Home Poincaré Inequality for a Mesh-Dependent 2-Norm on Piecewise Linear Surfaces with Boundary
Article
Licensed
Unlicensed Requires Authentication

Poincaré Inequality for a Mesh-Dependent 2-Norm on Piecewise Linear Surfaces with Boundary

  • Shawn W. Walker ORCID logo EMAIL logo
Published/Copyright: June 23, 2021

Abstract

We establish several useful estimates for a non-conforming 2-norm posed on piecewise linear surface triangulations with boundary, with the main result being a Poincaré inequality. We also obtain equivalence of the non-conforming 2-norm posed on the true surface with the norm posed on a piecewise linear approximation. Moreover, we allow for free boundary conditions. The true surface is assumed to be C 2 , 1 when free conditions are present; otherwise, C 2 is sufficient. The framework uses tools from differential geometry and the closest point map (see [G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin (1988), 142–155]) for approximating the full surface Hessian operator. We also present a novel way of applying the closest point map when dealing with surfaces with boundary. Connections with surface finite element methods for fourth-order problems are also noted.

MSC 2010: 65N30; 35J40; 35Q72

A Differential Geometry

In this appendix, we review the differential geometry tools needed for working on manifolds [38, 25, 24, 16, 37]. Specifically, we review the basic notation of covariant, contravariant, and other differential geometry concepts.

A.1 Intrinsic

For the sake of generality, consider a 𝑑-dimensional Riemannian manifold ( Γ , g a b ) , where g a b is the given metric tensor (discussed in Section A.1.2) defined over a (reference) domain U R d ; for simplicity of exposition, assume only one reference domain is needed to define the manifold (of course, this is not necessary). A point in 𝑈 is denoted by ( u 1 , u 2 , , u d ) ; in the special case of d = 2 that we are mainly concerned with, we may use ( u , v ) U . We refer to variables defined on 𝑈 as intrinsic quantities.

A.1.1 Tensor Index Notation

We use lower-case Greek indices ( α , β , γ , etc.), which take values in { 1 , 2 , , d } when referring to intrinsic variables. For example, α is the partial derivative with respect to the coordinate u α for α { 1 , 2 , , d } . Covariant vectors are denoted with lower indices, e.g. ( v 1 , v 2 , , v d ) and contravariant vectors are denoted with upper indices, e.g. ( v 1 , v 2 , , v d ) . The 𝛽-th component of a covariant (contravariant) derivative is denoted by β ( β ).

Moreover, covariant and contravariant components of general tensor quantities use lower and upper Greek indices, respectively, e.g. w α β (covariant tensor), w α β (contravariant tensor), w α β , w α β (mixed tensor). We adopt the Einstein summation convention, i.e. repeated indices are summed over, e.g., w α r α α = 1 d w α r α , where one index is lower and the other is upper. For example, it is not allowed to sum over two repeated lower indices. We use the Kronecker delta δ α β , δ α β , δ α β , etc., with appropriate upper/lower indices depending on the context.

Furthermore, we use the letters 𝔞–𝔥 (with a different font for emphasis) as a non-numerical label to indicate a covariant, contravariant, or mixed tensor. For example, v a refers to a covariant vector (not just a single component), i.e. v a ( v 1 , , v d ) . Similarly, c z = ( 1 z , , d z ) refers to a contravariant vector, where 𝑧 is a scalar quantity. For non-numerical labels, the specific symbol does not matter; it is simply a placeholder. When convenient, we use bold-face for vector and tensor quantities instead of writing out indices.

A.1.2 Main Concepts

The given metric g a b is a symmetric, covariant tensor with component functions g α β : U R for 1 α , β d , which we assume are at least C 1 , and is uniformly positive definite. We write g := det g a b , and the inverse metric tensor g a b is contravariant with components denoted g α β , where g α γ g γ β = δ α β . Note that v a may be converted to v b via v β = g β α v α ; similarly, w b may be converted to w a by w α = g α β w β . When convenient, we write g a b g = [ g α β ] α , β = 1 2 and g a b g - 1 = [ g α β ] α , β = 1 2 in standard matrix notation for the metric and inverse metric, respectively. Let T 2 = T 2 ( Γ ) ( T 2 = T 2 ( Γ ) ) be the set of covariant (contravariant) 2-tensors on Γ. Moreover, S 2 T 2 and S 2 T 2 are subsets of symmetric tensors, so then g a b S 2 and g a b S 2 .

The Christoffel symbols Γ i j k (of the second kind) are defined by

(A.1) Γ α β γ := 1 2 g μ γ ( α g β μ + β g μ α - μ g α β ) , 1 α , β , γ 2 ,

where Γ α β γ = Γ β α γ (see [25, 24]). With this, we recall the definition of covariant (contravariant) derivatives, denoted α ( α ), where 𝑓 is a scalar, v b is a covariant vector, and v c is a contravariant vector,

α f = α f , α β f = α β f - ( γ f ) Γ α β γ ,
α v β = α v β - v γ Γ β α γ , α v γ = α v γ + v β Γ β α γ , α v α = ( g ) - 1 α ( v α g ) .

The metric satisfies (see [25]) γ g α β = 0 , γ g α β = 0 , γ g = 0 for 1 α , β , γ 2 . The “area” element on the manifold Γ is denoted d S ( g ) = g d u g d u 1 d u d , where d u is the Lebesgue measure on R d . Viewing n a as a “vector” in R d , it has unit length under the R d Euclidean metric. If d = 2 , let t a be the oriented (contravariant) tangent vector of U , which has unit length in the Euclidean metric and satisfies n α t α = 0 . Moreover, g = t μ t μ / ( n μ n μ ) , which implies that d s ( g ) := t μ t μ d l for d = 2 , and we have the following “orthogonal” decomposition:

δ β α = n α n β n μ n μ + t α t β t μ t μ .

A.2 Extrinsic

Suppose that the manifold Γ is embedded in R n , with n d , and that it is represented by a family of charts { ( U i , χ i ) } , where a single chart consists of a pair ( U , χ ) , with U R d (reference domain) and χ : U R n (see [25]). For simplicity of exposition, assume there is only one chart ( U , χ ) , where Γ = χ ( U ) . We refer to variables in R n as extrinsic quantities.

A.2.1 Tensor Index Notation

We use lower-case Latin letters starting with 𝑖 (i.e. i , j , k , l , etc.), which take values in { 1 , 2 , , n } , when referring to components of extrinsic (ambient space) quantities. For example, χ = ( χ 1 , , χ n ) T R n , and χ i : U R for each i { 1 , 2 , , n } . A point x R n has its 𝑗-th coordinate denoted by x j . Moreover, k is the partial derivative with respect to coordinate x k . Repeated indices are summed over. We typically bold-face extrinsic vectors and tensors, e.g. let 𝒘 be a (covariant) 2-tensor in R n with components w i j for i , j { 1 , 2 , , n } . The canonical (orthonormal) basis in R n is denoted by { a k } k = 1 n , where a 1 = ( 1 , 0 , , 0 ) T (column vector), etc. With the Kronecker delta δ i j , we have the dual basis { a k } of { a k } by the formula a i a j = δ i j .

A.2.2 Differential Geometry in the Ambient Space

The tangent space T x ( Γ ) , at a point x Γ , is a subspace of R n spanned by { e 1 , e 2 , , e d } (the covariant basis), where

e α = α χ ( u a ) , 1 α d , where u a ( u 1 , , u d ) = χ - 1 ( x ) .

In this case, the metric tensor g a b is given by g α β = e α e β for 1 α , β d . The contravariant tangent basis is given by { e 1 , e 2 , , e d } , where e β = e α g α β = ( α χ ) g α β (see [16]). Sometimes, we express g a b g = J T J , where J = [ e 1 , , e d ] is an n × d matrix.

Given a vector v R n , it is in the tangent space T x ( Γ ) if there exists a (contravariant) vector v a such that v ( x ) = v α e α χ - 1 ( x ) . Alternatively, one can write it in terms of a co-vector v a and the contravariant basis, v ( x ) = v α e α χ - 1 ( x ) . Moreover, any covariant (contravariant) vector v a ( v a ) has a corresponding extrinsic version given by v = v α e α ( v = v α e α ). We define the tangent bundle

T ( Γ ) = { ( x , v ) x Γ , v ( x ) T x ( Γ ) } ;

thus, we say v T ( Γ ) if v ( x ) T x ( Γ ) for every x Γ ; in this case, we write v : Γ T ( Γ ) .

Next, we introduce extrinsic differential operators via their intrinsic counterpart, starting with the surface gradient Γ f : Γ T ( Γ ) defined in local coordinates by

(A.2) ( Γ f ) χ = ( α f ) g α β e β T = α ( f χ ) g α β ( β χ ) T ( f χ ) g - 1 J T .

The (covariant) surface Hessian (a symmetric tensor) is given by

(A.3) ( Γ Γ f ) χ := e μ g μ α [ α β f ] g β ρ e ρ T = e μ g μ α [ α β ( f χ ) - γ ( f χ ) Γ α β γ ] g β ρ e ρ T .

A.2.3 Special Case of a Surface

Suppose d = 2 and n = 3 . We have the following integration by parts relation:

Γ f Γ v d S = Γ f v n d s - Γ ( Γ f ) v d S ,
Γ ( div Γ r ) Γ f d S = Γ ( n T r ) Γ f d s - Γ r : Γ Γ f d S ,
where we suppress the 𝑔 dependence in the differential measure and 𝒏 is the extrinsic conormal vector of Γ given by

n χ | U = n β e β | n β e β | ,

where | a | denotes the Euclidean length of the vector a R n . Next, let 𝒕 be the unit tangent vector of a 1-𝑑 curve Υ Γ with conormal vector 𝒏, where Υ = χ ( Y ) and Y U . In local coordinates, it is given by

t χ | Y = t α e α | t α e α | ,

where t a is the (contravariant) tangent vector of 𝑌. Furthermore, let ν : Γ R 3 be the surface unit normal vector of Γ, which satisfies n = t × ν (see [43]) on Γ . With the ambient space R 3 available, the tangent space projection P : R 3 R 3 , defined on Γ, is given by

(A.4) P = I - ν ν = t t + n n ,

and note that (in local coordinates) J g - 1 J T = P χ (see [43]).

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. 140, Elsevier, Amsterdam, 2003. Search in Google Scholar

[2] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Stud. 2, Van Nostrand, New York, 1965. Search in Google Scholar

[3] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM: M2AN 19 (1985), 7–32. 10.1051/m2an/1985190100071Search in Google Scholar

[4] D. N. Arnold and S. W. Walker, The Hellan–Herrmann–johnson method with curved elements, SIAM J. Numer. Anal. 58 (2020), 2829–2855. 10.1137/19M1288723Search in Google Scholar

[5] I. Babuška, J. Osborn and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), 1039–1062. 10.1090/S0025-5718-1980-0583486-7Search in Google Scholar

[6] E. Bänsch, P. Morin and R. H. Nochetto, A finite element method for surface diffusion: The parametric case, J. Comput. Phys. 203 (2005), 321–343. 10.1016/j.jcp.2004.08.022Search in Google Scholar

[7] J. W. Barrett, H. Garcke and R. Nürnberg, On stable parametric finite element methods for the stefan problem and the Mullins–Sekerka problem with applications to dendritic growth, J. Comput. Phys. 229 (2010), 6270–6299. 10.1016/j.jcp.2010.04.039Search in Google Scholar

[8] J. W. Barrett, H. Garcke and R. Nürnberg, A stable parametric finite element discretization of two-phase Navier–Stokes flow, J. Sci. Comput. 63 (2015), 78–117. 10.1007/s10915-014-9885-2Search in Google Scholar

[9] J. W. Barrett, H. Garcke and R. Nürnberg, A stable numerical method for the dynamics of fluidic membranes, Numer. Math. 134 (2016), 783–822. 10.1007/s00211-015-0787-5Search in Google Scholar PubMed PubMed Central

[10] H. Blum and R. Rannacher, On mixed finite element methods in plate bending analysis. Part 1: The first Herrmann scheme, Comput. Mech. 6 (1990), 221–236. 10.1007/BF00350239Search in Google Scholar

[11] A. Bonito, R. H. Nochetto and M. Sebastian Pauletti, Parametric fem for geometric biomembranes, J. Comput. Phys. 229 (2010), 3171–3188. 10.1016/j.jcp.2009.12.036Search in Google Scholar

[12] A. Bonito, R. H. Nochetto and M. Sebastian Pauletti, Dynamics of biomembranes: Effect of the bulk fluid, Math. Model. Nat. Phenom. 6 (2011), 25–43. 10.1051/mmnp/20116502Search in Google Scholar

[13] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Search in Google Scholar

[14] F. Brezzi and P. A. Raviart, Mixed finite element methods for 4th order elliptic equations, Topics In Numerical Analysis III: Proceedings of the Royal Irish Academy Conference on Numerical Analysis, Academic Press, New York (1976), 33–56. Search in Google Scholar

[15] E. Burman, P. Hansbo, M. G. Larson, K. Larsson and A. Massing, Finite element approximation of the Laplace–Beltrami operator on a surface with boundary, Numer. Math. 141 (2019), 141–172. 10.1007/s00211-018-0990-2Search in Google Scholar PubMed PubMed Central

[16] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. 10.1137/1.9781611972597Search in Google Scholar

[17] M. I. Comodi, The Hellan–Herrmann–Johnson method: Some new error estimates and postprocessing, Math. Comput. 52 (1989), 17–29. 10.1090/S0025-5718-1989-0946601-7Search in Google Scholar

[18] C. B. Davis and S. W. Walker, A mixed formulation of the Stefan problem with surface tension, Interfaces Free Bound. 17 (2015), 427–464. 10.4171/IFB/349Search in Google Scholar

[19] C. B. Davis and S. W. Walker, Semi-discrete error estimates and implementation of a mixed method for the Stefan problem, ESAIM Math. Model. Numer. Anal. 51 (2017), 2093–2126. 10.1051/m2an/2017022Search in Google Scholar

[20] K. Deckelnick, G. Dziuk and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14 (2005), 139–232. 10.1017/S0962492904000224Search in Google Scholar

[21] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, 2nd ed., Adv. Des. Control 4, SIAM, Philadelphia, 2011. 10.1137/1.9780898719826Search in Google Scholar

[22] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), 805–827. 10.1137/070708135Search in Google Scholar

[23] A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), 421–442. 10.1137/050642873Search in Google Scholar

[24] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Upper Saddle River, 1976. Search in Google Scholar

[25] M. P. do Carmo, Riemannian Geometry, 2nd ed., Math. Theory Appl., Birkhäuser, Boston, 1992. 10.1007/978-1-4757-2201-7Search in Google Scholar

[26] Q. Du, C. Liu, R. Ryham and X. Wang, A phase field formulation of the Willmore problem, Nonlinearity 18 (2005), Article ID 1249. 10.1088/0951-7715/18/3/016Search in Google Scholar

[27] Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys. 198 (2004), Paper No. 450. 10.1016/j.jcp.2004.01.029Search in Google Scholar

[28] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin (1988), 142–155. 10.1007/BFb0082865Search in Google Scholar

[29] G. Dziuk, Computational parametric Willmore flow, Numer. Math. 111 (2008), 55–80. 10.1007/s00211-008-0179-1Search in Google Scholar

[30] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. 10.1017/S0962492913000056Search in Google Scholar

[31] L. P. Eisenhart, Riemannian Geometry, Princeton University, Princeton, 1926. 10.1090/coll/008Search in Google Scholar

[32] C. M. Elliott and T. Ranner, Evolving surface finite element method for the Cahn–Hilliard equation, Numer. Math. 129 (2015), 483–534. 10.1007/s00211-014-0644-ySearch in Google Scholar

[33] C. M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys. 229 (2010), 6585–6612. 10.1016/j.jcp.2010.05.014Search in Google Scholar

[34] C. M. Elliott, B. Stinner and C. Venkataraman, Modelling cell motility and chemotaxis with evolving surface finite elements, J. Roy. Soc. Interface 9 (2012), 3027–3044. 10.1098/rsif.2012.0276Search in Google Scholar PubMed PubMed Central

[35] J.-F. Gerbeau and T. Lelièvre, Generalized Navier boundary condition and geometric conservation law for surface tension, Comput. Methods Appl. Mech. Engrg. 198 (2009), 644–656. 10.1016/j.cma.2008.09.011Search in Google Scholar

[36] M. Gromov, Sign and geometric meaning of curvature, Rend. Semin. Mat. Fis. Milano 61 (1991), 9–123. 10.1007/BF02925201Search in Google Scholar

[37] E. Hebey, Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Math., Springer, Berlin, 1996. 10.1007/BFb0092907Search in Google Scholar

[38] E. Kreyszig, Differential Geometry, Dover, New York, 1991. Search in Google Scholar

[39] K. Larsson and M. G. Larson, A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces, Mathe. Comput. 86 (2017), 2613–2649. 10.1090/mcom/3179Search in Google Scholar

[40] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal. 23 (1986), 562–580. 10.1137/0723036Search in Google Scholar

[41] P. Petersen, Riemannian Geometry, 2nd ed., Grad. Texts in Math., Springer, New York, 2006. Search in Google Scholar

[42] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J. Sci. Comput. 19 (2003), 439–456. 10.1023/A:1025324613450Search in Google Scholar

[43] S. W. Walker, The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative, Adv. Des. Control 28, SIAM, Philadelpha, 2015. 10.1137/1.9781611973969Search in Google Scholar

[44] S. W. Walker, The Kirchhoff plate equation on surfaces: The surface Hellan–Herrmann–Johnson method, to appear. 10.1093/imanum/drab062Search in Google Scholar

[45] S. W. Walker, B. Shapiro and R.-H. Nochetto, Electrowetting with contact line pinning: Computational modeling and comparisons with experiments, Phys. Fluids 21 (2009), Article ID 102103. 10.1063/1.3254022Search in Google Scholar

[46] O.-Y. Zhong-Can and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A 39 (1989), 5280–5288. 10.1103/PhysRevA.39.5280Search in Google Scholar PubMed

Received: 2020-08-12
Revised: 2021-06-03
Accepted: 2021-06-05
Published Online: 2021-06-23
Published in Print: 2022-01-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0123/html
Scroll to top button