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A Short Theory of the Rayleigh–Ritz Method
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Abstract — We present some new error estimates for the eigenvalues and eigenfunc-
tions obtained by the Rayleigh–Ritz method, the common variational method to solve
eigenproblems. The errors are bounded in terms of the error of the best approximation
of the eigenfunction under consideration by functions in the ansatz space. In contrast
to the classical theory, the approximation error of eigenfunctions other than the given
one does not enter into these estimates. The estimates are based on a bound for the
norm of a certain projection operator, e.g., in finite element methods for second order
eigenvalue problems, the H1-norm of the L2-projection onto the finite element space.
2010 Mathematical subject classification: 65N25, 65N15, 65N30.
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1. Introduction

The Rayleigh–Ritz method is a variational method to solve the eigenvalue problem for el-
liptic differential operators, that is, to compute their eigenvalues and the corresponding
eigenfunctions. It is the direct counterpart of the Ritz method for the solution of the as-
signed boundary value problems. The Rayleigh–Ritz method has the advantage of being
based on minimal, very general assumptions and produces optimal solutions in terms of the
approximation properties of the underlying trial spaces. The theory of the Rayleigh–Ritz
method has to a large extent been developed in the context of finite element methods, see
[1, 2, 14]. In a more recent paper [12], Knyazev and Osborn derived error estimates into
which, in contrast to the older theory, only the best approximation error of the eigenfunc-
tion under consideration enters. Here we show that such estimates can be derived in a very
simple way utilizing the stability of certain projection operators, in the case of second order
problems, the H1-stability of the L2-projection onto the given ansatz space.

Error estimates of this type are important for adaptive methods since it is obviously
much simpler to adapt a mesh to a single eigenfunction than to a whole invariant subspace.
A second, more subtle reason is that the regularity of the eigenfunctions often considerably
differs and that, for example, approximating the eigenfunction for the minimum eigenvalue
can be much more difficult than for the second one. The most prominent example of this
type is the eigenfunctions of the Hamilton operator of the hydrogen atom whose knowledge
is basic for our understanding of chemistry. These eigenfunctions are classified by three
numbers, the principal quantum number n = 1, 2, . . ., the angular momentum quantum
number ` = 0, . . . , n−1, and the magnetic quantum number m = −`, . . . , `. The eigenvalues
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λ = −1/(2n2) depend only on the principal quantum number. They are highly degenerate
for larger n; their multiplicity is n2. The regularity of the eigenfunctions is determined by
the angular momentum quantum number `. They are contained in the Sobolev spaces Hs for
s < `+ 5/2, but not for s = `+ 5/2, see [15]. Similar phenomena occur near reentrant edges
and corners. Consider, for example, the eigenvalue problem for the negative Laplace operator
on the unit disk, centered at the origin, with a slit along the positive x-axis and Dirichlet
boundary conditions on the circular line and the top of the slit and Neumann boundary
conditions on its bottom. The eigenvalues and eigenfunctions are in this case characterized
by integers k = 0, 1, . . . and ` = 1, 2, . . . and read

λk,` = (ωα,`)
2, uk,`(r, ϕ) = sin(αϕ)Jα(ωα,`r)

in polar coordinate representation. The functions Jα are the Bessel functions of first kind
and fractional order α = (2k + 1)/4. They behave near the origin like ∼ rα. The constants
ωα,` are the zeroes of these Bessel functions in increasing order. This problem has been used
in [13] as test example for the adaptive solution of eigenproblems.

2. The Rayleigh–Ritz Method: Framework and Assumptions

We start from the usual abstract framework with two real Hilbert spaces H0 and H1 ⊆ H0

and a symmetric, coercive, and bounded bilinear form a : H1×H1 → R. The inner product on
H0 is denoted by (u, v) and the induced norm by ‖u‖0. We equip the space H1 for simplicity
with the energy norm ‖u‖ induced by the bilinear form a(u, v). For convenience we assume
that H1 is compactly embedded into H0 and that both spaces are infinite dimensional. Then
there exists an infinite sequence 0 < λ1 6 λ2 6 · · · of eigenvalues of finite multiplicity
tending to infinity and an assigned sequence of eigenvectors u1, u2, . . . in H1 for which

(uk, u`) = δk`, a(uk, u`) = λkδk`.

The example that we have in mind are second order elliptic eigenvalue problems over bounded
domains Ω. In this case, H0 = L2(Ω), and H1 is a subspace of the Sobolev space H1(Ω),
depending on the boundary conditions. The central results of this paper are, however, of
more general nature and also apply, for example, to eigenfunctions for eigenvalues below the
essential spectrum. Such situations arise in quantum chemistry.

The aim is to approximate the eigenvalues λk and the vectors in the assigned eigenspaces.
For this, one chooses an n-dimensional subspace S of H1. Then there exist discrete eigen-
vectors u′1, u′2, . . . , u′n in S for eigenvalues 0 < λ′1 6 λ′2 6 · · · 6 λ′n, satisfying the relations

(u′k, u
′
`) = δk`, a(u′k, u

′
`) = λ′kδk`.

As will be shown, the discrete eigenvalues λ′k approximate then the original eigenvalues λ
and the discrete eigenvectors u′k the corresponding eigenvectors u in a sense explained later.
This already fixes the method, which replicates the weak form

a(u, v) = λ(u, v), v ∈ H1,

of the original eigenvalue problem and is determined by the choice of the subspace S replacing
its solution space H1. Typical approximation spaces S are finite element spaces.
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We will measure the approximation properties of the chosen subspace S in terms of the
a-orthogonal projection operator P : H1 → S defined by

a(Pu, v) = a(u, v), v ∈ S.

With respect to the energy norm the projection Pu is the best approximation of u ∈ H1 by
an element of S, which means that for all v ∈ S

‖u− Pu‖ 6 ‖u− v‖.

Our main assumption is that the correspondingly defined H0-orthogonal projection Q
from H0 onto S is stable in the energy norm, that is, that there exists a constant κ with

‖Qv‖ 6 κ‖v‖, v ∈ H1. (2.1)

The constant κ must be independent of hidden discretization parameters. This does not fol-
low from the general assumptions made above but holds in many important cases. Examples
are spectral methods in which the approximation spaces S are built up from eigenfunctions
of a nearby eigenvalue problem, say, in the case of a second order problem, from eigenfunc-
tions of the Laplace operator. In this case the H0- respectively L2-orthogonal projection
coincides with the H1-orthogonal projection and satisfies the condition by definition.

The finite element case is more complicated. For quasi-uniform meshes estimates of this
type can be traced back to the seminal paper [3] of Bank and Dupont. Consider a second-
order problem, let H0 = L2(Ω), and assume that H1 ⊆ H1(Ω). Let the functions in the
finite element space satisfy an inverse inequality

|v|H1 . h−1‖v‖L2 , v ∈ S. (2.2)

Let Π : H1 → S be a quasi-interpolation operator for which

‖u− Πu‖L2 . h|u|H1 , |Πu|H1 . |u|H1 (2.3)

holds for all functions u in the solution space H1. Then

|Q(u− Πu)|H1 . h−1‖Q(u− Πu)‖L2 6 h−1‖u− Πu‖L2 . |u|H1

for all these functions u. Since QΠu = Πu, this implies the desired estimate

|Qu|H1 . |Q(u− Πu)|H1 + |Πu|H1 . |u|H1 .

Unfortunately, the h in the inverse inequality (2.2) behaves like the minimum element di-
ameter and the h in (2.3) like the maximum element diameter. If the ratio of the maximum
and the minimum element diameter becomes large, the proof breaks down.

TheH1-stability of the L2-projection can, however, actually be proven under much weaker
conditions on the grids. Partly rather technical sufficient conditions for the H1-stability of
the L2-projection are given in [7–10]. In [11], the case of piecewise linear elements in two
space dimensions is treated. The most comprehensive result of this type is due to Bank and
Yserentant [5]. It is shown in this paper that the L2-projection remainsH1-stable for example
for the highly nonuniform grids that are generated by bisection-like refinement schemes like
the red-green refinement in two [4] and three [6] space dimensions and Lagrangian type finite
elements of polynomial order up to twelve in two and up to seven in three space dimensions.
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For realistic meshes and grid sizes changing in the average, on larger scales less abruptly
than in an extreme case possible with such refinement schemes, the argumentation from [5]
works without any condition to the polynomial order of the finite elements or any further
condition to the triangulation up to shape regularity. The results in [5] even cover the case of
hp-like finite element methods as long as the maximum order of the finite elements remains
limited. There is therefore less doubt that the L2-projection remains H1-stable in almost all
cases of practical interest so that (2.1) is a reasonable assumption at least for finite element
discretizations of second order elliptic eigenvalue problems.

3. The Error Estimates

We first turn to the approximation of the eigenfunctions or, in the abstract setting, the
eigenvectors. Starting point of our considerations is the following representation of the error
between an eigenvector u ∈ H1 for an eigenvalue λ and its best H0-approximation by a linear
combination of discrete eigenvectors u′k for eigenvalues λ′k in a given neighborhood Λ of λ.

Lemma 3.1. The error between an eigenvector u ∈ H1 of the original problem for the eigen-
value λ and its H0-orthogonal projection onto the space spanned by the discrete eigenvectors
u′k ∈ S for the eigenvalues λ′k in a given neighborhood Λ of λ possesses the representation

u−
∑
λ′k∈Λ

(u, u′k)u
′
k = R(u− Pu) + (I −Q)(u− Pu), (3.1)

where the mapping R : H0 → S is defined by the expression

Rf =
∑
λ′k /∈Λ

λ′k
λ′k − λ

(f, u′k)u
′
k.

Proof. We first represent the expression on the left-hand side of (3.1) in the form

u−
∑
λ′k∈Λ

(u, u′k)u
′
k =

∑
λ′k /∈Λ

(u, u′k)u
′
k + u−

n∑
k=1

(u, u′k)u
′
k,

and replace the inner products in the first sum on the right-hand side by

(u, u′k) =
λ′k

λ′k − λ
(u− Pu, u′k).

This is possible as u is an eigenvector and the u′k are discrete eigenvectors; therefore

λ(u, u′k) = a(u, u′k) = a(Pu, u′k) = λ′k(Pu, u
′
k).

Since the H0-orthogonal projection can be written as eigenvector expansion

Qf =
n∑
k=1

(f, u′k)u
′
k,

the error representation

u−
∑
λ′k∈Λ

(u, u′k)u
′
k = R(u− Pu) + (u−Qu)

follows. As QPu = Pu, this yields (3.1).
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A first consequence of the error representation (3.1) is the following error estimate in the
H0-norm that is still independent of theH1-stability (2.1) of theH0-orthogonal projection Q.

Theorem 3.2. Let u ∈ H1 be an eigenvector for the eigenvalue λ and let Λ be an arbitrarily
given neighborhood of this eigenvalue. Then∥∥∥u−∑

λ′k∈Λ

(u, u′k)u
′
k

∥∥∥
0
6 max(1, γ)‖u− Pu‖0, (3.2)

where γ = 0 if there is no discrete eigenvalue λ′k outside Λ and γ is otherwise given by

γ = max
λ′k /∈Λ

∣∣∣ λ′k
λ′k − λ

∣∣∣.
Proof. As (u′k, u

′
`) = δk`, for all f ∈ H0

‖Rf‖2
0 =

∑
λ′k /∈Λ

∣∣∣ λ′k
λ′k − λ

(f, u′k)
∣∣∣2 6 γ2‖Qf‖2

0.

The proposition thus follows from the error representation (3.1) using the H0-orthogonality
of the terms R(u− Pu) respectively Q(u− Pu) and (I −Q)(u− Pu).

Taking into account the energy norm or H1-stability of the H0-orthogonal projection Q,
a very similar estimate of the primarily interesting energy norm error can be derived:

Theorem 3.3. Let u ∈ H1 be an eigenvector for the eigenvalue λ and let Λ be an arbitrarily
given neighborhood of this eigenvalue. Then∥∥∥u−∑

λ′k∈Λ

(u, u′k)u
′
k

∥∥∥ 6
(
1 + (γ + 1)κ

)
‖u− Pu‖, (3.3)

where γ is the same constant as in the previous theorem and κ the constant from (2.1).

Proof. The proof is again based on the error representation (3.1) and transfers almost ver-
batim from that of the previous theorem. As a(u′k, u

′
`) = λ′kδk`, for all f ∈ H0

‖Rf‖2 =
∑
λ′k /∈Λ

λ′k

∣∣∣ λ′k
λ′k − λ

(f, u′k)
∣∣∣2 6 γ2‖Qf‖2.

The only difference is that one can no longer argue using the orthogonality of the single
terms but has to switch to the triangle inequality. The bound (2.1) for the energy norm of
the projection operator Q enters in form of the estimate

‖Q(u− Pu)‖ 6 κ‖u− Pu‖

for the projection of the approximation error.

The larger the neighborhood Λ of the eigenvalue λ under consideration is chosen, the
more discrete eigenvectors u′k are used to approximate the assigned eigenvector u and the
smaller the error is, but the less specific the relation between the original and the discrete
eigenvectors becomes. To establish a correspondence between the continuous and discrete
eigenvalues, we need a crude error estimate as the following one:
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Lemma 3.4. If Ek, k 6 n, is the subspace of H1 spanned by the eigenvectors u1, . . . , uk of
the original problem for the eigenvalues λ1 6 · · · 6 λk and if there is an ε < 1 such that

‖u− Pu‖0 6 ε‖u‖0 (3.4)

for all u ∈ Ek, the following error estimate holds for the k-th eigenvalue:

λk 6 λ′k 6
1

(1− ε)2
λk.

Proof. Let E ′k be the k-dimensional subspace of S that is spanned by the first k discrete
eigenvectors u′1, . . . , u′k. By the min-max characterization of the eigenvalue λk then

λk 6 max
u∈E ′k

a(u, u)

(u, u)
= λ′k.

The functions Pu1, . . . , Puk are linearly independent of each other. If namely a linear com-
bination of these functions vanishes, the corresponding linear combination of the functions
u1, . . . , uk vanishes because of (3.4) too. By the min-max characterization of λ′k therefore

λ′k 6 max
u∈Ek

a(Pu, Pu)

(Pu, Pu)
.

As a(Pu, Pu) 6 a(u, u) and ‖Pu‖0 > (1− ε)‖u‖0 for u ∈ Ek, the upper estimate

λ′k 6
1

(1− ε)2
max
u∈Ek

a(u, u)

(u, u)
=

1

(1− ε)2
λk

for the discrete eigenvalue λ′k follows.

The lemma ensures that the discrete eigenvalues λ′k tend in the limit to their continuous
counterparts λk. If the distance ∆ of the eigenvalue λ under consideration to the neigh-
boring eigenvalues of the original problem is sufficiently large, an adequate choice for the
neighborhood Λ in (3.2), (3.3) is therefore the interval of length ∆ with midpoint λ. Then

γ 6
2λ

∆
+ 1.

Asymptotically then only approximate eigenvectors u′k for eigenvalues λ′k tending to λ are
taken into account. If the eigenvalue λ belongs to a cluster of closely neighboring eigenvalues,
the neighborhood Λ should be chosen accordingly and (3.2) and (3.3) be interpreted as a
result on the approximation by an element in the corresponding discrete invariant subspace.
In any case, the approximation order in the given norms defined in a proper sense completely
corresponds to that for a corresponding boundary value problem with solution u.

A similar result as for the eigenvectors holds for the eigenvalues:

Theorem 3.5. Let u ∈ H1, ‖u‖0 = 1, be an eigenvector for the eigenvalue λ and assume
that already a discrete eigenvalue λ′k > λ exists for which λ′k − λ 6 λ. Then

min
λ′k>λ

(λ′k − λ) 6 (1 + ακ)2‖u− Pu‖2,

where α = 1 if there is no discrete eigenvalue λ′k < λ and α is otherwise given by

α = max
λ′k<λ

λ

λ− λ′k
.
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Proof. Let u′ be the best H0-norm approximation

u′ =
∑
λ′k>λ

(u, u′k)u
′
k

of u by a linear combination of the discrete eigenvectors u′k for eigenvalues λ′k > λ. Then

‖u− u′‖2 = λ‖u− u′‖2
0 +

∑
λ′k>λ

(λ′k − λ)(u, u′k)
2.

Since u′ and u− u′ are by definition H0-orthogonal, this implies

‖u− u′‖2 > min
λ′k>λ

(λ′k − λ)‖u‖2
0 +

(
λ− min

λ′k>λ
(λ′k − λ)

)
‖u− u′‖2

0.

As the second term on the right-hand side is by assumption nonnegative and ‖u‖0 = 1, thus

min
λ′k>λ

(λ′k − λ) 6 ‖u− u′‖2.

The assertion follows from this estimate analogously to the proof of Theorem 3.3, simply
replacing the neighborhood Λ of the eigenvalue λ by the half-open interval [λ,∞).

For eigenvalues greater than the minimum eigenvalue, the size of the prefactors depends
asymptotically on the separation of the eigenvalue under consideration from the smaller
eigenvalues. The speed with which the discrete eigenvalues converge to their continuous
counterparts is asymptotically determined by the speed with which the square of the best
energy norm approximation error of the assigned eigenfunctions tends to zero. As with the
estimates from Theorem 3.2 and Theorem 3.3, pollution effects arising from the approxima-
tion error for other eigenfunctions than the one under consideration do not occur.
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