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Abstract:We introduce a new hp-adaptive strategy for self-adjoint elliptic boundary value problems that does
not rely on using classical a posteriori error estimators. Instead, our approach is based on a generally applicable
prediction strategy for the reduction of the energy error that can be expressed in terms of local modifications
of the degrees of freedom in the underlying discrete approximation space. The computations related to the pro-
posed prediction strategy involve low-dimensional linear problems that are computationally inexpensive and
highly parallelizable. The mathematical building blocks for this new concept are first developed on an abstract
Hilbert space level, before they are employed within the specific context of hp-type finite element discretiza-
tions. For this particular framework, we discuss an explicit construction of p-enrichments and hp-refinements
bymeans of an appropriate constraint coefficient technique that can be employed in any dimensions. The appli-
cability and effectiveness of the resulting hp-adaptive strategy is illustrated with some 1- and 2-dimensional
numerical examples.

Keywords: hp-FEM, hp-Adaptivity, Weak Formulations of Elliptic Problems, Variational Problems, Predicted
Error Reduction
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1 Introduction

Over the last few decades significant contributions have been made in a posteriori error estimation and auto-
matic (adaptive)mesh refinement techniques for finite elementmethods (FEM), see, e.g., [1, 6, 14, 29–31]. Amajor-
ity of works in the adaptive FEM literature are focused exclusively on local (usually isotropic) refinements of
elements (i.e. on so-called h-refinement). In recent years, however, motivated by the pioneering a priori results
on spectral and variable-order (so-called hp-version) FEM of Babuška and co-authors, cf. [2–5, 16, 17], the adap-
tive selection of locally varying polynomial degrees (i.e. p-refinement) has been taken into account as well. In
combination with local mesh adaptivity, such approaches lead to hp-adaptive schemes; see, e.g., the overview
article [24] and the references therein, or the monographs [9, 21, 27, 28] for theoretical and practical aspects of
hp-FEM. A key advantage of hp-approximations is their ability to approximate local singularities in (otherwise
smooth) solutions of partial differential equations at high algebraic or even exponential convergence rates, see,
e.g., [27].

While it seems reasonable to generalize classical h-version a posteriori error estimation to the hp-frame-
work, it is well-known that the derivation of effective computable hp-version error bounds involves consider-
able technical challenges [11, 22]. Furthermore, in addition to flagging elements for refinement (as in h-adaptive
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FEM), the design of hp-adaptive strategies requires the development of carefully devised decision procedures
that allow to choose betweenvarious possible hp-refinements of themarked elements; this canbe accomplished,
for instance, by means of exploiting appropriate smoothness testing strategies [13, 15, 19, 32].

In contrast, the approach proposed in the present paper does neither rely on classical a posteriori error
estimators nor on smoothness indicators. Instead, we develop a prediction procedure for an efficient reduc-
tion of the (global) energy error that can be represented explicitly in terms of hp-refinements on local discrete
spaces. Ourmethodology is closely related to the energyminimization technique [20], where local problems are
employed to compare various elementwise (competitive) p- and hp-refinements with regards to the potential
contribution they may provide to the decay of the global error (see also [9] for a related strategy). Inspired by
the low-order approach presented in [18], the main novelty in the current paper consists in a new construction
of the approximation spaces for the local problems that properly conforms to the weak formulation of the under-
lying partial differential equation, and thus, provides a mathematically sound structure; this is opposed to [20],
where artificial conditions and numerical fluxes along patch boundaries are involved.

More precisely, for the purpose of this work, in order to perform a (local) hp-refinement on an element Q
in the mesh (with associated polynomial degree pQ), we first decompose the numerical solution uhp on the
current (global) hp-space into a local part ulochp (with local support on or around Q), and a remaining (globally
supported) part ũhp = uhp − ulochp . Here, our goal is to suitably replace the local part u

loc
hp on a modified local

hp-space that allows for an improved resolution of possible small-scale features of the global solution on Q. To
this end,we consider locally supported spaces (spanned by so-called enrichment functions), which either provide
a polynomial degree > pQ on Q, or an hp-refinement of Q (involving a small number of subelements of Q and
an appropriate polynomial degree distribution on this subelements), thereby giving rise to a p-enrichment or
an hp-replacement on Q, respectively. The span of the enrichment functions together with the remaining part
of the current solution, ũhp , defines the local enrichment or replacement space, on which a potentially refined
approximate solution is obtained. Since we explicitly include the remaining part of the current solution in the
definition of the local enrichment/replacement space, the newapproximate solution represents a global solution
that allows to rigorously predict the (global) error reduction resulting from replacing the current solution by
the new one. Since the local enrichment/replacement spaces are low-dimensional (in comparison to the full
hp-space), we emphasize that the locally predicted (but globally effective) error reduction can be computed at
a negligible cost. Our hp-adaptive algorithm passes through all elements of a current mesh (which can be done
in parallel), and compares the predicted error reductions for different p-enrichments and hp-refinements in
order to find an optimal enrichment on each element. Then, by using an appropriate marking strategy, all those
elements, from which the most substantial (global) error reduction can be expected, will be refined.

The paper is structured as follows: In Section 2 we begin by introducing an abstract framework for lin-
ear elliptic problems in Hilbert spaces, and derive some general results on (global) error reductions, which
are exploited to devise the error prediction strategy (in terms of low-dimensional modifications) in our new
hp-adaptive scheme. In Section 3, the abstract setting is applied to hp-FEM, whereby we specify two types of
enrichment functions on each element of a given hp-mesh, namely p- and hp-enrichment functions; in par-
ticular, we present in detail the explicit construction of such enrichments on individual elements based on
a recent constraint coefficients technique, see [7, 26]. Furthermore, the proposed hp-adaptive procedure is out-
lined in terms of a general algorithm in Section 4, and some numerical experiments for hp-type finite element
discretizations in 1D and 2D, which illustrate the effectiveness of our approach, will be presented in Section 5.

Throughout this article, letℕ = {1, 2, . . .} denote the positive integers and setℕ0 := ℕ ∪ {0}. For any n ∈ ℕ
we write n and n0 for the finite sets {1, 2, . . . , n} and {0, 1, . . . , n}, respectively.

2 Abstract Framework

On a (real) Hilbert space 𝕏 we consider a bounded, symmetric and coercive bilinear form a : 𝕏 ×𝕏 → ℝ that
induces a norm v 󳨃→ ‖v‖𝕏 := a(v, v)

1
2 on𝕏. We also introduce a bounded linear form b : 𝕏 → ℝ. Then, for any

closed subspace𝕎 ⊆ 𝕏, by the Riesz representation theorem, there is a unique u𝕎 ∈ 𝕎 such that the weak
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formulation
a(u𝕎 , w) = b(w) for all w ∈ 𝕎 (2.1)

holds true. Equivalently, defining the residual

ρ𝕎(v) := b(v) − a(u𝕎 , v), v ∈ 𝕏, (2.2)

we have ρ𝕎(v) = 0 for all v ∈ 𝕎. Furthermore, in line with the above notation, we signify by u𝕏 ∈ 𝕏 the (full
space) solution of the weak formulation

a(u𝕏 , v) = b(v) for all v ∈ 𝕏. (2.3)

2.1 Low-Dimensional Enrichments

Consider the special case where the subspace𝕎 ⊆ 𝕏 introduced above is spanned by finitely many basis func-
tions ϕ1 , . . . , ϕN ∈ 𝕎, with N ≥ 1, i.e.

𝕎 = span{ϕ1 , . . . , ϕN}, dim(𝕎) = N < ∞.

Moreover, for an index subset Iloc ⊂ N , we let

𝕎loc := span {ϕi : i ∈ Iloc} ⊂ 𝕎; (2.4)

for instance, in the specific context of hp-discretizations to be discussed later on, the spaces𝕎 and𝕎loc will
take the roles of an hp-finite element space and a locally supported subspace, respectively. We can then define
a linear projection operator

Πloc :𝕎→𝕎loc , v = ∑
i∈N

vi ϕi 󳨃→ Πlocv := ∑
i∈Iloc

vi ϕi , (2.5)

which enables a decomposition of the solution u𝕎 ∈ 𝕎 of (2.1) into a low dimensional and a remaining part

uloc𝕎 := Πlocu𝕎 ∈ 𝕎loc , ũ𝕎 := u𝕎 − Πlocu𝕎 ,

respectively, with
u𝕎 = uloc𝕎 + ũ𝕎 . (2.6)

We aim to improve the approximation u𝕎 of the (full space) solution u𝕏 ∈ 𝕏 of (2.3) by enriching or replacing
the local space𝕎loc by a subspace

𝕐 := span{ũ𝕎 , ξ1 , . . . , ξL} ⊆ 𝕏 (2.7)

of dimension L + 1, where
ξ := {ξ1 , . . . , ξL} ⊆ 𝕏 (2.8)

is a (small) set of linearly independent elements in 𝕏. If𝕎loc ⊂ 𝕐, then we call 𝕐 a local enrichment space,
otherwise 𝕐 is a local replacement space; the functions ξ1 , . . . , ξL will in both cases be referred to as (local)
enrichment functions.

We now introduce the low-dimensional problem

u𝕐 ∈ 𝕐 : a(u𝕐 , v) = b(v) for all v ∈ 𝕐. (2.9)

Since dim𝕐 = L + 1, there is a unique ϵ ∈ ℝ and some uniquely determined yξ ∈ span{ξ1 , . . . , ξL} such that we
can express the solution u𝕐 of (2.9) in terms of a linear combination

u𝕐 = (1 + ϵ) ũ𝕎 + yξ . (2.10)

Then, defining the errors
e𝕎 := u𝕏 − u𝕎 , e𝕐 := u𝕏 − u𝕐 ,
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we prove the following result for the predicted error reduction Δe𝕎,𝕐, given by

Δe2𝕎,𝕐 := ‖e𝕎‖2𝕏 − ‖e𝕐‖2𝕏 .

For a related result in the specific context of a multilevel solver for linear diffusion models, we mention the
work [23].

Proposition 1 (Predicted Error Reduction). For the predicted error reduction we have the identities

Δe2𝕎,𝕐 = ‖u𝕐 − u𝕎‖2𝕏 − 2 ρ𝕐(uloc𝕎 ) = ρ𝕎(yξ) − ρ𝕐(uloc𝕎 ), (2.11)

with yξ ∈ span{ξ1 , . . . , ξL} from (2.10), the residual ρ𝕎( ⋅ ) defined in (2.2), and ρ𝕐( ⋅ ) := b( ⋅ ) − a(u𝕐 , ⋅ ).

Proof. We begin by noting the identity e𝕐 + (u𝕐 − u𝕎) = e𝕎, which implies that ‖e𝕐 + (u𝕐 − u𝕎)‖2𝕏 = ‖e𝕎‖2𝕏.
Thus, using that the bilinear form a( ⋅ , ⋅ ) induces the norm ‖ ⋅ ‖𝕏, we deduce that

‖e𝕐‖2𝕏 + 2 a(e𝕐 , u𝕐 − u𝕎) + ‖u𝕐 − u𝕎‖2𝕏 = ‖e𝕎‖2𝕏 .

By Galerkin orthogonality, exploiting that u𝕐 − ũ𝕎 ∈ 𝕐 and uloc𝕎 ∈ 𝕎, we observe that

a(e𝕐 , u𝕐 − ũ𝕎) = 0 and a(e𝕎 , uloc𝕎 ) = 0.

Hence, recalling (2.6) we obtain

a(e𝕐 , u𝕐 − u𝕎) = a(e𝕐 , u𝕐 − ũ𝕎) − a(e𝕐 , uloc𝕎 ) = −a(e𝕐 , uloc𝕎 ).

Furthermore, invoking (2.3), it follows that

a(e𝕐 , u𝕐 − u𝕎) = −a(u𝕏 , uloc𝕎 ) + a(u𝕐 , uloc𝕎 ) = −b(uloc𝕎 ) + a(u𝕐 , uloc𝕎 ) = −ρ𝕐(uloc𝕎 ).

Thus,
‖e𝕐‖2𝕏 − 2 ρ𝕐(uloc𝕎 ) + ‖u𝕐 − u𝕎‖2𝕏 = ‖e𝕎‖2𝕏 ,

which yields the first identity in (2.11). Moreover, recalling (2.6) and (2.10), we have u𝕐 − u𝕎 = ϵ ũ𝕎 + yξ − uloc𝕎 ,
and since ũ𝕎 ∈ 𝕎 ∩ 𝕐, we notice the orthogonality property

a(u𝕐 − u𝕎 , ũ𝕎) = 0.

Thus,
‖u𝕐 − u𝕎‖2𝕏 = a(u𝕐 − u𝕎 , u𝕐 − u𝕎)

= a(u𝕐 − u𝕎 , ϵ ũ𝕎 + yξ − uloc𝕎 )
= a(u𝕐 − u𝕎 , yξ) − a(u𝕐 − u𝕎 , uloc𝕎 ).

Then, employing (2.9) with the test function yξ ∈ 𝕐, we have

a(u𝕐 − u𝕎 , yξ) = b(yξ) − a(u𝕎 , yξ) = ρ𝕎(yξ).

Similarly, applying (2.1) with the test function uloc𝕎 ∈ 𝕎, we arrive at

−a(u𝕐 − u𝕎 , uloc𝕎 ) = −a(u𝕐 , uloc𝕎 ) + b(uloc𝕎 ) = ρ𝕐(uloc𝕎 ).

Combining the above equalities gives the second identity in (2.11).

Remark 1 (Energy Reduction Property). If the space 𝕐 is a local enrichment of 𝕎loc, i.e. if 𝕎loc ⊂ 𝕐, then
ρ𝕐(uloc𝕎 ) = 0, and the identities (2.11) simplify to

Δe2𝕎,𝕐 = ‖u𝕐 − u𝕎‖2𝕏 = ρ𝕎(yξ);

in particular, in this case, the error resulting from the local enrichment will not increase, or will even decrease
(i.e. ‖e𝕎‖2𝕏 > ‖e𝕐‖2𝕏) if u𝕐 ̸= u𝕎. In analogous terms, introducing the energy functional

E(v) := 12 a(v, v) − b(v), v ∈ 𝕏,
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and recalling the Dirichlet variational principle, we note that

E(u𝕎) = minw∈𝕎
E(w) and E(u𝕐) = minv∈𝕐

E(v),

whence we immediately deduce the energy reduction property E(u𝕐) ≤ E(u𝕎) for the solutions u𝕎 ∈ 𝕎 and
u𝕐 ∈ 𝕐 from (2.1) and (2.9), respectively. In the general case, when 𝕐 is a local replacement space, a minor
modification of the proof of Proposition 1, see Appendix A.1, yields the identity

Δe2𝕎,𝕐 = ‖u𝕐 − ũ𝕎‖2𝕏 − ‖uloc𝕎 ‖2𝕏 , (2.12)

which shows that the error is guaranteed to decrease, i.e. Δe2𝕎,𝕐 > 0, whenever ‖u𝕐 − ũ𝕎‖2𝕏 > ‖uloc𝕎 ‖2𝕏.

The hp-adaptive approach presented in Section 3 below can be seen as a local reduction strategy.We emphasize,
however, that our method, in contrast to more classical approaches, always involves (at least one) global (but
computationally inexpensive) mode in order to incorporate a minimal amount of global information on the
underlying problem. Similar to the present section, in order to providemaximal flexibility for the choice of local
spaces and associated enrichment functions in the hp-context, the theoretical building blocks will be derived in
abstract form.

2.2 Linear Algebra Representation

We will now illustrate how the difference of the residuals ρ𝕎(yξ) and ρ𝕐(uloc𝕎 ) from Proposition 1 can be com-
puted bymeans of linear algebra. To this end, for {ξ1 , . . . , ξL} from (2.8), we introduce thematrixA = (Aij) ∈ ℝL×L
with entries

Aij := a(ξj , ξi), i, j ∈ L, (2.13a)

and the (column) vectors b, c ∈ ℝL , which are given component-wise by

bi := b(ξi), ci := a(ũ𝕎 , ξi), i ∈ L, (2.13b)

respectively. Furthermore, we let

a00 := ‖u𝕎‖2𝕏 − ‖uloc𝕎 ‖2𝕏 − 2 δ with δ := b(uloc𝕎 ) − ‖uloc𝕎 ‖2𝕏 . (2.13c)

Remark 2. In the finite element context, where the functions ξ1 , . . . , ξL and uloc𝕎 are supposedly local, we notice
that all of the quantities defined in (2.13) are inexpensive to compute (except for the global term ‖u𝕎‖𝕏 which,
however, needs to be evaluated once only).

Proposition 2 (Low-Dimensional Computation of Error Reductions). Suppose that dim𝕐 = L + 1 (in particular, we
implicitly assume that ũ𝕎 ̸= 0), and consider the (symmetric) linear system

(
a00 c⊤

c A
)(

ϵ
y
) = (

δ
b − c
) , (2.14)

with the solution components ϵ ∈ ℝ and y ∈ ℝL . Then the predicted error change from Proposition 1 can be
computed by means of the formula

Δe2𝕎,𝕐 = y⊤(b − c) − ‖uloc𝕎 ‖2𝕏 + ϵ δ. (2.15)

Proof. Recalling the decomposition (2.6), we begin by noticing that

‖ũ𝕎‖2𝕏 = ‖u𝕎 − u
loc
𝕎 ‖

2
𝕏 = ‖u𝕎‖

2
𝕏 + ‖u

loc
𝕎 ‖

2
𝕏 − 2 a(u𝕎 , uloc𝕎 ),

which, upon applying (2.1) with the test function w = uloc𝕎 , results in

‖ũ𝕎‖2𝕏 = ‖u𝕎‖
2
𝕏 + ‖u

loc
𝕎 ‖

2
𝕏 − 2 b(uloc𝕎 ) = a00 . (2.16)
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Similarly, with w = ũ𝕎 in (2.1), we infer that

b(ũ𝕎) − a(ũ𝕎 , ũ𝕎) = a(u𝕎 , ũ𝕎) − a(ũ𝕎 , ũ𝕎) = a(uloc𝕎 , ũ𝕎) = a(ũ𝕎 , uloc𝕎 ) = a(u𝕎 , uloc𝕎 ) − a(uloc𝕎 , uloc𝕎 )
= b(uloc𝕎 ) − ‖u

loc
𝕎 ‖

2
𝕏 ,

from which we arrive at
δ = b(ũ𝕎) − a(ũ𝕎 , ũ𝕎) = b(ũ𝕎) − ‖ũ𝕎‖2𝕏 . (2.17)

Then, using (2.9) with v = ũ𝕎 ∈ 𝕐, and applying the representation (2.10), leads to

δ = b(ũ𝕎) − a(ũ𝕎 , ũ𝕎) = a(u𝕐 , ũ𝕎) − a(ũ𝕎 , ũ𝕎) = ϵ a(ũ𝕎 , ũ𝕎) + a(yξ , ũ𝕎) = ϵ ‖ũ𝕎‖2𝕏 + a(yξ , ũ𝕎),

and equivalently, due to (2.16),
ϵ a00 + a(yξ , ũ𝕎) = δ. (2.18)

In addition, for i ∈ L, testing (2.9) with v = ξi , and exploiting (2.10), yields

(1 + ϵ) a(ũ𝕎 , ξi) + a(yξ , ξi) = b(ξi) for all i ∈ L. (2.19)

Therefore, applying the linear combination
yξ = ∑

j∈L
yj ξj , (2.20)

for a uniquely defined coefficient vector y := (y1 , . . . , yL)⊤ ∈ ℝL , equations (2.18) and (2.19) transform into

ϵ a00 + ∑
j∈L

a(ũ𝕎 , ξj) yj = δ,

and
ϵ a(ũ𝕎 , ξi) + ∑

j∈L
a(ξj , ξi) yj = b(ξi) − a(ũ𝕎 , ξi) for all i ∈ L,

which is the linear system (2.14). Moreover, owing to (2.6), it holds that

ρ𝕎(yξ) = b(yξ) − a(u𝕎 , yξ) = b(yξ) − a(ũ𝕎 , yξ) − a(uloc𝕎 , yξ).

In addition, invoking (2.10) and (2.1), we have

−ρ𝕐(uloc𝕎 ) = a(u𝕐 , uloc𝕎 ) − b(uloc𝕎 )
= (1 + ϵ) a(ũ𝕎 , uloc𝕎 ) + a(yξ , uloc𝕎 ) − a(u𝕎 , uloc𝕎 )
= −a(uloc𝕎 , uloc𝕎 ) + ϵ a(ũ𝕎 , uloc𝕎 ) + a(yξ , uloc𝕎 )
= −‖uloc𝕎 ‖

2
𝕏 + ϵ(a(u𝕎 , ũ𝕎) − a(ũ𝕎 , ũ𝕎)) + a(yξ , uloc𝕎 )

= −‖uloc𝕎 ‖
2
𝕏 + ϵ(b(ũ𝕎) − ‖ũ𝕎‖

2
𝕏) + a(yξ , uloc𝕎 ).

Recalling (2.17) implies that
−ρ𝕐(uloc𝕎 ) = −‖u

loc
𝕎 ‖

2
𝕏 + ϵ δ + a(yξ , uloc𝕎 ).

Thus, upon involving the linear combination (2.20), we finally obtain

ρ𝕎(yξ) − ρ𝕐(uloc𝕎 ) = b(yξ) − a(ũ𝕎 , yξ) − ‖uloc𝕎 ‖2𝕏 + ϵ δ = ∑
j∈L

yj (b(ξj) − a(ũ𝕎 , ξj)) − ‖uloc𝕎 ‖2𝕏 + ϵ δ,

which, in view of (2.11), leads to the asserted identity (2.15).

2.3 Assembling Aspects

We aim to apply the abstract framework developed in the previous sections to the finite element context. For
this purpose, we let𝕏 = 𝕏(Ω) be a Hilbert function space defined over a bounded open domain Ω ⊂ ℝd , d ≥ 1.
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We present the assembling of the matrix A and the vectors b, c occurring in the linear system (2.14) in the
specific case where𝕎 ⊆ 𝕏 is a subspace of finite dimension N := dim𝕎 with the basis {ϕ1 , . . . , ϕN}. LetD be
a decomposition of Ω into closed subsets K ⊆ Ω, i.e.

Ω = ⋃
K∈D

K,

where int(K) ∩ int(K󸀠) = 0 for any K, K󸀠 ∈ D with K ̸= K󸀠. For any K ∈ D, consider the (local) Hilbert space
consisting of all restrictions of functions v ∈ 𝕏 to K, i.e. 𝕏K := {v|K : v ∈ 𝕏}. Moreover, let {ζK1 , . . . , ζ

K
MK
} ⊆ 𝕏K

be a set of functions such that there exist representation matrices CK = (cKij ) ∈ ℝ
N×MK and DK = (dKij ) ∈ ℝ

L×MK

satisfying
ϕi |K = ∑

j∈MK

cKij ζ
K
j , i ∈ N , (2.21)

ξi |K = ∑
j∈MK

dKij ζ
K
j , i ∈ L, (2.22)

with {ξ1 , . . . , ξL} from (2.8). Finally, let the bilinear form a( ⋅ , ⋅ ) as well as the linear form b( ⋅ ) be decomposable
in the sense that

a(v, w) = ∑
K∈D

aK(v|K , w|K), b(v) = ∑
K∈D

bK(v|K) for all v, w ∈ 𝕏, (2.23)

for some (local) bilinear forms aK : 𝕏K × 𝕏K → ℝ and (local) linear forms bK : 𝕏K → ℝ. For any K ∈ D we
introduce the (local) matrix AK = ( AKij ) ∈ ℝ

MK×MK with entries

AKij := aK(ζ
K
j , ζ

K
i ), i, j ∈ MK ,

and the (local) vector bK = (bKi ) ∈ ℝ
MK , which is given component-wise by

bKi := bK(ζKi ), i ∈ MK .

Let ũ = (u1 , . . . , uN)⊤ ∈ ℝN denote the uniquely determined coefficient vector of ũ𝕎 from (2.6) with respect
to the basis {ϕ1 , . . . , ϕN} of𝕎, i.e. ũ𝕎 = ∑i∈N ui ϕi . Note that ui = 0 for i ∈ Iloc. Then the matrix A ∈ ℝL×L and
the vectors b, c ∈ ℝL from the linear system (2.14) can be assembled by the (local) quantities AK , CK , DK , and bK
as the following result shows.

Proposition 3 (Assembling). The identities

A = ∑
K∈D

DKAKD⊤K , b = ∑
K∈D

DKbK , c = ∑
K∈D

DKAKC⊤K ũ (2.24)

hold true.

Proof. Let [ ⋅ ]ij and [ ⋅ ]i denote the components of a matrix or a vector, respectively. Then it holds that

[ ∑
K∈D

DKAKD⊤K]
ij
= ∑
K∈D
[DKAKD⊤K]ij = ∑

K∈D
( ∑
ℓ∈MK

∑
k∈MK

dKik aK(ζ
K
ℓ , ζ

K
k ) d

K
jℓ)

= ∑
K∈D

aK( ∑
ℓ∈MK

dKjℓ ζ
K
ℓ , ∑

k∈MK

dKik ζ
K
k )

= ∑
K∈D

aK(ξj |K , ξi |K) = a(ξj , ξi) = Aij ,

for all i, j ∈ L, cf. (2.22) and (2.23) which is the first identity. The second identity follows from

[ ∑
K∈D

DKbK]
i
= ∑
K∈D
[DKbK]i = ∑

K∈D
( ∑
j∈MK

dKij bK(ζ
K
j ))

= ∑
K∈D

bK( ∑
j∈MK

dKij ζ
K
j )

= ∑
K∈D

bK(ξi |K) = b(ξi) = bi ,

for i ∈ L. The last identity follows in an analogous way.
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3 Application to hp-Finite Element Spaces

For d ≥ 1, let Ω ⊂ ℝd be a bounded interval (if d = 1), or a bounded and open set with a Lipschitz boundary
Γ := ∂Ω that is composed of a finite number of straight faces (if d ≥ 2). Furthermore, we consider a boundary
part ΓD ⊆ Γ of positive surface measure, and introduce an associated Hilbert space

𝕏 := {v ∈ H1(Ω) : v = 0 on ΓD}, (3.1)

where H1(Ω) denotes the usual Sobolev space of all functions in L2(Ω), with weak first-order partial derivatives
in L2(Ω).

The goal of the following subsections is to define appropriate hp-finite element approximation sub-
spaces in 𝕏. For this purpose, we will begin by introducing a family of hierarchical polynomial spaces on
the d-dimensional hypercube signified by Q̂ := [−1, 1]d , which will be referred to as the reference element.

3.1 Polynomial Spaces on the Reference Element

For any j ∈ ℕ0 we introduce the 1-dimensional functions ψj : [−1, 1] → ℝ, given by

ψ0(t) :=
1
2 (1 − t), ψ1(t) :=

1
2 (1 + t), ψj(t) :=

t

∫
−1

Lj−1(s) ds, j ≥ 2, (3.2)

where Lj : [−1, 1] → ℝ denotes the j-th Legendre polynomial, normalized such that Lj(−1) = (−1)j , j ≥ 1; we
recall the Bonnet recursion formula

L0(t) := 1, L1(t) := t, j Lj(t) = (2j − 1) t Lj−1(t) − (j − 1) Lj−2(t), j ≥ 2,

as well as the relation
ψj(t) =

Lj(t) − Lj−2(t)
2j − 1 , j ≥ 2;

see, e.g., [30, Section 3.1 and A.4]. The basis functions ψ0 and ψ1 are referred to as nodal or external shape
functions whereas the high-order polynomials ψj , for j ≥ 2, are called internal modes (based on the fact that
ψj(±1) = 0 for j ≥ 2). We display the functions ψ0 , . . . , ψ4 in Figure 1.

Figure 1: The functions ψ0 , . . . , ψ4 on [−1, 1].
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Furthermore, in the multi-dimensional case, for any multi-index j = (j1 , . . . , jd) ∈ ℕd0 , we define the func-
tions ψ̂j : Q̂ → ℝ by

ψ̂j(x) := ∏
k∈d

ψjk (xk), x = (x1 , . . . , xd)⊤ ∈ Q̂. (3.3)

Moreover, for any k ∈ ℕ, let ℚk(Q̂) := span{ψ̂j : j ∈ kd0 } signify the usual space of all polynomials up to degree
k ∈ ℕ in each coordinate direction on the reference element Q̂.

3.2 hp-Finite Element Space

The vertices of the reference element Q̂ will be labeled in terms of a multi-index notation. Specifically, to each
i ∈ {0, 1}d , we associate a corresponding vertex

v̂i := (2i1 − 1, . . . , 2id − 1)⊤ .

Similarly, we consider physical elements Q ⊂ Ω whose corner points are indexed by vi ∈ ℝd , i = 1, . . . , 2d; we
call Q a transformed hexahedron if the map FQ : Q̂ → Q defined by

FQ(x) := ∑
|i|≤1

ψ̂i(x) vi , x = (x1 , . . . , xd)⊤ ∈ Q̂, (3.4)

is bijective, where wewrite |i| := i1 + ⋅ ⋅ ⋅ + id to signify the order of amulti-index i = (i1 , . . . , id) ∈ ℕd0 . Note that
it holds FQ(v̂i) = vi for all i ∈ {0, 1}d . The notation is illustrated in Figure 2 for the 2-dimensional case.

Example 1 (FQ for d = 2). In this case, the transformation FQ from (3.4) takes the form

FQ(x) = ψ̂00(x) v00 + ψ̂10(x) v10 + ψ̂11(x) v11 + ψ̂01(x) v01 , x = (x1 , x2)⊤ ∈ Q̂,

and the tensor product functions ψ̂i are given by

ψ̂00(x) = ψ0(x1) ψ0(x2), ψ̂10(x) = ψ1(x1) ψ0(x2),

ψ̂11(x) = ψ1(x1) ψ1(x2), ψ̂01(x) = ψ0(x1) ψ1(x2).

For the purpose of introducing finite element subspaces 𝕎 ⊆ 𝕏, cf. (3.1), following our abstract framework
in Section 2.3, we let Q be a decomposition of Ω into transformed hexahedrons with the following additional
property: If Q1 ∩ Q2 ̸= 0 for Q1 , Q2 ∈ Q with Q1 ̸= Q2, then Q1 ∩ Q2 represents a (d − r)-dimensional face of
Q1 or Q2 for some r ∈ d; we call any faces of dimension zero, one and two vertices, edges and faces, respec-
tively. Furthermore, let us assume that there is no change of the type of boundary conditions within the
(d − r)-dimensional faces of one element Q ∈ Q. We now define the hp-finite element space

𝕎 := {v ∈ 𝕏 : v|Q ∘ FQ ∈ ℚpQ (Q̂) for all Q ∈ Q}, (3.5)

associated with the decomposition Q of Ω, where pQ ≥ 1 represents an (isotropic) local polynomial degree on
each element Q ∈ Q.

Figure 2: The bijective mapping FQ : Q̂ → Q for the 2-dimensional case.
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3.3 Constraint Coefficients

In the adaptive finite element procedure we shall represent the functions ψ̂i from (3.3), defined on the refer-
ence element Q̂, in terms of functions defined on sub-hexahedra of Q̂. These representations can be computed
efficiently by means of so-called constraint coefficients, see [7, 26]. To explain this concept, consider a sub-
hexahedron

T := ∏
k∈d

Ik ⊂ Q̂, (3.6)

where Ik = [ak , bk], −1 ≤ ak < bk ≤ 1, are 1-dimensional intervals for each k ∈ d. Then we define the functions

ψ̃j : T → ℝ, ψ̃j := ψ̂j ∘ F−1T , j ∈ ℕ0 , (3.7)

with the bijective element map FT : Q̂ → T , cf. (3.4). Here, due to the tensor structure (3.6) of T , we emphasize
that FT is the composition of a dilation and a translation, wherefore we observe the identity

ψ̃j = ∏
k∈d
(ψjk ∘ F−1Ik ). (3.8)

In particular, we infer that the functions ψ̃j in (3.7) constitute a polynomial basis on T . Therefore, there exist
uniquely determined constraint coefficients bTij ∈ ℝ such that

ψ̂i |T = ∑
j≤i
bTij ψ̃j = ∑

j≤i
bTij(ψ̂j ∘ F−1T ), i ∈ ℕd0 , (3.9)

where the sums are taken over all multi-indices j = (j1 , . . . , jd) ∈ ℕd0 with jk ≤ ik for all k ∈ d.

Example 2 (d = 1). In Figure 3 we illustrate how the restriction of the 1-dimensional function ψ2 to the interval
I = [−1, 0] can be expressed in terms of the functions ψ̃0 , ψ̃1 , and ψ̃2.

The ensuing result shows that themulti-dimensional constraint coefficients can be expressed in terms of tensor-
products of the associated 1-dimensional quantities for which recursion formulas are stated in the Appendix.

Lemma 1. For i, j ∈ ℕd0 , the constraint coefficients b
T
ij from (3.9) are given by

bTij = ∏
k∈d

bIkik ,jk ,

where T is the sub-hexahedra from (3.6) and bIkik ,jk are the uniquely determined 1-dimensional constraint coeffi-
cients from

ψik |Ik =
ik
∑
jk=0

bIkik ,jk (ψjk ∘ F
−1
Ik ).

Proof. The argument is based on exploiting the tensor structure of Q̂ and T , and of the functions ψ̂i . Indeed, for
i = (i1 , . . . , id) ∈ ℕd0 , using (3.3) and (3.6), and applying the representation (3.9) in the 1-dimensional case, we
obtain that

ψ̂i |T = ∏
k∈d

ψik |Ik = ∏
k∈d
( ∑
jk≤ik

bIkik ,jk (ψjk ∘ F
−1
Ik )).

Then rearranging terms yields

ψ̂i |T = ∑
j≤i
(∏
k∈d

bIkik ,jk (ψjk ∘ F
−1
Ik )) = ∑

j≤i
(∏
k∈d

bIkik ,jk∏
k∈d
(ψjk ∘ F−1Ik )).

Owing to (3.8), we conclude that
ψ̂i |T = ∑

j≤i
(∏
k∈d

bIkik ,jk) ψ̃j .

The assertion follows from the uniqueness of the coefficients in (3.9).
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Figure 3: The restriction of ψ2 to I in terms of the functions ψ̃0 , ψ̃1 , ψ̃2 in the 1-dimensional case.

3.4 Enrichment Functions Associated with Individual Elements

We will characterize refinements of elements Q ∈ Q in a given mesh Q via corresponding refinements of the
reference element Q̂. To this end, given a (fixed) point ẑ ∈ (−1, 1)d in the interior of Q̂, we call a decomposition
R(Q̂) of Q̂ into the 2d sub-hexahedra

T̂i := ∏
k∈d
[aik , b

i
k], i = (i1 , . . . , id) ∈ {0, 1}d ,

with
aik := min{2 ik − 1, zk}, bik := max{2 ik − 1, zk}, k ∈ d,

a refinement of Q̂ with respect to ẑ = (z1 , . . . , zd)⊤.
Let us now focus on some element Q ∈ Q. To introduce a refinement of Q, we consider first a refinement

R(Q̂) of Q̂ with respect to ẑ ∈ (−1, 1)d , as outlined above, and define

R(Q) := {Ti : i ∈ {0, 1}d}, Ti := FQ(T̂i).

We display an illustration of the 2-dimensional situation in Figure 4. Note that the multi-index i encodes the
location of the sub-hexahedra Ti with respect to the Cartesian reference coordinate system in Q̂; in fact, the
k-th entry of i classifies whether T̂i lies in the left (if ik = 0) or the right (if ik = 1) half of Q with respect to ẑ
along the k-th axial direction. Finally, let us denote by T the resulting mesh when replacing the element Q by its
refinement R(Q), i.e. T := (Q \ {Q}) ∪ R(Q).

3.4.1 Enrichment Strategies on a Single Element

For an element Q ∈ Q with an associated polynomial degree pQ , two types of local enrichment functions
ξ1 , . . . , ξL , cf. (2.8), will be considered:
(i) For the definition of p-enrichment functions on Q, we consider polynomials on the reference element Q̂,

with polynomial degrees larger than pQ , and transform them to the physical element Q.
(ii) For the construction of hp-enrichment functions on Q, we consider polynomials on the sub-hexahedra

T̂i ∈ R(Q̂), i ∈ {0, 1}d , of a refinement R(Q̂) of Q̂ with respect to some ẑ ∈ (−1, 1)d , which are then trans-
formed to Q.
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Figure 4: A refinement of the reference element Q̂ with respect to ẑ = (z1 , z2)⊤ ∈ (−1, 1)2 and the corresponding refinement of the
element Q = FQ(Q̂).

Figure 5: A p-enrichment (left) vs. an hp-refinement (right). In both figures the discrete solution u𝕎 is highlighted in blue, the in each
case four enrichment functions are depicted in magenta and the basis {ϕ1 , . . . , ϕN} of𝕎 is indicated in dotted lines.

We give an illustration of these two scenarios for the p-enrichment or hp-refinement of a 1-dimensional element
in Figure 5. The polynomial functions resulting from the above mappings from Q̂ or from sub-hexahedra of Q̂
to Q will be termed transformed polynomials.

In the hp-adaptive procedure described in Section 4 we aim to compare different p-enrichments and
hp-refinements on Q; in particular competitive refinements, cf. [20], where different enrichments, which gen-
erate the same number of degrees of freedom, are compared with each other in view of a maximal potential
predicted error reduction. We will express both, the hp-enrichment functions (given on the subelements Ti ∈
R(Q)) as well as the p-enrichment functions (given on Q) in terms of the transformed polynomials ζ ij : Ti → ℝ,

ζ ij (x) := ψ̂j ∘ F−1i (x), x ∈ Ti , (3.10)

for any j ∈ ℕd0 and i ∈ {0, 1}d . For ease of notation, we write Fi for the bijective mapping FTi : Q̂ → Ti , cf. (3.4);
similarly, we denote by Ai , Ci , Di , and bi the local quantities ATi , CTi , DTi and bTi from Section 2.3. We emphasize
that the quantitiesAi , Ci and bi , for each of the different enrichments on Q to be compared, need to be computed
once only.

3.4.2 p-Enrichments on Q

For any multi-index j = (j1 , . . . , jd) ∈ ℕd0 , let us introduce the functions ξj : Ω → ℝ by

ξj(x) :=
{
{
{

ψ̂j ∘ F−1Q (x) if x ∈ Q,
0 if x ∈ Ω \ Q.

(3.11)
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For the p-enrichments on Q we choose a finite subset of the functions

Ep = {ξj : j ∈ Jd}, (3.12)

for some index set

Jd ⊆ {j ∈ ℕd0 : jk ≥ 2 for k ∈ d} with |Jd| = L < ∞.

We emphasize that we exclusively consider transformed (higher-order bubble-type) polynomials that vanish
along the boundary of Q; cf. Remark 7 below for some generalizations to patches. In particular, we have the
following result:

Proposition 4. Any ξ ∈ Ep is continuous on Ω, and it holds supp(ξ) = Q.

Obviously, there are various possibilities to choose appropriate p-enrichment functions. For instance, if we
select all transformed polynomials up to a certain polynomial degree pmax > pQ , we have Jd = {2, . . . , pmax}d ,
whereas for the so-called hierarchical surplus we choose

Jd = {j ∈ {2, . . . , pmax}d : |j| ≥ pQ + 2}.

3.4.3 hp-Enrichment Functions on Q

In the case of hp-refinements, we construct local enrichment functions that can be associated with those
r-dimensional faces of the refinement R(Q) which do not lie on the boundary ∂Q. We will call such faces
internal nodes of the refinement R(Q). In this sense, the vertex FQ(“z) is the only 0-dimensional internal node
of R(Q), edges in the interior of Q are the 1-dimensional internal nodes of R(Q), and the elements Ti , for
i ∈ {0, 1}d , represent the d-dimensional internal nodes of R(Q).

Indexing of Internal Nodes. Any r-dimensional internal node of R(Q), r ∈ d0, can be identified uniquely by r
axial directions of Q̂, which are represented by an orientation tuple

a ∈ Dr := {(a1 , . . . , ar) ∈ dr : a1 < . . . < ar},

together with a location tuple ℓ ∈ {0, 1}r that fixes its position with respect to the center point FQ(“z). For any
a = (a1 , . . . , ar) ∈ Dr , let us denote by A(a) the set of its components, i.e. A(a) := {ak : k ∈ r}. Note that a tuple
a ∈ Dr describes the orientation (and, implicitly, contains the dimension r) of an internal node with respect
to the Cartesian reference coordinate system in Q̂ = F−1Q (Q). Moreover, the k-th entry of the location tuple
ℓ = (ℓ1 , . . . , ℓr) ∈ {0, 1}d defines whether an internal node with orientation a = (a1 , . . . , ar) lies in the left (if
ℓk = 0) or in the right (if ℓk = 1) half of the refinement R(Q) along the k-th axial direction of the reference
coordinate system in Q̂ = F−1Q (Q). Observe further that, for any d ≥ 1, the only 0-dimensional internal node
of R(Q) is represented by the empty tuples a = () and ℓ = ().

Example 3 (Internal Nodes for the 3-Dimensional Case). The 0-dimension center point is given by the empty
tuples a = () and ℓ = (). For the 1-dimensional edges of R(Q̂) there are three orientations, namely parallel to
any of the x-, y- or z-axes; they are described by a = (1), a = (2), and a = (3), respectively. Moreover, there are
three orientations for 2-dimensional faces, namely parallel to any of the xy-, xz- or yz-planes; they correspond
to the orientation pairs a = (1, 2), a = (1, 3), and a = (2, 3), respectively. Finally, there is a single orientation
triple for the eight full-dimensional elements T̂i given by a = (1, 2, 3). For the interpretation of the location
tuple, let us consider, for instance, the four internal nodes of dimension 2, which are parallel to the xy-plane, i.e.
with orientation a = (1, 2); they are highlighted in Figure 6 (left), and their possible locations are represented by
the location pairs listed in Table 1. To give a further example, the left 1-dimensional internal node in x-direction
of R(Q), highlighted in Figure 6 (right) is characterized by a = (1) and ℓ = (0).

For any r ∈ d0, let us introduce the set

Nr := {n = (a, ℓ) : a = (a1 , . . . , ar) ∈ Dr and ℓ = (ℓ1 , . . . , ℓr) ∈ {0, 1}r}
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Figure 6: Illustration for Example 3: 3-dimensional example of a refinement R(Q).

Location Tuple ℓ Location in RefinementR(Q)

ℓ = (0, 0) left half in x-, left half in y-direction
ℓ = (1, 0) right half in x-, left half in y-direction
ℓ = (0, 1) left half in x-, right half in y-direction
ℓ = (1, 1) right half in x-, right half in y-direction

Table 1: Possible locations for interior 2-dimensional faces parallel to the xy-plane in the refinement of an element Q, all with orientation
tuple a = (1, 2).

of all r-dimensional internal nodes in R(Q); note that the cardinality ofNr is given by

|Nr| = 2r(
d
r).

Furthermore, we signify by N := ⋃r∈d0 Nr the collection of all internal nodes of any dimension r = 0, . . . , d
in R(Q). In addition, for any n = (a, ℓ) ∈ N, we define

I(n) := {i = (i1 , . . . , id) ∈ {0, 1}d : ik = ℓk for each k ∈ A(a)}

to be the set of all multi-indices i ∈ {0, 1}d corresponding to elements Ti ∈ R(Q) that share the internal node n.

Example 4 (I(n) for 3-Dimensional Example). In the setting of Example 3, let us consider once more the 1-dimen-
sional edge, which is given by the orientation and location tuples a = (1) and the ℓ = (0). Then the indices of
all 3-dimensional elements Ti ∈ R(Q) sharing the internal node n = {((1), (0))} ∈ N1, which are highlighted in
Figure 7, are collected in the set I(n) = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1)}.

hp-Enrichment Functions on Q. Let n = (a, ℓ) ∈ Nr be an internal node ofR(Q), for some r ∈ d0, and consider
an associated polynomial distribution

p = (p1 , . . . , pr) ∈ {p ∈ ℕr0 : pk ≥ 2 for k ∈ r};

here, the entry pk corresponds to the coordinate direction k ∈ A(a) of n. Then, for each i ∈ I(n), we introduce
a d-tuple j(i, p) = (j1 , . . . , jd) ∈ ℕd0 component-wise by

jk :=
{
{
{

pk if k ∈ A(a),
1 − ik if k ∉ A(a).

(3.13)
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Figure 7: Illustration for Example 4: 1-dimensional edge in a 3D refinement.

Let us now define functions ξn,p : Ω → ℝ, which are associated with the r-dimensional internal node n, by

ξn,p(x) :=
{
{
{

ζ ij(i,p)(x) if x ∈ Ti for i ∈ I(n),
0 if x ∈ Ω \ T(n),

(3.14)

where
T(n) := ⋃

i∈I(n)
Ti (3.15)

represents the support of the functions ξn,p . As hp-enrichment functions we choose finitely many such func-
tions. More precisely, for any internal node n = (a, ℓ) ∈ Nr , r ∈ d0, we select a finite set

P(n) ⊆ {p ∈ ℕr0 : pk ≥ 2 for k ∈ r},

and let
Ehp := ⋃

n∈N
Ehp,n with Ehp,n := {ξn,p : p ∈ P(n)}. (3.16)

For the single 0-dimensional internal node of R(Q), represented by n = ((), ()), we note that P(n) = {()}; hence,
the only hp-enrichment function ξn,p associated with this node is given by

ξ((),()),()(x) =
{
{
{

ζ i1−i(x) if x ∈ Ti for i ∈ {0, 1}d ,
0 if x ∈ Ω \ T(n),

where 1 = (1, . . . , 1) ∈ ℕd .

Proposition 5. Any ξn,p ∈ Ehp is continuous in Ω, and it holds supp(ξn,p) = T(n).

Proof. Let ξn,p ∈ Ehp,n withEhp,n from (3.16), be an arbitrary hp-enrichment function, for some n = (a, ℓ) ∈ Nr ,
r ∈ d0, and p ∈ P(n). Let us denote by fn := ⋂i∈I(n) Ti the r-dimensional internal node of the refinement R(Q)
characterized by n. Noticing that

ξn,p |Ti = ζ ij(i,p) = ψ̂j(i,p) ∘ F−1i for all i ∈ I(n),

and ξn,p |Ti ≡ 0 on elements Ti with i ∈ {0, 1}d \ I(n) as well as on Ω \ Q by (3.14), we immediately obtain the
continuity of the function ξn,p on the interior of the subelements Ti , for i ∈ I(n), and on Ω \ T(n). Furthermore,
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we have supp(ξn,p) = T(n), cf. (3.15). Thus, in order to prove the continuity of ξn,p on Ω, we need to show that
ξn,p ≡ 0 on the boundary ∂T(n) of the support T(n), and that the functions ζ ij(i,p), for any i ∈ I(n), coincide on
the r-dimensional face fn .

Since p = (p1 , . . . , pr) ∈ P(n), we have pk ≥ 2 for any k ∈ r. Hence, it holds that jk,i ≥ 2 for k ∈ A(a), and
jk,i ∈ {0, 1} for k ∉ A(a), where the indices (j1,i , . . . , jd,i) = j(i, p) ∈ ℕd0 are defined in (3.13). To ensure that the
functions

ζ ij(i,p)(x) = ∏
k∈d

ψjk,i (x̂k), x̂ = (x̂1 , . . . , x̂d)⊤ = F−1i (x), i ∈ I(n), (3.17)

with the 1-dimensional functions ψk from (3.2), coincide for x = (x1 , . . . , xd)⊤ ∈ fn , we first show that ψjk,i (x̂k) = 1
for any k ∉ A(a). Indeed, for i = (i1 , . . . , id) ∈ I(n) we have

fn = {Fi(x̂) : x̂ = (x̂1 , . . . , x̂d)⊤ ∈ Q̂ and x̂k = 1 − 2 ik for k ∉ A(a)}, (3.18)

and because of

jk,i =
{
{
{

1 if ik = 0,
0 if ik = 1,

k ∉ A(a),

cf. (3.13), we obtain

ψjk,i (x̂k) =
{
{
{

ψ1(1) = 1 if ik = 0,
ψ0(−1) = 1 if ik = 1,

k ∉ A(a),

owing to (3.2) and (3.18). Next, for k ∈ A(a) it holds that ψjk,i (x̂k) = ψpk (x̂k), cf. (3.13). Thus,

ζ ij(i,p)(x) = ∏
k∈A(a)

ψpk (x̂k), i ∈ I(n),

which shows the continuity of the enrichment function ξn,p in the interior of the support T(n). Finally, we
observe that ψ0(1) = ψ1(−1) = 0, and ψj(±1) = 0, for any j ∈ ℕ with j ≥ 2. Then exploiting that

∂T(n) \ fn = ⋃
i∈I(n)
{Fi(x̂) : x̂ ∈ Q̂ and ∃k ∈ A(a) : x̂k = ±1 ∨ ∃k ∉ A(a) : x̂k = 2 ik − 1},

and applying (3.17), we arrive at ζ ij(i,p)(x) = 0, for any x ∈ ∂T(n) \ fn , i ∈ I(n), This completes the argument.

Remark 3 (P(n) for Uniform Polynomial Degrees). Again, there are various possibilities to specify hp-enrich-
ment functions. Note that in the definition of Ehp , the maximal polynomial degree can differ on each node
n ∈ N, however, we could also consider the special case of a uniform polynomial degree distribution punif ∈
{2, . . . , pmax} on each element Ti ∈ R(Q), i ∈ {0, 1}d , obtained by choosing P(n) = {2, . . . , punif}r for any n ∈ Nr ,
r ∈ d; see Example 5 below for further comments on this particular choice.

3.5 Representation Matrices

Owing to the previous Propositions 4 and 5 the sum over all elements K of a general decompositionD in (2.24)
reduces to a sum over all elements Ti in the refinementR(Q) in our case. In particular, the representationmatri-
ces Ci and Di , see the notation in Section 3.4.1, need to be specified only for all Ti ∈ R(Q), i ∈ {0, 1}d . Recalling
Proposition 3, we remark that these (local) quantities, in turn, are required to assemble the matrix A and the
vectors b, c occurring in the linear system (2.14).

In order to compute thematrices Ci andDi on each element Ti ∈ R(Q), i ∈ {0, 1}d , we employ the constraint
coefficients technique from Section 3.3. To this end, let EQ := {ξ1 , . . . , ξL} be a set of p- or hp-enrichment func-
tions on Q. On each Ti ∈ R(Q), i ∈ {0, 1}d , for j ∈ {0, . . . , pmax}d , we consider the functions ζ ij from (3.10), which
we enumerate by the bijective map ι : {0, . . . , pmax}d → M, with M := (pmax + 1)d , given by

ι(j) := 1 + ∑
k∈d
(pmax + 1)k−1 jk , j = (j1 , . . . , jd), (3.19)
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i.e. we apply the renumbering ζ iι(j) := ζ
i
j , for j ∈ {0, . . . , pmax}

d . Note that the functions {ζ i1 , . . . , ζ
i
M}, extended

by zero to Ω, are discontinuous and represent a basis of a (local) discontinuous Galerkin space on R(Q).
Given a basis {ϕ1 , . . . , ϕN} of the finite element space 𝕎, cf. (3.5), recall that the components of the matrix
Ci = (cikl) ∈ ℝ

N×M , for i ∈ {0, 1}d , cf. (2.21), are determined by

ϕk |Ti = ∑
l∈M

cikl ζ
i
l , k ∈ N ,

and the components of Di = (dikl) ∈ ℝ
L×M , i ∈ {0, 1}d , cf. (2.22), are given by

ξk |Ti = ∑
l∈M

dikl ζ
i
l , k ∈ L. (3.20)

3.5.1 Computation of the Matrices Ci

On an element Q ∈ Q, for any j ∈ {0, . . . , pmax}d , we introduce the functions ψ
Q
1 , . . . , ψ

Q
M by

ψQι(j)(x) := ψ̂j ∘ F−1Q (x), x ∈ Q,

with the bijective map ι from (3.19). Furthermore, let CQ = (c
Q
kl) ∈ ℝ

N×M denote the representation matrix, for
which it holds

ϕk |Q = ∑
l∈M

cQkl ψ
Q
l , k ∈ N .

Finally, for any i ∈ {0, 1}d , let us define the matrix Bi = (bikl) ∈ ℝ
M×M component-wise by bikl := b

Ti
kl , where

k = ι(k), l = ι(l), for any k , l ∈ {0, . . . , pmax}d , and bTi
kl are the constrained coefficients from (3.9).

Proposition 6. For any i ∈ {0, 1}d it holds that Ci = CQBi .

Proof. For any k ∈ N , we have

ϕk |Q = ∑
l∈M

cQkl ψ
Q
l = ∑

l∈M
cQkl(ψ̂l ∘ F

−1
Q ).

Therefore, we infer that

ϕk |Ti ∘ FQ = ∑
l∈M

cQkl ψ̂l |T̂i
, i ∈ {0, 1}d .

Denoting by F̂i : Q̂ → T̂i the bijective map from Q̂ to the sub-hexahedron T̂i , and noting that Fi = FQ ∘ F̂i , the
restrictions to T̂i can be represented by

ψ̂l |T̂i
= ∑
r∈M

bTi
lr(ψ̂r ∘ F̂

−1
i )

for any i ∈ {0, 1}d , cf. (3.9), where l = ι−1(l) and r = ι−1(r). Thus,

ϕk |Ti = ∑
l∈M

cQkl ∑
r∈M

bTi
lr(ψ̂r ∘ F̂

−1
i ∘ F
−1
Q ) = ∑

l∈M
cQkl ∑

r∈M
bTi
lr(ψ̂r ∘ F

−1
i ).

Since ζ ir = ψ̂r ∘ F−1i , we obtain

ϕk |Ti = ∑
l∈M

cQkl ∑
r∈M

bTi
lr ζ

i
r = ∑

r∈M
( ∑
l∈M

cQkl b
Ti
lr)ζ

i
r ,

from which we deduce
cikr = ∑

l∈M
cQkl b

Ti
lr

for any k ∈ N and r ∈ M. Thus, Ci = CQBi for any i ∈ {0, 1}d .
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3.5.2 Computation of Di for a p-Enrichment on Q

In this case the enrichment functionsEp = {ξ1 , . . . , ξL} represent a certain collection of the functions ξj in (3.11),
with j from a multi-index set

Jd ⊆ {j ∈ ℕd0 : jk ≥ 2 for k ∈ d}, |Jd| = L.

As in the previous section,we apply a renumbering ξκ(j) := ξj in terms of a bijectivemap κ : Jd → L; for instance,
if we choose Jd := {2, . . . , pmax}d , then the resulting p-enrichment functions ξ1 , . . . , ξL , with L = (pmax − 1)d , can
be enumerated by

κ(j) := 1 + ∑
k∈d
(pmax − 1)k−1(jk − 2), j = (j1 , . . . , jd).

Proposition 7. For any i ∈ {0, 1}d , the matrix Di ∈ ℝL×M is given component-wise by dikl = b
Ti
kl for k = κ(k)

and l = ι(l).

Proof. By the definition (3.11) of p-enrichment functions we have ξk |Ti = ψ̂k |T̂i
∘ FQ for i ∈ {0, 1}d and any k ∈ L.

Hence, using the bijective map F̂i : Q̂ → T̂i , we obtain

ψ̂k |T̂i
= ∑
l∈M

dikl(ζ
i
l ∘ F
−1
Q ) = ∑

l∈M
dikl(ψ̂l ∘ F

−1
i ∘ F
−1
Q ) = ∑

l∈M
dikl(ψ̂l ∘ F̂

−1
i )

by the representation (3.20). Hence, by virtue of (3.9), we arrive at dikl = b
Ti
kl for k = κ(k) and l = ι(l).

3.5.3 Computation of Di for an hp-Refinement on Q

Weconsider hp-enrichment functionsEhp = {ξ1 , . . . , ξL} froma certain selection of functions ξn,p in (3.14). Here,
each n = (a, ℓ) ∈ N corresponds to an internal node of the refinement R(Q), which is characterized by the
tuples a ∈ Dr and ℓ ∈ {0, 1}r , for some r ∈ d0, cf. Section 3.4.3. Moreover, p ∈ P(n) represents the polynomial
distribution for the directions k ∈ A(a), where

P(n) ⊆ {p ∈ ℕr0 : pk ≥ 2 for k ∈ r} with |P(n)| < ∞.

Given a polynomial degree distribution (pi)i∈{0,1}d on the subelements Ti ∈ R(Q), with pi ∈ {1, . . . , pmax}, we
can associate a nodal polynomial degree pn to any node n ∈ Nr , with r ∈ d, by means of the minimum-rule

pn := min
i∈T(n)

pi

In that case, for any node n ∈ Nr , we set P(n) = {2, . . . , pn}r (with the convention P(((), ())) = {()} for r = 0), and
we can enumerate the functions ξn,p in terms of a bijective map ν : {(n, p) : n ∈ N, p ∈ P(n)} → L.

Proposition 8. For any i ∈ {0, 1}d the matrix Di ∈ ℝL×M is given component-wise by

dikl =
{
{
{

1 if ξn,p = ζ ij ,
0 otherwise,

for k = ν(n, p) and l = ι(j).

Proof. By the definition (3.14) of hp-enrichment functions, we have

ξn,p |Ti = ζ ij(i,p)

for any i ∈ I(n), where j(i, p) ∈ ℕd0 is defined in (3.13). Since the components of Di are determined by

ξk |Ti = ∑
l∈M

dikl ζ
i
l , k = ν(n, p),

we immediately obtain dikl = 1 if l = ι(j(i, p)), and d
i
kl = 0 otherwise. In addition, for any i ∈ {0, 1}d \ I(n), we

have ξn,p |Ti ≡ 0, wherefore the linear independence of the functions ζ i1 , . . . , ζ
i
M yields dikl = 0 for any l ∈ M.
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Example 5 (Enumeration ν for Uniform Polynomial Degrees). Let us assign the same polynomial degree punif ∈
{2, . . . , pmax} to all elements Ti of the refinementR(Q), i ∈ {0, 1}d , i.e. P(n) = {2, . . . , punif}r for any r-dimensional
internal node n ∈ Nr , r ∈ d0. In this case, we observe that there are (punif − 1)r hp-enrichment functions on Q
that can be associated with n. Hence, the total number of hp-refinement functions, which are associated with
r-dimensional internal nodes, is given by

Lr := (
d
r) 2

r(punif − 1)r , r ∈ d0 .

Now let us enumerate the r-dimensional internal nodes n = (a, p) ∈ Nr , r ∈ d0, by the bijective map νr : Nr →
{1, . . . , (dr) 2

r} given by

νr(n) := 1 + 2r ∑
k∈r
(ak − k) + ∑

k∈r
2k−2(ℓk + 1), a = (a1 , . . . , ar), p = (p1 , . . . , pr).

Then we can enumerate all hp-enrichment functions ξn,p , for n ∈ N and p ∈ P(n), by the bijective map
ν : {(n, p) : n ∈ N, p ∈ P(n)} → L, with L := L0 + ⋅ ⋅ ⋅ + Ld , defined by

ν(n, p) := 1 + ∑
k∈r

Lk−1 + (νr(n) − 1)(punif − 1)r + ∑
k∈r
(punif − 1)k−1(pk − 2),

where we let L−1 := 0.

4 hp-Adaptivity Based on Locally Predicted Error Reductions

In this section, we will exploit our abstract results in Section 2.1 for the purpose of devising a new adaptive
procedure for hp-type finite element discretizations. Our basic idea to hp-refine a given hp-finite element
space𝕎given consists of three essential steps:

Step 1. Firstly, our algorithm aims to predict the potential contribution to the (global) energy error reduction
from each individual element Q in the given hp-space𝕎given. To this end, for every element Q, with an asso-
ciated local space𝕎loc, cf. (2.4), we apply various local p-enrichment or hp-replacement spaces 𝕐 , cf. (2.7), as
follows:
(p) In the case of p-enrichments, we choose finitely many sets Jd,i in order to define suitable collections of

p-enrichment functions Ep,i := {ξ
Q
j : j ∈ Jd,i}, cf. (3.12), and let 𝕐p,i := span{ũ𝕎} + spanEp,i be the associ-

ated p-enrichment spaces. We then compute the respective predicted error reductions Δep,i by means of
the formula (2.11) (or equivalently (2.15)).

(hp) In the case of hp-refinements, for any node n of a refinementR(Q) of Q, we choose finitely many sets Pi(n)
to define collections of (nodal) hp-enrichment functions Eihp,n := {ξ

Q
n,p : p ∈ Pi(n)}, cf. (3.16), and let

𝕐hp,i := span{ũ𝕎} + spanEhp,i with Ehp,i := ⋃
n
Eihp,n

be the associated hp-replacement spaces. We then compute the corresponding predicted error reductions
Δehp,i by means of the formula (2.11) (or equivalently (2.15)).

From all these choices of p-enrichments (p) and hp-refinements (hp), we select the one that features the max-
imal error reduction (signified by ΔeQmax); this will be referred to as the optimal (local) hp-refinement on Q.
Hereby, the number of different p-enrichments and hp-refinements, respectively, that are performed for each
element Q in the prediction step, is technically at the disposal of the user; cf. the ensuing Example 6 for a specific
setup in 1d and 2d. Preferably, following the approach proposed in [20], we select the local p-enrichments and
hp-refinements in a competitiveway, i.e. with a comparable number of local degrees of freedom; wewill discuss
this idea in more detail in the context of the 1-dimensional numerical examples in Section 5 below.

Step 2. Subsequently, wemark all elements in the global hp-finite element space𝕎given, from which the most
substantial error reductions, as identified in Step 1. for each element, can be expected. This step can be accom-
plished, for instance, with the aid of a suitable marking strategy, such as Dörfler’s criterion [12].
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Step 3. Finally, a new enriched hp-finite element space 𝕎new is constructed based on choosing the optimal
(local) hp-refinement space, cf. Step 1., for each of the marked elements.

Schematically, the proposed hp-adaptive procedure has the following structure:

Remark 4 (Computational Aspects of the Prediction Step). We emphasize that the prediction step (Step 1) is triv-
ially parallelizable, and hence, inexpensive from a computational point of view compared to the global solve
(Step 3). In addition, as all enrichment functions for the different p-enrichments and hp-refinements on Q
can be expressed by the functions ζ i1 , . . . , ζ

i
M , cf. (3.10), the matrices Ai , Ci as well as the vector bi from Sec-

tion 3.5, which are employed in the computation of the corresponding predicted local error reductions, need to
be computed once only on the subelements Ti of the local refinement R(Q) for all different p-enrichments and
hp-refinements applied on the subelements Ti . Evidently, the computational cost for the prediction step depends
strongly on the specific selection of possible p-enrichments and hp-refinements (as well as on the efficiency of
their implementation).

Example 6. Wediscuss somepossible realizations of the choice of p-enrichments and hp-refinements to be com-
pared on the individual elements (Step 1. above), whichwill be employed in our numerical examples of Section 5:
(i) In the 1d examples only one p-enrichment is considered on each element Q; specifically, we increase the

associated local polynomial degree pQ to pQ + 1, which is represented by the set JQ1 := {2, . . . , pQ + 1}.
This p-enrichment is then compared to pQ-many hp-refinements which allocate suitable local polynomial
degrees p0, p1 to subelements T0, T1 in a competitive way, so that p0 + p1 = pQ + 1.

(ii) In the 2d example in Section 5, on each element Q, we consider an associated p-enrichment by which
the local polynomial degree pQ is increased to pQ + 1. The resulting prediction is compared to two dif-
ferent hp-refinements: In a first version, the same polynomial degree pQ is retained on all of the four
subelements Ti with i ∈ {0, 1}2; in the second version, the polynomial degree is reduced to pQ − 1 on the
subelements Ti with i ∈ {0, 1}2. In this approach, in contrast to the 1d situation before, we note that the
number of hp-refinements on an element Q does not increase with the local polynomial degree pQ .

In Algorithm 1 we outline the technical details for the individual steps in the hp-adaptive refinement approach
sketched above.Wedenote by𝕎(Q, pQ) the hp-finite element space associatedwith themeshQ, and by pQ a cor-
responding polynomial degree distribution, cf. (3.5). Note that the solving step, the prediction step (exploiting
p-enrichments and hp-refinements), the marking step and the enrichment step are implemented in the lines 2,
3–15, 16 and 17 in Algorithm 1, respectively.

Remark 5 (Possible Specifications of hp-Adaptive Procedure). (i) Evidently, Algorithm 1 can be turned into a
pure h-adaptive procedure (by only considering hp-refinements that inherit the fixed low-order polyno-
mial degree to any subelements), or into a pure p-adaptive procedure (whereby no element refinements
are taken into account).

(ii) In the context of finite element discretizations forwhich the global polynomial degree is restricted to a small
positive number pmax ≥ 2 (e.g. for quadratic elements), it is possible to first apply an h-adaptivemesh refine-
ment procedure, thereby yielding a locally refined mesh Q, and then to employ p-enrichments based on
Algorithm 1 in order to determine an effective polynomial distribution pQ with max pQ ≤ pmax.

Remark 6 (Guaranteed Error Decrease and Control). By Remark 1 the approximation error from one step to
another in Algorithm 1 will not increase if ΔeQmax > 0 for marked elements; this condition can be accommodated
if, in addition to employing hp-replacements, at least one enrichment is applied on those elements. Further-
more, we note that, at the end of each adaptive step, the use of an appropriate a posteriori estimator could
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Algorithm 1. hp-Adaptive Procedure.
1: Choose an initial mesh Q0 on the computational domain Ω and a starting polynomial degree distribu-
tion pQ0

. Set n := 0.
2: Solve the weak formulation (2.1) for u𝕎 ∈ 𝕎(Qn , pQn

). ⊳ solving step
3: for each element Q ∈ Qn do ⊳ prediction step
4: Construct the (locally supported) subspace 𝕎loc

Q ⊂ 𝕎(Qn , pQn
), and decompose the current solution

u𝕎 = ũ𝕎 + uloc𝕎 according to (2.6), where uloc𝕎 := Πloc
Q u𝕎 ∈ 𝕎loc

Q is defined via the linear projection
operator Πloc

Q :𝕎(Qn , pQn
) → 𝕎loc

Q from (2.5).
5: for finitely many different p-enrichments on Q do ⊳ p-enrichments
6: Compute the corresponding predicted error reductions Δep,i as outlined in Step 1 (p) above.
7: end for
8: Set ΔeQp,max := max{Δep,i} to be the maximal locally predicted error reduction for the p-enrichments on

the element Q.
9: Construct the local refinement R(Q). ⊳ hp-refinement
10: for finitely many different hp-refinements on Q do
11: Compute the corresponding predicted error reductions Δehp,i as outlined in Step 1 (hp) above, and

store the polynomial degree distribution (pT,i)T∈R(Q) for the subelements T ∈ R(Q).
12: end for
13: Set ΔeQhp,max := max{Δehp,i} to be the maximal locally predicted error reduction for the hp-refinements

on Q.
14: Determine ΔeQmax := max {Δe

Q
p,max , Δe

Q
hp,max} to be the maximal locally predicted error reduction.

15: end for
16: Mark a subset En ⊆ Qn of elements in the mesh Qn to be flagged for enrichment. ⊳marking step
17: For each elementQ ∈ En performa p-enrichment or an hp-refinement according towhich enrichment leads

to the maximal error reduction in 14. This results in a refined mesh Qn+1 with a corresponding polynomial
degree distribution pQn+1

. ⊳ enrichment step
18: Update n ← n + 1, and start over in line 2.
19: After sufficiently many iterations output the final solution u𝕎 ∈ 𝕎(Qn , pQn

).

be taken into account, see, e.g., [8], if some explicit control on the quality of the numerical approximation is
desired. Notice that the estimator need not be localizable in terms of individual element contributions as it is
not used for the purpose of driving the adaptive process.

5 Numerical Examples

In this section we illustrate the performance of the hp-adaptive procedure outlined in Algorithm 1 with some
numerical experiments in 1D and 2D.

5.1 Numerical Examples in 1D

In the following 1-dimensional examples on the domain Ω := (0, 1) we use a basis for the hp-finite element
spaces𝕎 that consists of the usual hat-functions, and, on each element Q ∈ Qwith pQ ≥ 2, of the (elementwise
transformed) integrated Legendre polynomials given by ψQj := ψj ∘ F−1Q , for 2 ≤ j ≤ pQ , cf. (3.2). In accordance
with (3.11) we consider the (extended) functions

ξQj (x) :=
{
{
{

ψQj (x) if x ∈ Q,
0 if x ∈ Ω \ Q.
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For each element Q ∈ Q of the current mesh, the locally supported subspace𝕎loc
Q ⊂ 𝕎 is chosen as

𝕎loc
Q := {ξQj : 2 ≤ j ≤ pQ}.

In particular, the corresponding linear projection operator Πloc
Q :𝕎→𝕎loc

Q only retains all higher-ordermodes
on Q. Specifically, we choose

E
Q
p := {ξQj : j ∈ JQ1 } with JQ1 := {2, . . . , pQ + 1}

as p-enrichment functions, i.e. we increase the polynomial degree pQ to pQ + 1, thereby using a number of pQ
locally supported degrees of freedom on Q. Moreover, for an hp-replacement on Q, we divide the element Q into
two equally sized subelements T0 , T1, for which we allocate some local polynomial degrees p0 , p1, respectively,
that give rise to p0 + p1 + 1 degrees of freedom within Q:

In order to compare competitive p- and hp-refinements, we impose the constraint

p0 + p1 = pQ + 1. (5.1)

The only internal node for the refinementR(Q) = {T0 , T1} of the elementQ is the 0-dimensionalmidpoint, repre-
sented by n1 := ((), ()). The subelements T1, T2 are characterized by the tuples n2 := ((1), (0)) and n3 := ((1), (1)).
Therefore, in terms of the notation from Section 3.4.3, we haveN = {n1 , n2 , n3}, and we choose

PR(Q)(n1) = {()}, PR(Q)(n2) = {2, . . . , p1}, PR(Q)(n3) = {2, . . . , p2}

for all possible pairs (p1 , p2) of local polynomial degree combinations that satisfy (5.1).

5.1.1 Singularly Perturbed Problem with Boundary Layers

As a first example, for (a possibly small) parameter ε > 0, we consider the 1-dimensional singularly perturbed
differential equation −ε u󸀠󸀠 + u = 1 in the domain Ω = (0, 1) with the homogeneous Dirichlet boundary condi-
tion u(0) = u(1) = 0. The analytic solution is given by

u(x) = e−c − 1
ec − e−c e

cx +
1 − ec
ec − e−c e

−cx + 1

with c = ε− 12 ; for very small 0 < ε ≪ 1, we notice that u exhibits thin boundary layers in the vicinity of the
boundary points x = 0 and x = 1, and takes values of approximately 1 in the interior of the domain Ω. For our
numerical experiments, we initiate the hp-adaptive procedure of Algorithm 1 with a coarse mesh Q0 consisting
of four elements, and an associated uniform polynomial degree of 1 on each of them. For the marking process
we choose the Dörfler marking parameter to be 1

2 .
Figure 8 shows the resulting hp-mesh after 28 hp-adaptive steps for ε = 10−5; we clearly see that the bound-

ary layers have been resolved on a few small elements (of high polynomial degree), whilst no refinement is
employed in the interior of the domain Ω, where the solution is nearly constant.

Moreover, in Figure 9, for the underlying energy norm given by

‖v‖2𝕏 = ε ‖v
󸀠‖2L2(Ω) + ‖v‖

2
L2(Ω) , v ∈ 𝕏,
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Figure 8: hp-mesh Q28 after 28 adaptive enrichment steps with ε = 10−5.

Figure 9: Singularly perturbed problem in 1D: Performance of the hp-adaptive procedure with respect to the energy norm error
‖u − u𝕎‖𝕏 for ε = 10−j with j ∈ {3, 4, 5}.

the error ‖u − u𝕎‖𝕏 is plottedwith respect to the number of degrees of freedom in a semilogarithmic scaling for
several values of the singular perturbation parameter ε ∈ {10−j : j = 3, 4, 5}. We observe that the hp-adaptive
procedure is able to achieve an exponential rate of convergence that is fairly robust with respect to ε. In
this regard, our results are comparable to alternative hp-adaptive strategies proposed in the literature, see,
e.g., [32, Expl. 2].

5.1.2 1D-Model Problem with a Boundary Singularity

As a second example, we consider the 1-dimensional boundary value problem −u󸀠󸀠 = f in Ω = (0, 1), with the
homogeneous Dirichlet boundary conditions u(0) = u(1) = 0; the right-hand side function f is chosen in such
a way that the analytic solution is given by u(x) = x 3

4 − x, which features a singularity at x = 0 with u󸀠(x) → ∞
as x → 0+. As in the previous example, we start the hp-adaptive procedure of Algorithm 1 with an initial mesh
Q0 consisting of four elements with a uniform polynomial degree distribution of 1, and let the Dörfler marking
parameter be 1

2 . The ensuing plot in Figure 10 shows the resulting hp-mesh Q49, which contains 51 elements,
after 49 hp-adaptive enrichment steps.
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Figure 10: hp-mesh Q49 after 49 hp-adaptive enrichment steps.

Figure 11: Algebraic boundary singularity in 1D: Performance of the hp-adaptive procedure with respect to the energy norm error
‖u − u𝕎‖𝕏 (measured against the square root of the number of degrees of freedom). In addition to the energy norm error (blue)
a regression line (orange) is displayed in order to indicate the exponential decrease.

The mesh is geometrically refined towards the singularity at x = 0, and the polynomial degree is increased
at an approximately linear rate in dependence of the distance from the origin; this is in line with a priori results
on exponentially convergent hp-FEM for local algebraic singularities; see, e.g., [27]. Indeed, this is confirmed
in Figure 11, where the error in the energy norm, i.e. ‖u − u𝕎‖𝕏 = ‖u󸀠 − u󸀠𝕎‖L2(Ω), shows an exponential decay
(with respect to the square root of the number of degrees of freedoms) in a semilogarithmic scaling.

5.2 Numerical Example in 2D

In the following 2-dimensional example over the unit square Ω := (0, 1)2, we use a basis for the hp-finite element
spaces𝕎 that—in addition to the usual hat functions – contains the functions

ψQj := ψ̂j ∘ F−1Q , j ∈ {2, . . . , pQ}2 ,

extended by 0 to Ω, cf. (3.3), for elements Q ∈ Qwith a local polynomial degree pQ ≥ 2. In accordance with (3.11)
we denote the corresponding extended functions by ξQj . Recall thatwe decompose the hp-finite element solution
u𝕎 ∈ 𝕎 of (2.1) into a local part uloc𝕎 and a remaining part ũ𝕎, cf. (2.6). If we wish the remaining part ũ𝕎 to be
completely independent of the enrichments on Q (in the sense that ũ𝕎 remains unchanged undermodifications
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in𝕎loc
Q ), we note that the locally supported subspace𝕎loc

Q needs to contain all basis functions of𝕎with support
on Q; in particular, all interior bubble functions on Q. For simplicity (see Remark 7), we set

𝕎loc
Q := {ξQj : j ∈ {2, . . . , pQ}2},

and, on each element Q ∈ Q (with an associated local polynomial degree pQ), we choose the p-enrichment
functions to be

E
Q
p := {ξQj : j ∈ JQ2 } with JQ2 := {2, . . . , pQ + 1}2 , (5.2)

i.e. we increase the local polynomial degree pQ to pQ + 1 in both coordinate directions, thereby resulting in
p2Q many locally supported enrichment functions on Q. Moreover, an hp-refinement on an element Q is based
on dividing Q into the four subelements Ti with i ∈ {0, 1}2: In the present experiments we limit ourselves to
enrichments that are restricted to single element Q as pointed out in Section 3.4, and do not involve enrich-
ments on a patch around Q; see Remark 7 below for more details on this matter. For simplicity, we compare the
p-enrichment (5.2) in two different versions of a single hp-refinement on Q: Firstly, with an hp-refinement that
features the same polynomial degree pQ on all subelements Ti ∈ R(Q), and secondly, with an hp-refinement
that allocates the reduced polynomial degree pQ − 1 to all subelements Ti ∈ R(Q) (if pQ > 2). The internal nodes
of the refinement R(Q) = {Ti : i ∈ {0, 1}2} consist of the midpoint n1 := ((), ()), of the edges

n2 := ((1), (0)), n3 := ((1), (1)), n4 := ((2), (0)), n5 := ((2), (1)),

and of the subelements Ti , represented by

n6 := ((1, 2), (0, 0)), n7 := ((1, 2), (1, 0)), n8 := ((1, 2), (0, 1)), n9 := ((1, 2), (1, 1)).

When featuring the polynomial degree pQ on all subelements, we obtain

PR(Q)(nj) =
{{{
{{{
{

{()} for j = 1,
{(p1) : p1 ∈ {2, . . . , pQ}} for 2 ≤ j ≤ 5,
{(p1 , p2) : p1 , p2 ∈ {2, . . . , pQ}} for 6 ≤ j ≤ 9,

thereby leading to 1 + 4(pQ − 1)pQ hp-enrichment functions on Q.

Remark 7 (Competitive Refinements for Dimensions d ≥ 2). In contrast to the 1-dimensional case, if the remain-
ing part ũ𝕎 of the solution u𝕎 should be independent (in the sense that ũ𝕎 remains unchanged upon modi-
fications in𝕎loc

Q ) of an enrichment or a refinement associated with an element Q, it is mandatory to include
element interface basis functions in the definition of the locally supported subspace𝕎loc

Q . Indeed, only if degrees
of freedom, which are shared by neighboring elements, are taken into account as well, it is possible to compare
different p-enrichments and hp-refinements in a truly competitive way. This is due to the fact that, in general,
p-enrichments and hp-refinements on a single element Qmay influence the new solution on a local patchwhich
also involves neighboring elements of Q; we observe that this effect extends even beyond the direct neighbors
of Q if hanging nodes, as can be seen in Figure 12, are present; we refer to, e.g., [10], for a straightforward
treatment of hanging nodes. In turn, we note that the enforcement of continuity of enrichment functions along

Figure 12: Extended patch around the element Q (right).
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element edges and faces of a patch around Q (e.g. by means of the minimum rule for the adjacent polynomial
degrees) causes an additional challenge. For simplicity, for the purpose of the present paper, we will restrict
ourselves to the enrichment of internal degrees of freedom only on each element; competitive enrichments on
patches for higher dimension are investigated in forthcoming work. Following the idea of using patches in the
context of higher-order FEM, see, e.g., [25], we also include the interface basis functions between neighboring
elements in the enrichment step; we remark that this approach, in turn, will generally yield an upper bound on
the actual error reduction rather than an exact representation.

Remark 8 (Anisotropic Refinements for Dimensions d ≥ 2). We note that the abstract framework presented in
Section 2 and the constraint coefficient technique from Section 3.3 both apply to anisotropic hp-refinements as
well; in particular, elements may be refined in a single direction only, with respect to either h or p. Indeed, we
have deliberately formulated our hp-adaptive approach in a quite general way in order to allow for maximal
flexibility and, thereby, a wide variety of practical realizations. The application of anisotropic hp-refinements
within the adaptive framework will be studied in a forthcoming work.

5.2.1 2D-Poisson Problem with Corner Singularities

Let us consider the 2-dimensional Poisson-problem−Δu = 1 on Ω = (0, 1)2, subject to the homogeneous Dirichlet
boundary condition u = 0 on Γ := ∂Ω.While an explicit expression for the analytic solution u is unavailable, an
eigenfunction expansion yields that

‖u‖2𝕏 = ‖∇u‖
2
L2(Ω) = (

2
π)

6
∑

k,l≥1 odd

1
k2l2(k2 + l2)

≈ 0.035144253738788451 . . . .

We start the hp-adaptive procedure of Algorithm 1 with an initial mesh Q0 consisting of 16 elements with a uni-
form polynomial degree distribution of 1 on all elements Q ∈ Q0. Moreover, we let the Dörfler parameter to
be 1

5 .
Following the a priori error analysis on the exponential convergence of hp-FEM for the 2-dimensional Pois-

son equation with corner singularities in polygons, see, e.g., [27], we depict the energy error ‖u − u𝕏‖𝕏 with
respect to the 3rd root of the number of degrees of freedom in Figure 14. The blue line shows the error decay
when the polynomial degree pQ on an hp-refined element Q is inherited to the subelements Ti , for i ∈ {0, 1}2;
we see that this strategy may lead to an unnecessarily high number of local degrees of freedom. The resulting
hp-mesh of this strategy after 52 adaptive enrichment steps is depicted in Figure 13 (containing 1412 elements).
In an alternative scenario, illustrated by the yellow line in Figure 14, the slope of the exponential convergence
is considerably improved when allocating a reduced polynomial degree of pQ − 1 to all subelements Ti , with
i ∈ {0, 1}2, if pQ > 2. The resulting hp-mesh after 67 adaptive enrichment steps is shown in Figure 13 (contain-
ing 256 elements). In addition, for comparison purposes with a possible benchmark situation, which does not

Figure 13: hp-mesh Q52 after 52 adaptive enrichment steps applying the first strategy (left), hp-mesh Q67 after 67 adaptive enrichment
steps applying the second strategy (middle) and geometrically refined mesh towards the corners, with twelve layers and linearly
increasing polynomial degrees leading to 192 elements (right).



P. Bammer et al., hp-Adaptivitiy Based on Locally Predicted Error Reduction  803

Figure 14: Poisson problem with corner singularities on unit square: Performance of the hp-adaptive procedure with respect to the
energy norm error ‖u − u𝕎‖𝕏 (measured against the 3rd root of the number of degrees of freedom). In addition to the energy norm
errors (blue, yellow) regression lines (orange, purple) are displayed in order to indicate the exponential decrease. Moreover, the energy
norm error (green) for a comparable a priori hp-refinement strategy has been inserted also.

depend on a specific hp-adaptive strategy, we have inserted an additional (green) line in Figure 14 that repre-
sents the error decay of a classical a priori hp-refinement strategy. More precisely, following the well-known
theory of exponential convergence of hp-FEM for linear elliptic problems in 2d polygons (see, e.g., [27]), meshes
that are geometrically refined towards the corners of Ω, see Figure 13, and that feature a linear polynomial
degree distribution away from the corners, are applied. Our results confirm that our proposed hp-adaptive
algorithm is able to properly resolve the four corner singularities on geometrically refined meshes, and that
approximately exponential rates of convergence can be achieved.

A Appendix

A.1 Proof of (2.12)

From Proposition 1 we recall the identity Δe2𝕎,𝕐 = ‖u𝕐 − u𝕎‖2𝕏 − 2 ρ𝕐(uloc𝕎 ). Furthermore, owing to the decom-
position (2.6) of the solution u𝕎, we have

‖u𝕐 − u𝕎‖2𝕏 = ‖(u𝕐 − ũ𝕎) − u
loc
𝕎 )‖

2
𝕏 = ‖u𝕐 − ũ𝕎‖

2
𝕏 + ‖u

loc
𝕎 ‖

2
𝕏 − 2 a(u𝕐 − ũ𝕎 , uloc𝕎 ).

Moreover, since uloc𝕎 ∈ 𝕎, the weak formulation (2.1) yields

ρ𝕐(uloc𝕎 ) = b(u
loc
𝕎 ) − a(u𝕐 , uloc𝕎 ) = a(u𝕎 , uloc𝕎 ) − a(u𝕐 , uloc𝕎 ) = a(u𝕎 − u𝕐 , uloc𝕎 ).

Thus, noticing that u𝕎 − ũ𝕎 = uloc𝕎 , we obtain

‖u𝕐 − u𝕎‖2𝕏 − 2ρ𝕐(uloc𝕎 ) = ‖u𝕐 − ũ𝕎‖2𝕏 + ‖uloc𝕎 ‖2𝕏 − 2(a(u𝕐 − ũ𝕎 , uloc𝕎 ) − a(u𝕎 − u𝕐 , uloc𝕎 ))
= ‖u𝕐 − ũ𝕎‖2𝕏 + ‖u

loc
𝕎 ‖

2
𝕏 − 2a(u𝕎 − ũ𝕎 , uloc𝕎 )

= ‖u𝕐 − ũ𝕎‖2𝕏 − ‖u
loc
𝕎 ‖

2
𝕏 ,

which gives the assertion.
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A.2 Recursion Formulas of the 1D-Constraint Coefficients

We present some recursion formulas for the computation of the 1-dimensional constraint coefficients applied
in Section 3.3. For this purpose, let I = [a, b], with −1 ≤ a < b ≤ 1, be an interval. For j ∈ ℕ0, recall that the
restrictions of the functions ψj : [−1, 1] → ℝ from (3.2) to the interval I can be represented as linear combina-
tions of the functions ψ̃i := ψi ∘ F−1I on I, for i ∈ j

0
:

ψi |I =
i
∑
j=0
bIi,j ψ̃i , i ∈ ℕ0;

here, the bijective affine linear transformation FI : [−1, 1] → I is given by FI(t) = α t + β, with α := 1
2 (b − a) and

β := 1
2 (a + b). We note that the uniquely determined constraint coefficients bIi,j in the above representation can

be determined recursively (see [7] for a proof):
(i) For i, j ∈ {0, 1}2, the following identities can be derived:

bI0,0 =
1
2 (1 + α − β), bI1,0 =

1
2 (1 − α + β), bI0,1 =

1
2 (1 − α − β), bI1,1 =

1
2 (1 + α + β).

(ii) Moreover, we find that

bI2,0 =
1
2 ((α − β)

2 − 1), bI2,1 =
1
2 ((α + β)

2 − 1), bI2,2 = α
2 .

(iii) For i ≥ 3, it holds bIi,i = α b
I
i−1,i−1 as well as

bIi,0 =
1
i (
(2i − 3)(β − α) bIi−1,0 − (i − 3) b

I
i−2,0),

bIi,1 =
1
i (
(2i − 3)(α + β) bIi−1,1 − (i − 3) b

I
i−2,1),

bIi,2 =
1
i ((2i − 3) (α (

1
5 b

I
i−1,3 − (b

I
i−1,0 − b

I
i−1,1)) + β b

I
i−1,2) − (i − 3) b

I
i−2,2).

In addition, for i ≥ 4, we have

bIi,i−1 =
2i − 3
i (

i − 1
2i − 5 α b

I
i−1,i−2 + β b

I
i−1,i−1).

(iv) For i ≥ 5 and j ∈ {3, . . . , i − 2}, the coefficients are given by

bIi,j =
1
i (
(2i − 3) (α ( j

2j−3 b
I
i−1,j−1 +

j−1
2j+1 b

I
i−1,j+1) + β b

I
i−1,j) − (i − 3) b

I
i−2,j).

(v) Finally, for j ≥ 2 and i ∈ {0, . . . , j − 1}, it holds bi,j = 0.
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