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Abstract: We introduce a new hp-adaptive strategy for self-adjoint elliptic boundary value problems that does
not rely on using classical a posteriori error estimators. Instead, our approach is based on a generally applicable
prediction strategy for the reduction of the energy error that can be expressed in terms of local modifications
of the degrees of freedom in the underlying discrete approximation space. The computations related to the pro-
posed prediction strategy involve low-dimensional linear problems that are computationally inexpensive and
highly parallelizable. The mathematical building blocks for this new concept are first developed on an abstract
Hilbert space level, before they are employed within the specific context of hp-type finite element discretiza-
tions. For this particular framework, we discuss an explicit construction of p-enrichments and hp-refinements
by means of an appropriate constraint coefficient technique that can be employed in any dimensions. The appli-
cability and effectiveness of the resulting hp-adaptive strategy is illustrated with some 1- and 2-dimensional
numerical examples.
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1 Introduction

Over the last few decades significant contributions have been made in a posteriori error estimation and auto-
matic (adaptive) mesh refinement techniques for finite element methods (FEM), see, e.g., [1, 6, 14, 29-31]. Amajor-
ity of works in the adaptive FEM literature are focused exclusively on local (usually isotropic) refinements of
elements (i.e. on so-called h-refinement). In recent years, however, motivated by the pioneering a priori results
on spectral and variable-order (so-called hp-version) FEM of BabuSka and co-authors, cf. [2-5, 16, 17], the adap-
tive selection of locally varying polynomial degrees (i.e. p-refinement) has been taken into account as well. In
combination with local mesh adaptivity, such approaches lead to hp-adaptive schemes; see, e.g., the overview
article [24] and the references therein, or the monographs [9, 21, 27, 28] for theoretical and practical aspects of
hp-FEM. A key advantage of hp-approximations is their ability to approximate local singularities in (otherwise
smooth) solutions of partial differential equations at high algebraic or even exponential convergence rates, see,
e.g., [27].

While it seems reasonable to generalize classical h-version a posteriori error estimation to the hp-frame-
work, it is well-known that the derivation of effective computable hp-version error bounds involves consider-
able technical challenges [11, 22]. Furthermore, in addition to flagging elements for refinement (as in h-adaptive
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FEM), the design of hp-adaptive strategies requires the development of carefully devised decision procedures
that allow to choose between various possible hp-refinements of the marked elements; this can be accomplished,
for instance, by means of exploiting appropriate smoothness testing strategies [13, 15, 19, 32].

In contrast, the approach proposed in the present paper does neither rely on classical a posteriori error
estimators nor on smoothness indicators. Instead, we develop a prediction procedure for an efficient reduc-
tion of the (global) energy error that can be represented explicitly in terms of hp-refinements on local discrete
spaces. Our methodology is closely related to the energy minimization technique [20], where local problems are
employed to compare various elementwise (competitive) p- and hp-refinements with regards to the potential
contribution they may provide to the decay of the global error (see also [9] for a related strategy). Inspired by
the low-order approach presented in [18], the main novelty in the current paper consists in a new construction
of the approximation spaces for the local problems that properly conforms to the weak formulation of the under-
lying partial differential equation, and thus, provides a mathematically sound structure; this is opposed to [20],
where artificial conditions and numerical fluxes along patch boundaries are involved.

More precisely, for the purpose of this work, in order to perform a (local) hp-refinement on an element Q
in the mesh (with associated polynomial degree po), we first decompose the numerical solution up, on the
current (global) hp-space into a local part uflf (with local support on or around Q), and a remaining (globally
supported) part Upp = Upp - ul,f’;. Here, our goal is to suitably replace the local part ul};’; on a modified local
hp-space that allows for an improved resolution of possible small-scale features of the global solution on Q. To
this end, we consider locally supported spaces (spanned by so-called enrichment functions), which either provide
a polynomial degree > po on Q, or an hp-refinement of Q (involving a small number of subelements of Q and
an appropriate polynomial degree distribution on this subelements), thereby giving rise to a p-enrichment or
an hp-replacement on Q, respectively. The span of the enrichment functions together with the remaining part
of the current solution, Zinp, defines the local enrichment or replacement space, on which a potentially refined
approximate solution is obtained. Since we explicitly include the remaining part of the current solution in the
definition of the local enrichment/replacement space, the new approximate solution represents a global solution
that allows to rigorously predict the (global) error reduction resulting from replacing the current solution by
the new one. Since the local enrichment/replacement spaces are low-dimensional (in comparison to the full
hp-space), we emphasize that the locally predicted (but globally effective) error reduction can be computed at
a negligible cost. Our hp-adaptive algorithm passes through all elements of a current mesh (which can be done
in parallel), and compares the predicted error reductions for different p-enrichments and hp-refinements in
order to find an optimal enrichment on each element. Then, by using an appropriate marking strategy, all those
elements, from which the most substantial (global) error reduction can be expected, will be refined.

The paper is structured as follows: In Section 2 we begin by introducing an abstract framework for lin-
ear elliptic problems in Hilbert spaces, and derive some general results on (global) error reductions, which
are exploited to devise the error prediction strategy (in terms of low-dimensional modifications) in our new
hp-adaptive scheme. In Section 3, the abstract setting is applied to hp-FEM, whereby we specify two types of
enrichment functions on each element of a given hp-mesh, namely p- and hp-enrichment functions; in par-
ticular, we present in detail the explicit construction of such enrichments on individual elements based on
a recent constraint coefficients technique, see [7, 26]. Furthermore, the proposed hp-adaptive procedure is out-
lined in terms of a general algorithm in Section 4, and some numerical experiments for hp-type finite element
discretizations in 1D and 2D, which illustrate the effectiveness of our approach, will be presented in Section 5.

Throughout this article, let N = {1, 2, ...} denote the positive integers and set Ny := N U {0}. Forany n € N
we write n and n,, for the finite sets {1,2, ..., n} and {0, 1, ..., n}, respectively.

2 Abstract Framework

On a (real) Hilbert space X we consider a bounded, symmetric and coercive bilinear form a : X x X — R that
induces anorm v — |v|x = a(v, v)% on X. We also introduce a bounded linear form b : X — R. Then, for any
closed subspace W < X, by the Riesz representation theorem, there is a unique uw € W such that the weak
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formulation
a(uw,w) =b(w) forallw e W 2.1

holds true. Equivalently, defining the residual
pw() = b(v) - a(uw,v), veX, 2.2)

we have pw(v) = 0 for all v € W. Furthermore, in line with the above notation, we signify by ux € X the (full
space) solution of the weak formulation

a(ux,v) =b(v) forallv e X. 2.3)

2.1 Low-Dimensional Enrichments

Consider the special case where the subspace W ¢ X introduced above is spanned by finitely many basis func-
tions ¢1,..., ¢y € W,with N > 1, i.e.

W = span{¢1, ..., ¢y}, dim(W) =N < co.
Moreover, for an index subset J1°¢ ¢ N, we let
W = span {¢; : i € 7°°} c W; (24

for instance, in the specific context of hp-discretizations to be discussed later on, the spaces W and W°¢ will
take the roles of an hp-finite element space and a locally supported subspace, respectively. We can then define
a linear projection operator

W - W, v= Y vigio =Y vi¢, (2.5)
ieN ieJloc
which enables a decomposition of the solution uw € W of (2.1) into a low dimensional and a remaining part
U = Uy € W, Ty = uw — T %uyy,

respectively, with

Uw = USE + Ty (2.6)

We aim to improve the approximation uy of the (full space) solution ux € X of (2.3) by enriching or replacing
the local space W by a subspace
Y := span{liw, &1,...,&} € X 2.7

of dimension L + 1, where
§=1{&,.... &l cX (2.8)

is a (small) set of linearly independent elements in X. If W!°® c Y, then we call Y a local enrichment space,
otherwise Y is a local replacement space; the functions &1, ..., &, will in both cases be referred to as (local)
enrichment functions.

We now introduce the low-dimensional problem

uy € Y: a(uy,v)=>b(v) forallveY. 2.9

Since dimY = L + 1, there is a unique € € R and some uniquely determined y¢ € span{y, ..., &} such that we
can express the solution uy of (2.9) in terms of a linear combination

uy = (1+e€)tw +Ye. (2.10)

Then, defining the errors
ew = Ux — Uw, €y :=1Ux— Uy,
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we prove the following result for the predicted error reduction Aew y, given by

2 . 2 2
Aew,y = "eW"x - "eY"x-

For a related result in the specific context of a multilevel solver for linear diffusion models, we mention the
work [23].

Proposition 1 (Predicted Error Reduction). For the predicted error reduction we have the identities
= pwyg) - py(uw), (2.11)
with yg € spanf{éy, ..., &} from (2.10), the residual pw( -) defined in (2.2), and py(-) = b(-) — a(uy, - ).

A&l y = lluy — uwl) - 2 py (W) =

Proof. We begin by noting the identity ey + (uy — uw) = ew, which implies that [ley + (uy — uw)||X ||e\W||X
Thus, using that the bilinear form a( -, -) induces the norm || - ||x, we deduce that
lexlk +2 a(ey, uy — uw) + luy — uwlk = lewlk.

loc

By Galerkin orthogonality, exploiting that uy — tiw € Y and uy, € W, we observe that

aley,uy —w) =0 and a(ew, u1°°) =
Hence, recalling (2.6) we obtain
aley, uy - uw) = aley, uy - liw) - aley, uyy) = —a(ey, uyy).
Furthermore, invoking (2.3), it follows that
aey, uy - uw) = —a(ux, uyy) + a(lty, ugy) = -bUy) + a(uy, ugy) = —py (Ugy).

Thus,
2 1
leyllk - 2 py(ued) + luy - uwlk = llewl,

which yields the first identity in (2.11). Moreover, recalling (2.6) and (2.10), we have uy — uw = € iw +y¢ — u{&,c,
and since Uy € W N'Y, we notice the orthogonality property

a(uy — uw, Uw) =
Thus,
2
luy — uwlx = a(uy - uw, uy — uw)
=a(uy — Uw, €lUw +yg— U
1
= a(uy — Uw,Yg) — a(Uy — Uw, Uyy).

Then, employing (2.9) with the test function yg € Y, we have

10(:)

a(uy - uw,yg) = b(yg) - aluw, yg) = pw(ye)-
Similarly, applying (2.1) with the test function ui¢ € W, we arrive at
—a(uy — uw, Uy) = —a(uy, ugy) + b)) = py (ul).
Combining the above equalities gives the second identity in (2.11). O

Remark 1 (Energy Reduction Property). If the space Y is a local enrichment of W', i.e. if W c Y, then
py (1) = 0, and the identities (2.11) simplify to

Ae\zw,y = lluy - uwlk = pwe);

in particular, in this case, the error resulting from the local enrichment will not increase, or will even decrease
(i.e. ||e\W||§K > ||ey||§K) if uy # uw. In analogous terms, introducing the energy functional

E(v) := 1a(v v)-b(v), veX,
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and recalling the Dirichlet variational principle, we note that
E(uw) = min E(w) and E(uy) = minE(v),
wew veY

whence we immediately deduce the energy reduction property E(uy) < E(uw) for the solutions uyw € W and
uy €Y from (2.1) and (2.9), respectively. In the general case, when Y is a local replacement space, a minor
modification of the proof of Proposition 1, see Appendix A.1, yields the identity

2 = 02 1
Ae\W,Y = ||uY - u\W”x - ”u OCHX’ (212)
which shows that the error is guaranteed to decrease, i.e. Ae\zw’Y > 0, whenever |Juy — ﬁ\WM%K > ||u1°‘:||X

The hp-adaptive approach presented in Section 3 below can be seen as a local reduction strategy. We emphasize,
however, that our method, in contrast to more classical approaches, always involves (at least one) global (but
computationally inexpensive) mode in order to incorporate a minimal amount of global information on the
underlying problem. Similar to the present section, in order to provide maximal flexibility for the choice oflocal
spaces and associated enrichment functions in the hp-context, the theoretical building blocks will be derived in
abstract form.

2.2 Linear Algebra Representation

We will now illustrate how the difference of the residuals pw(y¢) and py(ul"c) from Proposition 1 can be com-
puted by means oflinear algebra. To this end, for {¢y, . . ., {£} from (2.8), we introduce the matrix A = (4;) € RIXL
with entries

Aj=a(, &), i,jel, (2.13a)
and the (column) vectors b, ¢ € RE, which are given component-wise by
bi:=b(&), c¢i:=alUw,&), (€L, (2.13b)
respectively. Furthermore, we let

ago = luwlk — IWSE1% —26  with & := b(ui®) — WS¢4 (2.130)

Remark 2. In the finite element context, where the functions &, ..., & and uloc are supposedly local, we notice
that all of the quantities defined in (2.13) are inexpensive to compute (except for the global term | uw |x which,

however, needs to be evaluated once only).

Proposition 2 (Low-Dimensional Computation of Error Reductions). Suppose that dimY = L + 1 (in particular, we
implicitly assume that tw + 0), and consider the (symmetric) linear system

ap c'\(e\ ( 6
(D662

with the solution components € € R and y € RL. Then the predicted error change from Proposition 1 can be
computed by means of the formula

Aefyy =y (b - ) - uflk + €. (2.15)
Proof. Recalling the decomposition (2.6), we begin by noticing that
lwllk = luw - gl = luwl + 1ugsl - 2 aluw, ug),
loc

which, upon applying (2.1) with the test function w = uyy, results in

ITwl = luwl + 1S801% - 2 DUSE) = ago. (2.16)
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Similarly, with w = Uy in (2.1), we infer that

b(iw) — a(liw, liw) = a(uw, lw) - a(liy, Gw) = AU, Tw) = a(lw, 1SF) = a(uw, U'S) - a(uds, ul)
= b(ugy) - lugy 1%
from which we arrive at
8 = b(liw) - a(liw, w) = b(lw) - [awlk. 2.17)

Then, using (2.9) with v = Uiy € Y, and applying the representation (2.10), leads to
8 = b(liw) - a(lw, Tw) = a(uy, liw) — a(liy, Tw) = € a(ly, Tw) + Vg, Tw) = € |[Twlk + aye, Tw),

and equivalently, due to (2.16),
€ap + a(Yg, Uw) = 6. (2.18)

In addition, for i € L, testing (2.9) with v = §;, and exploiting (2.10), yields

(1 +e)a(uw, &) +a(yg, &) =b(&;) foralliel. (2.19)
Therefore, applying the linear combination
jeL

for a uniquely defined coefficient vectory := (y1,...,yr)" € R, equations (2.18) and (2.19) transform into
eap + Y a(lw,§)yj =6
JjeL

and

ea(liw, &)+ Y a(§, &)yj = b(&) - aliw, &) forallieL,
JjeL

which is the linear system (2.14). Moreover, owing to (2.6), it holds that

loc

pw(g) = b(yg) — aluw,yg) = b(yg) — a(iw, yg) — aluy, ye).

In addition, invoking (2.10) and (2.1), we have
_pY(HIOC) — a(uY, ulOC) _ b(u10C)
=(1+¢)a(lw, uloc) +a(yg, ul‘”) - a(uw, ul‘”)

loc .1 1 1
= —a(uyy, Uyy) + € a(liw, Uy ) + a(Vg, Uy )

= —ulEN% + e(a(uw, Tw) - alliw, Tw)) + a(yg, US)

= —[uf 1% + e(b(Tiw) - lawlk) + ae, wes).

Recalling (2.17) implies that
_py(MIOC) — _”ulOC”X + €6+ a@f, 10C

Thus, upon involving the linear combination (2.20), we finally obtain

pw(ye) - py(Uyy) = b(yg) — a(liw, ye) - lugyllk + €8 =Y yj (b(§) - aliw, &) - lugy Ik + €8,
jeL

which, in view of (2.11), leads to the asserted identity (2.15). O

2.3 Assembling Aspects

We aim to apply the abstract framework developed in the previous sections to the finite element context. For
this purpose, we let X = X(Q) be a Hilbert function space defined over a bounded open domain  c R%, d > 1.
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We present the assembling of the matrix A and the vectors b, ¢ occurring in the linear system (2.14) in the
specific case where W ¢ X is a subspace of finite dimension N := dim W with the basis {¢1, ..., ¢n}. Let D be
a decomposition of Q into closed subsets K < Q, i.e.

§=UK,

KeD
where int(K) nint(K') = 0 for any K, K’ € D with K # K'. For any K € D, consider the (local) Hilbert space
consisting of all restrictions of functions v € X to K, i.e. Xg := {v|x : v € X}. Moreover, let {(f yees C AIf,K} < Xk

be a set of functions such that there exist representation matrices Cx = (cg ) € RV*Mk and Dy = (d{](. ) € RExMx
satisfying

ik =Y ¢ il 2.21)

jeMk
Gik= ) dijgf, ieL 222)

jeMk
with {&1, ..., &1} from (2.8). Finally, let the bilinear form a( -, -) as well as the linear form b( - ) be decomposable

in the sense that
a(v, w) = Z ax(Vik, wix), b(v) = Z bg(vix) forallv,w e X, (2.23)
KeD KeD

for some (local) bilinear forms ag : Xg x Xg — R and (local) linear forms by : Xx — R. For any K € D we
introduce the (local) matrix Ax = (Aj) € RM>Mk with entries

A = ag (5,05, i) e My,
and the (local) vector bg = (bf ) € RMx, which is given component-wise by
bX = br(¢), i€ Mg.

Letd = (uy, ..., uy)" € RY denote the uniquely determined coefficient vector of iy from (2.6) with respect
to the basis {¢1, ..., dn} of W, Le. Ty = Yy Ui ¢i- Note that u; = 0 for i € J1°°. Then the matrix A € R™Z and
the vectors b, ¢ € R from the linear system (2.14) can be assembled by the (local) quantities Ag, Cx, Dx, and by
as the following result shows.

Proposition 3 (Assembling). The identities

A= ) DxAxDg, b= ) Dgbg, c= ) DxAxCii (2.24)
KeD KeD KeD

hold true.

Proof. Let[-]; and [-]; denote the components of a matrix or a vector, respectively. Then it holds that

[ D DKAKDK] = ) [DkAkD]; = Y < Y Y diax( Q,(;If)dﬁ)

KeD J  KeD KeD * eMg keMy
_ K K K K
= Z aK( Z dip Cp » Z dik(k>
KeD teMy keMg
= Z ax (&, &iix) = a(&j, &) = Ay,
KeD

forall i,j € L, cf. (2.22) and (2.23) which is the first identity. The second identity follows from

| > oxby] = 3 (oxbili= Y (Y dbu(cf)

KeD U KeD KeD " jeMg

Z bK( Z dK{K)

KeD ]eMK
= Z bk (&ix) = b(&) = by,
KeD
for i € L. The last identity follows in an analogous way. O
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3 Application to hp-Finite Element Spaces

For d > 1, let @ ¢ R? be a bounded interval (if d = 1), or a bounded and open set with a Lipschitz boundary
I' := 0Q that is composed of a finite number of straight faces (if d > 2). Furthermore, we consider a boundary
partI'p < T of positive surface measure, and introduce an associated Hilbert space

X:={ve H(Q):v=00nTp}, (3.1
where H'(Q) denotes the usual Sobolev space of all functions in L%(Q), with weak first-order partial derivatives
in L2(Q).

The goal of the following subsections is to define appropriate hp-finite element approximation sub-

spaces in X. For this purpose, we will begin by introducing a family of hierarchical polynomial spaces on
the d-dimensional hypercube signified by Q := [-1, 1]¢, which will be referred to as the reference element.

3.1 Polynomial Spaces on the Reference Element

For any j € INp we introduce the 1-dimensional functions y; : [-1,1] — R, given by
1 1 :
Yo(t) := 2(1 -t), Pi(t) = E(l +10), Pi(t) = JLj—l(s) ds, j=2, (32)
)

where L; : [-1,1] — R denotes the j-th Legendre polynomial, normalized such that L;j(-1) = (-1, Jj=1; we
recall the Bonnet recursion formula

Lo(t) =1, Li(t):=t, jLi(®)=(2-DtLi1(t)-(G-1)Lj2(t), j=2,
as well as the relation
Lj(t) - Lj2(t)
-1
see, e.g., [30, Section 3.1 and A.4]. The basis functions ¥ and ¥ are referred to as nodal or external shape

functions whereas the high-order polynomials ¥;, for j > 2, are called internal modes (based on the fact that
Y;(£1) = 0 for j > 2). We display the functions ¥y, ..., ¢4 in Figure 1.

Pi(t) = j=22

tho() ()

Figure 1: The functions ¢o, . . ., ygon[-1,1].
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Furthermore, in the multi-dimensional case, for any multi-index j = (ji,...,jq) € lNg, we define the func-
tions ¥j : Q — Rby
Yj0 =[50, x=0a,...,x0)" €Q. (3.3)

ked
Moreover, for any k € N, let Qx(Q) := span{% 1je Kg} signify the usual space of all polynomials up to degree
k € N in each coordinate direction on the reference element Q.

3.2 hp-Finite Element Space

The vertices of the reference element Q will be labeled in terms of a multi-index notation. Specifically, to each
i € {0,1}9, we associate a corresponding vertex

Vi = (2Q —1,...,2id—1)T.

Similarly, we consider physical elements Q ¢  whose corner points are indexed by v; e R%, i =1, ..., 2% we
call Q a transformed hexahedron if the map Fy : 0 — Q defined by
Fox):= Y $i0)vi, X=(x,...,x)" €Q, (34)
lil<1
is bijective, where we write |i| := i1 + - - - + g to signify the order of a multi-index i = (i1,...,1g) € lNg. Note that

it holds Fo(V;) = v; for all i € {0, 1}4, The notation is illustrated in Figure 2 for the 2-dimensional case.
Example 1 (Fq for d = 2). In this case, the transformation F¢ from (3.4) takes the form

Fo(x) = Poo(X) Voo + Y10(X) V1o + Y11(X) Vi1 + Po1(X) Vo1, X = (x1,x2)" € Q,
and the tensor product functions ﬁ,- are given by

Poo(X) = Yo(x1) Yo(x2),  P1o(X) = P1(x1) Yo(x2),
P10 = P10a) Y1(x2),  Por(X) = Yo(xa) Y1 (xa).

For the purpose of introducing finite element subspaces W ¢ X, cf. (3.1), following our abstract framework
in Section 2.3, we let Q be a decomposition of Q into transformed hexahedrons with the following additional
property: If Q1 N Q2 # @ for Q1, Q2 € Q with Q1 # Qy, then Q1 N Q, represents a (d — r)-dimensional face of
Q1 or Q; for some r € d; we call any faces of dimension zero, one and two vertices, edges and faces, respec-
tively. Furthermore, let us assume that there is no change of the type of boundary conditions within the
(d - r)-dimensional faces of one element Q € Q. We now define the hp-finite element space

W:={veX:vgoFgeQ,(Q) forallQeql, (3.5)

associated with the decomposition Q of Q, where po > 1 represents an (isotropic) local polynomial degree on
each element Q € Q.

Vo1
Vo1 1 Vi1
L Fo
—1 Q 1
Voo Vi

v -1 v

00 Vio

Vip

Figure 2: The bijective mapping fq : Q — Q for the 2-dimensional case.
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3.3 Constraint Coefficients

In the adaptive finite element procedure we shall represent the functions 3; from (3.3), defined on the refer-
ence element Q, in terms of functions defined on sub-hexahedra of Q. These representations can be computed
efficiently by means of so-called constraint coefficients, see [7, 26]. To explain this concept, consider a sub-
hexahedron

T := Hlk C 6, (3.6)

ked
where Iy = [ak, bk], -1 < ax < bx < 1, are 1-dimensional intervals for each k € d. Then we define the functions
Pj:T—R, Yji=pjoF;l, jeN, 3.7

with the bijective element map Fr : Q — T, cf. (3.4). Here, due to the tensor structure (3.6) of T, we emphasize
that Fr is the composition of a dilation and a translation, wherefore we observe the identity

0 = [ [Wj, = F1). (3.8)

ked

In particular, we infer that the functions % in (3.7) constitute a polynomial basis on T. Therefore, there exist
uniquely determined constraint coefficients biT]. € R such that

Yiir = ) bl = Y bi(¥j o Fr'), i€ N, 3.9
j<i j<i
where the sums are taken over all multi-indices j = (j1,...,jq) € ]Ng with jx < ix forall k e d.

Example 2 (d = 1). In Figure 3 we illustrate how the restriction of the 1-dimensional function ¥, to the interval
I = [-1,0] can be expressed in terms of the functions ¥y, 11, and ¥s.

The ensuing result shows that the multi-dimensional constraint coefficients can be expressed in terms of tensor-
products of the associated 1-dimensional quantities for which recursion formulas are stated in the Appendix.

Lemma1. Fori,j € ]NO, the constraint coefficients b from (3.9) are given by
H blk JK’

where T is the sub-hexahedra from (3.6) and b{: j, are the uniquely determined 1-dimensional constraint coeffi-
cients from

Viein = Z blk]k lplk )

Jjk=0

Proof. The argument is based on exploiting the tensor structure of Q and T, and of the functions ;. Indeed, for

i=(i1,...,0q) € ]Ng, using (3.3) and (3.6), and applying the representation (3.9) in the 1-dimensional case, we
obtain that
wl|T_1_[¢lk|Ik 1_[( z blk]k wjk"FI_kl))'
ked  jx<ix

Then rearranging terms yields

¢'|T‘Z<Hb$1k Vo Fr, ) Z(H lk}kn(wik"FiT_kl))'

j<i " ked j<i " ked ked

Owing to (3.8), we conclude that

Gur =Y (T10%,) 9

j<i " ked

The assertion follows from the uniqueness of the coefficients in (3.9). O
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To(a) e

_ 1 - 1 -
Yy 10(x) = 0 Yy(2) — 3 Uy (@) + 1 Po()

Figure 3: The restriction of ¢, to I in terms of the functions g, i1, ¥, in the 1-dimensional case.

3.4 Enrichment Functions Associated with Individual Elements

We will characterize refinements of elements Q € Q in a given mesh Q via corresponding refinements of the
reference element Q. To this end, given a (fixed) point Z € (-1, 1)? in the interior of Q, we call a decomposition
R(Q) of Q into the 2¢ sub-hexahedra

Ti:=[]laj, byl i=(is,...,1a) €{0,1}%,
ked

with
a;'( =min{2 iy - 1, zx}, b;'( =max{2ix-1,zx}, ked,

a refinement of@ with respect toZ = (z1,...,2q)".
Let us now focus on some element Q € Q. To introduce a refinement of Q, we consider first a refinement
R(Q) of Q with respect to Z € (-1, 1)¢, as outlined above, and define

R(Q) = {Ti: i€ {0,139}, T;:= Fo(Ty).

We display an illustration of the 2-dimensional situation in Figure 4. Note that the multi-index i encodes the
location of the sub-hexahedra T; with respect to the Cartesian reference coordinate system in @; in fact, the
k-th entry of i classifies whether T; lies in the left (if i, = 0) or the right (if ix = 1) half of Q with respect to 2
along the k-th axial direction. Finally, let us denote by 7 the resulting mesh when replacing the element Q by its
refinement R(Q), i.e. T := (Q\ {Q}) U R(Q).

3.4.1 Enrichment Strategies on a Single Element

For an element Q € Q with an associated polynomial degree po, two types of local enrichment functions

&1,...,¢&, cf. (2.8), will be considered:

(i) For the definition of p-enrichment functions on Q, we consider polynomials on the reference element Q,
with polynomial degrees larger than po, and transform them to the physical element Q.

(i) For the construction of hp-enrichment functions on Q, we consider polynomials on the sub-hexahedra
Ti € R(Q), i € {0,1}%, of a refinement R(Q) of Q with respect to some Z € (-1, 1)¢, which are then trans-
formed to Q.
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Figure 4: A refinement of the reference element 0 with respecttoZ = (z1,2;)" € (=1, 1)? and the corresponding refinement of the
element Q = Fo(Q).
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Figure 5: A p-enrichment (left) vs. an hp-refinement (right). In both figures the discrete solution uy is highlighted in blue, the in each
case four enrichment functions are depicted in magenta and the basis {¢1, ..., ¢n} of W is indicated in dotted lines.

We give an illustration of these two scenarios for the p-enrichment or hp-refinement of a 1-dimensional element
in Figure 5. The polynomial functions resulting from the above mappings from Q or from sub-hexahedra of Q
to Q will be termed transformed polynomials.

In the hp-adaptive procedure described in Section 4 we aim to compare different p-enrichments and
hp-refinements on Q; in particular competitive refinements, cf. [20], where different enrichments, which gen-
erate the same number of degrees of freedom, are compared with each other in view of a maximal potential
predicted error reduction. We will express hoth, the hp-enrichment functions (given on the subelements T; €
R(Q)) as well as the p-enrichment functions (given on Q) in terms of the transformed polynomials (]' T - R,

GO0 =9jo F' 00, xeT; (3.10)

foranyj e lNg and i € {0, 1}4. For ease of notation, we write F; for the bijective mapping Fr, : Q — T, cf. (3.4);
similarly, we denote by A;, C;, D;, and b; the local quantities Ar,, Cr,, D, and by, from Section 2.3. We emphasize
that the quantities A;, C; and b;, for each of the different enrichments on Q to be compared, need to be computed
once only.

3.4.2 p-Enrichments on Q

For any multi-index j = (j1,...,jq) € ]Ng, let us introduce the functions &; : @ — R by

[T oFyl0) ifxeQ,
ifxeQ\Q.
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For the p-enrichments on Q we choose a finite subset of the functions

Cy=1{¢:jeJqh (3.12)
for some index set
JaclieNd:je=2forked} with|J,l =L < oco.

We emphasize that we exclusively consider transformed (higher-order bubble-type) polynomials that vanish
along the boundary of Q; cf. Remark 7 below for some generalizations to patches. In particular, we have the
following result:

Proposition 4. Any ¢ € €, is continuous on , and it holds supp(¢) = Q.

Obviously, there are various possibilities to choose appropriate p-enrichment functions. For instance, if we
select all transformed polynomials up to a certain polynomial degree pmax > po, we have J; = {2,..., pmax}d,
whereas for the so-called hierarchical surplus we choose

Ja=U €2, pmax}?: ljl 2 po +2}.

3.4.3 hp-Enrichment Functions on Q

In the case of hp-refinements, we construct local enrichment functions that can be associated with those
r-dimensional faces of the refinement R(Q) which do not lie on the boundary Q. We will call such faces
internal nodes of the refinement R(Q). In this sense, the vertex Fo(£) is the only 0-dimensional internal node
of R(Q), edges in the interior of Q are the 1-dimensional internal nodes of R(Q), and the elements T;, for
ic{0,1}9 represent the d-dimensional internal nodes of R(Q).

Indexing of Internal Nodes. Any r-dimensional internal node of R(Q), r € d,, can be identified uniquely by r
axial directions of Q, which are represented by an orientation tuple

acDr={(a,...,ap)ed ta1<...<a},

together with a location tuple € € {0,1}" that fixes its position with respect to the center point Fg(£). For any
a=(ai,...,ar) € Dy, letus denote by A(a) the set of its components, i.e. A(a) := {ax : k € r}. Note that a tuple
a € D, describes the orientation (and, implicitly, contains the dimension r) of an internal node with respect
to the Cartesian reference coordinate system in Q = F(’gl(Q). Moreover, the k-th entry of the location tuple
€=(¢1,...,¢6) € {0,1}" defines whether an internal node with orientation a = (ay, . . ., a,) lies in the left (if
¢x = 0) or in the right (if £x = 1) half of the refinement R(Q) along the k-th axial direction of the reference
coordinate system in Q = Fél(Q). Observe further that, for any d > 1, the only 0-dimensional internal node
of R(Q) is represented by the empty tuples a = () and € = ().

Example 3 (Internal Nodes for the 3-Dimensional Case). The 0-dimension center point is given by the empty
tuples a = () and € = (). For the 1-dimensional edges of 3%(@) there are three orientations, namely parallel to
any of the x-, y- or z-axes; they are described by a = (1), a = (2), and a = (3), respectively. Moreover, there are
three orientations for 2-dimensional faces, namely parallel to any of the xy-, xz- or yz-planes; they correspond
to the orientation pairs a = (1, 2), a = (1, 3), and a = (2, 3), respectively. Finally, there is a single orientation
triple for the eight full-dimensional elements T; given by a = (1, 2, 3). For the interpretation of the location
tuple, let us consider, for instance, the four internal nodes of dimension 2, which are parallel to the xy-plane, i.e.
with orientation a = (1, 2); they are highlighted in Figure 6 (left), and their possible locations are represented by
the location pairs listed in Table 1. To give a further example, the left 1-dimensional internal node in x-direction
of R(Q), highlighted in Figure 6 (right) is characterized by a = (1) and € = (0).

For any r € d,, let us introduce the set

Ny={n=(a,€):a=(ay,...,ar) € Dyand € = (€y,...,¢;) € {0,1}}
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Figure 6: Illustration for Example 3: 3-dimensional example of a refinement R(Q).

Location Tuple £  Location in Refinement R(Q)

€=(0,0) left half in x-, left half in y-direction
€=(1,0) right half in x-, left half in y-direction
€=(0,1) left half in x-, right half in y-direction
e=01,1) right half in x-, right half in y-direction

Table 1: Possible locations for interior 2-dimensional faces parallel to the xy-plane in the refinement of an element Q, all with orientation
tuplea = (1,2).

of all r-dimensional internal nodes in R(Q); note that the cardinality of N} is given by

N =2’(d>.
r

Furthermore, we signify by N := Ur% N the collection of all internal nodes of any dimension r =0, ...,d
in R(Q). In addition, for any n = (a, €) € N, we define

I(n) :={i = (i1,...,1a) € {0, 1}9 : iy = € for each k € A(a)}
to be the set of all multi-indices i € {0,1}¢ corresponding to elements T; € R(Q) that share the internal node n.

Example 4 (I(n) for 3-Dimensional Example). In the setting of Example 3, let us consider once more the 1-dimen-
sional edge, which is given by the orientation and location tuples a = (1) and the € = (0). Then the indices of
all 3-dimensional elements T; € R(Q) sharing the internal node n = {((1), (0))} € N1, which are highlighted in
Figure 7, are collected in the set I(n) = {(0, 0, 0), (0, 1,0), (0,1, 1), (0, 0, 1)}.

hp-Enrichment Functions on Q. Let n = (a, €) € N, be an internal node of R(Q), for some r € d,, and consider
an associated polynomial distribution

p=P1,....pr) e{p e Ny :pr=2forker};
here, the entry py corresponds to the coordinate direction k € A(a) of n. Then, for each i € I(n), we introduce

a d-tuple j(i,p) = (1, ...,ja) € lNg component-wise by

N b ifk € Aa),
TE= V1 C i itk ¢ Ada),

(3.13)
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Figure 7: Illustration for Example 4: 1-dimensional edge in a 3D refinement.

Let us now define functions &, p : @ — R, which are associated with the r-dimensional internal node n, by

Fup(X) = <|(].(i,p)(x) ifx e Tifori e I(n), (3.14)
0 ifx e @\ T(n),
where
T(n):= |J Ti (3.15)

iel(n)
represents the support of the functions & p. As hp-enrichment functions we choose finitely many such func-
tions. More precisely, for any internal node n = (a, €) € Ny, r € d,,, we select a finite set

P(n)c{peNjy:px=2forker},

and let

Enp = Crpn  With Eppp = {Enp 1 p € P(m)}. (3.16)
neN

For the single 0-dimensional internal node of R(Q), represented by n = ((), ()), we note that P(n) = {()}; hence,
the only hp-enrichment function &y, p associated with this node is given by

@) ifxe Tiforie{0,1}¢,
$0,0,0() = .

0 ifx e Q\ T(n),
where1 =(1,...,1) e N4
Proposition 5. Any &, p € &pp is continuous in Q, and it holds supp(én,p) = T(n).

Proof. Let&np € €pp n with Epp n from (3.16), be an arbitrary hp-enrichment function, for some n = (a, €) € Ny,
r € dy, and p € P(n). Let us denote by fp := (jcyn) Ti the r-dimensional internal node of the refinement R(Q)
characterized by n. Noticing that

Enp 1T = (ip) = Vip o F; foralli e I(n),

and &pp1; = 0 on elements T; with i € {0, 139\ I(n) as well as on Q \ Q by (3.14), we immediately obtain the
continuity of the function &, p on the interior of the subelements T}, for i € I(n), and on Q \ T(n). Furthermore,
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we have supp(én p) = T(n), cf. (3.15). Thus, in order to prove the continuity of &, , on Q, we need to show that
¢n,p = 0 on the boundary dT(n) of the support T(n), and that the functions ].i(i,p), for any i € I(n), coincide on
the r-dimensional face fp.

Since p = (p1,...,pr) € P(n), we have py > 2 for any k € r. Hence, it holds that jx; > 2 for k € A(a), and
Jk,i €10,1} for k ¢ A(a), where the indices (j1,i,...,jai) =j{A,p) € ]Ng are defined in (3.13). To ensure that the
functions

i@ =[G, X= &, X" = F100, iel(n), (3.17)
ked
with the 1-dimensional functions ¥k from (3.2), coincide for x = (X1, ...,xq)" € fn, we first show that Vi (Xi) =1
for any k ¢ A(a). Indeed, for i = (i, ..., ig) € I(n) we have
fu={Fi(®X) :X=(X1,...,%X2)" € Qand Xx = 1 - 2y for k ¢ A(a)}, (3.18)

and because of

. 1 ifix =0,
Jki= ) ,k k ¢ A(a),
0 ifip=1,

cf. (3.13), we obtain
v =1 ifix=0,

o k ¢ Aa),
w}k,l(xk) {lpo(_l) =1 if ik = 1) ’ (a)

owing to (3.2) and (3.18). Next, for k € A(a) it holds that ¥;, ,(Xx) = ¥}, (X), cf. (3.13). Thus,

4}i<i,p>(">= [T vpi), i€,

keA(a)

which shows the continuity of the enrichment function &, p in the interior of the support T(n). Finally, we
observe that Yo(1) = 1(-1) = 0, and ;(+1) = 0, for any j € N with j > 2. Then exploiting that

dT(m)\ fu = | J {Fi®) :X € Qand 3k € A(a): X = +1 v 3k ¢ A(a): Xk = 2ix - 1},
iel(n)

and applying (3.17), we arrive at (j"(i’p)(x) =0, for any x € 0T(n) \ f, i € I(n), This completes the argument. [

Remark 3 (P(n) for Uniform Polynomial Degrees). Again, there are various possibilities to specify hp-enrich-
ment functions. Note that in the definition of &pp, the maximal polynomial degree can differ on each node
n € N, however, we could also consider the special case of a uniform polynomial degree distribution pynir €
{2, ..., pmax} On each element T; € R(Q), i € {0, 1}4, obtained by choosing P(n) = {2, ..., puit}’ for any n € Ny,
r € d; see Example 5 below for further comments on this particular choice.

3.5 Representation Matrices

Owing to the previous Propositions 4 and 5 the sum over all elements K of a general decomposition D in (2.24)
reduces to a sum over all elements T; in the refinement R(Q) in our case. In particular, the representation matri-
ces C; and D, see the notation in Section 3.4.1, need to be specified only for all T; € R(Q), i € {0, 114, Recalling
Proposition 3, we remark that these (local) quantities, in turn, are required to assemble the matrix A and the
vectors b, ¢ occurring in the linear system (2.14).

In order to compute the matrices C; and D; on each element T; € R(Q), i € {0, 1}, we employ the constraint
coefficients technique from Section 3.3. To this end, let &g := {¢1, ..., {1} be a set of p- or hp-enrichment func-
tions on Q. On each T; € R(Q), i € {0, 1}4, for jelo,..., pmax}d, we consider the functions (]‘ from (3.10), which
we enumerate by the bijective map ¢ : {0, ..., pmax}d — M, with M := (Pmax + 1)4, given by

G) =1+ Pmax + Dk, j =G, ja), (3.19)
ked
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i.e. we apply the renumbering :(j) := {8 forj € {0, ..., pmax}?. Note that the functions {(1", oo ( If/,}, extended
by zero to Q, are discontinuous and represent a basis of a (local) discontinuous Galerkin space on R(Q).
Given a basis {¢1, ..., ¢y} of the finite element space W, cf. (3.5), recall that the components of the matrix
Ci= (cfd) e RV*M for i e {0,1}9, cf. (2.21), are determined by

Pt = ) €6, keN,
leM

and the components of D; = (d}'d) € REM i € {0,1}4, cf. (2.22), are given by

Ear, = Y. diy(f, kel (3.20)
leM
3.5.1 Computation of the Matrices C;
On an element Q € Q, for anyj € {0,.. ., pmax}d, we introduce the functions I,bf, e lﬁ]?,[ by

Y20 = Pjo Fg'), x€Q,

with the bijective map ¢ from (3.19). Furthermore, let Cp = (ng) € R¥M denote the representation matrix, for
which it holds

Prio = Z Cgl lﬁ?, keN.
leM

Finally, for any i € {0,1}¢, let us define the matrix B; = (b}'d) e RM*M component-wise by b}'d = b,f‘, where
k= k), =), forany k,l € {0,..., pmax}d, and b,{', are the constrained coefficients from (3.9).

Proposition 6. Forany i € {0, 1}4 it holds that C; = CoBi.

Proof. For any k € N, we have
Q 0@ o -
Pkl = Z C¥r = Z Ck1(¢l°Fol)-
leM leM

Therefore, we infer that

¢k|Ti OFQ = z Cgl’l’E”/Ti’ i € {0, 1}d
leM

Denoting by F; : Q — T; the bijective map from Q to the sub-hexahedron T;, and noting that F; = Fg o F;, the
restrictions to T; can be represented by

_ T
lpllTi = Z blr(wr ° Fi 1)
reM
for any i € {0,1}9, cf. (3.9), where I = ("!(I) and r = «'(r). Thus,
Ti 1 3: F— — Ti /773 —
Pri1; = Z Cgl Z by (Yr o Fi' °F01) = Z Clgl Z by (r o F7Y).
leM reM leM reM
Since {f = P o F;, we obtain
Ti ~i T; i
¢k|Ti = z Cgl Z blr(fE = Z ( Z Cglblr>(;’
leM reM reM \ leM
from which we deduce
i Q ,T;
Chr = Z Cri by
leM

for any k € N and r € M. Thus, C; = CoB; for any i € {0, 134, O
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3.5.2 Computation of D; for a p-Enrichment on Q

In this case the enrichment functions &, = {¢;, ..., {1} represent a certain collection of the functions &; in (3.11),
with j from a multi-index set
JacleNd:ju=2forked), |J)=L

Asinthe previous section, we apply a renumbering &xj) := j interms of a bijectivemap  : J; — L; for instance,
ifwechooseJ; :={2,..., pmax}d, then the resulting p-enrichment functions &1, . . ., &, with L = (Pmax — 1)% can
be enumerated by
KG) =1+ ) Pmax - DG =2), j= (1, ja).
ked
Proposition 7. For any i € {0,1}¢, the matrix D; e R™M is given component-wise by d;;z = b,{‘, for k =x(k)
and [ = ((1).

Proof. By the definition (3.11) of p-enrichment functions we have {1, = ﬁk 7, ° Fo fori € {0, 1}4andany k € L.
Hence, using the bijective map F; : Q — Ti, we obtain

Elei = Z diz((li Z d wl ° oF Z d wl °
leM leM leM
by the representation (3.20). Hence, by virtue of (3.9), we arrive at d;;z = b,{', for k = k(k) and I = «(1). O

3.5.3 Computation of D; for an hp-Refinement on Q

We consider hp-enrichment functions €, = {&1, ..., {1} from a certain selection of functions &, p in (3.14). Here,
each n = (a, ) € N corresponds to an internal node of the refinement R(Q), which is characterized by the
tuples a € D, and € € {0, 1}", for some r € d,, cf. Section 3.4.3. Moreover, p € P(n) represents the polynomial
distribution for the directions k € A(a), where

P(n) c {p e Ny :px >2fork er} with|P(n)| < co.

Given a polynomial degree distribution (p;)iefo,1;¢ on the subelements T; € R(Q), with p; € {1, ..., pnax}, We
can associate a nodal polynomial degree p, to any node n € N, with r € d, by means of the minimum-rule

= min
Pn ieT(n) bi

In that case, for any node n € N, we set P(n) = {2, ..., pn}" (with the convention P(((), ())) = {()} for r = 0), and
we can enumerate the functions &, p in terms of a bijective map v : {(n,p) : n € N, p € P(n)} — L.

Proposition 8. For any i € {0,1}¢ the matrix D; € RE*M is given component-wise by

i _ 7t
diq = {1 ¥np =

0 otherwise,
for k =v(n,p)andl = ((j).

Proof. By the definition (3.14) of hp-enrichment functions, we have

i
Enp i = G p)

for any i € I(n), where j(i, p) € lNg is defined in (3.13). Since the components of D; are determined by

Er = ), diy ¢, k=v(n,p),

leM

we immediately obtain d}'d =1if I = ((j(i, p)), and d}'d = 0 otherwise. In addition, for any i € {0,1}7\ I(n), we
have &p p|1; = 0, wherefore the linear independence of the functions ¢ 1’ e 11\/1 yields d;'d =0foranyle M. O
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Example 5 (Enumeration v for Uniform Polynomial Degrees). Let us assign the same polynomial degree pynir €
{2,..., Pmax} to all elements T; of the refinement R(Q), i € {0,1}%,i.e. P(n) = {2, ..., punit}” for any r-dimensional
internal node n € Ny, r € d,,. In this case, we observe that there are (punit — 1) hp-enrichment functions on Q
that can be associated with n. Hence, the total number of hp-refinement functions, which are associated with
r-dimensional internal nodes, is given by

d
Ly = (r> 2" (punit - 1)",  red,.

Now let us enumerate the r-dimensional internal nodes n = (a, p) € N, r € d,, by the bijective map v, : N, —
{1,..., (‘f) 2"} given by

vr(n) =1+2" Y (ax-k)+ Y 25+ 1), a=(a,...,a;), p=(p1,....pr)
ker ker
Then we can enumerate all hp-enrichment functions &, p, for n € N and p € P(n), by the bijective map
vi{(n,p):neN,peP(n)} - L withL :=Ly+---+ Lg, defined by

v(n,p) =1+ Y Lig+ (vr(n) = D)(Punit = 1" + Y (unit — 1) (px - 2),

ker ker

where we let L_; := 0.

4 hp-Adaptivity Based on Locally Predicted Error Reductions

In this section, we will exploit our abstract results in Section 2.1 for the purpose of devising a new adaptive
procedure for hp-type finite element discretizations. Our basic idea to hp-refine a given hp-finite element
space Wyiven consists of three essential steps:

Step 1. Firstly, our algorithm aims to predict the potential contribution to the (global) energy error reduction

from each individual element Q in the given hp-space Wgiven. To this end, for every element Q, with an asso-

ciated local space wloe, cf. (2.4), we apply various local p-enrichment or hp-replacement spaces Y , cf. (2.7), as
follows:

(p) In the case of p-enrichments, we choose finitely many sets J;; in order to define suitable collections of
p-enrichment functions & ; := {f]f‘) j €Jgq) cf. (312), and let Y ; := span{liw} + span &, ; be the associ-
ated p-enrichment spaces. We then compute the respective predicted error reductions Ae,; by means of
the formula (2.11) (or equivalently (2.15)).

(hp) In the case of hp-refinements, for any node n of a refinement R(Q) of Q, we choose finitely many sets P;(n)

to define collections of (nodal) hp-enrichment functions @ﬁlp,n = {E,?,p : p € Pi(n)}, cf. (3.16), and let

Yhp,i = span{liw} +span €py;  with €pp; = U G;'lp,n
n

be the associated hp-replacement spaces. We then compute the corresponding predicted error reductions
Aepp,; by means of the formula (2.11) (or equivalently (2.15)).

From all these choices of p-enrichments (p) and hp-refinements (hp), we select the one that features the max-
imal error reduction (signified by Aeglax); this will be referred to as the optimal (local) hp-refinement on Q.
Hereby, the number of different p-enrichments and hp-refinements, respectively, that are performed for each
element Q in the prediction step, is technically at the disposal of the user; cf. the ensuing Example 6 for a specific
setup in 1d and 2d. Preferably, following the approach proposed in [20], we select the local p-enrichments and
hp-refinements in a competitive way, i.e. with a comparable number of local degrees of freedom; we will discuss
this idea in more detail in the context of the 1-dimensional numerical examples in Section 5 below.

Step 2. Subsequently, we mark all elements in the global hp-finite element space Wgiyen, from which the most
substantial error reductions, as identified in Step 1. for each element, can be expected. This step can be accom-
plished, for instance, with the aid of a suitable marking strategy, such as Dorfler’s criterion [12].
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Step 3. Finally, a new enriched hp-finite element space Wryey is constructed based on choosing the optimal
(local) hp-refinement space, cf. Step 1., for each of the marked elements.

Schematically, the proposed hp-adaptive procedure has the following structure:

solve —— |predict (locally)] —— mark — enrich
W Y Wnow
’LLW:’U,I\?VC-F&W U,Y:(l-‘r({)ﬂw-‘ryg

Remark 4 (Computational Aspects of the Prediction Step). We emphasize that the prediction step (Step 1) is triv-
ially parallelizable, and hence, inexpensive from a computational point of view compared to the global solve
(Step 3). In addition, as all enrichment functions for the different p-enrichments and hp-refinements on Q
can be expressed by the functions (1", o zlv[ cf. (3.10), the matrices A;, C; as well as the vector b; from Sec-
tion 3.5, which are employed in the computation of the corresponding predicted local error reductions, need to
be computed once only on the subelements T; of the local refinement R(Q) for all different p-enrichments and
hp-refinements applied on the subelements T;. Evidently, the computational cost for the prediction step depends
strongly on the specific selection of possible p-enrichments and hp-refinements (as well as on the efficiency of
their implementation).

Example 6. We discuss some possible realizations of the choice of p-enrichments and hp-refinements to be com-

pared on the individual elements (Step 1. above), which will be employed in our numerical examples of Section 5:

() In the 1d examples only one p-enrichment is considered on each element Q; specifically, we increase the
associated local polynomial degree pgo to po + 1, which is represented by the set ]f =1{2,...,po +1}.
This p-enrichment is then compared to po-many hp-refinements which allocate suitable local polynomial
degrees po, p1 to subelements Ty, T7 in a competitive way, so that po + p1 = po + 1.

(i) In the 2d example in Section 5, on each element Q, we consider an associated p-enrichment by which
the local polynomial degree po is increased to po + 1. The resulting prediction is compared to two dif-
ferent hp-refinements: In a first version, the same polynomial degree po is retained on all of the four
subelements T; with i € {0, 1}%; in the second version, the polynomial degree is reduced to pg — 1 on the
subelements T; with i € {0, 1}2. In this approach, in contrast to the 1d situation before, we note that the
number of hp-refinements on an element Q does not increase with the local polynomial degree py.

In Algorithm 1 we outline the technical details for the individual steps in the hp-adaptive refinement approach
sketched above. We denote by W(Q, p) the hp-finite element space associated with the mesh Q, and by p, a cor-
responding polynomial degree distribution, cf. (3.5). Note that the solving step, the prediction step (exploiting
p-enrichments and hp-refinements), the marking step and the enrichment step are implemented in the lines 2,
3-15,16 and 17 in Algorithm 1, respectively.

Remark 5 (Possible Specifications of hp-Adaptive Procedure). (i) Evidently, Algorithm 1 can be turned into a
pure h-adaptive procedure (by only considering hp-refinements that inherit the fixed low-order polyno-
mial degree to any subelements), or into a pure p-adaptive procedure (whereby no element refinements
are taken into account).

(i) Inthe context of finite element discretizations for which the global polynomial degree is restricted to a small
positive number ppax > 2 (e.g. for quadratic elements), it is possible to first apply an h-adaptive mesh refine-
ment procedure, thereby yielding a locally refined mesh Q, and then to employ p-enrichments based on
Algorithm 1in order to determine an effective polynomial distribution p, with maxpg < pmax.

Remark 6 (Guaranteed Error Decrease and Control). By Remark 1 the approximation error from one step to
another in Algorithm 1 will not increase if Aeﬁax > 0 for marked elements; this condition can be accommodated
if, in addition to employing hp-replacements, at least one enrichment is applied on those elements. Further-
more, we note that, at the end of each adaptive step, the use of an appropriate a posteriori estimator could
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Algorithm 1. hp-Adaptive Procedure.

1: Choose an initial mesh Qp on the computational domain Q and a starting polynomial degree distribu-
tionpg, . Setn = 0.

2: Solve the weak formulation (2.1) for uw € W(Qn, po ). > solving step
3: for each element Q € Q, do > prediction step
4: Construct the (locally supported) subspace ngc C W(Qn, pg,), and decompose the current solution
tw = Tw + Uuyy according to (2.6), where gy := Miuw € W is defined via the linear projection
operator ngc : W(Qn, pg,) = Wl(‘)’C from (2.5).
5: for finitely many different p-enrichments on Q do > p-enrichments
6: Compute the corresponding predicted error reductions Aep ; as outlined in Step 1 (p) above.
7: end for
8: Set Aeg{mX := max{Ae, ;} to be the maximal locally predicted error reduction for the p-enrichments on
the element Q.
9: Construct the local refinement R(Q). > hp-refinement
10: for finitely many different hp-refinements on Q do
11 Compute the corresponding predicted error reductions Aepp ; as outlined in Step 1 (hp) above, and

store the polynomial degree distribution (pr;)rex () for the subelements T € R(Q).
12: end for
13: Set Ae,?p’maX := max{Aepy ;} to be the maximal locally predicted error reduction for the hp-refinements
on Q.
14: Determine Aef%ax = max {Aeg,max, Aegp’max} to be the maximal locally predicted error reduction.
15: end for
16: Mark a subset €, < Q, of elements in the mesh Q, to be flagged for enrichment. > marking step
17: For each element Q € &, perform a p-enrichment or an hp-refinement according to which enrichment leads
to the maximal error reduction in 14. This results in a refined mesh Q.1 with a corresponding polynomial
degree distribution pg .. > enrichment step
18: Update n < n + 1, and start over in line 2.
19: After sufficiently many iterations output the final solution uw € W(Qy, pg, )-

be taken into account, see, e.g., [8], if some explicit control on the quality of the numerical approximation is
desired. Notice that the estimator need not be localizable in terms of individual element contributions as it is
not used for the purpose of driving the adaptive process.

5 Numerical Examples

In this section we illustrate the performance of the hp-adaptive procedure outlined in Algorithm 1 with some
numerical experiments in 1D and 2D.

5.1 Numerical Examples in 1D

In the following 1-dimensional examples on the domain Q := (0, 1) we use a basis for the hp-finite element
spaces W that consists of the usual hat-functions, and, on each element Q € Q with pg > 2, of the (elementwise
transformed) integrated Legendre polynomials given by z/)jQ =)o F(’gl, for 2 <j < pg, cf. 3.2). In accordance
with (3.11) we consider the (extended) functions

Q .
0 ifxeQ\Q.
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For each element Q € Q of the current mesh, the locally supported subspace Wlé’c C W is chosen as

Wlé’c = {E]-Q 12<j<pol
In particular, the corresponding linear projection operator Hlé’c W - Wl(‘)’C only retains all higher-order modes

on Q. Specifically, we choose
Gg = {E].Q :je]?} With]? ={2,...,pp+1}

as p-enrichment functions, i.e. we increase the polynomial degree po to po + 1, thereby using a number of pg
locally supported degrees of freedom on Q. Moreover, for an hp-replacement on Q, we divide the element Q into
two equally sized subelements Ty, T1, for which we allocate some local polynomial degrees py, p1, respectively,
that give rise to pg + p1 + 1 degrees of freedom within Q:

Ty T
Po P

bo

In order to compare competitive p- and hp-refinements, we impose the constraint

Po+p1=po+1. (5.1

The only internal node for the refinement R(Q) = {Ty, T1} of the element Q is the 0-dimensional midpoint, repre-
sented by ny := ((), (). The subelements T4, T; are characterized by the tuples n, := ((1), (0)) and ns3 := ((1), (1)).
Therefore, in terms of the notation from Section 3.4.3, we have N = {n4, n3, n3}, and we choose

PO = {0}, POy =1{2,...,p1}, PROm3)=1{2,...,ps}

for all possible pairs (p1, p2) of local polynomial degree combinations that satisfy (5.1).

5.1.1 Singularly Perturbed Problem with Boundary Layers

As a first example, for (a possibly small) parameter € > 0, we consider the 1-dimensional singularly perturbed

differential equation —e u" + u = 1 in the domain Q = (0, 1) with the homogeneous Dirichlet boundary condi-

tion u(0) = u(1) = 0. The analytic solution is given by
e ‘-1

1-e€
ux) = eC — g€ * eC — =€

X1

with ¢ = 8*%; for very small 0 < € « 1, we notice that u exhibits thin boundary layers in the vicinity of the
boundary points x = 0 and x = 1, and takes values of approximately 1 in the interior of the domain Q. For our
numerical experiments, we initiate the hp-adaptive procedure of Algorithm 1 with a coarse mesh Q consisting
of four elements, and an associated uniform polynomial degree of 1 on each of them. For the marking process
we choose the Dorfler marking parameter to be %

Figure 8 shows the resulting hp-mesh after 28 hp-adaptive steps for € = 10~%; we clearly see that the bound-
ary layers have been resolved on a few small elements (of high polynomial degree), whilst no refinement is
employed in the interior of the domain Q, where the solution is nearly constant.

Moreover, in Figure 9, for the underlying energy norm given by

2 12 2
"v”x =& "V "LZ(Q) + "v"LZ(Q): veX,
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pQ =12
Po =9
po="1
po=4
po=1
0 L 1 1 1 3 7 L1
16 8 1 2 1 8 16
Figure 8: hp-mesh Qg after 28 adaptive enrichment steps with € = 107>,
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Figure 9: Singularly perturbed problem in 1D: Performance of the hp-adaptive procedure with respect to the energy norm error
lu — uwllx for € = 107 with j € {3, 4,5}.

the error |u — uw||x is plotted with respect to the number of degrees of freedom in a semilogarithmic scaling for
several values of the singular perturbation parameter ¢ € {107 : j = 3,4, 5}. We observe that the hp-adaptive
procedure is able to achieve an exponential rate of convergence that is fairly robust with respect to &. In
this regard, our results are comparable to alternative hp-adaptive strategies proposed in the literature, see,
e.g., [32, Expl. 2].

5.1.2 1D-Model Problem with a Boundary Singularity

As a second example, we consider the 1-dimensional boundary value problem —u" = f in Q = (0, 1), with the
homogeneous Dirichlet boundary conditions u(0) = u(1) = 0; the right-hand side function f is chosen in such
a way that the analytic solution is given by u(x) = Xxi — x, which features a singularity at x = 0 with u’(x) — oo
as x — 0*. As in the previous example, we start the hp-adaptive procedure of Algorithm 1 with an initial mesh
Qy consisting of four elements with a uniform polynomial degree distribution of 1, and let the Dorfler marking
parameter be % The ensuing plot in Figure 10 shows the resulting hp-mesh Qag, which contains 51 elements,
after 49 hp-adaptive enrichment steps.
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Figure 10: hp-mesh Qg9 after 49 hp-adaptive enrichment steps.
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Figure 11: Algebraic boundary singularity in 1D: Performance of the hp-adaptive procedure with respect to the energy norm error
|lu — uwllx (measured against the square root of the number of degrees of freedom). In addition to the energy norm error (blue)
aregression line (orange) is displayed in order to indicate the exponential decrease.

The mesh is geometrically refined towards the singularity at x = 0, and the polynomial degree is increased
at an approximately linear rate in dependence of the distance from the origin; this is in line with a priori results
on exponentially convergent hp-FEM for local algebraic singularities; see, e.g., [27]. Indeed, this is confirmed
in Figure 11, where the error in the energy norm, i.e. [|u - uw|x = lu’ - u(W|| 12(9), Shows an exponential decay
(with respect to the square root of the number of degrees of freedoms) in a semilogarithmic scaling.

5.2 Numerical Example in 2D

In the following 2-dimensional example over the unit square Q := (0, 1)2, we use a basis for the hp-finite element
spaces W that—in addition to the usual hat functions — contains the functions

lpl?:zﬁjopél, jet2,...,pot

extended by 0 to ©, cf. (3.3), for elements Q € Q with a local polynomial degree po > 2. In accordance with (3.11)
we denote the corresponding extended functions by EJQ. Recall that we decompose the hp-finite element solution
uw € W of (2.1) into a local part u%’vc and a remaining part Uy, cf. (2.6). If we wish the remaining part Uy to be

completely independent of the enrichments on Q (in the sense that tiyy remains unchanged under modifications
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in WIQOC), we note that the locally supported subspace Wlé’“ needs to contain all basis functions of W with support
on Q; in particular, all interior bubble functions on Q. For simplicity (see Remark 7), we set

We =g i€ (2, pol),

and, on each element Q € Q (with an associated local polynomial degree po), we choose the p-enrichment
functions to be

¢p =&’ :je g3} withJ] = 1{2,...,po + 1}, (.2)

i.e. we increase the local polynomial degree po to pg + 1 in both coordinate directions, thereby resulting in
pé many locally supported enrichment functions on Q. Moreover, an hp-refinement on an element Q is based
on dividing Q into the four subelements T; with i € {0, 1}*: In the present experiments we limit ourselves to
enrichments that are restricted to single element Q as pointed out in Section 3.4, and do not involve enrich-
ments on a patch around Q; see Remark 7 below for more details on this matter. For simplicity, we compare the
p-enrichment (5.2) in two different versions of a single hp-refinement on Q: Firstly, with an hp-refinement that
features the same polynomial degree po on all subelements T; € R(Q), and secondly, with an hp-refinement
that allocates the reduced polynomial degree po — 1 to all subelements T; € R(Q) (if po > 2). The internal nodes
of the refinement R(Q) = {T; : i € {0, 1}2} consist of the midpoint ny := ((), ()), of the edges

ny :=(1),(0), n3:=((1),1)), ns:=(2),(0), ns:=(2),1)),

and of the subelements T;, represented by

ne :=((1,2),(0,0), n7:=((1,2),(1,0), ng:=((1,2),(0,1), ny:=((1,2),(1,1).

When featuring the polynomial degree po on all subelements, we obtain

{0} forj=1,
P*O(ny) = {{(p) i p1 € 2, ., Po}} for2<js<s,
{(p1,p2) 1 p1, P2 €{2,...,po}} for6<j<9,

thereby leading to 1 + 4(po — 1)po hp-enrichment functions on Q.

Remark 7 (Competitive Refinements for Dimensions d > 2). In contrast to the 1-dimensional case, if the remain-
ing part Uy of the solution uyw should be independent (in the sense that Uy remains unchanged upon modi-
fications in \ngc) of an enrichment or a refinement associated with an element Q, it is mandatory to include
element interface basis functions in the definition of the locally supported subspace \WIQ‘,’C. Indeed, only if degrees
of freedom, which are shared by neighboring elements, are taken into account as well, it is possible to compare
different p-enrichments and hp-refinements in a truly competitive way. This is due to the fact that, in general,
p-enrichments and hp-refinements on a single element Q may influence the new solution on a local patch which
also involves neighboring elements of Q; we observe that this effect extends even beyond the direct neighbors
of Q if hanging nodes, as can be seen in Figure 12, are present; we refer to, e.g., [10], for a straightforward
treatment of hanging nodes. In turn, we note that the enforcement of continuity of enrichment functions along

ik
01 s T
Q
o g N3
My
Too Tho

Figure 12: Extended patch around the element Q (right).
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element edges and faces of a patch around Q (e.g. by means of the minimum rule for the adjacent polynomial
degrees) causes an additional challenge. For simplicity, for the purpose of the present paper, we will restrict
ourselves to the enrichment of internal degrees of freedom only on each element; competitive enrichments on
patches for higher dimension are investigated in forthcoming work. Following the idea of using patches in the
context of higher-order FEM, see, e.g., [25], we also include the interface basis functions between neighboring
elements in the enrichment step; we remark that this approach, in turn, will generally yield an upper bound on
the actual error reduction rather than an exact representation.

Remark 8 (Anisotropic Refinements for Dimensions d > 2). We note that the abstract framework presented in
Section 2 and the constraint coefficient technique from Section 3.3 both apply to anisotropic hp-refinements as
well; in particular, elements may be refined in a single direction only, with respect to either h or p. Indeed, we
have deliberately formulated our hp-adaptive approach in a quite general way in order to allow for maximal
flexibility and, thereby, a wide variety of practical realizations. The application of anisotropic hp-refinements
within the adaptive framework will be studied in a forthcoming work.

5.2.1 2D-Poisson Problem with Corner Singularities

Let us consider the 2-dimensional Poisson-problem —Au = 1 on Q = (0, 1)?, subject to the homogeneous Dirichlet
boundary condition u = 0 on T := Q. While an explicit expression for the analytic solution u is unavailable, an
eigenfunction expansion yields that

ul = IVul?, o, = (3)6 L 0.035144253738788451 ... .
lulle = 1Vulzaqg) = = k,l;’dd P
We start the hp-adaptive procedure of Algorithm 1 with an initial mesh Qg consisting of 16 elements with a uni-
form polynomial degree distribution of 1 on all elements Q € Q. Moreover, we let the Dorfler parameter to
be .

Following the a priori error analysis on the exponential convergence of hp-FEM for the 2-dimensional Pois-
son equation with corner singularities in polygons, see, e.g., [27], we depict the energy error ||u — ux|x with
respect to the 3rd root of the number of degrees of freedom in Figure 14. The blue line shows the error decay
when the polynomial degree p, on an hp-refined element Q is inherited to the subelements T, for i € {0, 1};
we see that this strategy may lead to an unnecessarily high number of local degrees of freedom. The resulting
hp-mesh of this strategy after 52 adaptive enrichment steps is depicted in Figure 13 (containing 1412 elements).
In an alternative scenario, illustrated by the yellow line in Figure 14, the slope of the exponential convergence
is considerably improved when allocating a reduced polynomial degree of pp — 1 to all subelements T;, with
i €{0,1}%,if po > 2. The resulting hp-mesh after 67 adaptive enrichment steps is shown in Figure 13 (contain-
ing 256 elements). In addition, for comparison purposes with a possible benchmark situation, which does not

12
1

Figure 13: hp-mesh Qs; after 52 adaptive enrichment steps applying the first strategy (left), hp-mesh Qg7 after 67 adaptive enrichment

steps applying the second strategy (middle) and geometrically refined mesh towards the corners, with twelve layers and linearly
increasing polynomial degrees leading to 192 elements (right).




DE GRUYTER P. Bammer et al., hp-Adaptivitiy Based on Locally Predicted Error Reduction = 803

10° ¢ \
: —e—enrichment (pg)
——regression line (pg)
"~ enrichment (pg — 1)
) X —regression line (po — 1)|
107 = i
. —o—reference
% 1074L E
g 3
>
&0
~
5
=
5
1076 E oo E
TN
10-8L \ \ \ |
0 5 10 15 20 25

(Degrees of Freedom)!/?

Figure 14: Poisson problem with corner singularities on unit square: Performance of the hp-adaptive procedure with respect to the
energy norm error |lu — uw|lx (measured against the 3rd root of the number of degrees of freedom). In addition to the energy norm
errors (blue, yellow) regression lines (orange, purple) are displayed in order to indicate the exponential decrease. Moreover, the energy
norm error (green) for a comparable a priori hp-refinement strategy has been inserted also.

depend on a specific hp-adaptive strategy, we have inserted an additional (green) line in Figure 14 that repre-
sents the error decay of a classical a priori hp-refinement strategy. More precisely, following the well-known
theory of exponential convergence of hp-FEM for linear elliptic problems in 2d polygons (see, e.g., [27]), meshes
that are geometrically refined towards the corners of Q, see Figure 13, and that feature a linear polynomial
degree distribution away from the corners, are applied. Our results confirm that our proposed hp-adaptive
algorithm is able to properly resolve the four corner singularities on geometrically refined meshes, and that
approximately exponential rates of convergence can be achieved.

A Appendix

A.1 Proof of (2.12)

From Proposition 1 we recall the identity Ae\ZW’Y = |luy - u\W||§K -2 py(uloc) Furthermore, owing to the decom-
position (2.6) of the solution uy, we have

2 -~ 1 1 1
luy — uwlk = I(wy - Gw) — wedl% = luy - Twlk + lwelk - 2 aluy - Gw, ues).

loc

Moreover, since uy, € W, the weak formulation (2.1) yields

Py (W) = b(u) - auy, Us) = aluw, uys) — aluy, Us) = aluw - Uy, Usy).

Thus, noticing that uy — iy = U\, we obtain

2 1 1 1 1
luy - uwlk — 2y (W) = luy — Twlk + 11X - 2(aluy — Tw, ud) — a(uw - uy, US))
1 1
= Juy - Twlk + Iy 1% - 2a(uw - Tw, usy)

I
= fluy - Twlik - lugy 1%

which gives the assertion.
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A.2 Recursion Formulas of the 1D-Constraint Coefficients

We present some recursion formulas for the computation of the 1-dimensional constraint coefficients applied
in Section 3.3. For this purpose, let I = [a, b], with -1 < a < b < 1, be an interval. For j € Ny, recall that the
restrictions of the functions ¥; : [-1,1] — R from (3.2) to the interval I can be represented as linear combina-
tions of the functions ¥; := ¥; o FI‘1 onl forie ]_'O:

i
Yiir= ) bi; Yi, 1€No;
j=0

here, the bijective affine linear transformation F; : [-1,1] — Iis givenby F;(t) = a t + B, witha := %(b —a)and
B = %(a + b). We note that the uniquely determined constraint coefficients b{’j in the above representation can
be determined recursively (see [7] for a proof):

(i) Fori,j € {0,1}?, the following identities can be derived:

1 1 1 1
bé’0:2(1+a—ﬁ), b{,0=§(1—a+/3), b{),1=§(1—a—ﬁ), b{!1=§(1+a+ﬁ).
(ii) Moreover, we find that
1 1
byo=5((@=p*=1), by =3(@+p-1), by, =a’.

(iii) For i > 3, it holds b}, = a b}

i1i18S well as

1, .. .
b{,o ==(Q2i-3)(B-0a) b{—1,0 - (-3 b{—z,o)’

=~

bi, = 7((21' -3)a+p) bl - (i-3)bi,,),
1/.. .
b{,z = 7((21 -3)(a(3 b{—1,3 - (b{—Lo - bg—m)) +p b{—1,z) -(-3) b{—z,z)-
In addition, for i > 4, we have

pl.

i,i-1 —

2i-3/i-1 /
(g Pl FoLn)

(iv) Fori>5andj € {3,...,1 - 2}, the coefficients are given by
b[ 1 . j bI j-1 bI bI . b[
ij= 7((2‘ -3) (a(zj_-3 i-1j-1 1 2751 i1je1) t By ;) = ((=3) i—2,j)'
(v) Finally, forj>2andi e {0,...,j—1},itholds b;; = 0.

Funding: Patrick Bammer and Andreas Schréder acknowledge the support by the Bundesministerium fiir
Frauen, Wissenschaft und Forschung (BMFWF) under the Sparkling Science project SPA 01-080 “MAJA — Mathe-
matische Algorithmen fiir Jedermann Analysiert”. Thomas P. Wihler acknowledges the financial support of the
Swiss National Science Foundation (SNSF), Grant No. 200021_212868.

References

[11 M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997),
no. 1-2, 1-88.

[2] L Babuska and B. Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems
for linear elliptic equation of second order, SIAM J. Math. Anal. 19 (1988), no. 1, 172-203.

[3] L Babuskaand M. Suri, The h-p version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal.
Numér. 21 (1987), no. 2, 199-238.



DE GRUYTER P. Bammer et al., hp-Adaptivitiy Based on Locally Predicted Error Reduction == 805

[4]

[5]

[l

[7]

(8l

[l

[10]

(111

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(191

[20]

[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

31]
[32]

L. Babuska and M. Suri, The treatment of nonhomogeneous Dirichlet boundary conditions by the p-version of the finite element
method, Numer. Math. 55 (1989), no. 1, 97-121.

L. Babuska and M. Suri, The p and h-p versions of the finite element method, basic principles and properties, SIAM Rev. 36 (1994),
no. 4, 578-632.

R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. 10
(2001), 1-102.

A. Byfut and A. Schréder, Unsymmetric multi-level hanging nodes and anisotropic polynomial degrees in H'-conforming
higher-order finite element methods, Comput. Math. Appl. 73 (2017), no. 9, 2092-2150.

P. Daniel, A. Ern, I. Smears and M. Vohralik, An adaptive hp-refinement strategy with computable guaranteed bound on the error
reduction factor, Comput. Math. Appl. 76 (2018), no. 5, 967-983.

L. Demkowicz, Computing with hp-Adaptive Finite Elements. Vol. 1, Chapman & Hall/CRC Appl. Math. Nonlinear Sci., Chapman &
Hall/CRC, Boca Raton, 2007.

P. Di Stolfo, A. Schréder, N. Zander and S. Kollmannsberger, An easy treatment of hanging nodes in hp-finite elements, Finite Elem.
Anal. Des. 121 (2016), 101-117.

V. Dolejsi, A. Ern and M. Vohralik, hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic
problems, SIAM J. Sci. Comput. 38 (2016), no. 5, A3220-A3246.

W. Dorfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106-1124.

T. Eibner and J. M. Melenk, An adaptive strategy for hp-FEM based on testing for analyticity, Comput. Mech. 39 (2007), no. 5, 575-595.
K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, in: Acta Numerica 1995,
Cambridge University, Cambridge (1995), 105-158.

T. Fankhauser, T. P. Wihler and M. Wirz, The hp-adaptive FEM based on continuous Sobolev embeddings: Isotropic refinements,
Comput. Math. Appl. 67 (2014), no. 4, 854-868.

B. Guo and 1. Babuska, The hp-version of the finite element method. Part I: The basic approximation results, Comput. Mech. 1 (1986),
21-41.

B. Guo and I. Babuska, The hp-version of the finite element method. Part II: General results and applications, Comput. Mech. 1
(1986), 203-220.

P. Heid, B. Stamm and T. P. Wihler, Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii
equation, J. Comput. Phys. 436 (2021), Article ID 110165.

P. Houston and E. Sili, A note on the design of hp-adaptive finite element methods for elliptic partial differential equations, Comput.
Methods Appl. Mech. Engrg. 194 (2005), no. 2-5, 229-243.

P. Houston and T. P. Wihler, Adaptive energy minimisation for hp-finite element methods, Comput. Math. Appl. 71 (2016), no. 4,
977-990.

G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD, Numer. Math. Sci. Comput., Oxford University, New York,
1999.

J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM, Adv. Comput. Math. 15 (2001), 311-331.
A. Miragi, J. PapeZ and M. Vohralik, A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of
smoothing steps, SIAM J. Sci. Comput. 43 (2021), no. 5, S117-5145.

W. F. Mitchell and M. A. McClain, A comparison of hp-adaptive strategies for elliptic partial differential equations, ACM Trans. Math.
Software 41 (2014), no. 1, Paper No. 2.

J. Schéberl, J. M. Melenk, C. Pechstein and S. Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral
finite elements, IMA J. Numer. Anal. 28 (2008), no. 1, 1-24.

A. Schroder, Constraints Coefficients in hp-FEM, in: Numerical Mathematics and Advanced Applications, Springer, Berlin (2008),
183-190.

C. Schwab, p- and hp-FEM, Theory and Applications to Solid and Fluid Mechanics, Oxford University, Oxford, 1998.

P. Solin, K. Segeth and I. DoleZel, Higher-Order Finite Element Methods, Stud. Adv. Math., Chapman & Hall/CRC, Boca Raton, 2004.

E. Sili and P. Houston, Adaptive finite element approximation of hyperbolic problems, in: Error Estimation and Adaptive Discretization
Methods in Computational Fluid Dynamics, Lect. Notes Comput. Sci. Eng. 25, Springer, Berlin (2003), 269-344.

B. Szab6 and 1. Babuska, Finite Element Analysis, |. Wiley & Sons, New York, 1991.

R. Verflrth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, B.G. Teubner, Stuttgart, 1996.

T. P. Wihler, An hp-adaptive strategy based on continuous Sobolev embeddings, ). Comput. Appl. Math. 235 (2011), no. 8, 2731-2739.



	An $hp$-Adaptive Strategy Based on Locally Predicted Error Reductions
	1 Introduction
	2 Abstract Framework
	2.1 Low-Dimensional Enrichments
	2.2 Linear Algebra Representation
	2.3 Assembling Aspects

	3 Application to $hp$-Finite Element Spaces
	3.1 Polynomial Spaces on the Reference Element
	3.2 $hp$-Finite Element Space
	3.3 Constraint Coefficients
	3.4 Enrichment Functions Associated with Individual Elements
	3.4.1 Enrichment Strategies on a Single Element
	3.4.2 $p$-Enrichments on $Q$
	3.4.3 $hp$-Enrichment Functions on $Q$

	3.5 Representation Matrices
	3.5.1 Computation of the Matrices $\mathsf{C}_i$
	3.5.2 Computation of $\mathsf{D}_i$ for a $p$-Enrichment on $Q$
	3.5.3 Computation of $\mathsf{D}_i$ for an $hp$-Refinement on $Q$


	4 $hp$-Adaptivity Based on Locally Predicted Error Reductions
	5 Numerical Examples
	5.1 Numerical Examples in 1D
	5.1.1 Singularly Perturbed Problem with Boundary Layers
	5.1.2 1D-Model Problem with a Boundary Singularity

	5.2 Numerical Example in 2D
	5.2.1 2D-Poisson Problem with Corner Singularities


	A Appendix
	A.1 Proof of (2.12)
	A.2 Recursion Formulas of the 1D-Constraint Coefficients



