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Abstract:Anew algorithm for eigenvalue problems for linear differential operators with fractional derivatives
is proposed and justified. The algorithm is based on the approximation (perturbation) of the coefficients of
a part of the differential operator by piecewise constant functions where the eigenvalue problem for the last
one is supposed to be simpler than the original one. Another milestone of the algorithm is the homotopy idea
which results at the possibility for a given eigenpair number to compute recursively a sequence of the approx-
imate eigenpairs. This sequence converges to the exact eigenpair with a super-exponential convergence rate.
The eigenpairs can be computed in parallel for all prescribed indexes. The proposed method possesses the
following principal property: its convergence rate increases together with the index of the eigenpair. Numer-
ical examples confirm the theory.
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1 Introduction
It was recognized over the last decades that realistic models of various physical phenomena can be better
described with fractional calculus; see, e.g., [8, 20, 25, 31–33, 44, 47, 50], just to mention a few. A very
good overview of applications of fractional calculus is given in [45, 49].

There are various definitions of fractional derivatives; see, e.g., [1, 31, 32, 34, 36–38, 49]. In [46],
a fractional derivative was defined in various ways, especially through integer derivatives using the Taylor
and Fourier series. For example, one can introduce fractional derivatives for periodic functions using the
Fourier series and the elementary relations

FDn(sin x) = (sin x)(n) = sin(x + n π2),
FDn(cos x) = (cos x)(n) = cos(x + n π2), n ∈ ℤ,

and replacing here the integer n by a real number. Alternatively one can use the Fourier or Laplace transform
with the relations

F(Dα f)(ξ) = i|α|ξ αF(f)(ξ), L(Dα f)(ξ) = sαL(f) −
n−1
∑
k=0

f (k)(0)sα−k−1

and declare them valid for all real values of α.
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The very popular definitions of the fractional calculus are the Riemann–Liouville and Caputo fractional
derivatives and integrals; see, e.g., [10].

The Riemann–Liouville integral is defined by

Iα f(x) = 1
Γ(α)

x

∫
a

f(t)(x − t)α−1dt,

where Γ(α) is the gamma function and a is a fixed base point. Another notation, which emphasizes the base
point, is

aD
−α
x f(x) = a I

α
x f(x) =

1
Γ(α)

x

∫
a

f(t)(x − t)α−1dt. (1.1)

The following fundamental relations hold:

d
dx
Iα+1f(x) = Iα f(x), Iα(Iβ f) = Iα+β f,

the latter of which is the semigroup property. These properties make possible not only the definition of frac-
tional integration, but also the definition of fractional differentiation, by taking enough derivatives of Iα f(x).
Computing the n-th order derivative over the integral of order (n − α), the α order derivative is obtained:

RL
aD

α
t f(t) =

dn

dtn aD
−(n−α)
t f(t) = dn

dtn a I
n−α
t f(t) = 1

Γ(n − α)
dn

dtn

t

∫
a

f(τ)(t − τ)n−α−1dτ,

where n is the nearest integer bigger than α, i.e. n − 1 ≤ α < n ∈ ℤ+ or n = ⌈α + 1⌉.
The Caputo fractional derivative is another option for computing fractional derivatives. It was introduced

by M. Caputo in 1967 in the following way:

C
aD

α
t f(t) =

1
Γ(n − α)

t

∫
a

(t − τ)n−α−1f (n)(τ)dτ,

where n − 1 ≤ α < n ∈ ℤ+. From these definitions, one can see that CaD
α
t f (n)(t) =

C
aD

n+α
t f(t) and, for sufficient

smooth f ,
C
aD

α
t f(t) =

RL
aD

α
t f(t) −

n−1
∑
k=0

tk−α f (k)(a)
Γ(k − α + 1) , (1.2)

i.e., both derivatives coincide for functions f(t)with f (k)(a) = 0, k = 0, 1, . . . , n − 1. One can also rewrite this
formula as

C
aD

α
t f(t) =

RL
aD

α
t (f(t) −

n−1
∑
k=0

tk f (k)(a)
k! ).

Both definitions differ only in the order of evaluation: whereas in the Caputo definition we first compute an
ordinary derivative, then a fractional integral, in the Riemann–Liouville definition the operators are reversed.
Comparing these definitions, we can see that functions which are derivable in the Caputo sense are much
“fewer” than those which are derivable in the Riemann–Liouville sense.

Note that the fractional derivatives introduced above do not satisfy many properties of the classical dif-
ferential calculus. But there are other definitions of fractional derivative in the literature which obey classical
properties including: linearity, product rule, quotient rule, power rule, chain rule, vanishing derivatives for
constant functions, Rolle’s theorem and the Mean Value Theorem; see, e.g., [22].

Using the definitions above, one can consider differential operators of fractional order, boundary and
eigenvalue problems for these operators, etc., as well as various approximation methods for them; see, e.g.,
[11, 14, 21, 31].

The eigenvalue problem (EVP) is the problem of finding eigenpairs (eigenvalues and eigenfunctions or,
in the language of mechanicians, frequencies and vibration shapes). It plays an important role in various
applications concerned with vibrations and wave processes [4, 19, 41]. Popular methods such as the finite-
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difference method (FD), the finite element (FEM) and other variational methods, as well as spectral methods
allow one to compute efficiently some lower eigenvalues only. At the same time there are applied problems
requiring the computation of a great number (hundreds of thousands) of eigenvalues and eigenfunctions
including eigenpairs with great indexes; see, e.g., [41, p. 273].

Over the last decade, it has been demonstrated that also eigen-oscillations of many systems in science
and engineering can be modeled more accurately by employing fractional-order rather than integer-order
derivatives [3, 13, 35]. In most of the fractional Sturm–Liouville formulations presented recently, the ordi-
nary derivatives in a traditional Sturm–Liouville problem are replaced with fractional derivatives, and the
resulting problems are solved using some numerical schemes such as the Adomian decomposition method
[3], the fractional differential transform method [13], or using the method of the Haar wavelet operational
matrix [35]. Some of the proposed algorithms are given in the literature without sufficient theoretical justi-
fication or possess the same drawbacks as the corresponding algorithms for the classical Sturm–Liouville
problem. It turns out that the Sturm–Liouville problem with fractional derivatives can possess similar qual-
itative properties as a traditional Sturm–Liouville problem [12, 51], but some qualitative properties differ
from the traditional ones.

In [9], Chen, Shen and Wang consider a spectral approximation of fractional differential equations
(FDEs). A new class of generalized Jacobi functions (GJFs) is defined, which are the eigenfunctions of some
fractional Jacobi-type differential operator and can serve as natural basis functions for properly designed
spectral methods for FDEs. The efficient GJF Petrov–Galerkin methods for a class of prototypical fractional
initial value problems (FIVPs) and fractional boundary value problems (FBVPs) of general order are con-
structed and analyzed.

In order to solve numerically an eigenvalue problem for fractional differential operators, we propose a
new approach described below which we will refer to as the FD-method (from “functional-discrete method”,
following [5, 6, 26–28]). Note that this approach for eigenvalue problems for nonlinear differential equations
was applied for the first time in [28] and then continued in [15].

The FD-method is based on the perturbation and homotopy ideas. The perturbation in the case of ODE
operators can be similar to that of the butt method (metodo dei tronconi; see, e.g., [7]), the Pruess method
for BVPs [39–41] for the second-order ODEs, or of some methods for EVP from [2], where the coefficients of
the differential equation are replaced by their piecewise constant approximations. This approach has been
applied also to EVPs with multiple eigenvalues in [17].

Thearticle is organizedas follows. InSection2,wedescribe the algorithmof theFD-method for EVPs inan
abstract setting. Section 3 is devoted to the Fourier fractional derivative and some of its properties. In Section
4, we apply the FD-method for a differential equation with an integer highest derivative and a subordinated
fractional derivative. Here we prove the superexponential convergence rate of our method independent of
the definition of fractional derivatives in use and discuss two various algorithmic realizations: 1) solving
the differential problems for the corrections of the FD-method, and 2) using a recursive procedure for the
expansion coefficients of these corrections. Section 5 deals with the FD-method for a differential equation
with a highest Riemann–Liouville fractional derivative, which is similar to the differential equation defining
the generalized Jacobi functions (GJF). We prove the super-exponential convergence rate of our method. For
the practical implementation we test the FD-algorithm directly and, besides, propose some new recursive
procedure. Numerical examples are given to support the theoretical results.

2 The Homotopy-Based Method for EVPs in an Abstract Setting
Let us briefly explain the ideas of perturbation and homotopy for the eigenvalue problem

(A + B)un − λnun = θ, (2.1)

in a Hilbert space X with the scalar product (⋅ , ⋅) and with the null-element θ under the assumption that the
spectrum of the operator A + B is discrete. We are looking for the eigenpair with a given fixed index n.
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Let B be an approximating operator for B in the sense that the eigenvalue problem

(A + B)u(0)n − λ(0)n u(0)n = θ (2.2)

is “simpler” than problem (2.1).
Formally, a homotopy between two problems P1 and P2 with solutions u1 and u2 from some topological

space X is defined to be a parametric problem PH(t)with a solution u(t) continuously and smoothly depend-
ing on the parameter t ∈ [0, 1] and such that u(0) = u1 and u(1) = u2 (compare http://en.wikipedia.org/wiki/
homotopy).

Following the homotopy idea for a given eigenpair number n, we embed our problem into the parametric
family of problems

(A +W(t))un(t) − λn(t)un(t) = θ, t ∈ [0, 1] (2.3)

withW(t) = B + tφ(B), φ(B) = B − B containing both problems (2.1) and (2.2), so that we obviously have

un(0) = u(0)n , λn(0) = λ(0)n , un(1) = un , λn(1) = λn .

This suggests the idea to look for the solution of (2.3) in the form

λn(t) =
∞

∑
j=0
λ(j)n tj , un(t) =

∞

∑
j=0
u(j)n tj , (2.4)

where
λ(j)n =

1
j!
djλn(t)
dtj

!!!!!!!t=0
, u(j)n =

1
j!
djun(t)
dtj

!!!!!!!t=0
. (2.5)

Setting t = 1 in (2.4), we obtain

λn =
∞

∑
j=0
λ(j)n , un =

∞

∑
j=0
u(j)n ,

provided that the series in (2.4) converge for all t ∈ [0, 1].
The identities given in (2.5) are not suitable for a numerical algorithm, therefore we need another way to

compute the corrections λ(j)n , u
(j)
n which we describe below.

Substituting (2.4) into (2.3) and matching the coefficients in front of the same powers of t, we arrive at
the following recurrence sequence:

(A + B)u(j+1)n − λ(0)n u(j+1)n = F(j+1)n , j = −1, 0, 1, . . . , (2.6)

with F(0)n = 0 and

F(j+1)n = F(j+1)n (λ(1)n , . . . , λ
(j+1)
n ; u(0)n , . . . , u

(j)
n )

= −φ(B)u(j)n +
j
∑
p=0

λ(j+1−p)n u(p)n

= λ(j+1)n u(0)n − φ(B)u(j)n +
j
∑
p=1

λ(j+1−p)n u(p)n , j = 0, 1, . . . . (2.7)

For the pair λ(0)n , u
(0)
n corresponding to the index j = −1 we get the so-called base eigenvalue problem

(A + B)u(0)n − λ(0)n u(0)n = θ,

which for simplicity is assumed to have no multiple eigenvalues, to be “simpler” than the original one, and
to produce the initial data for problems (2.6), (2.7). The case of multiple eigenvalues of the base problemwas
studied in [17].

Problems (2.6) for higher indices j ≥ 0 are solvable provided that

(F(j+1)n , u(0)n ) = 0, j = 0, 1, . . . ,

http://en.wikipedia.org/wiki/homotopy
http://en.wikipedia.org/wiki/homotopy
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from where we obtain
λ(j+1)n = (φ(B)u(j)n , u

(0)
n ), j = 0, 1, . . . . (2.8)

Under this condition the general solution of the inhomogeneous equation (2.6) with the singular operator
can be represented by

u(j+1)n = Cu(0)n +
∞

∑
p=1, p ̸=n

(F(j)n , u
(0)
p )

λ(0)p − λ(0)n
u(0)p

with an arbitrary constant C. We choose the particular solution

u(j+1)n =
∞

∑
p=1, p ̸=n

(F(j)n , u
(0)
p )

λ(0)p − λ(0)n
u(0)p

satisfying the condition
(u(j+1)n , u(0)n ) = 0, j = 0, 1, . . . .

The start values λ(0)n , u
(0)
n for the recursion (2.6), (2.8) are the solutions of the base problem.

The truncated series
m
un =

m
∑
j=0
u(j)n ,

m
λn =

m
∑
j=0
λ(j)n (2.9)

represent an algorithm to find the approximate solution
m
λn ,

m
un (of rank m) to the solution of problem (2.1).

Below we give the error estimates of this method in the cases of a “dominated” fractional derivative and
a “subordinated” fractional derivative.

3 The Fourier Fractional Derivative
The following differentiation and integration formulas can be easily proved for n ∈ ℕ, a ∈ ℝ:

FDn sin (ax) = sin(n) (ax) = (a)n sin(ax + πn2 ), (3.1)

FD−n sin(ax) = ∫ ⋅ ⋅ ⋅ ∫
n times

= (a)−n sin(ax − πn2 ). (3.2)

We can generalize these formulas in a natural way for real n and introduce the differentiation and integration
operators of fractional order α ∈ ℝ (the Fourier fractional derivative) by

FDα sin (ax) = sin(α) (ax) = (a)α sin(ax + πα2 ),

FD−α sin(ax) = (a)−α sin(ax − πα2 ),

cf. [23, 24]. One can see, especially for a = nπ, that

|FDα sin(nπx)| ≤ (nπ)α . (3.3)

The functions √2 sin(nπx), n = 1, 2, . . . , build an orthonormal basis in the space L2,0(0, 1) of functions
vanishing at the ends of the interval with the norm ‖f‖L2 = (∫10 f

2(x)dx)1/2. An arbitrary function f(x) from
this space can be represented by the Fourier series

f(x) =
∞

∑
n=1

an sin(nπx) (3.4)

with an = √2∫10 f(x) sin(nπx)dx. The fractional derivative for such functions can be defined by

FDα f(x) =
∞

∑
n=1

an(nπ)α sin(nπx +
πα
2 ).
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Given the Fourier representation (3.4), the inverse operator FD−α is defined by

FD−α f(x) =
∞

∑
n=1

an(nπ)−α sin(nπx −
πα
2 ).

One can also define the fractional derivative of a 2π-periodic function using the exponential form of the
Fourier series (see, e.g., www.xuru.org/fc/exponentials.asp):

f(x) =
∞

∑
n=−∞

einx

2π

π

∫
−π

f(x)e−intdt ⇒ FDα f(x) =
∞

∑
n=−∞

(nπ)αei(nx+απ/2)

2π

π

∫
−π

f(x)e−intdt.

Remark 3.1. It is easy to see that the eigenpairs of the operator

Au = −
d2u
dx2

for all u ∈ D(A) := {u ∈ H2(0, 1) : u(0) = 0, u(1) = 0},

are λk = k2π2, uk = sin(kπx) for k = 1, 2, . . . . Thereforewe obtain the following connection between the frac-
tional powers Aα of this operator and the Fourier fractional derivatives on the elements (3.4):

FDα f(x) =
∞

∑
n=1

an(nπ)α sin(nπx +
πα
2 )

= cos(πα2 )
∞

∑
n=1

an(nπ)α sin(nπx) + sin(πα2 )
∞

∑
n=1

an(nπ)α cos(nπx)

= cos(πα2 )Aα/2f + sin(πα2 )
d
dx

FDα−1f.

That is, we have
Aα/2 = cos−1(πα2 ) FDα − tan(πα2 )

d
dx

FDα−1, α ̸= 1.

Example 3.2. To obtain the fractional derivative of the product of functions f(x) = x and g(x) = sin(nπx), let
us represent this product by the Fourier series

x sin(kπx) =
∞

∑
p=1

ap sin(pπx),

where

ak =
1
√2

1

∫
0

x sin(nπx) sin(kπx)dx =
{{{
{{{
{

−
4nk[1 − (−1)n+k]
π2(k2 − n2)2

if k ̸= n,

1
2 if k = n.

Then using the definitions (3.1) and (3.2), we have

FDα[x sin(nπx)] =
∞

∑
k=1

ak(kπ)α sin(kπx +
πα
2 ),

in particular
FD1/2[x sin(nπx)] =

∞

∑
k=1

ak(kπ)1/2 sin(kπx +
π
4).

Let us consider the asymptotic behavior with respect to n of the Caputo and Riemann–Liouville fractional
derivatives of the function sin(nπx). We have

C
aD

α
t sin(nπt) =

nπ
Γ(1 − α)

t

∫
0

(t − τ)−α cos(nπτ)dτ =
nπ

Γ(1 − α)
φ(α)
n (t),

where

φ(α)
n (t) =

1

∫
t

cos(nπξ)
(ξ − t)α

dξ, t ∈ [0, 1], α ∈ (0, 1).

The asymptotic behavior of φ(α)
n with respect to n gives the next simple lemma.

www.xuru.org/fc/exponentials.asp
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Lemma 3.3. There exists a constant c(α) independent of n such that

n1−α max
t∈[0,1]

|φ(α)
n (t)| ≤ c(α),

where c(α) = 1
1−α .

Proof. By change of the variable ξ = ζ/n, we obtain

φ(α)
n (t) =

1

∫
t

cos(nπξ)
(ξ − t)α

dξ =
1
n1−α

n

∫
nt

cos(πζ)
(ζ − nt)α

dζ.

Further, for t ∈ [0, 1], we have

n1−α|φ(α)
n (t)| ≤

n

∫
nt

dζ
(ζ − nt)α

dζ =
(ζ − nt)−α+1

−α + 1
!!!!!!!

n

nt
=

(n − nt)−α+1

−α + 1 ≤
1

−α + 1 = c(α).

The lemma yields the estimate
|CaD

α
t sin(nπt)| ≤

c(α)π
Γ(1 − α)

nα , (3.5)

which is of the same order in n as the Fourier fractional derivative (3.3). Due to (1.2) we have the same
estimate for the Riemann–Liouville derivative too.

4 The Sturm–Liouville Problem with a Subordinated Fractional
Derivative

Let us consider the following Sturm–Liouville problem:

{{
{{
{

d2u(x)
dx2

+ k(x)Dαu(x) + (λ − q(x))u(x) = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 0,
(4.1)

where Dα denotes the Fourier, Caputo or Riemann–Liouville fractional derivatives. For shortness, we will use
in this section the Fourier derivative FDαu(x), since themain property in use is the asymptotic (3.3) and (3.5)
which are of the same order in n for all three derivatives.

Ifwe approximate the coefficients k(x), q(x)by the constant 0 on thewhole interval (the simplest variant),
then the FD-method for (4.1) consists of the following sequence of recursive problems:

{{
{{
{

d2u(j+1)n (x)
dx2

+ λ(0)n u(j+1)n (x) = F(j+1)n (x), x ∈ (0, 1),

u(j+1)n (0) = 0, u(j+1)n (1) = 0, j = −1, 0, . . . ,
(4.2)

where
{{{{{{
{{{{{{
{

F(j+1)n (x) = −
j
∑
s=0

λ(j+1−s)n u(s)n (x) − k(x)Dαu(j)n (x) + q(x)u(j)n (x), x ∈ (0, 1),

F(0)n (x) = 0,

u(0)n (x) = √2 sin(nπx), λ(0)n = (nπ)2.

(4.3)

The solvability condition
1

∫
0

F(j+1)n (ξ) sin(nπξ)dξ = 0
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implies

λ(j+1)n = −
1

∫
0

k(ξ)Dαu(j)n (ξ)√2 sin(nπξ)dξ +
1

∫
0

q(ξ)u(j)n (ξ)√2 sin(nπξ)dξ. (4.4)

The particular solution of problem (4.2) satisfying the orthogonality condition

1

∫
0

u(j+1)n (ξ) sin(nπξ)dξ = 0

can be represented by

u(j+1)n (x) = 2
∞

∑
p=1, p ̸=n

∫10 F
(j+1)
n (ξ) sin(pπξ)dξ
π2(n2 − p2)

sin(pπx) (4.5)

and we have

Dαu(j+1)n (x) = 2
∞

∑
p=1, p ̸=n

∫10 F
(j+1)
n (ξ) sin(pπξ)dξ
π2(n2 − p2)

(pπ)α sin(pπx + πα2 ).

Using the orthonormality of the system √2 sin(pπx) for the corrections of the eigenfunction, we obtain the
estimates

‖u(j+1)n ‖ ≤
1

π2(2n − 1)
‖F(j+1)n ‖

≤
1

π2(2n − 1)
{

j
∑
s=0

|λ(j+1−s)n |‖u(s)n ‖ + ‖k‖∞‖Dαu(j)n ‖ + ‖q‖∞‖u(j)n ‖} (4.6)

and

‖Dαu(j+1)n ‖ ≤
√2
π2−α

max((n − 1)α
2n − 1 , (n + 1)α

2n + 1 )‖F(j+1)n ‖

≤ M(1)
n {

j
∑
s=0

|λ(j+1−s)n |‖u(s)n ‖ + ‖k‖∞‖Dαu(j)n ‖ + ‖q‖∞‖u(j)n ‖} (4.7)

with
M(1)
n =

√2
π2−α

max((n − 1)α
2n − 1 , (n + 1)α

2n + 1 ) ≤
2α

π2−α
⋅
(n + 1)α
2n − 1 ≤ Mn

(1)
=
2α+0.5

π2−α
nα−1. (4.8)

The corrections to the eigenvalues are estimated by

|λ(j+1)n | ≤ ‖k‖∞‖Dαu(j)n ‖ + ‖q‖∞‖u(j)n ‖. (4.9)

Introducing the majorants Uj, Vj and Λj by

‖u(j+1)n ‖ ≤ Uj+1, ‖Dαu(j+1)n ‖ ≤ Vj+1, |λ(j+1)n | ≤ Λj+1

and replacing the inequality signs in (4.6)–(4.9) by equal signs, we obtain the following majorant system of
equations:

{{{{{{
{{{{{{
{

Uj+1 =
2

π2(2n − 1)

j
∑
s=0
Λj+1−sUs , Λj+1 = ‖k‖∞Vj + ‖q‖∞Uj ,

Vj+1 = 2M(1)
n

j
∑
s=0
Λj+1−sUs , j = 0, 1, . . . , U0 = 1, V0 = (πn)α .

(4.10)

A consequence of (4.10) is

Vj+1 = κVUj+1, Λj+1 = κΛUj , Uj+1 = κU
j
∑
s=0

Uj−sUs , j = 0, 1, . . . , (4.11)
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where

κV =
π2(2n − 1)

2 M(1)
n , κΛ = [‖k‖∞

π2(2n − 1)
2 M(1)

n + ‖q‖∞], κU = [‖k‖∞M(1)
n +

2‖q‖∞
π2(2n − 1)

].

The last equation in (4.11) is a recurrence equation of convolution type which can be solved by the method
of generating functions (see, e.g., [6, 42]). We successively obtain

Uj = (rn)j2
(2j − 1)!!
(2j + 2)!! , Vj = κΛ(rn)j2

(2j − 1)!!
(2j + 2)!! , Λj+1 = κΛ(rn)j2

(2j − 1)!!
(2j + 2)!! ,

where
rn = 4κU = 4[‖k‖∞M(1)

n +
2‖q‖∞

π2(2n − 1)
]

and rn ∈ (0, 1) for n large enough.
From the definition of the majorant sequences we obtain the accuracy estimates

‖un −
N
un‖ ≤

"""""""

∞

∑
k=N+1

Uk
"""""""
≤ 2

∞

∑
k=N+1

(rn)k
(2k − 1)!!
(2k + 2)!! ≤ 2κU ⋅

(2N + 1)!!
(2N + 4)!! ⋅

rN+1n
1 − rn

.

It is easy to see that

n!! =

{{{{{{{
{{{{{{{
{

n
2

∏
i=1

2i = 2
n
2 ⋅ (

n
2)! if n is even,

n−1
2

∏
i=0

(2i + 1) = n!
2 n−1

2 ⋅ ( n−12 )!
if n is odd.

Therefore,
(2N + 1)!!
(2N + 4)!! =

(2N + 1)!
22N+2 ⋅ N!(N + 2)!

=
Γ(2N + 2)

22N+2Γ(N + 1)Γ(N + 3)
.

Now, the well-known Stirling’s asymptotic formula Γ(t + 1) ≍ √2πt(t/e)t implies

(2N + 1)!!
(2N + 4)!! ≍

√2π(2N + 1)(2N+1e )2N+1

22N+2√2πN(Ne )N√2π(N + 2)(N+2e )N+2

≍
1

22N+2√2πN
⋅
(2N+1e )2N ⋅ ( 2N+1e )

(Ne )2N(
N+2
e )2

≍ N−3/2(1 +
1
2N )

2N

≍ N−3/2.

Analogously we obtain the corresponding estimate for the eigenvalues.
Thus, we come to the following assertion.

Theorem 4.1. Let for α ∈ [0, 1) the following condition be fulfilled:

rn = 4[‖k‖∞
2α+0.5

π2−α
nα−1 + 2‖q‖∞

π2(2n − 1)
] < 1.

Then the FD-method for (4.1) is super-exponentially convergent with the error estimates

‖un −
N
un‖ ≤ cN−3/2rN+1n , ‖λn −

N
λn‖ ≤ cN−3/2rN+1n ,

where c is a constant independent of N.
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j λ(j)5
0 25π2

1 √10π/2
2 0.04646
3 −0.00153
4 0.00007
5 −0.37408 ⋅ 10−5

6 0.21009 ⋅ 10−6

7 −0.12374 ⋅ 10−7

8 0.75412 ⋅ 10−9

9 −0.47155 ⋅ 10−10

10 0.30082 ⋅ 10−11

Table 1. Correction λ(j)5 vs. j for M = 2048.

M
10
λ 5

8 243.99009
16 243.98510
32 243.98375
64 243.98323

128 243.98297
256 243.98282
512 243.98272

1024 243.98265
2048 243.98260

Table 2. The approximation
10
λ 5 vs. M.

4.1 Recursive Implementation of the Fourier Derivative

In this subsection we show that the corrections for eigenpairs can be computed without use of (4.4) and
(4.5), i.e., we can avoid the computation of the integrals included. For the sake of simplicity let us consider
problem (4.1) with k(x) = 1 and q(x) = 0 (otherwise one should expand these functions in Fourier series or
approximate by a trigonometric polynomial). Substituting the Fourier representation

u(j)n (x) =
∞

∑
k=1

a(j)n,k√2 sin(kπx)

with unknown coefficients a(j)n,k into the formulas (4.3), (4.4) and (4.5), we obtain the recurrence relations

λ(0)n = (nπ)2, λ(1)n = −(nπ)α cos(απ2 ),

a(0)nk = δn,k , a(1)nk = −
2nα

π3−α
sin(απ2 )

k[(−1)n+k − 1]
(k2 − n2)2

, k = 1, . . . ,∞, k ̸= n,

λ(j+1)n = −
∞

∑
k=1, k ̸=n

a(j)n,k(nπ)
α2

1

∫
0

sin(kπx + απ2 ) sin(nπx)dx

= −
2n
π

sin(απ2 )
∞

∑
k=1, k ̸=n

(kπ)α [(−1)
k+n − 1]

k2 − n2
a(j)nk , j = 1, 2, . . . ,

a(j+1)nk =
−1

π2(n2 − k2)
(

j
∑
p=1

λ(j+1−p)n a(p)nk +
2k
π

sin(απ2 )
∞

∑
t=1,t ̸=n

a(j)nt (tπ)
α [(−1)k+t − 1]

t2 − k2

+ a(j)nk cos(
απ
2 )(kπ)α), k = 1, . . . ,∞, k ̸= n, j = 1, 2, . . . .

Note that the pairs λ(j+1)n , a(j+1)nk for all j = 1, 2, . . . can be computed simultaneously in a loop with respect to
j with an included loop with respect to k. For practical computation one can truncate the series keeping M
summands. The behavior of the corrections to the eigenvalue λ5 computed with the computer algebra tool
Maple for our example with α = 1

2 and M = 2048 is illustrated in Table 1.
Thus, our method of the rank 10 provides the approximation

10
λ5 = 243.9826068784193.

Table 2 demonstrates the dependence of the eigenvalue from M.
As appears from Table 1, the FD-method of rank 5 instead of 10 would provide the same accuracy.
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4.2 Direct Implementation of the Riemann–Liouville Derivative

Let us consider the following eigenvalue problem with the Riemann–Liouville derivative:

{{{{{{{
{{{{{{{
{

u��(x) + (
RL
0D

1/2
x u)(x) + λu(x) = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 0,

(
RL
0D

1/2
x u)(x) = 1

√π
d
dx

x

∫
0

u(t)
√x − t

dt.

(4.12)

We apply to problem (4.12) the simplest variant of the FD-method by setting the coefficient in front of the
fractional derivative equal to zero. We obtain the base problem

{{
{{
{

d2u(0)n (x)
dx2

+ λ(0)n u(0)n (x) = 0, x ∈ (0, 1),

u(0)n (0) = 0, u(0)n (1) = 0.

The solution of the base problem is

u(0)n (x) = √2 sin(nπx), λ(0)n = (nπ)2, n = 1, 2, . . . .

The next corrections are the solutions of

{{{{{{
{{{{{{
{

d2u(1)n (x)
dx2

+ λ(0)n u(1)n (x) = −λ(1)n u(0)n (x) −
RL
0D

1/2
x (u(0)n ), x ∈ (0, 1),

u(1)n (0) = 0, u(1)n (1) = 0,
RL
0D

1/2
x (u(0)n ) = 2√πn[sin(nπx)S(√2nx) + cos(nπx)C(√2nx)],

(4.13)

where S(z), C(z) are the Fresnel’s integrals; see, e.g., [43]. The solvability condition implies

λ(1)n = √ n
2π [2πS(

√2n) − 1
n
C(√2n) − (−1)n√2

n ]
.

The general solution of (4.13) is

u(1)n (x) = c(1)n u(0)n (x) + 1
2π√n

[S(√2nx)(2xπ cos(nπx) − 1
n
sin(nπx))

− C(√2nx)(2xπ sin(nπx) + 1
n
cos(nπx)) + √2x

n ] −
λ(1)n

√2π2n
[−

1
n
sin(nπx) + πx cos(nπx)]

with an arbitrary constant c(1)n . We choose the particular solution satisfying the orthogonality condition

1

∫
0

u(1)n (x)u(0)n (x)dx = 0

and obtain
c(1)n = −

1
16π7/2√π

[S(√2n)4
√2π2
n

+ C(√2n)(−4√2π3 −
√2π
n2

)].

We find the next corrections within a guarantied accuracy by the corresponding choice of the parameter
“Digits” in the computer algebra tool Maple.

To evaluate the accuracy of the results obtained,we find the exact first eigenvalue of problem (4.12) using
the Laplace transform which provides the correspondence U(p) = L{u(x)}. The solution of the ODE (4.12)
satisfying the conditions

u(0) = 0, u�(0) = 1
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is then given by

u(x) = L−1(
1

p2 + √p + λ
)

= −
1
√πx + y1e

y21x erf(−y1√x)
(y4 − y1)(y3 − y1)(y2 − y1)

−
1
√πx + y2e

y22x erf(−y2√x)
(y4 − y2)(y3 − y2)(y1 − y2)

+
1
√πx + y3e

y23x erf(−y3√x)
(−y4 + y3)(−y3 + y2)(y1 − y3)

−
1
√πx + y4e

y24x erf(−y4√x)
(−y4 + y3)(y2 − y4)(y1 − y4)

, (4.14)

where yi = yi(λ), i = 1, . . . , 4 are the roots of the equation y4 + y + λ = 0, and erf(z) is the complementary
error function. Setting x = 1 in (4.14), we obtain a transcendent equation defining the eigenvalues of (4.12).
In particular, we obtain

λ1 = 8.8857068923 . . . .

4.3 Recursive Implementation of the Riemann–Liouville Derivative

Let us consider another algorithm similar to that of Section 4.1 and based on the recurrence formulas for the
expansion coefficients of the corrections.

We look for the corrections of the eigenfunctions in the form

u(j)n (x) =
∞

∑
k=1, k ̸=n

a(j)n,k√2 sin(kπx). (4.15)

Note that the solvability condition ∫10 u
(j)
n (x)u(0)n (x)dx = 0 is automatically satisfied. We will use the represen-

tation
RL
0D

1/2
x (u(j)n )(x) =

∞

∑
k=1, k ̸=n

a(j)n,kφk(x) (4.16)

with

φk(x) = 2√kπ[sin(kπx)S(√2kx) + cos(kπx)C(√2kx)]

=
∞

∑
p=1, p ̸=k

μp,k√2 sin(pπx) + μk,k sin(kπx),

where

S(x) =
x

∫
0

sin(t2)dt, C(x) =
x

∫
0

cos(t2)dt

are the Fresnel integrals, and

μp,k =

{{{{{
{{{{{
{

− 2√ 2kp
π

(−1)k+pC(√2p)√k − C(√2k)√p
−p2 + k2

if p ̸= k,

√ k
2π (−C(

√2k)√2k + 2S(√2k) + 2k cos(kπ)) if p = k.

After substitution of (4.15) and (4.16) into the expression

F(j+1)n (x) = −
j
∑
p=0

λ(j+1−p)n u(p)n (x) −
RL
0D

1/2
x (u(j)n )(x)

for the right-hand side of the equations for corrections

d2u(j+1)n (x)
dx2

+ (nπ)2u(x) = F(j+1)n (x), (4.17)
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j λ(j)1
0 9.86960440108935861883447
1 −1.01447613638170169201166
2 0.0297977106497561210442917
3 0.000748595098364490732963004
4 0.0000307247268252977828544031
5 0.151034209083836378732232 ⋅ 10−5

6 0.817967082430059455248254 ⋅ 10−7

7 0.470596353098774231258105 ⋅ 10−8

8 0.282203827854256565319426 ⋅ 10−9

9 0.174411370055653495235000 ⋅ 10−10

10 0.110294240120233228374921 ⋅ 10−11

Table 3. The corrections of the FD-method for problem (4.12)
computed by truncated series with M = 32 summands.

we obtain
F(j+1)n (x) = −λ(j+1)n √2 sin(nπx) −

∞

∑
k=1, k ̸=n

f (j+1)n,k
√2 sin(kπx),

where

f (j+1)n,k =
j
∑
p=1

λ(j−p+1)n a(p)n,k +
∞

∑
s=1

a(j)n,sμs,k .

The solution of (4.17) is then given by (4.15) with

a(j+1)n,k =
1

π2(n2 − k2)
{

∞

∑
p=1, p ̸=k, p ̸=n

2√2pka(j)n,p[−C(√2k)√p + (−1)p+kC(√2p)√k]
π1/2(p2 − k2)

+
j
∑
p=0

λ(j+1−p)n a(p)n,k +
1

2√πk
[−C(√2k)√2k + (2k)3/2πS(√2k) + 2k(−1)k]a(j)n,k}. (4.18)

For the eigenvalue corrections we have

λ(j+1)n = −
1

∫
0

RL
0D

1/2
x (u(j)n )(x)u(0)n (x)dx = −

∞

∑
k=1, k ̸=n

a(j)n,k
2√2kn[(−1)n+kC(√2k)√n − C(√2n)√k]

√π(−n2 + k2)
. (4.19)

The formulas (4.18), (4.19) with the initial conditions

a(0)n,k = δnk , λ(0)n = (nπ)2,

where δnk is the Kronecker delta, represent a recursive algorithm for the corrections which contrary to the
one of Section 4.2 avoids the solution of differential problems.

In practical computations we used truncated sums withM summands instead of infinite series and then
computed the N-th approximation to the eigenpair according to (2.9) (the FD-method of rank N). The correc-
tions λ(j)1 , j = 0, 1, . . . , 10, of the series with M = 32 of the FD-method for the lowest eigenvalue of problem
(4.12) are given in Table 3. Thus, we have

10
λ 1 = 8.88570689232811335600142,

where the first ten digits after the decimal point coincide with the exact ones.
For the third eigenvalue (n = 3) and various M we obtained the results given in Table 4. The numerical

results for the eigenvalue λ1 obtained by the recursive algorithm with M = 32 coincide with the ones from
Section 4.2. Table 5 shows the behavior of corrections for the third eigenvalue. The FD-method of the rank
10 provides the approximation

10
λ 3 = 86.7795885027336720205576,
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M
10
λ 3 λ(10)3

8 86.7794941481798320121360 .236198306910088219404934 ⋅ 10−14

16 86.7795885027336720205576 .232303464235315043606128 ⋅ 10−14

32 86.7795973153306097826733 .232126220186166542893669 ⋅ 10−14

Table 4. The FD-approximations
N
λn and the eigenvalue corrections λ

(j)
n vs. M with

n = 3, N = 10, j = 10 for problem (4.12).

j λ(j)3
0 88.8264396098042275695102
1 −2.04972510804358999684540
2 0.00290212991892648225391892
3 −0.0000305277301362658818404213
4 0.222653126122944293880227 ⋅ 10−5

5 0.164883032960700803123870 ⋅ 10−6

6 0.711860518201837476605441 ⋅ 10−8

7 0.244135627500530695716662 ⋅ 10−9

8 0.704329637934084089217346 ⋅ 10−11

9 0.163612444099595486263864 ⋅ 10−12

10 0.232303464235315043606128 ⋅ 10−14

Table 5. The FD-corrections λ(j)n with M = 32, n = 3 for example (4.12).

where the first nine digits after the decimal point coincide with the exact eigenvalue obtained by the Laplace
transform method. One can observe the principal characteristic of the FD-method: the convergence rate in-
creases together with the eigenvalue index.

5 Application to a Jacobi-Type ODE with a Dominated Fractional
Derivative

Let us consider the following problem:

{{{{
{{{{
{

L
μ
1u(x) + q(x)u(x) + λw(x)u(x) = 0, x ∈ (−1, 1),

u(−1) = 0,
RL
x I

1−μ
1 [

C
−1D

μ
xu(x)]x=1 = 0,

L
μ
1u(x) =

RL
xD

μ
1(

C
−1D

μ
xu(x)),

(5.1)

where μ ∈ (0, 1), w(x) = (1 − x)−μ(1 + x)−μ, RLxD
μ
1 is the Riemann–Liouville derivative, C

−1D
μ
x the Caputo frac-

tional derivative, and
RL
x I

1−μ
1 the Riemann–Liouville integral (1.1). Note that the operator defined by Lμ1 and

by the given boundary conditions is self-adjoint. This can be easily derived analogously to [9, Corollary
3.1, formula (3.25)], where one can easily show that α = s, β = −s is permissible since the Caputo and the
Riemann–Liouville derivatives coincide on the functions vanishing at x = 1. Besides we can set s = μ.

Approximating q(x) by the constant zero, we obtain the base problem of the FD-methodwith the solution

u(0)n (x) = (1 − x)μPμ,−μn−1 (x), λ(0)n = −
Γ(n + μ)
Γ(n − μ)

, n = 1, 2, . . . ,

where Pα,βn (x) denotes the standard Jacobi polynomials. The eigenfunctions build an orthogonal basis in the
space L2w[−1, 1] of quadratic integrable functions with weight w, and the recurrence sequence of problems
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for the corrections is

{
{
{

Lμ1u
(j+1)
n (x) + λ(0)n w(x)u(j+1)n (x) = −√w(x)F(j+1)n (x), x ∈ (−1, 1),

u(j+1)n (−1) = 0,
RL
x I

1−μ
1 [

C
−1D

μ
xu

(j+1)
n (x)]x=1 = 0, j = 0, 1, . . . ,

(5.2)

where

F(j+1)n (x) = 1
√w(x)

[
j
∑
s=0

λ(j+1−s)n w(x)u(s)n (x) + q(x)u(j)n (x)].

The solvability condition
1

∫
−1

w(x)F(j+1)n (x)(x)u(0)n (x)dx = 0

for the singular problem (5.2) implies

λ(j+1)n =
∫1−1 q(x)u

(j)
n (x)u(0)n (x)dx

∫1−1 w(x)[u
(0)
n (x)]2dx

. (5.3)

Using the condition
1

∫
−1

w(x)u(j+1)n (x)u(0)n (x)dx = 0,

we single out from the general solution (i.e. from the set of all possible solutions of (5.2)) the following par-
ticular solution:

u(j+1)n (x) =
∞

∑
p=1, p ̸=n

∫1−1 F
(j+1)
n (ξ)u(0)p (ξ)dξ

λ(0)n − λ(0)p
u(0)p (x).

This equality together with the orthogonality of the system {u(0)p (x)}p=1,...,∞ yields

‖u(j+1)n ‖w ≤ M(2)
n ‖F(j+1)n ‖w ≤ M(2)

n [
j
∑
s=1

|λ(j+1−s)n |‖u(s)n ‖w + max
x∈[−1,1]

(
|q(x)|
w(x) )

‖u(j)n ‖w
‖u(0)n ‖w
‖u(0)n ‖w

], (5.4)

where

‖u‖w = (
1

∫
−1

w(x)u2(x)dx)
1/2
, ‖u(0)n ‖2w ≤ 22μ‖P−μ,μn−1 (x)‖2w = 22μ 2Γ(n − μ)Γ(n + μ)

(2n − 1)Γ2(n)
,

M(2)
n = [

Γ(n + μ)
Γ(n − μ)

−
Γ(n − 1 + μ)
Γ(n − 1 − μ)]

−1
‖u(0)n−1‖w = [

2μ
n − 1 − μ

Γ(n − 1 + μ)
Γ(n − 1 − μ)]

−1
‖u(0)n−1‖w .

It was shown in [48] that, for z → ∞,

Γ(z + α)
Γ(z + β) = zα−β[1 +

(α − β)(α − β − 1)
2z + o(|z|−2)],

which yields the existence of a constant c independent of n such that

Γ(n + 1 − μ)
Γ(n + 1 + μ)

≤ cn−2μ , ‖u(0)n ‖2w ≤ 22μ 2Γ(n − μ)Γ(n + μ)
(2n − 1)Γ2(n)

.

Using [18], one can obtain
Γ(n + 1 − μ)
Γ(n + 1 + μ)

≤ n−2μ( 6
√13 − 1

)
2μ
, n ≥ 3.

Thus, we have

M(2)
n ≤ n1−2μ‖u(0)n−1‖w

1
2μ((√13 − 1)/6)2μ

≤ n1−2μ‖u(0)n−1‖w
1

2μ((√13 − 1)/6)2μ
≤ cn1/2−2μ (5.5)

and can see that M(2)
n → ∞ as μ → 0 but M(2)

n → 0 as n → ∞ for each fixed μ > 1
4 .
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Introducing the new variable

ū(j)n (x) = u(j)n (x)
‖u(0)n ‖w

,

we obtain from (5.4)

‖ū(j+1)n ‖w ≤ M(2)
n

j
∑
s=0

‖ū(j−s)n ‖w‖ū(s)n ‖w , j = 0, 1, . . . , ‖ū(0)n ‖w = 1.

We solve this recurrence system of inequalities of convolution type analogously as above by switching to the
majorant system and using the method of generating functions; see, e.g., [6, 16, 26, 27]. Then we obtain

‖ū(j)n ‖w ≤
‖u(j)n ‖w
‖u(0)n ‖w

≤ qjn
2(2j − 1)!!
(2j + 2)!! ≤

qjn
(j + 1)√πj

, qn = 4M(2)
n . (5.6)

Using (5.6), we have from (5.3)

|λ(j+1)n | ≤ max
x∈[−1,1]

(
|q(x)|
w(x) )

qjn
(j + 1)√πj

.

Thus, we have proved the following assertion.

Theorem 5.1. Let q(x)/w(x) ∈ C[−1, 1], μ > 1
4 and qn = 4M(2)

n < 1. Then the FD-method converges super-
exponentially with the estimates

|λn −
m
λn| =

!!!!!!!

∞

∑
j=m+1

λ(j)n
!!!!!!!
≤ max
x∈[−1,1]

(
|q(x)|
w(x) )

qmn
(m + 1)√πm

1
1 − qn

, (5.7)

‖un −
m
un‖w =

"""""""

∞

∑
j=m+1

u(j)n
"""""""w

≤
qm+1n

(m + 2)√π(m + 1)
‖u(0)n ‖w
1 − qn

. (5.8)

Remark 5.2. It follows from (5.5) that for μ > 1
4 there exists such n0 that for all n ≥ n0 the assumptions of the

theorem are fulfilled and the FD-method converges super-exponentially with the accuracy estimates (5.7)
and (5.8). The condition μ > 1

4 in Theorem 5.1means that the fractional derivative should be of order greater
than 1

2 . The condition α < 1 in Theorem 4.1 means that the convergence of the FD-method is guaranteed if
the fractional derivative is of order less than 1, i.e., it does not dominate.

Example 5.3. Let us consider the case q(x) = w(x)x, μ = 4
5 . For n = 1 the solution of the base problem is

u(0)1 (x) = (1 + x)4/5, λ(0)1 = −
Γ(9/5)
Γ(1/5) .

Table 6 gives the corrections λ(j)1 , j = 0, 1, . . . , 5. Thus, we have

5
λ1 = −0.8656637788992767

and one can observe practical convergence. Nevertheless, the sufficient convergence condition does not hold
since q1 = 28.82 . . . > 1. Only beginning with n = 4 we have qn < 1. In order to get theoretically justified
eigenvalueswith smaller numbers, one should apply the general algorithmof theFD-methodwith apiecewise
constant approximation of q(x) on a partitioning of the interval fine enough.

5.1 Recursive Implementation of the FD-Method for a Jacobi-Type Differential
Operator

Now, let us show that the algorithm above can be reformulated as a recurrence algorithm with respect to the
coefficients of some expansions of corrections λ(j)n and u(j)n .
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j λ(j)1
1 −0.2028785620703973
2 −0.7999999999999999
3 0.07587304555679625
4 0.03837812694709120
5 0.01714234558251600
6 0.005821265084716930

Table 6. The FD-corrections for (5.1) with q(x) = w(x)x, μ = 4/5.

For the sake of simplicity we consider the problem

{{{
{{{
{

−1D
s
x{(1 − x2)s xD

s
1u(x)} + q(x)u(x) − λu(x) = 0, x ∈ (−1, 1),

|u(−1)| < ∞, |u(1)| < ∞,
s ∈ (0, 1).

This problem is of type (5.1) and is a particular case of the problem from [9] (the first formula on the top with
α = β = 0). The proof of convergence of the FD-method for this problem can be done analogously to the one of
Theorem 5.1. Note that for the case of a polynomial potential q(x) and s = 1, amodification of the FD-method
was proposed in [29] without solving boundary value problems in each iteration. A further modification of
this procedure was proposed in [30].

Analogously to the case of the Fourier fractional derivative the algorithm for the coefficients of corrections
of eigenfunctions for a polynomial potential q(x) can be formulated as a recurrence procedure. But now these
corrections are finite linear combinations of Legendre polynomials with the number of summands depending
on the degree of the potential. For the sake of simplicity we illustrate this for q(x) = x2. The base problem in
this case is

{{{{{
{{{{{
{

−1D
s
x{(1 − x2)s xD

s
1u

(0)
n (x)} − λ(0)n u(0)n (x) = 0, x ∈ (−1, 1),

|u(0)n (−1)| < ∞, |u(0)n (1)| < ∞,

u(0)n (x) = Pn(x), λ(0)n =
Γ(n + s + 1)
Γ(n − s + 1) ,

where Pn(x) are the Legendre polynomials. The recurrence sequence of problems for corrections of the FD-
method is

{
{
{

−1D
s
x{(1 − x2)s xD

s
1u

(j+1)
n (x)} − λ(0)n u(j+1)n (x) = F(j+1)n (x), x ∈ (−1, 1),

|u(j+1)n (−1)| < ∞, |u(j+1)n (1)| < ∞,
(5.9)

where

F(j+1)n (x) =
j
∑
p=0

λ(j+1−p)n u(p)n (x) − x2u(j)n (x), j = 0, 1, . . . .

Using the well-known property of the Legendre polynomials

x2Pn(x) =
x

2n + 1 ((n + 1)Pn+1(x) + nPn−1(x))

=
1

2n + 1(
(n + 1)(n + 2)

(2n + 3) Pn+2(x) + (
(n + 1)2
(2n + 3) +

n2

2n − 1)Pn(x) +
n(n − 1)
2n − 1 Pn−2(x))

= bnPn+2(x) + cnPn(x) + dnPn−2(x),

the orthogonality condition and the mathematical induction, we can show the following representation:

u(j)n (x) =
j
∑

p=−j, n+2p≥0
a(j)n+2pPn+2p(x), a(j)n = 0, a(0)n = 1. (5.10)
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After substitution of (5.10) into (5.9) we arrive at the following recurrence system for the coefficients
of (5.10):

a(j+1)n+2p =
1

λ(0)n+2p − λ
(0)
n

[
j
∑
k=0

λ(j+1−k)n a(k)n+2p − (a(j)n+2p−2bn+2p−2 + a
(j)
n+2pcn+2p + a

(j)
n+2p+2dn+2p+2)] (5.11)

for j = 0, 1, . . . and p = −⌊n/2⌋, . . . , j + 1. The solvability condition for problem (5.9) yields

λ(j+1)n = a(j)n−2bn−2 + a
(j)
n+2dn+2. (5.12)

Now (5.11) and (5.12) build a self-contained algorithm.
For n = 0 we have

λ(0)0 =
1
2 , u(0)0 (x) = P0(x),

λ(1)0 =
1
3 , u(1)0 (x) = −

1
3P2(x),

λ(2)0 = −
2
45 , u(2)0 (x) = 11

26P2(x) +
1
35P4(x),

λ(3)0 =
11
945 , u(3)0 (x) = −

481
26460P2(x) −

359
32340P4(x) −

1
693P6(x),

λ(4)0 = −
481

198450 , u(4)0 (x) = 23693
12224520P2(x) +

5287031
1942340400P4(x) +

6547
9604980P6(x) +

1
19305P8(x),

...

λ(27)0 = −0.1855129254 . . . ⋅ 10−13.

According to our theory the sequence
N
λ0 = λ(0)0 + ⋅ ⋅ ⋅ + λ(N)0 converges to the exact eigenvalue

λ0 = 0.79839 . . . .

Remark 5.4. The algorithm described above can be generalized to the case when the coefficient r(x) in the
front of the fractional derivative is not constant. In this case we cover the whole interval by a grid

ωh = {x0 = −1 < x1 < x2 < ⋅ ⋅ ⋅ < xM−1 < xM = 1}

with M − 1 points and approximate it by a piecewise constant function r(x) = r(xi−1), i = 1, . . . ,M. The cru-
cial point is the solution of the base problem. To do this, wewrite down the general solution on each subinter-
val depending on twoarbitrary constants. Twoof these constants (on the edge subintervals) canbe eliminated
using the boundary conditions. Then stitching the solutions and their derivatives at the grid points, we obtain
a system of 2M − 2 linear homogeneous algebraic equationswith 2M − 2 unknownswith amatrix depending
on the eigenvalue parameter λ(0)n . The solvability condition for this system leads to a transcendent equation
with this parameter from where we obtain the eigenvalues of the base problem. Further we can iterate as
usual for the FD-method exploiting the fact that the differential operator with piecewise coefficients of the
problem for corrections remains the same.
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