is important in providing lower bounds for eigenvalues, see more details in the following
two sections. Moreover, this yields

IVNcTTeerVIE + 1Vne(v = TocrW)IE = (V3. (2.21)

3 Asymptotic Lower Bounds for Eigenvalues

We assume A is a piecewise constant matrix-valued function in this section. Following the theory of [15], we
prove that the eigenvalues produced by the GCR element are lower bounds when the meshsize is small enough.

Let (4, u) and (Agcr, Ugcr) be solutions of (2.2) and (2.15), respectively. First, note that u — Igcru has vanish-
ing mean on each K ¢ 7. It follows from the Poincaré inequality that

lu - Heerull < AlIVNc(u — HecrU)|l-
Suppose u € H'*5(Q),0 < s < 1. Following from the usual interpolation theory, there holds
lu - Tecrull < A5 |ul1ys. (3.1

Theorem 3.1. Suppose that A is a piecewise constant matrix-valued function. Assume that u € Hé(Q) N H*S(Q)
with 0 < s < 1 and that h% < ||Vyc(u - ugcr)lI;. Then

Ager < A,
provided that h is small enough.

Proof. Since A is a piecewise constant matrix-valued function, A = A, and A in (2.20) can be replaced by A. Due
to (2.20), an elementary argument as in [1, Lemma 2.2] and [15, 34] proves

A= Ager = IVnc(u - uger)lI3 - AcerIMgert — Ugcrll* + Ager(IMgerull® — flull?). (3.2)
The triangle inequality, (2.18) and (3.1) yield
AcerlITgert — Ugerll® < h* + R**%S < h%S.
An algebraic identity and the definition of the interpolation operator IIgcr from (2.19) show
Acer (IMeerul® = ul®) = Acer(Mocrt - U, Meert + W) 2(g)
= Ager(Ilgeru — U, Hgertt + u — Mo(IlgerU + U))12(0)

< hlidgeru — ullllVe (geru + w||

< h2+s'

The above two estimates and the saturation condition h2S < ||[Vyc(u — uGCR)Hf4 imply that the second and third
terms on the right-hand of (3.2) are of higher order than the first term. This completes the proof. O

Remark 3.2. Hu, Huang and Lin analyzed the saturation condition in [15]. If the eigenfunctions u € H'*$(Q)
with 0 < s < 1, it was proved that there exist meshes such that the saturation condition k% < ||Vnc(u — Uger)lla
holds. In the following lemmas, we will prove the saturation condition h < ||Vnc(u — Ugcr)lla provided that
u € H*(Q). For simplicity, we prove it in two dimensions for the GCR element.
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Lemma 3.3. Given0 + u € Hé(sz) N H%(Q), for any triangulation T, there holds that

9% b 62 byy 0%u |2
(5 -2 ” -2 ) (33)
i \lax? by ax L2(K) 5X16Xz b11 ax% L2k
Proof. If (3.3) would not hold, then, for any K € T, ||— - i—;%ll 12(k) = 0. Since Bk is positive-definite, we have

bii > 0,1 =1, 2. Hence u should be of the form

ulg(x1, X2) = ¢<X1 - \j%xz) + l/)<X1 + \jz—i)Q),

_ by o%u
axlaxZ By oxt 120 = 0, we have

(Vb11bzz + b12)¢”(X1 - \j—Xz) = (Vb11bz — b12)y’ <X1 + \/—Xz)

where ¢(-) and (- ) are two univariate functions. Since =2

b
P— 1 _ Nbiuby—bip 1
This yields ¢ = bibarby Y" = C for some constant C. It is straightforward to derive that

b, ) ( \jbzz )2 ( \/bzz ) Vb11ba2 + b1z ( \/b 2 )2

Ug=co+crx1 =1 —=x2 | +c2{ x1 —1=x2) +c3(x1+1 =X )+ ——=co X1 +

|k = Co 1( 1 \jbn 2 2| X1 bus 2 3| X1 biy 2 Biby - by 2| X1 b11
b_zz b_z 2¢2+/b2y 2 2
=Co+ cl(xl - \j—xz) + 03<x1 + \j ) (b11X5 + bya X5 + 2b12X1X2)

b1 Vb11(\/b11b2z — b12) ! ’

for some interpolation parameters cy, c1, ¢z, ¢3. Furthermore, since b11byy — b%z >0, bnxi + bzzxﬁ + 2b12X1X2
cannot be a linear function on any one-dimensional subsimplex of K. The homogenous boundary condition and
the continuity indicate that u € Veg N H(l)(Q) N H%(Q). This implies u = 0, which contradicts with u # 0. O

Remark 3.4. When the domain is a rectangle, the saturation condition was analyzed in [15]. The theory of [23]
does not cover both the ECR and GCR elements, see Corollary 3.3 therein.

In order to achieve the desired result, we shall use the operator defined in [15]. Given any K € T, define
Jo,xVv € P2(K) by
JV”]Z,KV dx = JVPV dx, p=0,1,2,
K K
foranyv e HZ%(K). Note that the operator J, g is well defined. Since IK VP(v = Jo xv) dx = 0withp = 0, 1, 2, there
holds that
IVPr v = JoiVilieao < B PHIVP (V= Jo0Vllieao  forany 0 < py < pa < 2. (3.4)

Finally, define the global operator ], by
Jolk =2k forany K € 7. (3.5)
It follows from the definition of J; ¢ in (3.5) that
V2], kv = pV2v.
Since piecewise constant functions are dense in the space L(Q), it follows that
IVZc(v = Jav)| — 0 when h — 0. 3.6)

Lemma 3.5. Suppose that A is a piecewise constant matrix-valued function. Suppose that u € H(l)(SZ) N H*(Q).
There holds the following saturation condition:

h < IVnc(u - ugcr)lla-

Proof. Since A is piecewise constant, when h is small enough, for any K € T, A|k is constant. According to
Lemma 3.3, there exists constant a > 0 such that
LZ(K )

bi 0*u
o< 2 (1565
E\lax2 by ax2

N _ b 32
L2(K) 5X13Xz b 6x
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The fact that ugcr € Vier plus (2.9) and (2.10) yield that

2 d%uger b1z 0%uccr

+ _Jnr
L2(K) ||0X15X2 bi1  ax?

y (" 0%uer b1 *uger
ir\axt b axd

2
) -0.
L%*(K)

Let J; be defined as in (3.5). It follows from the triangle inequality and the piecewise inverse estimate that

2 2

@<y (“ 0%(u - ;‘GCR) _ b11 9%(u - ugcr) l| 0%(u - ugcr) b1z 0*(u — uger) >
= dx b, ox2 L2(K) 0x10X2 b11 ax? L2(K)
<2y (llaz(u -J2w) b O*(u-Jow|? " 0*(u—Jow) b1z 0%(u—Jow)|*
= ax? by ax’ LX(K) 0x10X3 bin  ax? L2(K)
. H 0%(Jau - uger) _ b1 0*(Jau — Ugcr) | ll 0%(Ja — uger) _ b1z 0*(Jau — ugcr) | )
ax? by, ax’ L2(K) 0x10x3 b1 ax? L2(K)

< Ve = 2wl + h721Vne 2t - uger) I

The estimate of (3.4) and the triangle inequality lead to
1< IVEc(u - J2wl* + R3] Ve (u - uccr)lI*.
Finally, it follows from (3.6) that
h? < Ve (u - uger) I

when the meshsize is small enough, which completes the proof. O

4 Guaranteed Lower Bounds for Eigenvalues

In practice, it is not easy to check whether the meshsize h is small enough in Theorem 3.1. In this section, we
propose a new method to provide guaranteed lower bounds for eigenvalues. We follow the idea of [26] and
[5, 6] and generalize it to general second order elliptic operators. The mesh-size conditions in [16, Theorem 3.1]
for variable coefficients are dropped in this paper. We first present some constants about the matrix-valued
function A, which might be depend on h. Define V}, := H(l)(sz) + Vecr. For any v € Vp, there exist Ca, Cz, C4 4
and C, such that

VNVl < CallVnevlla, 4.1
IVnevll < CallVnevlia, 4.2)
IVnevllz < CaallVneVlia, (4.3)

(A = A)Vnevll < Coohll VeV, (4.4)

Define 1) := CoC4CaCj 4.
The following Poincaré inequality can be found in [12].

Lemma 4.1. Given K € T, let w € H'(K) be a function with vanishing mean. Then

hx
Wiz < ?"VW”LZ(K)-

Remark 4.2. Let j1; = 3.8317059702 be the first positive root of the Bessel function of the first kind. In two
dimensions, the following improved Poincaré inequality holds from [22]:

h
Wl < — 19Wlz2o-
J11
Lemma 4.1, Remark 4.2 and the second equation of (2.19) show that, for any v € H'(K), there holds that

v —IgerVilzexy < CphglV(V — IgerV) L2 (k) 4.5)

with Cp = jill for n = 2 and Cp = 7! for n > 2. The following theorem provides the guaranteed lower bounds
for eigenvalues. The proof adopts the techniques in [24, Theroem 2.1] to avoid mesh-size conditions.
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Theorem 4.3. Let A, and A¢ gcr be the €—th eigenvalues of (2.2) and (2.15), respectively. Then there holds that

A
—r <A, (4.6)
Al oerCpCah n*h?

B"’Al,GCR Cf,Cf‘ h? + 1_ﬁ

1+

and forany 0 < B < 1,

Ae,Ger
T ddm . <l foranye>1 .7
1+M+E+A /‘{—1 C2C2h2
B+AecerCiCih2 ~ 1-B €,GCR71,GCR™ A~ 00

Proof. Since | - || is compactin 'V, with respectto | Vxc - |4 (see [31]), resulting from the argument of compactness
(see e.g. [2]), there exist 0 < A; < A < --- such that

(AVNcVY, VNeV)12(9)

Ao = min  max
dimV,=¢,V,cVy veV, (v, V1r2q) 45
. (AVneVY, VneV)re(g) '
= max min ,
dimW=¢-1,WcV, veW+ (v, V)12

where W+ denotes the orthogonal complement of W in V; with respect to (AVnc -, Ve - ). Since H(l)(sz) C Vp,
A¢ > Ap due to the Rayleigh—Ritz principle. Further, by choosing W in (4.8) as E,-1 ccr (see (2.16)), a lower bound

for A, is obtained:
(AVNCVY, VNeV)12(9)

Ag > /_1@ > min (49)
VEES  oer (v, V)LZ(Q)
Let Eé-—’q,GCR denote the orthogonal complement of E,_1 gcr in Ver with respect to (AVne:, Ve - ), L.e.,
R
Vier = Ee-1,6er @ E‘Jg__LGCR-
For any v € E;_; ;¢ With [[v]| = 1, the following decomposition holds:
v = IlgerV + (v — IIgerV) = (W1 + wy) + (v = IgcrVv) (4.10)
with wy € Ee_1,6cr, W2 € E;—Jll,GCR and satisfying
(W1, W2)r2(9) = (AVNcW1, VNeW2)12(0) = 0.
This and (2.20) lead to
(AVNcw1, VeW1)12@) = (AVncIlgerv, VeW1)12(9)
= (AVnclIgerV, VneW1)r2(@) + (A — A)VneIlgerv, VeW1)2(e)
= (AVncV, VeW1)12(g) + ((A — A)VnellgerV, VneWr)12(9)-
Moreover, since wq € Ep_1,Gcr, V € Ej_LGCR, a combination with assumptions of A in (4.1) and (4.4) shows
(AVNew1, Vew1)r2(@) = ((A = A)Vie(v — IgerV), Ve W1)12()
< |4 - A)Vnev| IVncw |
< CaCoohlVnevlallVNewilla.
It follows from (2.17) that wy satisfies
_1 _1
Iw1ll < Ay gerllVewilla < A gerCaCooltlVneVIla- (4.11)
1,h
As for wy € Eé—l,GCR’ » »
Iwall < A, gerllVnewzlla < A, GerlVacIloerVila- (4.12)

An elementary manipulation yields the following decomposition:

VI3 = IVNc(v = TR + IVncHoervIG + 2(A(Vne (v - Hgerv), VellgerV)12()- (4.13)
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For the first term of (4.13), it follows from (4.1) and (4.5) that

1
Ve (v = TgerWIG = ——— [Iv - Mgervll®.
47 cAcin

The second term of (4.13) can be analyzed by (4.12) and (4.11) as

2 2
VncgerVIlg = Aecerllwall

= Ae,ger(IV = HaervI® + [VI* = 2(v - Tgerv, V)12(g) — Iwall?)

> Ag,cer(lv - TgervI? + VI = 2(v - TgerV, V)12(@) — A ger Ca Coo 2 IVNeVIG).

By the second equation of (2.19), we have

2(v — IgerV, V)12(9) = 2(v = Hgerv, v — HoV)12(g)-

(4.14)

4.15)

Since jK Movdx = j  V dx, the same estimate of (4.5) holds true for Io. This, (4.1) and the Young inequality reveal

for any 61 > 0 that

2(v = Igerv, v — IlgV)12(0) < 2[lv — IgerVIllv — Hov|l < 2Cph|v — HgcrVvIIVVI

< 2CpCahllv - TgerVillVacvila
1
< CpCal*81lv — Toervl + VeVl
The third term of (4.13) has the following decomposition:

2(A(Vnc(v = HgerV), VneIlgerV)r2(a) = 2(A(Vne (v — Hgerv), VneIlgerV)r2(a)

+2((A = A)Vnc(v - Igerv), VneIloerV)12(0)-

(4.16)

Thanks to (2.20), the first term in the above equation equals zero. It remains to estimate the second term, which

can be estimated by (4.1)-(4.4), (2.21) and the Young inequality that

2((A = A)Vnc(v - TgerV), VineIlgerV)z2(g) < 2C411(A = A)Vne(v — eI VncIlgerviz

< 2C; Coo Ml Ve (v = HgerW) I VeVl

< 2nh||Vne(v - HgerV)lla VeVl
272

h
< 8 |Vic(v - TgerW)I + ”5—2||vch||i,

where 1 = Co0C3CaC;3 4 and &z > 0 is arbitrary. By substituting (4.14)-(4.16) into (4.13), we obtain, for any

0 < B <1,that

B
Ae > [Vxevl 2(—
ez

- <A€(’361CR + nle + AB,GCRAI}GCRCE;C?,O}IZ)”VNCV”,%; + AecerllVIZ.
Let &y = BAaGEl 5, - 1 B This yields
0< "VNC"”,Zq(l + Ae(’;CR + ’72}:2 + Ae6erA gerCa Cf)ohz) — AegerlvI?
< Ae<1 + M(’SC;CR + 112212 + Ae,GCR/lilGCRCin)OhZ) — Ae,GeR-

This concludes (4.7). As for ¢ = 1, it follows from the fact that w; = 0, one can easily prove (4.6).

Remark 4.4. When A is a piecewise constant matrix-valued function, (4.7) yields

Ae,Ger
M ocrCpCaltt
1+2¢,6erCoCE h2

1+

5 +AeGer ~ Ae,GCRC%Cihzal)uv ~gervI* + (1~ B~ 62)I Ve (v ~ Hocrv)Ii3

4.17)
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For the Laplace operator in two dimensions considered in [6], as we shall find in Section 7, the guaranteed
lower bounds of this paper are more accurate than those from [6] by the CR element numerically, see (7.1)
below. On uniform triangulations, this can be proven asymptotically for sufficiently smooth eigenfunctions by
using the asymptotic expansions of the eigenvalues by the CR and ECR elements from [19]. Recall the expansions
[19, Theorems 3.14 and 4.4] as follows:

AZ
A=A =] - mH2 + O(h*[In hlulfp ), (4.18)

A= Apcr = J + O(h*[In hjul?, (4.19)

(52))

with H=3,_,(xp - X1¢)% + Y peq(Xap = X2¢)? asin (2.8) and
Vll
J= h2<%”ax1x1 U~ Oy,x, u”Z + V12e2T||ax1xz u”2 + V}QZT j(axlxl U — Oy,x, u)axlxzu dX):
Q

Aecr .z by the CR element

ion il 12 322
and see other notation ygy, gy, Ygr in [19]. The guaranteed lower bounds — (T8 oen

from [6], (4.18) and H < 3h? show

Ae,cr Ao a0 “1yp2 4
- : =]-—H"+2A +487)h* + O(h%)
TG g agare ) 1aa el

22 (4.20)
>]- éhz + 2575 + 487 Hh? + O(h*)
> ]+ A%j i h? + O(h?).

For the Laplace operator, the GCR element is the ECR element as mentioned in Section 2.2. The guaranteed lower
bounds (4.17) by the GCR element from (4.17) with Cp = jill, C4 =1and (4.19) show

A

Ao - — 5 = ] + O(RY). (4.2
Aeoerfiah®
1+/1€,GchI,21 h?

The combination of (4.20) and (4.21) leads that for sufficiently small mesh size

Ae,GCR Aecr
L Moot 1+ (75 +4871)Ag, R
1+AecerJ Izl h?

5 Asymptotic Upper Bounds for Eigenvalues

It is well known that conforming finite element methods provide upper bounds for eigenvalues, but it needs
to compute an extra eigenvalue problem. Here we present a simple postprocessing method to provide uppers
bound for eigenvalues by the GCR element, see more details in [18, 29].

For any v € Vg, define the interpolation II¢cg : Vger — Ver by

JHCRvds= JvdsforanyEe E.
E E

It is straightforward to see that v — IIcrv € Vp. Furthermore, the standard interpolation theory of [13] gives
Iv = Tervl < A Ve (v = Terv)l| < R Vvl G
An integration by parts leads to the following orthogonality:

(Vnc(v = Ierv), VncerV)r2(q) = 0. (5.2)
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For any v € Vg, define the interpolation I, : Vg — Ve i= Ver N H(l)(sz) by

0, Z €0Q,
(ev)(z)=49 1
|w,]

(5.3)

Y vik(2), z¢0Q,

Kew,

where w, is the union of elements containing vertex z, |w,| is the number of elements containing vertex z. The
following lemma was proved in [18, 29, 32].

Lemma5.1. Letv € Vcp. Forany w € H(l)(Q), there holds that

v - vl < hVNc(v = w)l,
[Vnc(v = TIew)|| < [[Vnc(v = w)]l.

Then (5.1) and Lemma 5.1 yield the following result.

Corollary 5.2. Let u and ugcg be eigenfunctions of (2.2) and (2.15), respectively. Suppose that u € H'*$(Q),0< s < 1.
There holds that
luger — Me(@erucer)ll < A (ul1ys,

IVNc(uger — Me(Herter))lla < h¥|uliys.
Define the Rayleigh quotient
P (AVII (ILcrugcr), e (IcrUcer))12(9)
¢ (He(Mcruger), He(TlcrUcer))12(9)

Theorem 5.3. Suppose (A, u) is an eigenpair of (2.2) and u € H'*$(Q), 0 < s < 1. Then
A=Al < R*[ulgss.

Moreover; Ac > A provided that h is small enough.

Proof. The proof is similar to that of [29, Theorem 3.4] and [32, Theorem 4.1]. Let w = II(IlcrUgcr). An elemen-
tary manipulation leads

V(- w3 = (AV(u - w), V(i - w))12(9) = A + [WI*Ac — 2(AVU, VW)12(q)
= A+ [wl*Ac = 2A(u, w) 12 (o) (5.4)
= Wl (e = A) + Allu — w|?.

Thanks to (2.18) and Corollary 5.2, it holds that
IV(u = w)lla < IVnc(u - uger)lla + IVnc(uger — W)lla < A [ul14s (5.5)

and
lu — wil < flu - ugerll + luger — wil < (R* + RYS)uliss < A% |ulyss. (5.6)

On the other hand [[|w]| — |ull| < |lu = w|| < h?®|ul1s. Hence ||w]| is bounded. Substituting (5.5) and (5.6) into (5.4)
yields
1A= Acl < R¥|ulyss.

The following saturation condition holds, see [15]:
h* < IV(u - w)lla.

Hence, when h is small enough, ||u — w| is of higher order than [|V(u — w)| 4. This and (5.4) yield that
0 < [wl*(Ac - 2),

which completes the proof. O
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6 Guaranteed Upper Bounds for Eigenvalues

Since A, is the upper bound of A in the asymptotic sense, we propose a method to guarantee upper bounds for
eigenvalues. Suppose (A, ue) be the ¢-th eigenpair of (2.2) and E¢ gcr be defined in (2.16). Define

AVv,VV)2
Age=  sup w (6.1)
VeIl (McrEe,Ger) v, V)LZ(Q)

Lemma 6.1. Suppose that u, € H'*$(Q) with 0 < s < 1. Then
MZ?C - Al < h1+s|u|l+s-

Proof. Following the theory of [2], there holds that

2
g~ el < (_, nf IV - uola) < IV e(Merte cen) - uol;.

Velle(TlerEe,cer

Hence, the above result and (5.5) yield that
MZIC = Xel < R ulyys.
This completes the proof. O

Assume TI¢(IIcrE¢,cer) is €-dimensional. The Rayleigh—Ritz principle (2.4) implies that A;’}C is the upper bound
of . We propose some conditions in the following lemma to guarantee that II.(IIcrE¢,ccr) is €-dimensional.

Lemma 6.2. Suppose there exist computable constants By and By such that
[v - crvll < B1AlVNc(v = TIcrv)| for any v € Vg,
[lw - Hw| < B2hl|Vncw| forany w € Veg.
Then T1.(Ilcr E¢,ger) IS €-dimensional provided that

h < 1 (6.2)

(B1 + B2)CanAecer .

Proof. Foranyv = Zi:l &iu;ger and [lv|| = 1, the triangle inequality yields

[v - O(IIcrV)Il < v = Hervl + [TIcrv = O (TIcr V)|
< B1hlIVNc (v = TIerW)I| + B2 Al VNcITcr V.

Due to (5.2) and the constant in (4.1), there holds the following estimate:

v = Tc(Mer)Il < (B1 + B2)hlIVNeVIl < (B1 + B2)Cahl VeVl

< (B1 + B2)Cahn|Aeer.

Then the condition for h in (6.2) yields

IMe(Merv)l 2 1 = [lv = Me(Merv)ll 2 1 = (B1 + B2)Cahy|Aecer > 0.
Hence, II¢(ITcrE¢,gcr) is €-dimensional. O

Remark 6.3. Note that (6.2) is not a strict condition. Indeed, to obtain good approximation of the ¢-the eigen-
value A, by finite element methods, A,h? < 1 is always required.

We show that S is computable. Note that (v — II¢crVv)|x € span{¢x}, where ¢ is defined as in (2.7). For each
K € T, we can find a positive constant g such that

okl < BrlVOklLz k).
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Then we take

By - maXK;T{.BK}'

There are several results concerning the constant for the interpolation operator Ilcg in two dimensions, see for
instance [5, 28]. Recall Cp from (4.5). We present the result in [5, 16] as follows:

1
"V - HCRv"LZ(K) < \jclz; + mh[{"V(V - HCRV)"LZ(K) for any v € Hl(K)

Hence we can choose

B1= \/cf, + m (6.3)
Next, we analyze the computable constant f5. To this end, we define
IK'|
F R N TH o
and
N = max |, (6.5)

where V denotes the set of all the vertices of T and |w,| denotes the number of elements containing vertex z.
Lemma 6.4. For any w € Vg, it holds that

. (n-DNE
- n

Iw - Ilew]| hlVxew|.

Proof. Given anelement K € T,letap, 1 < p < n + 1, be its vertices and let 8, be the corresponding barycentric
coordinates. Then

n+l n+l1
wlk = Y wlk(ap)8, and (Iw)lk = Y Wybp,
p:] p:l
where 1
V_Vp=m Z wlg(ap),
! K ewg,

as defined in (5.3). This gives

lw—Tew]? = ) jw - Tewll7, 4,

KeT
n+1 n+1 2
= Y ) wik(ap)6 - > w,0,
KeT ll p=1 p=1 L2(K)
n+l
<Y ) lwik(ap) - wp)(wik(ag) = wl(6p, 0g)r20-
KeT p,q=1
An explicit calculation that (6, 04)12x) = %(1 + 8pq) leads to
5 |K| n+1 o
Iw-Tewl® < 3 ——= ) Iwlk(ap) - wpl*
kex Mt Lo

It follows from the definitions of the interpolation operator Il in (5.3) and N in (6.5) that

| | n+1

sup  |wlk(ap) — wix (ap)l?

lw-Tew|* < Y —
K n p=1K'nap#o

K n+1N
<y K SN Yo 1wlleg, (6.6)

fer 1,54 F'e€,Fnayto

NlKl n+1
=2 an+1) Y 2 W,

KeT p=1E'€& E'nay+o
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Given E' € &, suppose that |[w]| achieves the maximum at point z’ and the centroid of E' is M'. Let tx denote
the tangent vector of E' from M’ to z'. Since IE, w]ds = 0 and [w] € P1(E"), this yields

i

ow
1@ = | [ [ 5o | ds| < 12 = MVl
TE
M (6.7)
n- (n-1hp
< hE’ IVWlLeo gy = —E"[VW]"LZ(E’
n|E'|z
Substituting (6.7) into (6.6) gives that
(Tl 1)2N|K| n+1 5 )
w-Hewl* <Y ————=3% Y KVl
K an(n+1) p=1 E'c& F'nay+o *
Since Vycw is a piecewise constant, the following trace inequality holds:
2|E'| 2|E'|
"[V ]"LZ(E’ - |K | ”v "LZ(Kl |K | ||V "LZ(Kz)'
Hence .
N(n-1*K|
lw-Tewl? < Y ————3% ) |VW||LZ e
ker mn+1) o 1K'na, | (
By the definition of ¢ in (6.4), there holds that
2 _ (n-1)*N*¢ 2
Iw = Tewl” < =—7——h KZ IVWI. g
T
This completes the proof. O

7 Numerical Results

7.1 The Laplace Operator

In this example, the L-shape domain Q = (0,1)%/[0.5,1]% and A(x) = 1. We compare the lower bounds provided
by the CR and GCR elements. Let A, cr be the ¢-th eigenvalues by the CR element. Carstensen and Gedickel [6]
give the guaranteed lower bounds

2
GLBy,cg = LR . (7.1)

1+ (]I,Zl + 48_1)/1(3’(:ha

By the GCR element, Theorem 4.3 and Cp = jill give the guaranteed lower bounds

GLBy,Geg = % (7.2)

1+ cerji1
Note that the modifications A¢gcr — GLBg,Ger = O(h*) in (7.2) are of higher order than Ae,cr — GLBg cr = 0(h?)
in (7.1). Table 1 and Table 2 show the results of first and 20th eigenvalues, respectively. For comparison, the
discrete eigenvalues A, p1 by the conforming P1 element are computed as upper bounds. Due to the fact that
Ver € Vier, Ae,ger is smaller than A, cr. However, the guaranteed lower bounds produced by the GCR element

are larger than those by the CR element.

7.2 General Second Elliptic Operators
In this example, let @ = (0, 1), and
2
A(x) = (Xl Tl xix )

X1x2 x5 +1
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h AR GLBi,ck  A16er GLBiger  A1,p1

0.707107 24 11.6092  21.4979 16.4175

0.353553  32.7371  24.0013  31.1326  29.4946  56.3170
0.176777  36.5336  33.1658 35.9771 35.7822  43.0976
0.088388  37.8448 36.8751 37.6910 37.6761 39.8639
0.044194  38.2993 38.0462 38.2596 38.2586  38.9633
0.022097 38.4619 383978 38.4519 38.4518  38.6918
0.011049  38.5219 38.5058 38.5194 38.5194  38.6048
0.005524  38.5446  38.5406 38.5440 38.5440  38.5754

Table 1: The first eigenvalue of L-shape domain.

h A2,cr GLB2o,cr  A20,6cr GLB2o,ccr  Az0,p1

0.353553  454.2769 75.0788  298.6560  105.7197

0.176777  307.4914 1657926  280.6304  229.3926  722.3323
0.088388  387.1673  305.0883  372.4979 360.6719  500.4567
0.044194  401.4816  375.3058  397.2255 396.1748  429.3377
0.022097  405.0899  398.0864  403.9846  403.9127  412.1292
0.011049  406.0462  404.2640 405.7671 405.7625  407.8798
0.005524  406.3103  405.8627  406.2404  406.2401  406.8021

Table 2: The 20th eigenvalue of L-shape domain.

By a direct computation, the eigenvalues of A(x) are x% + xg +land1,and|A - Ale < min{%h, 1}. The constants
in (4.1)-(4.4) are

8 8 2
Ca=1,C43=1, CA’A:min{\/1+§h,\/§}, Coo:min{g,ﬁ}

and

3’ h
To compute the guaranteed lower and upper bounds for the first eigenvalue, it does not need the mesh-size

condition in (6.2). As for the 20th eigenvalue, we compute )lg(’), . as a upper bound of 1. Since the computations
are on uniform partitions, the constants in (6.4) and (6.5) are

N=CooCiCaCyy = min{§ E}min{\jl + gh, \/5}

N
§=1, N=6, ﬁFTﬁ:&
We use the estimate of ;1 in (6.3). Let 51 ~ 0.2984. The condition in (6.2) reads
1 1

h<

= =: h].
(B1+ B2)CarA20,6er  (0.2984 + 3)4/A20,Gcr

Letp = % in Theorem 4.3. The GCR element gives the guaranteed lower bounds

A1,Ger
GLBI,GCR = . A%JGCRCih‘l 9 2h2 )
0.5]“{1 +/11,GCR]'%Y1 C‘i h? rl
and for any ¢ > 1,
Ae,Ger
GLBGer = : .
’ )Lﬁ GCRcih4 2K2 -1 2 P2 12
1+ : + 2[] h? + AE,GCRAl,GCRCAcooh

0.5/7 1 +Aeceri; C b
Table 3 and Table 4 show the results of the first and 20th eigenvalues, respectively. From Table 4, we find
that when h < 0.0110, the condition h < hy is guaranteed. Actually, when h < 0.1768, II.(IIcr E20,gcr) is already
20-dimensional and A%}c is thus a guaranteed upper bound of Ay.
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h

A16er GLB1gecr  A1,p1 A

1.4142  22.93710 0.82825

0.7071  22.73488 1.00339 39 39
0.3536  25.38568 561741  30.22432  30.68603
0.1768  26.29812  15.84612  27.52878  27.63606
0.0884  26.54494 2333235 26.85419  26.86946
0.0442  26.60805 25.80609  26.68551  26.68745
0.0221  26.62394  26.42955 26.64332  26.64356
0.0110  26.62792  26.58041  26.63277  26.63280
0.0055  26.62892 26.61720 26.63013  26.63013

Table 3: The first eigenvalue of square domain.

h

m
ha A20,6er GLBo,gcr  A20,p1 A, A%

0.3536 0.0197  236.8297 22.0631 348.5134

0.1768 0.0173  305.4755 87.9449  576.1674  620.3720  720.0317
0.0884 0.0159 362.8685  224.2311 427.1357 4243606 433.1020
0.0442 0.0156 378.9545  330.4063 394.1451 3943686 394.7023
0.0221  0.0155 383.2543  370.0130 387.0340 387.0722 387.0910
0.0110 0.0155 384.3485  380.9748 385.2930 385.2979  385.2991
0.0055 0.0155 384.6233  383.7771 384.8595 384.8601 384.8601

Table 4: The 20th eigenvalue of square domain.
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