Abstract
In this contribution, we provide convergence rates for a finite volume scheme of the stochastic heat equation with multiplicative Lipschitz noise and homogeneous Neumann boundary conditions (SHE). More precisely, we give an error estimate for the
A Appendix
Lemma A.1.
Let
where Δ denotes the Laplace operator on
Proof.
Let
Then, according to [23, Theorem 3.2.1.3], u is the unique solution of
Then, since
Hence, we obtain
and therefore we may conclude
Lemma A.2.
Let
Especially, for any function v of the form
Proof.
Let
The Jensen inequality yields
Now, a change of variables
for
Acknowledgements
The authors would like to thank Andreas Prohl for his valuable suggestions.
References
[1] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray–Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differential Equations 23 (2007), no. 1, 145–195. 10.1002/num.20170Search in Google Scholar
[2] R. Anton, D. Cohen and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic heat equation, IMA J. Numer. Anal. 40 (2020), no. 1, 247–284. 10.1093/imanum/dry060Search in Google Scholar
[3] C. Bauzet, E. Bonetti, G. Bonfanti, F. Lebon and G. Vallet, A global existence and uniqueness result for a stochastic Allen–Cahn equation with constraint, Math. Methods Appl. Sci. 40 (2017), no. 14, 5241–5261. 10.1002/mma.4383Search in Google Scholar
[4] C. Bauzet, V. Castel and J. Charrier, Existence and uniqueness result for an hyperbolic scalar conservation law with a stochastic force using a finite volume approximation, J. Hyperbolic Differ. Equ. 17 (2020), no. 2, 213–294. 10.1142/S0219891620500071Search in Google Scholar
[5] C. Bauzet, J. Charrier and T. Gallouët, Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation, Math. Comp. 85 (2016), no. 302, 2777–2813. 10.1090/mcom/3084Search in Google Scholar
[6] C. Bauzet, J. Charrier and T. Gallouët, Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 1, 150–223. 10.1007/s40072-015-0052-zSearch in Google Scholar
[7] C. Bauzet and F. Nabet, Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force, Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples—FVCA, Springer Proc. Math. Stat. 323, Springer, Cham (2020), 275–283. 10.1007/978-3-030-43651-3_24Search in Google Scholar
[8] C. Bauzet, F. Nabet, K. Schmitz and A. Zimmermann, Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise, ESAIM Math. Model. Numer. Anal. 57 (2023), no. 2, 745–783. 10.1051/m2an/2022087Search in Google Scholar
[9] C. Bauzet, F. Nabet, K. Schmitz and A. Zimmermann, Finite volume approximations for non-linear parabolic problems with stochastic forcing, Finite Volumes for Complex Applications X. Vol. 1. Elliptic and Parabolic Problems, Springer Proc. Math. Stat. 432, Springer, Cham (2023), 157–166. 10.1007/978-3-031-40864-9_10Search in Google Scholar
[10] C. Bauzet, K. Schmitz and A. Zimmermann, On a finite-volume approximation of a diffusion-convection equation with a multiplicative stochastic force, preprint (2023), https://arxiv.org/abs/2304.02259. Search in Google Scholar
[11] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal. 35 (2015), no. 3, 1125–1149. 10.1093/imanum/dru032Search in Google Scholar
[12] D. Breit, M. Hofmanová and S. Loisel, Space-time approximation of stochastic p-Laplace-type systems, SIAM J. Numer. Anal. 59 (2021), no. 4, 2218–2236. 10.1137/20M1334310Search in Google Scholar
[13] D. Breit and A. Prohl, Error analysis for 2D stochastic Navier–Stokes equations in bounded domains with Dirichlet data, Found. Comput. Math. 24 (2024), no. 5, 1643–1672. 10.1007/s10208-023-09621-ySearch in Google Scholar
[14] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. 10.1007/978-0-387-70914-7Search in Google Scholar
[15] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 493–516. 10.1051/m2an:1999149Search in Google Scholar
[16] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 152, Cambridge University, Cambridge, 2014. 10.1017/CBO9781107295513Search in Google Scholar
[17] A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation, Math. Comp. 78 (2009), no. 266, 845–863. 10.1090/S0025-5718-08-02184-4Search in Google Scholar
[18] L. Diening, M. Hofmanová and J. Wichmann, An averaged space-time discretization of the stochastic p-Laplace system, Numer. Math. 153 (2023), no. 2–3, 557–609. 10.1007/s00211-022-01343-7Search in Google Scholar
[19] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math. 105 (2006), no. 1, 35–71. 10.1007/s00211-006-0034-1Search in Google Scholar
[20]
R. Eymard, T. Gallouët and R. Herbin,
Finite volume methods,
Solution of Equations in
[21] R. Eymard, T. Gallouët and R. Herbin, A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal. 26 (2006), no. 2, 326–353. 10.1093/imanum/dri036Search in Google Scholar
[22] X. Feng and H. Qiu, Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise, J. Sci. Comput. 88 (2021), no. 2, Paper No. 31. 10.1007/s10915-021-01546-4Search in Google Scholar
[23] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman, Boston, 1985. Search in Google Scholar
[24] I. Gyöngy and A. Millet, On discretization schemes for stochastic evolution equations, Potential Anal. 23 (2005), no. 2, 99–134. 10.1007/s11118-004-5393-6Search in Google Scholar
[25] I. Gyöngy and A. Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal. 30 (2009), no. 1, 29–64. 10.1007/s11118-008-9105-5Search in Google Scholar
[26] U. Koley and G. Vallet, On the rate of convergence of a numerical scheme for fractional conservation laws with noise, IMA J. Numer. Anal. 44 (2024), no. 3, 1372–1405. 10.1093/imanum/drad015Search in Google Scholar
[27] N. V. Krylov and B. L. Rozovskiĭ, Stochastic evolution equations, J. Soviet Math. 16 (1981), no. 4, 1233–1277. 10.1007/BF01084893Search in Google Scholar
[28] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. 10.1007/978-3-319-22354-4Search in Google Scholar
[29] A. K. Majee and A. Prohl, Optimal strong rates of convergence for a space-time discretization of the stochastic Allen–Cahn equation with multiplicative noise, Comput. Methods Appl. Math. 18 (2018), no. 2, 297–311. 10.1515/cmam-2017-0023Search in Google Scholar
[30] F. Nabet, An error estimate for a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions, Numer. Math. 149 (2021), no. 1, 185–226. 10.1007/s00211-021-01230-7Search in Google Scholar
[31] M. Ondreját, A. Prohl and N. J. Walkington, Numerical approximation of nonlinear SPDE’s, Stoch. Partial Differ. Equ. Anal. Comput. 11 (2023), no. 4, 1553–1634. 10.1007/s40072-022-00271-9Search in Google Scholar
[32] É. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones, Phd thesis, University Paris Sud, 1975. Search in Google Scholar
[33] N. Sapountzoglou, P. Wittbold and A. Zimmermann, On a doubly nonlinear PDE with stochastic perturbation, Stoch. Partial Differ. Equ. Anal. Comput. 7 (2019), no. 2, 297–330. 10.1007/s40072-018-0128-7Search in Google Scholar
[34] S. Sugiyama, Stability problems on difference and functional-differential equations, Proc. Japan Acad. 45 (1969), 526–529. 10.3792/pja/1195520661Search in Google Scholar
© 2025 Institute of Mathematics of the National Academy of Science of Belarus, published by De Gruyter, Berlin/Boston