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Abstract: In this work, an enhanced MITC3+ approach
enriched by a constant in-plane strain correction is pro-
posed in the analysis of functionally graded (FG) porous
plates. The approach involves formulating the corrected in-
plane strain field through the utilization of corrected nodal
derivatives in the concept of discrete divergence consistency
(DDC). The DDC for the in-plane strain field is obtained
through the orthogonality condition derived from the three-
field variational principle (Hu-Washizu), which arises from
the difference between resultant in-plane stress and in-plane
strain. In carefully examining the static analysis of the FG
porous plate with different elements, our investigation delves
into the influence of length-to-thickness ratios, power-law
indices, and porosity distributions. This comprehensive exam-
ination aims to illuminate their combined influence on the
numerical outcomes. The proposed approach demonstrates
superior performance in addressing FG shell problems, out-
performing the original MITC3+ method.
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3D three-dimensional

CiSC constant in-plane strain correction
CS cell-based smoothed

DDC discrete divergence consistency
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DKMT discrete Kirchhoff-Mindlin triangle

DKT discrete Kirchhoff triangle

DSG3 discrete shear gap triangular

DST discrete shear triangle

FE finite element

FG functionally graded

FSDT first-order shear deformation theory

HSDT higher-order shear deformation theory

IGA isogeometric analysis

MITC18+ three-node triangular flat shell elements

MITC3 tensorial components for the three-node tri-
angular element

MITC3+  effective new 3-node triangular element

MITC4 tensorial components for the four-node

element

1 Introduction

In the 1980s, Japanese scholars introduced a ground breaking
material known as functionally graded (FG) materials to
address the heat-safeguarding challenges faced by spacecraft
engines. FG materials are a special composition comprising
multiple distinct phases, offering exceptional mechanical
properties and high-temperature resistance. As a result, it
has found extensive utilization not only in the development
of heat-resistant materials but also in various fields such as
electronics, chemistry, construction, and mechanical engi-
neering. Considering the numerous benefits and wide-ranging
applications mentioned above, researchers have conducted
studies to study the FG structural behavior in static bending,
free vibration, and buckling problems.

Due to the remarkable characteristics of FG material, a
great number of researchers have proposed numerical
methods to model and investigate its behavior. Bakoura
et al. [1] pioneered the exploration of mechanical buckling
in simply supported FG plates, employing a higher shear
deformation theory (HSDT) in conjunction with the stress
function method. Thai et al. [2] introduced an isogeometric
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approach that employs the nonlocal strain gradient theory,
grounded in the HSDT, to address challenges in solving
both free vibration and static problems of FG plates. Mud-
haffar et al [3] provided analytical solutions using a
straightforward higher-order integral shear deformation
theory. Their study delves into probing the bending beha-
vior of an FG plate subjected to hygro-thermo-mechanical
loading while resting on a viscoelastic foundation. Shinde
et al. [4] proposed a new higher-order shear and normal
deformation theory to analyze the static behavior of simply
supported FG shallow shells. Turan and Adiyaman [5] pre-
sented a new higher-order finite element (FE) based on
parabolic shear deformation theory for the static analysis
of two-directional FG porous beams subjected to various
boundary conditions. Kumar et al. [6] gave a new inverse
hyperbolic-order shear deformation theory to solve the
buckling and free vibration response of porous FG plate
on the foundation. Tornabene et al. [7] investigated the
vibrational response of FG doubly-curved shell structures
reinforced with carbon nanotubes short fibers using gen-
eralized differential quadrature and HSDT. Zaitoun et al.
[8] introduced an effective method employing the HSDT
with four unknowns to elucidate the buckling behavior
of the FG sandwich plates positioned on a viscoelastic
medium within a hygrothermal environment. Civalek
et al. [9] studied the buckling analysis of restrained nano-
beam with FG material via nonlocal Euler-Bernoulli beam
theory using the Fourier series. Gupta and Talha [10] inves-
tigated the static and stability behavior of a geometrically
imperfect FG plate with microstructural porosity on a Pas-
ternak elastic foundation. Malekzadeh and Shojaee [11]
used unified formulation and new four-variable first-order
shear deformation theory (FSDT) and HSDT for the free
vibration analysis of FG plates. Chanda and Sahoo [12]
employed the inverse hyperbolic shear deformation theory
to investigate the flexural behavior of smart FG plates.
Baltacioglu and Civalek [13] proposed numerical solution
based on Love’s shell theory and FSDT for the free vibra-
tion problem of FG and carbon nanotube reinforced
circular cylindrical panel. Wang et al. [14] pioneered a
mesh-free radial basis collocation method grounded in
FSDT, offering insights into the static and dynamic beha-
vior of FG shells. Brischetto and Cesare [15] developed a
coupled three-dimensional (3D) exact electro-elastic shell
model for vibration analysis of multilayered composite
and FG piezoelectric plates and shells. Ramteke and Panda
[16] proposed the higher-order displacement functions and
shear stress continuity to solve the free vibrational frequen-
cies of multi-directional FG structures. Tornabene et al. [17]
developed the generalized differential quadrature method
to investigate the modal response of laminated anisotropic
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doubly-curved shell structures of variable thickness made of
FG material. Ghumare and Sayyad [18] introduced a novel
fifth-order plate theory and applied it to assess the static
response of FG plates subjected to nonlinear hygro-
thermo-mechanical loading while resting on a Winkler—Pas-
ternak elastic foundation. In a more recent development,
Liu et al [19] applied an isogeometric analysis approach to
conduct nonlinear analyses of the FG shells.

Recently, the incorporation of porosities into FG mate-
rials (FG porous structures) marks a notable stride in the
development of this material. Nevertheless, these porosities
possess the capacity to substantially change the intrinsic
properties of the original FG materials. Consequently, a com-
prehensive exploration of the influence of porosity on the
mechanical behaviors of FG materials becomes imperative.
Zghal et al [20] contributed to this understanding by pro-
posing a refined mixed FE beam theory, specifically tailored
to analyze the impact of porosity on the static bending beha-
vior of FG beams. Teng and Wang [21], utilizing Galerkin
analytical solutions based on the von Karméan nonlinear
plate theory, addressed the nonlinear dynamic challenges
in graphene platelet-reinforced porous plates. For an over-
view, Wu et al. [22] presented available research works on
FG porous structures and highlighted the main advances of
these structures.

In the field of plate/shell analysis, triangular planar FE
elements (discrete Kirchhoff triangle (DKT) [23], discrete
shear triangle (DST) [24], siscrete Kirchhoff-Mindlin tri-
angle (DKMT) [25], DSG3 [26], MITC3 [27]) are favored for
their enhanced flexibility in meshing intricate and arbi-
trary geometries, as well as their ability to prevent free
membrane locking. Nonetheless, these elements tend to
demonstrate low accuracy compared to quadrilateral FE
elements (MITC4 [28]). As part of the ongoing effort to
establish an ideal shell element, Lee et al. [29] introduced
an efficient triangular MITC3+ approach. The effectiveness
of the MITC3+ shell element, compared to the well-known
DKT, DST, DKMT, DSG3, and MITC3 elements, has been
demonstrated in the studies by Lee et al. [29,30]. This shell
element not only successfully met all fundamental tests but
also showed superior solutions. To improve the MITC3+ ele-
ment, Chau-Dinh [31] introduced a MITC18+ flat shell element
achieved through a combination of the Allman’s membrane
and MITC3+ plate. In this configuration, the membrane and
bending strains undergo consistent smoothing through the
utilization of cell-based strain (CS) smoothing [32], referred
to as CS-MITC18+. This approach is specifically designed to
elevate the performance of the MITC18+ flat shell element in
both static and free vibration analyses. In the quest for an
optimized triangular plate/shell element, Nguyen et al [33]
has innovatively introduced a linear composite bending
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strain MITC3+ flat shell element, named xMITC3+. In this
context, a projection operator is utilized to formulate an
assumed composite bending strain field, drawing upon the
Hu-Washizu three-field principle and the orthogonality con-
dition. This novel element is engineered with the aim of
achieving superior performance, with a focus on promoting
a more compliant bending behavior.

To consistently improve superior properties of the
MITC3 elements, this study proposed a novel constant in-
plane strain correction for the MITC3 plate element, named
as CiSC-MITC3+, for static analysis of the FG porous plate
structures. In this framework, the corrected in-plane strain
field is formulated using corrected nodal derivatives,
ensuring adherence to the discrete divergence consistency
(DDC) [34]. In this study, the DDC concept originates from
the orthogonality condition governing the differences
between resultant in-plane stress and in-plane strain as
defined in the Hu-Washizu three-field variational principle
[34,35]. Owing to this improvement, the proposed CiSC-
MITC3+ plate element demonstrates exceptional perfor-
mance compared to the original MITC3+ in solving the
FG porous plate structures.

2 Formulations of FG porous plates

2.1 Material properties

In this study, we examine two distinct porosity distributions
of a plate made of FG materials, its dimensions denoted as
length a, width b, and thickness h, as depicted in Figure 1.
The evaluation of Young’s modulus E, Poisson’s ratio v, and
mass density p for the FG plate is performed by applying the
rule of mixtures, as expressed in the following equation:

z
T mid-plane (z = 0)
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P,
E(z) = E, + (E. - Em)[% + %]
123
v(z) = Vi + (Ve - vm)[% + %] ()]
1 P,
P@) = Pyt (=P * 7] -

where the symbols ¢ and m represent the volume fraction
pertaining to the ceramic and metal phases, respectively;
and p, represents the power-law index describing the gra-
dient of materials along the plate thickness directions.

FG porous plates are fabricated using various techni-
ques, including powder metallurgy, spray pyrolysis, and
spark plasma sintering. The benefits associated with FG
porous plates encompass enhanced mechanical character-
istics such as increased toughness, improved energy
absorption, and reduced weight when compared to con-
ventional nonporous plates. Nonetheless, the presence
of porosity within FG plates can potentially diminish
their mechanical characteristics, encompassing para-
meters such as mass density p, Young’s modulus E, and
Poisson’s ratio v. Within this investigation, we focus on
examining two distinct porosity types: uniform distribu-
tion and non-uniform distribution. These two types of dis-
tributions are mathematically defined by the subsequent
equations:

+ Even porosity type:

E(z) = Ep + (e - Em)[% + %]p - %(Ec + En)

V(@) =V + (Ve - Vm)[% + %]pz - g(vc + Vi) @

123
p() = pp *+ (0 — pm)[% + %] g(pc + Pp)-

* Uneven porosity type:

Figure 1: An FG porous plate model.
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E(t,2) = En + (Ee - Em)[% + %]p
_ g[l 21z |](]5 + En)
v(X,2) = Vi + (% — Vm)[% + %]p

3
E[ ](Vc + Vi)

1 z)
p(X,2) = Py + (P = pm)[g + g]

_&f, 2
2[1 h ](pf+

where ¢ stands for the coefficient used for assessing the
volume of porosity.

2.2 Weak forms based on the FSDT and the
standard variational principle

According to FSDT [36] and the standard variational prin-
ciple (one-field), the weak form for analysis of the FG
porous plates is given as

jseTDedsz + jayTDsde = _[SuquuQ, @
Q Q Q

where u = u(x) = {uo, vo, Wy, B, By}T and q = q(x) are the
local deformation and the distributed load, respectively; and

h/2
A B Q5 0
D= D (Z)l dz, 5)
s fueft
with
h/2 Qn le 0
@B O= [z 20 0 0ldz,  ©®
~hiz 0 0 Qg
E E
Q1 =0yp= 1_(71}22)@)’ Qp=0y= :(va((zz)))
(7
E(2)
O™ 0= %= 304 v

Note that the shear correction function g(z) in Eq. (5)
exhibits variation based on the plate thickness, wherein
the stresses are free on both upper and lower surfaces.
In the context of this study, the choice of the function
g(z) can be guided by the principles outlined in the study
by Zenkour [37] as given below:

5 Tz
g(2) = 1 cos[T]. ®
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In Eq. (4), the FE approximations for in-plane strain
€ = g(x) and shear strainy = y(x) are expressed as follows:

_ [gﬂ _

where &, and &g are the membrance and bending strains,
respectively; \;(°) serves as the assembly component
operator for a matrix, while d’ represents the nodal unknown
vector at Ith node; @' = &/(0¢’) and ®! = ®l(¢!, d¢’) are
the nodal in-plane (membrane-bending) and shear strain-dis-
placement matrices at Ith node, respectively; and ¢! = @!(x)
and 0¢' = dp!(x), respectively, denote the standard nodal
shape functions and their spatial derivatives at Ith node.

In our study, we employ the MITC3+ theory [29] to
analyze flexural behavior. Consequently, the shear strain-
displacement matrix in Eq. (10), derived from this theory,
effectively alleviates shear-locking phenomena. The pri-
mary focus of our work is to improve performance of the
original MITC3+ element in analysis of the FG porous plates
through the introduction of a novel constant in-plane
strain correction, denoted as CiSC-MITC3+, which is
detailed in the next section.

Dy

1
Dy d

]d \/ = V(o'dh), 9)
I

I
M
I
B

y = ®sd = y@éd’), (10)

3 Constant in-plane strain
correction for MITC3+ plate
element (CiSC-MITC3+)

Different from the standard variational principle exam-
ined in Section 2.2, the weak form of the proposed
approach initiates with the Hu-Washizu three-field varia-
tional principle for an individual element ¢ [35], empha-
sizing the in-plane component, as follows:

8l = [ s&7DEd+ [6y'Dyyde - [oulqde
Q° Q° Q°

(§h))
8| [67(e - B)a0],

where the displacement u, assumed in-plane strain &, and
assumed resultant in-plane stress 6 are independent variables.

By treating the assumed resultant in-plane stress 6 as
orthogonal to the difference between the compatible in-plane
strain & and the assumed in-plane strain €, the three-field
weak form (11) is simplified into a modified two-field version
where the displacement u and the assumed in-plane strain &
become independent. Herein, the last term on the right-hand
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side in Eq. (11) is removed, causing the first four terms to
adopt a similar form to the classical one-field weak form
(4). The only distinction lies in the replacement of the compa-
tible in-plane strain € with the assumed in-plane strain €. If
the assumed in-plane strain € is somehow derived from the
displacement u, ie., € = €(u), and the condition,

jaT(s - #)de =0,
o
is satisfied, the transformation of the three-field weak form (11)
into the classical one-field weak form ensures that only the dis-
placement u maintains its status as an independent variable [34].
In this study, we presume the subdivision of a MITC3+
element Q¢ into three sub-domains .7 (n; = 3) to facilitate
support domain integration, Figure 2. As a result, the weak
form (11) is rewritten as the following form:

12)

ng=3
8Ty = . | [6e7DEAT | + [SyTDyyde - [surqae
s=1 T, 0° o°
13)
+6

ns=3
Y |[67ce - 7|
s=1|7

T

Note that for the fulfillment of the orthogonality condition
(12) across the entire domain, it is imperative for this equation to
be satisfied within each individual sub-domain 7

jaT(s -§)d7 = 0.

14

The central concern at present revolves around
meeting the requirements of Eq. (14) through the creation
of an assumed in-plane strain € derived from the displace-
ment u. Our methodology entails constructing € in a
manner similar to Eq. (9), with a key modification

Figure 2: Numerical integration scheme in the CiSC-MITC3+ element: red
triangles and yellow squares, respectively, represent the integral points
for boundary and domain integrations on three sub-domains.
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involving the substitution of standard derivatives with cor-
rected ones. Subsequently, we determine these values by
satisfying the orthogonality condition (14). Based on the FE
approximation for the compatible in-plane strain € Eq. (9),
a natural progression involves estimating the assumed in-

plane strain € (or corrected in-plane strain) as follows:
E=V(@d), (15)

where &' = &'(3@!) and 8! are the corrected in-plane-
strain-displacement matrix and corrected derivatives at
node I, respectively. Upon substituting Eqs (9) and (15) in
Eq. (14), we obtain

v|fe7(@ - 8"zl =0 or
I

7s (16)

Substituting Eqs (9) and (15) in Eq. (16) results in

for

T,

%' _ o9’

0 7 0 7 a7

d7 =0, with (/= x,y).

Suppose that assumed resultant in-plane stress ¢ in Eq.
(17) is approximated using pth-order complete polynomial
functions r = r(x). By utilizing integration by parts, we can
reformulate the constraints in Eq. (17) as follows:

Ty

a(’p‘l orT
IrTTd 7 = [rom,ar - J’?q)’dﬂ“, (18)
7 I T 7

s

p(x)
Ny T T T
] ]
N\ | A\
A r: """""" !
i | i
| | |
i i :
! i !
L — .JI ........... | __________ _:. —_
: i !
i I '
: i :
s i i
I A L
!

- ;‘
Bl V‘

Figure 3: Isotropic plate under a sinusoidal distributed transverse load.
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Figure 4: Convergence rates of relative errors in (a) central deflections, (b) strain energy, and (c) displacement norm for the simply supported

isotropic square plate.
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where n, represents the unit normals to the boundary I of
the sub-domains 7. It is crucial to emphasize that within
the context of the divergence theorem, Eq. (18) establishes
a consistency condition between nodal shape functions ¢’
and their respective corrected derivatives d@’. This funda-
mental relationship is termed as divergence consistency
(DC) [34]. Through the application of numerical schemes
for domain and boundary integrations, we can discretize
the DC presented in Eq. (18), referred to as DDC [34], in the
following manner:

n? I
5 a2 'S5 o
G=1 7 e=1 g=1 (19)

n T

- arT(XG) I ( A)WCA;,

G=1 4
where n® and n’ are the number of evaluation points for
domain and boundary integrations, respectively, associated
with each sub-domain 7;. In Eq. (19), the pairs (xg, W)
and (x2, W) represent the integral points and their corre-
sponding weights for boundary and domain integrations, as
shown in Figure 2. These values are evaluated through a
mapping from the one- and two-dimensional isoparametric
element [38].

One question arises: How should we select the admis-
sible space for the assumed resultant in-plane stress 6, as
represented by the order of the basis function r? In accor-
dance with the suggestion by Duan et al. [34], a judicious
decision is made to set it at least one order lower than the
space of the displacement field. As an advancement over
the 3-node triangular MITC3 element, the MITC3+ approach
incorporates internal rotations corresponding to cubic
bubble shape functions [29]. Consequently, the admissible
space for the assumed resultant in-plane stress 6 can be
selected from vectors spanning constant (p = 0), linear
(p =1, and quadratic (p = 2) basis functions. Based on
our experience in numerical analysis, it is evident that
the constant basis function consistently offers the most
robust performance. In the case of the constant basis vec-
tors, r(x) = {1}, the 1-point in two-dimensional triangular
Gaussian quadrature rule (n® = 1) is applied for the domain
integration in Eq. (19) due to the count of independent
components. Meanwhile, the 3-point in one-dimensional
Gaussian quadrature rule (nf =3) is applied for the
boundary integration in Eq. (19) due to the cubic bubble
approximation at the internal node. As a result, the DDC
(19) is simplified into

oapl(xd) 1 e
00" (x¢) : T 2 > D o' (xHwins,  (20)
=1 g=1
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where A2 and x2 denote the area and center of the sub-
domain 7, respectively. Finally, based on the obtained
correct derivatives 0’ in Eq. (20), the proposed constant
in-plane strain correction € of MITC3+ element, named
CiSC-MITC3+, is constructed within Eq. (15).

4 Results and discussion

4.1 Isotropic plate

First, we examine the convergence properties of the pro-
posed CiSC-MITC3+ plate element in comparison to the
original MITC3+ plate elements. The analysis focuses on a
simply supported isotropic plate (p, = 0, ¢ = 0) subjected to
a distributed load [39], as shown in Figure 3. This load is
defined by

q,(x) = q, sinE sinﬂ,

L L @

where g, = 1073 is chosen. The material properties of this
isotropic square plate are: Young’s modulus E = 1,092,000
and Poisson’s ratio v = 0.3. Given the symmetric nature of
the square plate, a quarter-domain is meshed into four
levels (4 x 4, 8 x 8,16 x 16, and 32 x 32).

Figure 4 presents the convergence of the relative
errors in the central deflection, strain energy, and displa-
cement norm with various thickness-and-length ratios (h/L
= 1/500, 1/1,000, and 1/1,500). The displacement norm is
defined in Nguyen et al [40,41]. The results shown in
Figure 4 highlight the uniform rates of the convergence
of the proposed CiSC-MITC3+ element. These results exhibit
significant enhancements of the proposed method in
bending performance.

4.2 FG plates without porosity

Next the analysis of the FG nonporous square plates is
examined in this example (p, # 0,¢ = 0). Comprising a

Table 1: Mechanical properties of materials

Material E (GPa) p (kg/m®) v
Metal-aluminum (Al) 70 2,700 0.3
Ceramic-alumina (Al,O3) 380 3,800 0.3
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Figure 5: Comparison of the dimensionless displacement results of the nonporous FG plate with thickness-to-length ratio: (a) L/h = 5, L/h = 10,

and L/h = 20.
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Figure 6: Convergence rates of the non-dimensional central deflections of porous FG plates with even porosity distribution across various plate
length-to-thickness ratios: (a) L/h = 5, (b) L/h = 10, and (c) L/h = 20.
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mixture of metal and ceramic (Al/Al,03) as detailed in
Table 1, the plate undergoes a uniform distributed load
q, = 1. In this example, a quarter-domain of the square
plate model is also used and discretized as in Example
3.1. For this example, the analytical Levy-type solutions
are proposed by Demirhan and Taskin [42]. For the pur-
pose of comparison, the following non-dimensional central
deflection is used:

ab
2’2

10E.h3
el

w* =w (22)

The convergence rates of relative errors in the central
deflection with various power-law index along thickness
direction (p,= 0,1, 2, 5, and 10) and plate length-to-thickness
ratios (L/h = 5, 10, and 20) are plotted in Figure 5. These
results reconfirm the superiority of the proposed CiSC-
MITC3+ elements over the original MITC3+ element.

4.3 FG porous plate

In the final example, we assess the results of the static
analysis of FG porous square plates (p, # 0,¢ # 0). The
examined porosity distributions include both even and
uneven configurations. The non-dimensional central
deflection is expressed in Eq. (22). In establishing solutions
for this problem, Demirhan and Taskin [42] utilized an
analytical method based on a Lévy-type solution, while
Dhuria et al. [43] employed an analytical approach fol-
lowing Navier’s method.

Figures 6 and 7 illustrate the convergence rates of the non-
dimensional central deflections of porous FG plates across var-
ious plate length-to-thickness ratios (L/h = 5, 10, and 20), power
law indices (p, = 0, 0.1, 0.5, and 1), and porosity distributions. In
our investigation, we focus on a medium porosity parameter
(€ = 0.2). The results depicted in these figures demonstrate that
the proposed approach aligns well with existing works. Speci-
fically, for an even porosity distribution, our findings closely
parallel those presented by Demirhan and Taskin [42]. Simul-
taneously, our method’s results closely match the findings of
Dhuria et al. [43] for an uneven porosity distribution. Notably,
the results underscore that CiSC-MITC3+ elements consistently
outperform the original MITC3+ element in both cases of por-
osity distributions.

5 Conclusion

This study introduces an enhancement to the MITC3+ flat shell
element, specifically designed for analyzing FG porous plates

FGP plates using enhanced MITC3+ element with in-plane strain correction

-—_ 1"

identified as CiSC-MITC3+. The enhancement involves the

incorporation of a novel constant in-plane strain correction,

achieved by establishing a corrected in-plane strain field using
corrected nodal derivatives that ensure DDC based on the Hu-

Washizu three-field variational principle. The numerical inves-

tigations conducted reveal valuable insights into the proposed

approach, highlighting the following two key findings:

* The proposed method demonstrates commendable per-
formance when juxtaposed with findings from other
analytical solutions of the isotropic, FG without and, FG
with porous plates.

* The CiSC-MITC3+ element exhibits superior convergence
in comparison to the original MITC3+ element.

In our future pursuits, we envisage expanding the
application of our method to address a wide array of chal-
lenges presented by FG porous plate/shell problems, parti-
cularly those involving different loading conditions and
material properties. In addition, the proposed method
can be a promising approach to extend to a range of
topology optimization problems [44-51].
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