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Abstract: A new method is proposed to provide guaranteed lower bounds for eigenvalues of general second
order elliptic operators in any dimension. This method employs a novel generalized Crouzeix–Raviart element
which is proved to yield asymptotic lower bounds for eigenvalues of general second order elliptic operators,
and a simple post-processing method. As a byproduct, a simple and cheap method is also proposed to obtain
guaranteed upper bounds for eigenvalues, which is based on generalized Crouzeix–Raviart element approxi-
mate eigenfunctions, an averaging interpolation from the generalized Crouzeix–Raviart element space to the
conforming linear element space, and an usual Rayleigh–Ritz procedure. The ingredients for the analysis con-
sist of a crucial projection property of the canonical interpolation operator of the generalized Crouzeix–Raviart
element, explicitly computable constants for two interpolation operators. Numerical experiments demon-
strate that the guaranteed lower bounds for eigenvalues in this paper are superior to those obtained by the
Crouzeix–Raviart element.
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1 Introduction

Finding eigenvalues of partial differential operators is important in themathematical science. Since exact eigen-
values are almost impossible, many papers and books investigate their bounds from above and below. It is well
known that upper bounds for the eigenvalues can always be found by the Rayleigh–Ritzmethod and conforming
subspaces. While the problem of obtaining lower bounds is generally considering more difficult. The study of
lower bounds for eigenvalues can date back to several remarkable works, including the intermediate method,
the Kato and Lehmann–Goerisch methods, and the homotopy method, see [25] for a review.

The finite elementmethod can effectively approximate eigenvalueswith a comprehensive analysis on error
estimation, see [3, 30]. Conforming finite element methods can provide upper bounds for eigenvalues. While,
some nonconforming finite element methods can give lower bounds of eigenvalues directly when the meshsize
is sufficiently small, see [15, 33]. In [15], Hu, Huang and Lin gave a comprehensive survey of the lower bound
property of eigenvalues by nonconforming finite element methods and proposed a systematic method that can
produce lower bounds for eigenvalues by using nonconforming finite element methods. The theories [15] were
limited to asymptotic analysis and it is not easy to check when the meshsize is small enough in practice. Follow-
ing the theory of [21, 30], Liu and Oishi [26] proposed guaranteed lower bounds for eigenvalues of the Laplace
operator in the two dimensions. Themain tool therein is an explicit a priori error estimation for the conforming
linear element projection. However, for singular eigenfunctions, it needs to compute the explicit a priori error
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estimation by solving an auxiliary problem. Moreover, it is difficult to generalize the idea therein to general
second order elliptic operators. Similar guaranteed lower bounds for eigenvalues of both Laplace and bihar-
monic operators in two dimensions were given by Carstensen et al., see [5, 6], through using the nonconforming
Crouzeix–Raviart andMorley elements, respectively. Liu [24] proposed an idea to give guaranteed lower bounds
for self-adjoint differential operators and dropped the mesh size condition used in [5, 6]. The generalization to
any dimensions can be found in [16]. Recently, some direct lower bounds are obtained by hybrid high-order
methods, stabilized nonconforming finite elements and weak Galerkin methods, see [4, 7–11].

The aim of this paper is to propose new methods which are able to obtain both guaranteed lower and
upper bounds for eigenvalues of general second order elliptic operators in any dimension. The method for
guaranteed lower bounds is derived from asymptotic lower bounds for eigenvalues produced by a generalized
Crouzeix–Raviart (GCR hereafter) element proposed herein, and a simple post-processing method. Unlike most
methods in the literature, this newmethod only needs to solve one discrete eigenvalue problem but not involves
any base or intermediate eigenvalue problems, and does not need any a priori information concerning exact
eigenvalues either. The method can be regarded as an extension to the general second order elliptic operators
in any dimension of those due to [26] and [5, 6]. The new method has higher accuracy than those from [26]
and [6, 16], see comparisons in Section 7.1. Moreover, this paper drops the mesh-size conditions in [16, Theorem
3.1] for variable coefficients. The approach for guaranteed upper bounds is based on asymptotic upper bounds
which are obtained by a postprocessing method firstly proposed in [18, 29], see also [32], and a Rayleigh–Ritz
procedure. Compared with [27], this new method does not need to solve an eigenvalue or source problem by
a conforming finite element method. The ingredients for the analysis consist of a crucial projection property of
the canonical interpolation operator of the GCR element, explicitly computable constants for two interpolation
operators. Numerical experiments demonstrate that the guaranteed lower bounds for eigenvalues in this paper
are superior to those obtained by the Crouzeix–Raviart element [6].

The remaining paper is organized as follows. Section 2 proposes the GCR element. Section 3 proves asymp-
totic lower bounds for eigenvalues. Section 4 presents the guaranteed lower bounds for eigenvalues of general
elliptic operators. Section 5 provides asymptotic upper bounds for eigenvalues. Section 6 designs guaranteed
upper bounds for eigenvalues. Section 7 will give some numerical tests.

2 Preliminaries

In this section, we present second order elliptic boundary value and eigenvalue problems and propose a gen-
eralized Crouzeix–Raviart element for them. Throughout this paper, let Ω ⊂ ℝn denote a bounded polyhedral
Lipschitz domain.

2.1 Second Order Elliptic Boundary Value and Eigenvalue Problems

Given f ∈ L2(Ω), second order elliptic boundary value problems find u ∈ H1
0(Ω) such that

(A∇u, ∇v)L2(Ω) = (f, v)L2(Ω) for any v ∈ H1
0(Ω). (2.1)

Here, A is a matrix-valued function on Ω and satisfies

(q, q)L2(Ω) ≲ (Aq, q)L2(Ω) for any q ∈ (L2(Ω))n ,

where p ≲ q abbreviates p ≤ Cq for some multiplicative mesh-size independent constant C > 0 which may be
different at different places. Define

‖∇v‖A := (A∇v, ∇v)
1
2
L2(Ω) .

Hence ‖∇ ⋅ ‖A is a norm ofH1
0(Ω). Thematrix A(x) is supposed to be symmetric for all x ∈ Ω and each component

of A is piecewise Lipschitz continuous on each subdomain of domain Ω.
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Second order elliptic eigenvalue problems find (λ, u) ∈ ℝ × H1
0(Ω) such that

(A∇u, ∇v)L2(Ω) = λ(u, v)L2(Ω) for any v ∈ H1
0(Ω) and ‖u‖ := ‖u‖L2(Ω) = 1. (2.2)

Problem (2.2) has a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ ⋅ ⋅ ⋅ ↗ +∞,

and corresponding eigenfunctions
u1 , u2 , u3 , . . . ,

which can be chosen to satisfy
(ui , uj)L2(Ω) = δij , i, j = 1, 2, . . . .

Define
Eℓ = span{u1 , u2 , . . . , uℓ}. (2.3)

Eigenvalues and eigenfunctions satisfy the following well-known Rayleigh–Ritz principle:

λk = min
dim Vk=k,Vk⊂H1

0(Ω)
max
v∈Vk

(A∇v, ∇v)L2(Ω)
(v, v)L2(Ω)

= max
u∈Ek

(A∇u, ∇u)L2(Ω)
(u, u)L2(Ω)

. (2.4)

2.2 The Generalized Crouzeix–Raviart Element

Suppose that Ω is covered exactly by shape-regular partitions T consisting of n-simplices in n dimensions. Let
E denote the set of all (n − 1)-dimensional subsimplices, and E(Ω) denote the set of all the (n − 1)-dimensional
interior subsimplices, and E(∂Ω) denote the set of all the (n − 1)-dimensional boundary subsimplices. Given
K ∈ T, hK denotes the diameter of K and h := maxK∈T hK . Let |K| denote the measure of element K and |E| the
measure of (n − 1)-dimensional subsimplex E. Given E ∈ E, let νE be its unit normal vector and let [ ⋅ ] be jumps
of piecewise functions over E, namely

[v] := v|K+ − v|K−

for piecewise functions v and any two elements K+ and K− which share the common (n − 1)-dimensional sub-
simplex E. Note that [ ⋅ ] becomes traces of functions on E for boundary subsimplex E.

Given K ∈ T and an integerm ≥ 0, let Pm(K) denote the space of polynomials of degree≤ m over K. The sim-
plest nonconforming finite element for problem (2.1) is the Crouzeix–Raviart (CR hereafter) element proposed
in [14]. The corresponding element space VCR over T is defined by

VCR := {v ∈ L2(Ω) : v|K ∈ P1(K) for each K ∈ T , ∫
E

[v] ds = 0 for all E ∈ E(Ω)

and ∫
E

v dE = 0 for all E ∈ E(∂Ω)}.

Since the CR element cannot be proved to produce lower bounds for eigenvalues of the Laplace operator on
general meshes when eigenfunctions are smooth, see [1, 17]. Hu, Huang and Lin [15] proposed the enriched
Crouzeix–Raviart (ECR hereafter) element which was proved to produce lower bounds for eigenvalues of the
Laplace operator in the asymptotic sense. The asymptotic expansions of eigenvalues for the ECR element were
established in [19]. The ECR element space VECR is defined by

VECR := {v ∈ L2(Ω) : v|K ∈ P1(K) + span{
n
∑
i=1
x2i} for each K ∈ T , ∫

E

[v] ds = 0 for all E ∈ E(Ω)

and ∫
E

v ds = 0 for all E ∈ E(∂Ω) }.
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However, the ECR element cannot produce lower bounds for eigenvalues of general second order elliptic
operators, which motivates us to generalize the ECR element to more general cases. To this end, let Ā be a piece-
wise positive-definite constant matrix with respect to T, which is an approximation of A. For example, we can
choose Ā|K to be equal to the value of A at the centroid of K or the integral mean on K. Suppose

Ā|K =(

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n
...

...
. . .

...
an1 an2 ⋅ ⋅ ⋅ ann

) . (2.5)

Let B̄ denote the inverse of Ā as follows:

B̄|K = Ā−1|K =(

b11 b12 ⋅ ⋅ ⋅ b1n
b21 b22 ⋅ ⋅ ⋅ b2n
...

...
. . .

...
bn1 bn2 ⋅ ⋅ ⋅ bnn

) . (2.6)

The centroid of K is denoted by mid(K). The coordinate of mid(K) is denoted by (M1 ,M2 , . . . ,Mn). The vertices
of K are denoted by ap = (x1p , x2p , . . . , xnp), 1 ≤ p ≤ n + 1. Define

H =
n
∑
i=1
bii ∑

p<q
(xip − xiq)2 + 2∑

i<j
bij ∑

p<q
(xip − xiq)(xjp − xjq)

and
ϕK =

n + 2
2 −

n(n + 1)2(n + 2)
2H (x −mid(K))T B̄|K (x −mid(K)) . (2.7)

For two dimensions, the constant H and function ϕK are presented as follows, respectively:

H = b11 ∑
p<q
(x1p − x1q)2 + b22 ∑

p<q
(x2p − x2q)2 + 2b12 ∑

p<q
(x1p − x1q)(x2p − x2q) (2.8)

and
ϕK = 2 −

36
H (b11(x1 − M1)2 + b22(x2 − M2)2 + 2b12(x1 − M1)(x2 − M2)). (2.9)

Lemma 2.1. Given K ∈ T, there holds that
1
|K| ∫

K

ϕKdx = 1.

Moreover, for any (n − 1)-dimensional subsimplex E ⊂ ∂K, there holds that

∫
E

ϕK ds = 0.

Proof. Let θj = θj(x), 1 ≤ j ≤ n + 1, denote the barycentric coordinates of K associated to vertex aj . For any
integers αj ≥ 0, 1 ≤ j ≤ n + 1, one has

∫
K

θα11 θ
α2
2 ⋅ ⋅ ⋅ θ

αn+1
n+1 dx =

α1!α2! ⋅ ⋅ ⋅ αn+1!n!
(α1 + α2 + ⋅ ⋅ ⋅ + αn+1 + n)!

|K|.

This leads to

∫
K

(xi − Mi)(xj − Mj) dx = ∫
K

n+1
∑
p=1
(θp −

1
n + 1)xip

n+1
∑
q=1
(θq −

1
n + 1)xjq dx

=
|K|

(n + 1)2(n + 2)
(
n+1
∑
p=1

nxipxjp − ∑
p ̸=q

xipxjq)

=
|K|

(n + 1)2(n + 2)
∑
p<q
(xip − xiq)(xjp − xjq).
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By the definition of ϕK in (2.7), this yields

1
|K| ∫

K

ϕK dx =
n + 2
2 −

1
|K|

n(n + 1)2(n + 2)
2H

|K|
(n + 1)2(n + 2)

n
∑
i,j=1
∑
p<q

bij(xip − xiq)(xjp − xjq)

=
n + 2
2 −

n
2H H

= 1.

Given an (n − 1)-dimensional subsimplex E ⊂ ∂K such that θ1|E ≡ 0. A similar equality holds

∫
E

θα22 ⋅ ⋅ ⋅ θ
αn+1
n+1 ds =

α2! ⋅ ⋅ ⋅ αn+1!(n − 1)!
(α2 + ⋅ ⋅ ⋅ + αn+1 + n − 1)!

|E|.

A direct calculation yields

∫
E

(xi − Mi)(xj − Mj) ds = ∫
E

(−
xi1
n + 1 +

n+1
∑
p=2
(θp −

1
n + 1)xip)(−

xj1
n + 1 +

n+1
∑
q=2
(θq −

1
n + 1)xjq) ds

=
|E|

n(n + 1)2
(
n+1
∑
p=1

nxipxjp − ∑
p ̸=q

xipxjq)

=
|E|

(n + 1)2(n + 2)
∑
p<q
(xip − xiq)(xjp − xjq).

This shows that
∫
E

ϕK ds =
n + 2
2 |E| −

n(n + 1)2(n + 2)
2H

|E|
n(n + 1)2

H = 0,

which completes the proof.

Lemma 2.1 allows for the definition of the following bubble function space:

VB := {v ∈ L2(Ω) : v|K ∈ span{ϕK} for all K ∈ T}.

The GCR element space VGCR is then defined by

VGCR := VCR + VB . (2.10)

If A(x) ≡ 1, then bij = δij , H = ∑p<q |ap − aq|2 and

ϕK =
n + 2
2 −

n(n + 1)2(n + 2)
2H

n
∑
i=1
(xi − Mi)2 ∈ ECR(K).

Hence, in this case, VGCR = VECR. The GCR element has the following important property.

Lemma 2.2. Given v ∈ VGCR, Ā∇v ⋅ νE is a constant on E for all E ∈ E.

Proof. Given E ∈ E, x ⋅ νE is a constant on E. The fact that B̄ is the inverse of Ā, (2.7) and (2.10) imply that Ā∇v ⋅ νE
is a constant on E.

2.3 The GCR Element for Second Order Elliptic Boundary Value Problems

The generalized Crouzeix–Raviart element method of problem (2.1) finds uGCR ∈ VGCR such that

(A∇NCuGCR , ∇NCv)L2(Ω) = (f, v)L2(Ω) for any v ∈ VGCR . (2.11)

Since ∫E[v] ds = 0 for all E ∈ E(Ω) and ∫E v ds = 0 for all E ∈ E(∂Ω). From the theory of [20], there holds that

‖∇NC(u − uGCR)‖ ≲ ‖∇u − Π0∇u‖ + osc(f),
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where Π0 denotes the piecewise constant projection, and the oscillation of data reads

osc(f) = ( ∑
K∈T

h2K( inf
̄f∈Pr(K)
‖f − ̄f ‖2L2(K)))

1
2

with arbitrary r ≥ 0. The optimal convergence of the GCR element follows immediately.

Remark 2.3. Thanks to the definition of (2.10), uGCR can be written as uGCR = uCR + uB, where uCR ∈ VCR and
uB ∈ VB. When A is a piecewise constant matrix-valued function, an integration by parts yields the following
orthogonality:

(A∇uCR , ∇ϕK)L2(K) = (− div(A∇uCR), ϕK)L2(K) + ∑
E⊂∂K
∫
E

A∇uCR ⋅ νEϕK ds = 0. (2.12)

This leads to
(A∇uB , ∇ϕK)L2(K) = (f, ϕK)L2(K) for any K ∈ T (2.13)

and
(A∇NCuCR , ∇NCv)L2(Ω) = (f, v)L2(Ω) for any v ∈ VCR . (2.14)

Consequently, uCR is the discrete solution of problem (2.1) by the CR element. Hencewe can solve theGCRelement
equation (2.11) by solving (2.13) on each K and (2.14) for the CR element, respectively. For general cases, the
orthogonality (2.12) does not hold. However, uB can be eliminated a prior by a static condensation procedure.

2.4 The GCR Element for Second Order Elliptic Eigenvalue Problems

We consider the discrete eigenvalue problem: Find (λGCR , uGCR) ∈ ℝ × VGCR such that

(A∇NCuGCR , ∇NCv)L2(Ω) = λGCR(uGCR , v)L2(Ω) for any v ∈ VGCR and ‖uGCR‖ = 1. (2.15)

Let Z = dim VGCR. The discrete problem (2.15) admits a sequence of discrete eigenvalues

0 < λ1,GCR ≤ λ2,GCR ≤ ⋅ ⋅ ⋅ ≤ λZ,GCR

and the corresponding eigenfunctions

u1,GCR , u2,GCR , . . . , uZ,GCR .

Define the discrete counterpart of Eℓ by

Eℓ,GCR = span{u1,GCR , u2,GCR , . . . , uℓ,GCR}. (2.16)

Then we have the following discrete Rayleigh–Ritz principle:

λk,GCR = min
dim Vk=k,Vk⊂VGCR

max
v∈Vk

(A∇NCv, ∇NCv)L2(Ω)
(v, v)L2(Ω)

= max
u∈Ek,GCR

(A∇NCu, ∇NCu)L2(Ω)
(u, u)L2(Ω)

. (2.17)

According to the theory of nonconforming eigenvalue approximations [2, 15], the following a priori estimate
holds true.

Lemma 2.4. Let u be eigenfunctions of problem (2.2) and let uGCR be discrete eigenfunctions of problem (2.4).
Suppose u ∈ H1

0(Ω) ∩ H1+s(Ω) with 0 < s ≤ 1. Then

‖u − uGCR‖ + hs‖∇NC(u − uGCR)‖A ≲ h2s|u|1+s . (2.18)

We introduce the interpolation operator ΠGCR : H1
0(Ω) → VGCR by

∫
E

ΠGCRv ds = ∫
E

v ds for any E ∈ E,

∫
K

ΠGCRv dx = ∫
K

v dx for any K ∈ T .
(2.19)
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Given w ∈ VGCR, an integration by parts yields

(Ā∇NC(v − ΠGCRv), ∇NCw)L2(Ω) = −(v − ΠGCRv, divNC(Ā∇NCw))L2(Ω) + ∑
K∈T
∑
E⊂∂K
∫
E

(v − ΠGCRv)Ā∇w ⋅ νE ds.

Since divNC(Ā∇NCw) is a piecewise constant on Ω and Lemma 2.2 proves that Ā∇w ⋅ νE is a constant on the
(n − 1)-dimensional subsimplex E, for any v ∈ H1

0(Ω), the following orthogonality holds true:

(Ā∇NC(v − ΠGCRv), ∇NCw)L2(Ω) = 0 for any w ∈ VGCR . (2.20)

This orthogonality is important in providing lower bounds for eigenvalues, see more details in the following
two sections. Moreover, this yields

‖∇NCΠGCRv‖2Ā + ‖∇NC(v − ΠGCRv)‖2Ā = ‖∇v‖
2
Ā . (2.21)

3 Asymptotic Lower Bounds for Eigenvalues

We assume A is a piecewise constant matrix-valued function in this section. Following the theory of [15], we
prove that the eigenvalues produced by the GCR element are lower bounds when the meshsize is small enough.

Let (λ, u) and (λGCR , uGCR) be solutions of (2.2) and (2.15), respectively. First, note that u − ΠGCRu has vanish-
ing mean on each K ∈ T. It follows from the Poincaré inequality that

‖u − ΠGCRu‖ ≲ h‖∇NC(u − ΠGCRu)‖.

Suppose u ∈ H1+s(Ω), 0 < s ≤ 1. Following from the usual interpolation theory, there holds

‖u − ΠGCRu‖ ≲ h1+s|u|1+s . (3.1)

Theorem 3.1. Suppose that A is a piecewise constant matrix-valued function. Assume that u ∈ H1
0(Ω) ∩ H1+s(Ω)

with 0 < s ≤ 1 and that h2s ≲ ‖∇NC(u − uGCR)‖2A . Then

λGCR ≤ λ,

provided that h is small enough.

Proof. Since A is a piecewise constant matrix-valued function, A = Ā, and Ā in (2.20) can be replaced by A. Due
to (2.20), an elementary argument as in [1, Lemma 2.2] and [15, 34] proves

λ − λGCR = ‖∇NC(u − uGCR)‖2A − λGCR‖ΠGCRu − uGCR‖2 + λGCR(‖ΠGCRu‖2 − ‖u‖2). (3.2)

The triangle inequality, (2.18) and (3.1) yield

λGCR‖ΠGCRu − uGCR‖2 ≲ h4s + h2+2s ≲ h4s .

An algebraic identity and the definition of the interpolation operator ΠGCR from (2.19) show

λGCR (‖ΠGCRu‖2 − ‖u‖2) = λGCR(ΠGCRu − u, ΠGCRu + u)L2(Ω)
= λGCR(ΠGCRu − u, ΠGCRu + u − Π0(ΠGCRu + u))L2(Ω)
≲ h‖ΠGCRu − u‖‖∇NC(ΠGCRu + u)‖
≲ h2+s .

The above two estimates and the saturation condition h2s ≲ ‖∇NC(u − uGCR)‖2A imply that the second and third
terms on the right-hand of (3.2) are of higher order than the first term. This completes the proof.

Remark 3.2. Hu, Huang and Lin analyzed the saturation condition in [15]. If the eigenfunctions u ∈ H1+s(Ω)
with 0 < s < 1, it was proved that there exist meshes such that the saturation condition hs ≲ ‖∇NC(u − uGCR)‖A
holds. In the following lemmas, we will prove the saturation condition h ≲ ‖∇NC(u − uGCR)‖A provided that
u ∈ H2(Ω). For simplicity, we prove it in two dimensions for the GCR element.
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Lemma 3.3. Given 0 ̸= u ∈ H1
0(Ω) ∩ H2(Ω), for any triangulation T, there holds that

∑
K∈T
(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2u
∂x21
−
b11
b22

∂2u
∂x22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∂2u
∂x1∂x2

−
b12
b11

∂2u
∂x21

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
) > 0. (3.3)

Proof. If (3.3) would not hold, then, for any K ∈ T, ‖ ∂2u∂x21
− b11b22

∂2u
∂x22
‖L2(K) = 0. Since B̄|K is positive-definite, we have

bii > 0, i = 1, 2. Hence u should be of the form

u|K(x1 , x2) = ϕ(x1 − √
b22
b11

x2) + ψ(x1 + √
b22
b11

x2),

where ϕ( ⋅ ) and ψ( ⋅ ) are two univariate functions. Since ‖ ∂2u
∂x1∂x2 −

b12
b11

∂2u
∂x21
‖L2(K) = 0, we have

(√b11b22 + b12)ϕ󸀠󸀠(x1 − √
b22
b11

x2) = (√b11b22 − b12)ψ󸀠󸀠(x1 + √
b22
b11

x2).

This yields ϕ󸀠󸀠 = √b11b22−b12√b11b22+b12
ψ󸀠󸀠 ≡ C for some constant C. It is straightforward to derive that

u|K = c0 + c1(x1 − √
b22
b11

x2) + c2(x1 − √
b22
b11

x2)
2
+ c3(x1 + √

b22
b11

x2) +
√b11b22 + b12
√b11b22 − b12

c2(x1 + √
b22
b11

x2)
2

= c0 + c1(x1 − √
b22
b11

x2) + c3(x1 + √
b22
b11

x2) +
2c2√b22

√b11(√b11b22 − b12)
(b11x21 + b22x

2
2 + 2b12x1x2)

for some interpolation parameters c0 , c1 , c2 , c3. Furthermore, since b11b22 − b212 > 0, b11x
2
1 + b22x

2
2 + 2b12x1x2

cannot be a linear function on any one-dimensional subsimplex of K. The homogenous boundary condition and
the continuity indicate that u ∈ VCR ∩ H1

0(Ω) ∩ H2(Ω). This implies u ≡ 0, which contradicts with u ̸= 0.

Remark 3.4. When the domain is a rectangle, the saturation condition was analyzed in [15]. The theory of [23]
does not cover both the ECR and GCR elements, see Corollary 3.3 therein.

In order to achieve the desired result, we shall use the operator defined in [15]. Given any K ∈ T, define
J2,Kv ∈ P2(K) by

∫
K

∇p J2,Kv dx = ∫
K

∇pv dx, p = 0, 1, 2,

for any v ∈ H2(K). Note that the operator J2,K is well defined. Since ∫K ∇
p(v − J2,Kv) dx = 0 with p = 0, 1, 2, there

holds that
‖∇p1 (v − J2,K)v‖L2(K) ≲ h

p2−p1
K ‖∇

p2 (v − J2,K)v‖L2(K) for any 0 ≤ p1 ≤ p2 ≤ 2. (3.4)

Finally, define the global operator J2 by

J2|K = J2,K for any K ∈ T . (3.5)

It follows from the definition of J2,K in (3.5) that

∇2J2,Kv = Π0∇2v.

Since piecewise constant functions are dense in the space L2(Ω), it follows that

‖∇2NC(v − J2v)‖ → 0 when h → 0. (3.6)

Lemma 3.5. Suppose that A is a piecewise constant matrix-valued function. Suppose that u ∈ H1
0(Ω) ∩ H2(Ω).

There holds the following saturation condition:

h ≲ ‖∇NC(u − uGCR)‖A .

Proof. Since A is piecewise constant, when h is small enough, for any K ∈ T, A|K is constant. According to
Lemma 3.3, there exists constant α > 0 such that

α < ∑
K∈T
(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2u
∂x21
−
b11
b22

∂2u
∂x22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∂2u
∂x1∂x2

−
b12
b11

∂2u
∂x21

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
).
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The fact that uGCR ∈ VGCR plus (2.9) and (2.10) yield that

∑
K∈T
(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2uGCR
∂x21
−
b11
b22

∂2uGCR
∂x22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2uGCR
∂x1∂x2

−
b12
b11

∂2uGCR
∂x21

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
) = 0.

Let J2 be defined as in (3.5). It follows from the triangle inequality and the piecewise inverse estimate that

α < ∑
K∈T
(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2(u − uGCR)

∂x21
−
b11
b22

∂2(u − uGCR)
∂x22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2(u − uGCR)
∂x1∂x2

−
b12
b11

∂2(u − uGCR)
∂x21

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
)

≤ 2 ∑
K∈T
(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2(u − J2u)

∂x21
−
b11
b22

∂2(u − J2u)
∂x22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2(u − J2u)
∂x1∂x2

−
b12
b11

∂2(u − J2u)
∂x21

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2(J2u − uGCR)

∂x21
−
b11
b22

∂2(J2u − uGCR)
∂x22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂2(J2u − uGCR)

∂x1∂x2
−
b12
b11

∂2(J2u − uGCR)
∂x21

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)
)

≲ ‖∇2NC(u − J2u)‖
2 + h−2‖∇NC(J2u − uGCR)‖2 .

The estimate of (3.4) and the triangle inequality lead to

1 ≲ ‖∇2NC(u − J2u)‖
2 + h−2‖∇NC(u − uGCR)‖2 .

Finally, it follows from (3.6) that
h2 ≲ ‖∇NC(u − uGCR)‖2

when the meshsize is small enough, which completes the proof.

4 Guaranteed Lower Bounds for Eigenvalues

In practice, it is not easy to check whether the meshsize h is small enough in Theorem 3.1. In this section, we
propose a new method to provide guaranteed lower bounds for eigenvalues. We follow the idea of [26] and
[5, 6] and generalize it to general second order elliptic operators. The mesh-size conditions in [16, Theorem 3.1]
for variable coefficients are dropped in this paper. We first present some constants about the matrix-valued
function A, which might be depend on h. Define Vh := H1

0(Ω) + VGCR. For any v ∈ Vh , there exist CA , CĀ , CĀ,A
and C∞ such that

‖∇NCv‖ ≤ CA‖∇NCv‖A , (4.1)
‖∇NCv‖ ≤ CĀ‖∇NCv‖Ā , (4.2)
‖∇NCv‖Ā ≤ CĀ,A‖∇NCv‖A , (4.3)

‖(A − Ā)∇NCv‖ ≤ C∞h‖∇NCv‖. (4.4)

Define η := C∞CĀCACĀ,A .
The following Poincaré inequality can be found in [12].

Lemma 4.1. Given K ∈ T, let w ∈ H1(K) be a function with vanishing mean. Then

‖w‖L2(K) ≤
hK
π ‖∇w‖L

2(K) .

Remark 4.2. Let j1,1 = 3.8317059702 be the first positive root of the Bessel function of the first kind. In two
dimensions, the following improved Poincaré inequality holds from [22]:

‖w‖L2(K) ≤
hK
j1,1
‖∇w‖L2(K) .

Lemma 4.1, Remark 4.2 and the second equation of (2.19) show that, for any v ∈ H1(K), there holds that

‖v − ΠGCRv‖L2(K) ≤ CPhK‖∇(v − ΠGCRv)‖L2(K) (4.5)

with CP = j−11,1 for n = 2 and CP = π−1 for n > 2. The following theorem provides the guaranteed lower bounds
for eigenvalues. The proof adopts the techniques in [24, Theroem 2.1] to avoid mesh-size conditions.



872  J. Hu and R. Ma, Guaranteed Lower and Upper Bounds

Theorem 4.3. Let λℓ and λℓ,GCR be the ℓ−th eigenvalues of (2.2) and (2.15), respectively. Then there holds that

λ1,GCR

1 + λ21,GCRC
4
PC

4
Ah4

β+λ1,GCRC2PC
2
Ah2
+ η

2h2
1−β

≤ λ1 , (4.6)

and for any 0 < β < 1,

λℓ,GCR

1 + λ2ℓ,GCRC
4
PC

4
Ah4

β+λℓ,GCRC2PC
2
Ah2
+ η

2h2
1−β + λℓ,GCRλ

−1
1,GCRC

2
AC

2
∞h2
≤ λℓ for any ℓ > 1 (4.7)

Proof. Since ‖ ⋅ ‖ is compact inVh with respect to ‖∇NC ⋅ ‖A (see [31]), resulting from the argument of compactness
(see e.g. [2]), there exist 0 < λ̄1 ≤ λ̄2 ≤ ⋅ ⋅ ⋅ such that

λ̄ℓ = min
dimVℓ=ℓ,Vℓ⊂Vh

max
v∈Vℓ

(A∇NCv, ∇NCv)L2(Ω)
(v, v)L2(Ω)

= max
dimW=ℓ−1,W⊂Vh

min
v∈W⊥

(A∇NCv, ∇NCv)L2(Ω)
(v, v)L2(Ω)

,
(4.8)

where W⊥ denotes the orthogonal complement of W in Vh with respect to (A∇NC ⋅ , ∇NC ⋅ ). Since H1
0(Ω) ⊂ Vh ,

λℓ ≥ λ̄ℓ due to the Rayleigh–Ritz principle. Further, by choosingW in (4.8) as Eℓ−1,GCR (see (2.16)), a lower bound
for λℓ is obtained:

λℓ ≥ λ̄ℓ ≥ min
v∈E⊥ℓ−1,GCR

(A∇NCv, ∇NCv)L2(Ω)
(v, v)L2(Ω)

. (4.9)

Let E⊥,hℓ−1,GCR denote the orthogonal complement of Eℓ−1,GCR in VGCR with respect to (A∇NC⋅, ∇NC ⋅ ), i.e.,

VGCR = Eℓ−1,GCR ⊕ E⊥,hℓ−1,GCR .

For any v ∈ E⊥ℓ−1,GCR with ‖v‖ = 1, the following decomposition holds:

v = ΠGCRv + (v − ΠGCRv) = (w1 + w2) + (v − ΠGCRv) (4.10)

with w1 ∈ Eℓ−1,GCR , w2 ∈ E⊥,hℓ−1,GCR and satisfying

(w1 , w2)L2(Ω) = (A∇NCw1 , ∇NCw2)L2(Ω) = 0.

This and (2.20) lead to

(A∇NCw1 , ∇NCw1)L2(Ω) = (A∇NCΠGCRv, ∇NCw1)L2(Ω)
= (Ā∇NCΠGCRv, ∇NCw1)L2(Ω) + ((A − Ā)∇NCΠGCRv, ∇NCw1)L2(Ω)
= (Ā∇NCv, ∇NCw1)L2(Ω) + ((A − Ā)∇NCΠGCRv, ∇NCw1)L2(Ω) .

Moreover, since w1 ∈ Eℓ−1,GCR , v ∈ E⊥ℓ−1,GCR, a combination with assumptions of A in (4.1) and (4.4) shows

(A∇NCw1 , ∇NCw1)L2(Ω) = ((Ā − A)∇NC(v − ΠGCRv), ∇NCw1)L2(Ω)
≤
󵄩󵄩󵄩󵄩󵄩(A − Ā)∇NCv

󵄩󵄩󵄩󵄩󵄩 ‖∇NCw1‖

≤ CAC∞h‖∇NCv‖A‖∇NCw1‖A .

It follows from (2.17) that w1 satisfies

‖w1‖ ≤ λ
− 12
1,GCR‖∇NCw1‖A ≤ λ

− 12
1,GCRCAC∞h‖∇NCv‖A . (4.11)

As for w2 ∈ E⊥,hℓ−1,GCR,
‖w2‖ ≤ λ

− 12
ℓ,GCR‖∇NCw2‖A ≤ λ

− 12
ℓ,GCR‖∇NCΠGCRv‖A . (4.12)

An elementary manipulation yields the following decomposition:

‖∇v‖2A = ‖∇NC(v − ΠGCRv)‖2A + ‖∇NCΠGCRv‖2A + 2(A(∇NC(v − ΠGCRv), ∇NCΠGCRv)L2(Ω) . (4.13)
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For the first term of (4.13), it follows from (4.1) and (4.5) that

‖∇NC(v − ΠGCRv)‖2A ≥
1

C2PC
2
Ah2
‖v − ΠGCRv‖2 . (4.14)

The second term of (4.13) can be analyzed by (4.12) and (4.11) as

‖∇NCΠGCRv‖2A ≥ λℓ,GCR‖w2‖2

= λℓ,GCR(‖v − ΠGCRv‖2 + ‖v‖2 − 2(v − ΠGCRv, v)L2(Ω) − ‖w1‖2)

≥ λℓ,GCR(‖v − ΠGCRv‖2 + ‖v‖2 − 2(v − ΠGCRv, v)L2(Ω) − λ−11,GCRC
2
AC

2
∞h2‖∇NCv‖2A).

(4.15)

By the second equation of (2.19), we have

2(v − ΠGCRv, v)L2(Ω) = 2(v − ΠGCRv, v − Π0v)L2(Ω) .

Since∫K Π0v dx = ∫K v dx, the same estimate of (4.5) holds true for Π0. This, (4.1) and the Young inequality reveal
for any δ1 > 0 that

2(v − ΠGCRv, v − Π0v)L2(Ω) ≤ 2‖v − ΠGCRv‖‖v − Π0v‖ ≤ 2CPh‖v − ΠGCRv‖‖∇v‖
≤ 2CPCAh‖v − ΠGCRv‖‖∇NCv‖A

≤ C2PC
2
Ah

2δ1‖v − ΠGCRv‖2 +
1
δ1
‖∇NCv‖2A .

The third term of (4.13) has the following decomposition:

2(A(∇NC(v − ΠGCRv), ∇NCΠGCRv)L2(Ω) = 2(Ā(∇NC(v − ΠGCRv), ∇NCΠGCRv)L2(Ω)
+ 2((A − Ā)∇NC(v − ΠGCRv), ∇NCΠGCRv)L2(Ω) .

(4.16)

Thanks to (2.20), the first term in the above equation equals zero. It remains to estimate the second term, which
can be estimated by (4.1)–(4.4), (2.21) and the Young inequality that

2((A − Ā)∇NC(v − ΠGCRv), ∇NCΠGCRv)L2(Ω) ≤ 2CĀ‖(A − Ā)∇NC(v − ΠGCRv)‖‖∇NCΠGCRv‖Ā
≤ 2CĀC∞h‖∇NC(v − ΠGCRv)‖‖∇NCv‖Ā
≤ 2ηh‖∇NC(v − ΠGCRv)‖A‖∇NCv‖A

≤ δ2‖∇NC(v − ΠGCRv)‖2A +
η2h2

δ2
‖∇NCv‖2A ,

where η = C∞CĀCACĀ,A and δ2 > 0 is arbitrary. By substituting (4.14)–(4.16) into (4.13), we obtain, for any
0 < β < 1, that

λℓ ≥ ‖∇NCv‖2A ≥ (
β

C2PC
2
Ah2
+ λℓ,GCR − λℓ,GCRC2PC

2
Ah

2δ1)‖v − ΠGCRv‖2 + (1 − β − δ2)‖∇NC(v − ΠGCRv)‖2A

− (
λℓ,GCR
δ1
+
η2h2

δ2
+ λℓ,GCRλ−11,GCRC

2
AC

2
∞h2)‖∇NCv‖2A + λℓ,GCR‖v‖

2 .

Let δ1 =
β+λℓ,GCRC2PC

2
Ah2

λℓ,GCRC4PC
4
Ah4

, δ2 = 1 − β. This yields

0 ≤ ‖󳶋NCv‖2A(1 +
λℓ,GCR
δ1
+
η2h2

δ2
+ λℓ,GCRλ−11,GCRC

2
AC

2
∞h2) − λℓ,GCR‖v‖2

≤ λℓ(1 +
λℓ,GCR
δ1
+
η2h2

δ2
+ λℓ,GCRλ−11,GCRC

2
AC

2
∞h2) − λℓ,GCR .

This concludes (4.7). As for ℓ = 1, it follows from the fact that w1 = 0, one can easily prove (4.6).

Remark 4.4. When A is a piecewise constant matrix-valued function, (4.7) yields

λℓ,GCR

1 + λ2ℓ,GCRC
4
PC

4
Ah4

1+λℓ,GCRC2PC
2
Ah2

≤ λℓ . (4.17)
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For the Laplace operator in two dimensions considered in [6], as we shall find in Section 7, the guaranteed
lower bounds of this paper are more accurate than those from [6] by the CR element numerically, see (7.1)
below. On uniform triangulations, this can be proven asymptotically for sufficiently smooth eigenfunctions by
using the asymptotic expansions of the eigenvalues by the CR and ECR elements from [19]. Recall the expansions
[19, Theorems 3.14 and 4.4] as follows:

λ − λCR = J −
λ2

144H
2 + O(h4|ln h||u|2H4(Ω)), (4.18)

λ − λECR = J + O(h4|ln h||u|2H4(Ω)) (4.19)

with H = ∑p<q(x1p − x1q)2 + ∑p<q(x2p − x2q)2 as in (2.8) and

J = h2(
γ11RT
4 ‖∂x1x1u − ∂x2x2u‖

2 + γ22RT‖∂x1x2u‖
2 + γ12RT ∫

Ω

(∂x1x1u − ∂x2x2u)∂x1x2u dx),

and see other notation γ11RT , γ
12
RT , γ

22
RT in [19]. The guaranteed lower bounds

λℓ,CR
1+(j−21,1+48−1)λℓ,CRh2

by the CR element
from [6], (4.18) and H ≤ 3h2 show

λℓ −
λℓ,CR

1 + (j−21,1 + 48−1)λℓ,CRh2
= J −

λ2ℓ
144H

2 + λ2ℓ,CR(j
−2
1,1 + 48

−1)h2 + O(h4)

≥ J −
λ2ℓ
48h

2 + λ2ℓ(j
−2
1,1 + 48

−1)h2 + O(h4)

≥ J + λ2ℓ j
−2
1,1h

2 + O(h4).

(4.20)

For the Laplace operator, the GCR element is the ECR element as mentioned in Section 2.2. The guaranteed lower
bounds (4.17) by the GCR element from (4.17) with CP = j−11,1 , CA = 1 and (4.19) show

λℓ −
λℓ,GCR

1 + λ2ℓ,GCR j
−4
1,1h4

1+λℓ,GCR j−21,1h2

= J + O(h4). (4.21)

The combination of (4.20) and (4.21) leads that for sufficiently small mesh size

λℓ,GCR

1 + λ2ℓ,GCR j
−4
1,1h4

1+λℓ,GCR j−21,1h2

>
λℓ,CR

1 + (j−21,1 + 48−1)λℓ,CRh2
.

5 Asymptotic Upper Bounds for Eigenvalues

It is well known that conforming finite element methods provide upper bounds for eigenvalues, but it needs
to compute an extra eigenvalue problem. Here we present a simple postprocessing method to provide uppers
bound for eigenvalues by the GCR element, see more details in [18, 29].

For any v ∈ VGCR, define the interpolation ΠCR : VGCR → VCR by

∫
E

ΠCRv ds = ∫
E

v ds for any E ∈ E.

It is straightforward to see that v − ΠCRv ∈ VB. Furthermore, the standard interpolation theory of [13] gives

‖v − ΠCRv‖ ≲ h‖∇NC(v − ΠCRv)‖ ≲ h2‖∇2NCv‖, (5.1)

An integration by parts leads to the following orthogonality:

(∇NC(v − ΠCRv), ∇NCΠCRv)L2(Ω) = 0. (5.2)
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For any v ∈ VCR, define the interpolation Πc : VCR → Vc := VCR ∩ H1
0(Ω) by

(Πcv)(z) =
{{{
{{{
{

0, z ∈ ∂Ω,
1
|ωz|
∑
K∈ωz

v|K(z), z ̸∈ ∂Ω, (5.3)

where ωz is the union of elements containing vertex z, |ωz| is the number of elements containing vertex z. The
following lemma was proved in [18, 29, 32].

Lemma 5.1. Let v ∈ VCR. For any w ∈ H1
0(Ω), there holds that

‖v − Πcv‖ ≲ h‖∇NC(v − w)‖,
‖∇NC(v − Πcv)‖ ≲ ‖∇NC(v − w)‖.

Then (5.1) and Lemma 5.1 yield the following result.

Corollary 5.2. Let u and uGCR be eigenfunctions of (2.2) and (2.15), respectively. Suppose that u ∈ H1+s(Ω), 0 < s ≤ 1.
There holds that

‖uGCR − Πc(ΠCRuGCR)‖ ≲ h1+s|u|1+s ,
‖∇NC(uGCR − Πc(ΠCRuGCR))‖A ≲ hs|u|1+s .

Define the Rayleigh quotient

λc =
(A∇Πc(ΠCRuGCR), Πc(ΠCRuGCR))L2(Ω)
(Πc(ΠCRuGCR), Πc(ΠCRuGCR))L2(Ω)

.

Theorem 5.3. Suppose (λ, u) is an eigenpair of (2.2) and u ∈ H1+s(Ω), 0 < s ≤ 1. Then

|λ − λc| ≲ h2s|u|1+s .

Moreover, λc ≥ λ provided that h is small enough.

Proof. The proof is similar to that of [29, Theorem 3.4] and [32, Theorem 4.1]. Let w = Πc(ΠCRuGCR). An elemen-
tary manipulation leads

‖∇(u − w)‖2A = (A∇(u − w), ∇(u − w))L2(Ω) = λ + ‖w‖
2λc − 2(A∇u, ∇w)L2(Ω)

= λ + ‖w‖2λc − 2λ(u, w)L2(Ω)
= ‖w‖2(λc − λ) + λ‖u − w‖2 .

(5.4)

Thanks to (2.18) and Corollary 5.2, it holds that

‖∇(u − w)‖A ≤ ‖∇NC(u − uGCR)‖A + ‖∇NC(uGCR − w)‖A ≲ hs|u|1+s (5.5)

and
‖u − w‖ ≤ ‖u − uGCR‖ + ‖uGCR − w‖ ≲ (h2s + h1+s)|u|1+s ≲ h2s|u|1+s . (5.6)

On the other hand |‖w‖ − ‖u‖| ≤ ‖u − w‖ ≲ h2s|u|1+s . Hence ‖w‖ is bounded. Substituting (5.5) and (5.6) into (5.4)
yields

|λ − λc| ≲ h2s|u|1+s .

The following saturation condition holds, see [15]:

hs ≲ ‖∇(u − w)‖A .

Hence, when h is small enough, ‖u − w‖ is of higher order than ‖∇(u − w)‖A . This and (5.4) yield that

0 ≤ ‖w‖2(λc − λ),

which completes the proof.
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6 Guaranteed Upper Bounds for Eigenvalues

Since λc is the upper bound of λ in the asymptotic sense, we propose a method to guarantee upper bounds for
eigenvalues. Suppose (λℓ , uℓ) be the ℓ-th eigenpair of (2.2) and Eℓ,GCR be defined in (2.16). Define

λmℓ,c := sup
v∈Πc(ΠCREℓ,GCR)

(A∇v, ∇v)L2(Ω)
(v, v)L2(Ω)

. (6.1)

Lemma 6.1. Suppose that uℓ ∈ H1+s(Ω) with 0 < s ≤ 1. Then

|λmℓ,c − λℓ| ≲ h
1+s|u|1+s .

Proof. Following the theory of [2], there holds that

|λmℓ,c − λℓ| ≲ ( inf
v∈Πc(ΠCREℓ,GCR)

‖∇(v − uℓ)‖A)
2
≲ ‖∇(Πc(ΠCRuℓ,GCR) − uℓ)‖2A .

Hence, the above result and (5.5) yield that

|λmℓ,c − λℓ| ≲ h
2s|u|1+s .

This completes the proof.

Assume Πc(ΠCREℓ,GCR) is ℓ-dimensional. The Rayleigh–Ritz principle (2.4) implies that λmℓ,c is the upper bound
of λℓ. We propose some conditions in the following lemma to guarantee that Πc(ΠCREℓ,GCR) is ℓ-dimensional.

Lemma 6.2. Suppose there exist computable constants β1 and β2 such that

‖v − ΠCRv‖ ≤ β1h‖∇NC(v − ΠCRv)‖ for any v ∈ VGCR ,
‖w − Πcw‖ ≤ β2h‖∇NCw‖ for any w ∈ VCR .

Then Πc(ΠCREℓ,GCR) is ℓ-dimensional provided that

h < 1

(β1 + β2)CA√λℓ,GCR
. (6.2)

Proof. For any v = ∑ℓk=1 ξiui,GCR and ‖v‖ = 1, the triangle inequality yields

‖v − Πc(ΠCRv)‖ ≤ ‖v − ΠCRv‖ + ‖ΠCRv − Πc(ΠCRv)‖
≤ β1h‖∇NC(v − ΠCRv)‖ + β2h‖∇NCΠCRv‖.

Due to (5.2) and the constant in (4.1), there holds the following estimate:

‖v − Πc(ΠCRv)‖ ≤ (β1 + β2)h‖∇NCv‖ ≤ (β1 + β2)CAh‖∇NCv‖A

≤ (β1 + β2)CAh√λℓ,GCR .

Then the condition for h in (6.2) yields

‖Πc(ΠCRv)‖ ≥ 1 − ‖v − Πc(ΠCRv)‖ ≥ 1 − (β1 + β2)CAh√λℓ,GCR > 0.

Hence, Πc(ΠCREℓ,GCR) is ℓ-dimensional.

Remark 6.3. Note that (6.2) is not a strict condition. Indeed, to obtain good approximation of the ℓ-the eigen-
value λℓ by finite element methods, λℓh2 ≲ 1 is always required.

We show that β1 is computable. Note that (v − ΠCRv)|K ∈ span{ϕK}, where ϕK is defined as in (2.7). For each
K ∈ T, we can find a positive constant βK such that

‖ϕK‖L2(K) ≤ βK‖∇ϕK‖L2(K) .
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Then we take
β1 =

maxK∈T{βK}
h

.

There are several results concerning the constant for the interpolation operator ΠCR in two dimensions, see for
instance [5, 28]. Recall CP from (4.5). We present the result in [5, 16] as follows:

‖v − ΠCRv‖L2(K) ≤ √C2P +
1

2n(n + 1)(n + 2)hK‖∇(v − ΠCRv)‖L2(K) for any v ∈ H1(K).

Hence we can choose

β1 = √C2P +
1

2n(n + 1)(n + 2) . (6.3)

Next, we analyze the computable constant β2. To this end, we define

ξ = max
K∈T

max
K󸀠∩K ̸=⌀

|K󸀠|
|K|

(6.4)

and
N = max

z∈V
|ωz|, (6.5)

where V denotes the set of all the vertices of T and |ωz| denotes the number of elements containing vertex z.

Lemma 6.4. For any w ∈ VCR, it holds that

‖w − Πcw‖ ≤
(n − 1)N√ξ

n h‖∇NCw‖.

Proof. Given an element K ∈ T, let ap , 1 ≤ p ≤ n + 1, be its vertices and let θp be the corresponding barycentric
coordinates. Then

w|K =
n+1
∑
p=1

w|K(ap)θp and (Πcw)|K =
n+1
∑
p=1

w̄pθp ,

where
w̄p =

1
|ωap |
∑

K󸀠∈ωap

w|K󸀠 (ap),

as defined in (5.3). This gives

‖w − Πcw‖2 = ∑
K∈T
‖w − Πcw‖2L2(K)

= ∑
K∈T

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n+1
∑
p=1

w|K(ap)θp −
n+1
∑
p=1

w̄pθp
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(K)

≤ ∑
K∈T

n+1
∑
p,q=1
|(w|K(ap) − w̄p)(w|K(aq) − w̄q)|(θp , θq)L2(K) .

An explicit calculation that (θp , θq)L2(K) = |K|
(n+1)(n+2) (1 + δpq) leads to

‖w − Πcw‖2 ≤ ∑
K∈T

|K|
n + 1

n+1
∑
p=1
|w|K(ap) − w̄p|2 .

It follows from the definitions of the interpolation operator Πc in (5.3) and N in (6.5) that

‖w − Πcw‖2 ≤ ∑
K

|K|
n + 1

n+1
∑
p=1

sup
K󸀠∩ap ̸=⌀

|w|K(ap) − w|K󸀠 (ap)|2

≤ ∑
K∈T

|K|
n + 1

n+1
∑
p=1

N
4 ∑

E󸀠∈E,E󸀠∩ap ̸=⌀
|[w]|2L∞(E󸀠)

= ∑
K∈T

N|K|
4(n + 1)

n+1
∑
p=1

∑
E󸀠∈E,E󸀠∩ap ̸=⌀

|[w]|2L∞(E󸀠) .

(6.6)



878  J. Hu and R. Ma, Guaranteed Lower and Upper Bounds

Given E󸀠 ∈ E, suppose that |[w]| achieves the maximum at point z󸀠 and the centroid of E󸀠 is M󸀠. Let τE󸀠 denote
the tangent vector of E󸀠 from M󸀠 to z󸀠. Since ∫E󸀠 [w] ds = 0 and [w] ∈ P1(E

󸀠), this yields

|[w](z󸀠)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

z󸀠

∫
M󸀠

[
∂w
∂τE󸀠
] ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ |z󸀠 − M󸀠|‖[∇w]‖L∞(E󸀠)

≤
n − 1
n

hE󸀠‖[∇w]‖L∞(E󸀠) =
(n − 1)hE󸀠
n|E󸀠| 12

‖[∇w]‖L2(E󸀠) .

(6.7)

Substituting (6.7) into (6.6) gives that

‖w − Πcw‖2 ≤ ∑
K

(n − 1)2N|K|
4n2(n + 1)

n+1
∑
p=1

∑
E󸀠∈E,E󸀠∩ap ̸=⌀

h2E󸀠‖[∇w]‖
2
L2(E󸀠) .

Since ∇NCw is a piecewise constant, the following trace inequality holds:

‖[∇w]‖2L2(E󸀠) ≤
2|E󸀠|
|K1|
‖∇w‖2L2(K1) +

2|E󸀠|
|K2|
‖∇w‖2L2(K2) .

Hence

‖w − Πcw‖2 ≤ ∑
K∈T

N(n − 1)2|K|
n2(n + 1)

n+1
∑
p=1
∑

K󸀠∩ap ̸=⌀

h2E󸀠
|K󸀠| ‖∇w‖

2
L2(K󸀠) .

By the definition of ξ in (6.4), there holds that

‖w − Πcw‖2 ≤
(n − 1)2N2ξ

n2
h2 ∑

K∈T
‖∇w‖2L2(K) .

This completes the proof.

7 Numerical Results

7.1 The Laplace Operator

In this example, the L-shape domain Ω = (0, 1)2/[0.5, 1]2 and A(x) ≡ 1. We compare the lower bounds provided
by the CR and GCR elements. Let λℓ,CR be the ℓ-th eigenvalues by the CR element. Carstensen and Gedickel [6]
give the guaranteed lower bounds

GLBℓ,CR =
λℓ,CR

1 + (j−21,1 + 48−1)λℓ,CRh2
. (7.1)

By the GCR element, Theorem 4.3 and CP = j−11,1 give the guaranteed lower bounds

GLBℓ,GCR =
λℓ,GCR

1 + λ2ℓ,GCR j
−4
1,1h4

1+λℓ,GCR j−21,1h2

. (7.2)

Note that the modifications λℓ,GCR − GLBℓ,GCR = O(h4) in (7.2) are of higher order than λℓ,CR − GLBℓ,CR = O(h2)
in (7.1). Table 1 and Table 2 show the results of first and 20th eigenvalues, respectively. For comparison, the
discrete eigenvalues λℓ,P1 by the conforming P1 element are computed as upper bounds. Due to the fact that
VCR ⊂ VGCR, λℓ,GCR is smaller than λℓ,CR. However, the guaranteed lower bounds produced by the GCR element
are larger than those by the CR element.

7.2 General Second Elliptic Operators

In this example, let Ω = (0, 1)2, and

A(x) = (x
2
1 + 1 x1x2
x1x2 x22 + 1

) .
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h λ1,CR GLB1,CR λ1,GCR GLB1,GCR λ1,P1

0.707107 24 11.6092 21.4979 16.4175
0.353553 32.7371 24.0013 31.1326 29.4946 56.3170
0.176777 36.5336 33.1658 35.9771 35.7822 43.0976
0.088388 37.8448 36.8751 37.6910 37.6761 39.8639
0.044194 38.2993 38.0462 38.2596 38.2586 38.9633
0.022097 38.4619 38.3978 38.4519 38.4518 38.6918
0.011049 38.5219 38.5058 38.5194 38.5194 38.6048
0.005524 38.5446 38.5406 38.5440 38.5440 38.5754

Table 1: The first eigenvalue of L-shape domain.

h λ20,CR GLB20,CR λ20,GCR GLB20,GCR λ20,P1

0.353553 454.2769 75.0788 298.6560 105.7197
0.176777 307.4914 165.7926 280.6304 229.3926 722.3323
0.088388 387.1673 305.0883 372.4979 360.6719 500.4567
0.044194 401.4816 375.3058 397.2255 396.1748 429.3377
0.022097 405.0899 398.0864 403.9846 403.9127 412.1292
0.011049 406.0462 404.2640 405.7671 405.7625 407.8798
0.005524 406.3103 405.8627 406.2404 406.2401 406.8021

Table 2: The 20th eigenvalue of L-shape domain.

By a direct computation, the eigenvalues of A(x) are x21 + x
2
2 + 1 and 1, and |A − Ā|∞ ≤ min{

4
3h, 1}. The constants

in (4.1)–(4.4) are

CA = 1, CĀ = 1, CĀ,A = min{√1 +
8
3h,
√3}, C∞ = min{

8
3 ,

2
h}

and

η = C∞CĀCACĀ,A = min{
8
3 ,

2
h}

min{√1 + 83h,
√3}.

To compute the guaranteed lower and upper bounds for the first eigenvalue, it does not need the mesh-size
condition in (6.2). As for the 20th eigenvalue, we compute λm20,c as a upper bound of λ20. Since the computations
are on uniform partitions, the constants in (6.4) and (6.5) are

ξ = 1, N = 6, β2 =
N√ξ
2 = 3.

We use the estimate of β1 in (6.3). Let β1 ≈ 0.2984. The condition in (6.2) reads

h < 1

(β1 + β2)CA√λ20,GCR
=

1

(0.2984 + 3)√λ20,GCR
=: h1 .

Let β = 1
2 in Theorem 4.3. The GCR element gives the guaranteed lower bounds

GLB1,GCR =
λ1,GCR

1 + λ21,GCRC
4
Ah4

0.5j41,1+λ1,GCR j
2
1,1C

2
Ah2
+ 2η2h2

,

and for any ℓ > 1,

GLBℓ,GCR =
λℓ,GCR

1 + λ2ℓ,GCRC
4
Ah4

0.5j41,1+λℓ,GCR j
2
1,1C

2
Ah2
+ 2η2h2 + λℓ,GCRλ−11,GCRC

2
AC

2
∞h2

.

Table 3 and Table 4 show the results of the first and 20th eigenvalues, respectively. From Table 4, we find
that when h ≤ 0.0110, the condition h < h1 is guaranteed. Actually, when h ≤ 0.1768, Πc(ΠCRE20,GCR) is already
20-dimensional and λm20,c is thus a guaranteed upper bound of λ20.



880  J. Hu and R. Ma, Guaranteed Lower and Upper Bounds

h λ1,GCR GLB1,GCR λ1,P1 λ1,c

1.4142 22.93710 0.82825
0.7071 22.73488 1.00339 39 39
0.3536 25.38568 5.61741 30.22432 30.68603
0.1768 26.29812 15.84612 27.52878 27.63606
0.0884 26.54494 23.33235 26.85419 26.86946
0.0442 26.60805 25.80609 26.68551 26.68745
0.0221 26.62394 26.42955 26.64332 26.64356
0.0110 26.62792 26.58041 26.63277 26.63280
0.0055 26.62892 26.61720 26.63013 26.63013

Table 3: The first eigenvalue of square domain.

h h1 λ20,GCR GLB20,GCR λ20,P1 λ20,c λm20,c
0.3536 0.0197 236.8297 22.0631 348.5134
0.1768 0.0173 305.4755 87.9449 576.1674 620.3720 720.0317
0.0884 0.0159 362.8685 224.2311 427.1357 424.3606 433.1020
0.0442 0.0156 378.9545 330.4063 394.1451 394.3686 394.7023
0.0221 0.0155 383.2543 370.0130 387.0340 387.0722 387.0910
0.0110 0.0155 384.3485 380.9748 385.2930 385.2979 385.2991
0.0055 0.0155 384.6233 383.7771 384.8595 384.8601 384.8601

Table 4: The 20th eigenvalue of square domain.
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