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Abstract: This study explores the relationship between the
variable nonlocal parameter and material variations in
functionally graded (FG) nanobeams incorporating the
influence of unsteady aero thermal and magnetic load
defined by the first-order Piston theory. The governing equa-
tions of FG Euler nanobeams are derived using Eringen’s
nonlocal elasticity theory. These equations are then numeri-
cally tested using the Bernstein-based Rayleigh-Ritz
method. A comparison with previously published results
is conducted to validate the accuracy of the findings.
Additionally, the study investigates the effects of nonlocal
ceramic, nonlocal metal parameters, Mach number, and
aerodynamic force on various physical parameters of FG
nanobeam.

Keywords: FG Euler nanobeam, variable nonlocal elasticity,
Rayleigh-Ritz technique, Bernstein polynomials, Piston theory

1 Introduction

Functionally Graded nanobeams with customized proper-
ties can greatly improve Micro-Electro-Mechanical Systems
devices, making them more reliable and efficient. These
advancements can also benefit Nano-Electro-Mechanical
Systems devices, leading to innovations in sensing, actua-
tion, and signal processing for various applications, including

communication systems and quantum computing. Additionally,
integrating these nanobeams into implantable sensors or
drug delivery systems can offer precise monitoring of health
parameters and controlled release of medications. A class of
Japanese scientists initiated a development in functionally
graded materials (FGMs) as a type of composite to regulate
the volume fractions of two or more materials in the mix-
ture. Ebrahimi et al. [1,2] presented a study on wave scat-
tering in viscoelastic functionally graded (FG) nano beams.
Furthermore, within the context of shear bending in third
mode deformation theory, vibration features of Magneto
Thermo Electro Elastic FG nanobeams were studied by
Ebrahimi and Barati [3]. A new higher-order shear deforma-
tion theory (HSDT) for the analysis of buckling and free
vibration in isotropic and FG sandwich beams was put forth
by Nguyen et al. [4]. Alibeigi et al. [5,6] introduced the buck-
ling behavior of nanobeams using the Euler-Bernoulli beam
model with the inclusion of von Kármán geometrical non-
linearity. Furthermore, Shariati et al. [7] investigated the
bending of size-dependent magneto-electro-elastic (MEE)
nanobeams over nonlinear substrate. Some studies by Ebra-
himi et al. [8] have been carried out encompassing diverse
facets. These include studies on the loading of hygro-thermal
and bending of electromagnetically responsive piezoelectric
nanobeam systems, progressive analysis of intelligent
nanostructures, and frequency assessment of FG thin beams
after thermal post-buckling. Additionally, the distinction of
elastic nanobeams driven by stress and strain has been
addressed through integral elasticity in references Li et al.
[9] and Romano and Barretta [10].

A study by Barretta et al. [11] employed the kinematic
model to investigate buckling in beams composed of FG
materials subjected to multiple thermal loads. The work
of Kiani and Eslami [12] focused on analyzing the propaga-
tion of waves in infinite FG plates within a thermal envir-
onment. Sun and Luo [13], Thai and Choi [14] developed a
consistently refined HSDT to examine the free vibration of
FG plates resting on an elastic foundation and to explore
the impact of boundary conditions on natural frequencies.
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Thai et al. [15] studied the nonlinear bending in nanobeams
was discussed using the (FEM) finite element method.
A study by Reddy and El-Borgi [16] surveyed the variation
of natural frequencies using the nonlocal theory on a
viscoelastic sheet. Analyzing size-dependent elements of
beams was an objective of Ebrahimi and Barati [17]. Gra-
phene sheets were used to model thermo-elastic problems
via nonlocal strain gradient theory by Lim et al. [18]. Ebra-
himi and Mokhtari [19] analyze the transverse vibrations
of rotating porous FG beams using the differential trans-
form method, highlighting the effects of porosity, rota-
tional speed, and material gradation on natural frequen-
cies. Ebrahimi and Salari [20] the buckling response of a
nanobeam was investigated by applying the Euler-Ber-
noulli theory via shear models. Another study by Vinh
and Tounsi [21] explored the Timoshenko beam theory to
examine reliable temperature rise, and external electric
and magnetic potential, incorporating nonlocal formula-
tions for MEE vibrations. This analysis considered different
thermal loads, as well as the influence of electrical and
magnetic fields. Additionally, the bending characteristics
of MEE nanobeams were thoroughly investigated by Kar-
makar and Chakraverty [22]. Additionally, Li and Hu [23]
delved into examining the influence of scale-oriented wave
propagation in different physical moduli. Ke and Wang
[24] presented findings on the vibration of FG sandwich
nanoplates. The paper of Mohamed et al. [25] explores
the nonlinear coupled axial-lateral vibration of function-
ally graded fiber-reinforced composite laminated (FG-FRCL)
cantilever beams under aero-thermal loads. Selvamani et al.
[26–29] explore the wave propagation behavior of nonho-
mogeneous porous Euler nanobeams using Bernstein
polynomials (BPs) to model boundary characteristics. Ali-
moradzadeh et al. [30] discussed by nonlinear axial-lateral
coupled vibration of FG-FRCL beams subjected to aero-
thermal loads. Tao et al. [31] discussed the nonlinear
dynamic behaviors of fiber metal laminated beams sub-
jected to moving loads under thermal environments. The
objective of this study is to explore the effects of nonlinear
thermal vibration on a fluid-infiltrated porous nanobeam,
taking into account nonlocal variables. The structure of this
paper is outlined as follows: Section 2 presents the funda-
mental equations governing the behavior of the FG nano-
beam under aerothermal loads, while Section 3 discusses the
theoretical foundations of the BP method. Section 4 employs
the Rayleigh–Ritz-based BP method to solve for the stiffness
and mass matrix. Section 5 details the orthogonal Bernstein
polynomial (OBP) method. Section 6 presents a convergence
theorem to prove the results from the above method. Sec-
tion 7 provides a comprehensive validation of the proposed
model through comparison with existing literature and

experimental data. Finally, a summary of the conclusions
along with graphical results is presented.

2 Problem formulation

An examination of thermo-electro-magneto FGM has been
carried out using the refined higher-order state space
strain gradient theory. The nanobeam possesses dimen-
sions including length (L), width (b), and thickness (h).
The FGM, in this case, is comprised of two distinct sections:
a ceramic segment and a metallic segment. In order to
accommodate behaviors influenced by temperature, the
study incorporates an analysis of the individual compo-
nents within the FGM (Figure 1).

In this section, the properties have been computed
using power-law relations. To ascertain these properties
along the thickness direction concerning temperature, the
volume fractions of the metallic and ceramic phases are
calculated using the power law model. Consequently, the
fractional volume of the ceramic part can be [4],
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while the exponential power law and thickness explore the
property distributions in each layer of the nanobeam, and
the property of material values are considered at local
temperature as [2],
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whereas −P P P P P, , , ,0 1 1 2 3 are the coefficients of material
phases. The volume fraction is taken as + =V V 1m c .

The material properties of nonlocal FGM, including
Young’s modulus (E), mass density (ρ), and Poisson’s ratio
(ν) can be achieved
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Additionally, the HSDT provides insight into these
stress–strain changes. By considering the refined deform-
able shear beam’s direction as [4],

Figure 1: Geometry of the problem.
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Here, ux be the longitudinal displacement and wz be
the bending components of transverse displacement. The
corresponding linear strain–displacement relationship is
used, consistent with small deformation assumptions, to
describe the mechanical behavior of the FG nanobeam.
Thereby [30].
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meanwhile, i j k, ,( ) are the elements of x y z, ,[ ] while uti-
lizing the equations,
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LetU be the strain energy and it can be defined as [22],
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where σxx is the normal stress, A represents the area of
cross-section of the beam, and L be the length.

By substituting Eq. (2.7) into Eq. (2.8), the maximum
strain energy can be expressed as,
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Consequently, the moment stress equation for the
Euler beam can be expressed as,

∫=M zσ Ad .
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The maximum kinetic energy can be,
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where ϖ be the circular frequency.
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The constitutive relation with the presence of thermal
load is

− − =σ Q ε α TΔ 0.xx xx x11
( ) (2.13)

= −T T TΔ 0 represents the temperature rise from an
initial temperatureT0 to temperature T. Additionally, through
axial direction Q

11
and αx represents the elastic stiffness

coefficient and the thermal expansion coefficient. It can be

defined as, = −Q .
E

ν11 1 2

For FGM nanobeams σx , the normal stress can be
described as,
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where e a0
2( ) is the nonlocal parameter, e0 is a material

constant, and a is an internal characteristic length. In
this study, it is postulated that the nonlocal parameter
undergoes alteration concurrent with the modifications
in other material attributes within the FGM. The influence
of nonlocal parameters varies along the thickness dimen-
sion of FG nanobeam. The connection between nonlocal
stress and strain is not solely governed by changes in
Young’s modulus and Poisson’s ratio; it also hinges on
variations in the nonlocal parameter. As the FG nano-
beam is exposed to an aerodynamic force PΔ perpendi-
cular to its surface (in the z direction) due to supersonic
airflow, the unsteady aerodynamic load for high Mach
numbers can be described using the first-order Piston
theory [30].
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Given, ∞ρ is density, ∞u is the velocity, and ∞M is Mach
number of the free stream air, accordingly.

Now multiplying Eq. (2.14) by z Ad and integrating over
A gives the equation of nonlocal moment is obtained here.
Here, A is the beam’s cross-section. Moreover, σxx is the
axial stress in the x direction.
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Now by incorporating the external forces into the
above equation,
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is the magnetic field; η is the field

permeability; Ωx stands for magnetic potential.

3 Solution procedures

In this study, the vibration equation of an Euler nanobeam
is addressed using BPs. These polynomials possess key
properties that are useful for solving nonhomogeneous
nonlinear integro-differential equations.
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3.1 Analytical solution

In this section, the Bernstein polynomials (BP’s) from the
earlier part are used for solving Eq. (2.21) and can be
expressed in terms of:

∑=
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For the simplification in the mathematical modeling,
the following nondimensional terms are updated:

For nanobeam length,

=X
x

L
. (3.1.2)

For transverse displacement,

=W
w

L
, (3.1.3)

where ci are the unknown constants and n is the approx-
imation order. The shape function of the beam is consid-
ered as,
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In which, the BPs B Xi n, ( ) are considered as
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whereas, the generalized boundary equation of the beam
πb in dimensionless form is given as

= −π X X1 ,b
r s( ) (3.1.6)

where r and s are assuming the values among 0, 1, and
2, accordingly free, simply supported, and clamped,
respectively.

The material properties considered in this analysis
include the effective mass density ρ and effective nonlocal
parameter μ z( ). While the nonlocal parameter shows var-
iations across different materials, a variable nonlocal para-
meter implies that nonlocal effects can vary spatially or
with respect to specific parameters within the structure.
This parameter adapts to the model, influenced by factors
like material properties, dimensions, or environmental
conditions. The parameter denoted as =ζ μ μ/

c m
represents

the proportion between the ceramic and metal phases. In
cases where the nonlocal parameter is constant, ζ equals
one ( =ζ 1) [31].

In the Rayleigh–Ritz method, by minimizing the total
energy of the system, which consists of both kinetic and
strain energy,
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Substituting the Eq. (3.1.1) into the Eq. (3.1.7) and differ-
entiating by parts with the help of unknown coefficients ci

yields the extended eigenvalue problem as
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From the above definition, K[ ] represents stiffness and
M[ ] is for mass matrices. The elements of these matrices
are:
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3.2 Equations of OBPs

The relation of displacement component is designed as,
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three-term recurrence relation or Gram–Schmidt process.
Gram–Schmidt process is used here to find orthonormal
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The displacement function assumed in Eq. (3.1.1) con-
verges with the BP given in Eq. (3.1.5). This is demonstrated
using the convergence theorem.

3.3 Convergence theorem

Let us consider the Eq. (4.1),
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The BPs are known to form a partition of unity,
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Now, using Eq. (3.1.4) in the Eq. (3.3.1),
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Here, assume, =c c c cmax , , ...k n0 1{ }, then it can be
mentioned as,
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Using Eq. (3.3.2),

≤W X π c .b k( ) (3.3.5)

The RHS of Eq. (3.3.5) converges; hence, W X( ) also
converges.

4 Results and discussion

This section illustrates the magneto-aerothermal vibration
of FG Nanobeam with numerical examples. Table 1 pre-
sents the material properties composed of BaTiO3,
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CoFe O2 4 respectively, and Table 2 presents the slenderness
ratio of FG nanobeam with poisson ratio and without Pois-
son’s ratio. Based on the results and literature by Alimor-
adzadeh et al. [30], it shows high accuracy to the proposed
model.

4.1 Effect of variable nonlocal on axial
vibrations of FG nanobeam

In Figure 2, the variable nonlocality in the ceramic phase
increases with greater displacement over time. When the
μ

c
value hits zero, the displacement starts decreasing at time

T = 1, then shows an increasing trend, reaching around 2.5.
When μ

c
= 0.1, the displacement graph similarly increases

and decreases around 2.2. As the μ
c
value increases to 0.2,

the oscillations are higher, and the displacement settles later.
Thus, with increasing μ

c
value, the graph becomes more

amplified and takes longer to stabilize. Compared to ceramics,
in Figure 3, the metal experiences greater vibrations. When

=μ 0
m

, the vibrations start at a higher level and take a long
time to settle. As the μ

m
increases to 0.1, the time between

oscillations decreases compared to zero nonlocal value. With
further increases in the nonlocal μ

m
value, the amplitude of the

oscillations increases before eventually decaying. The initial
decay in displacement followed by periodic increases and
decreases represents a typical damped vibration response,
indicating periodic energy exchanges within the material.

Higher nonlocal values increase the amplitude and response
time of the material to external forces, leading to larger vibra-
tions. In applications like sensors and actuators, where precise
control of vibrations is crucial, adjusting the nonlocal para-
meter can help achieve the desired dynamic responses.

4.2 Impact of Mach number on axial
vibrations in FG nanobeam with
different ceramic and metal phases

The effects of variable nonlocal vibration on displacement
over time with varying ∞M on axial vibration are illustrated

Table 1: Material properties of BaTiO3 and CoFe O2 4

Material Properties

BaTiO3 E [Pa] 166 e33 (N/m2 K) (7.124 × 10−9)
ρ [kg/m3] 5,800
ν [-] 1.1945 e15 (c/m2) 14.1

CoFe O2 4 E [Pa] 286 e31 (c/m2) −(4.1)
ρ [kg/m3] 5,300
ν [-] 1.167 e11 (c/Vm) (5.841 × 10−9)

Table 2: Comparison table for a slenderness ratio of a FG nanobeam

L h/ Alimoradzadeh et al. [30] Present study

==ν 0 ≠≠ν 0 ==ν 0 ≠≠ν 0

5.0 0.4676 0.4947 0.4676 0.4947
10.0 0.2338 0.2474 0.2338 0.2473
15.0 0.1559 0.1649 0.1558 0.1649
20.0 0.1691 0.1237 0.1690 0.1236
30.0 0.0779 0.0825 0.0779 0.0825
50.0 0.0468 0.0495 0.0467 0.0495

Figure 2: Effect of variable nonlocal (ceramic phase) on axial vibrations:
Displacement vs time.

Figure 3: Effect of variable nonlocal (metal phase) on axial vibrations:
Displacement vs time.
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in Figures 4 and 5. In Figure 4, as the ∞M increase (0.5, 1, 1.5),
the displacement oscillates between −1 and 1 for the ceramic
phase of the FG nanobeam. Higher Mach numbers lead to
high-frequency oscillations with larger amplitudes. Similarly,
in Figure 5, for =∞M 1.5, the oscillations become more pro-
nounced over a given period. In the metal phase, displace-
ment also shows high-frequency oscillations but with less
risk of sudden failure compared to the ceramic phase. The
damping is more gradual, allowing for sustained vibrations
over a longer period. Themetal phase exhibits a slower decay
in displacement due to its higher capacity for energy absorp-
tion and dissipation.

4.3 Effect of frequency over free stream
velocity with varying ceramic and metal
phase

At high frequencies, the ceramic phase exhibits significant
stiffness, causing the nanobeam to respond with higher
resistance to deformation. In Figure 6, the frequency over
free stream velocity increases with increasing μ

c
value.

When =μ 0.5
c

, the frequency increases to × −1 10 3, and the
free stream velocity shows a gradual upward trend. As the μ

c

values increase to 1 and 1.5, the frequency decreases gradually
around 0.5 to 0.8, with an upward trend in free stream velocity.
Similarly, in Figure 7, for =μ 0.5

m
, the frequency increase is

morepronounced than in the ceramic phase.When theμ
m
values

reach 1 and 1.5, the frequency decreases with an increasing trend
in free stream velocity. Hence, these cases widely happen in air-
craft wing design for a precise control of vibrations, enhancing
structural integrity and aerodynamic efficiency.

4.4 Effect of position along the length of the
nanobeam and variable nonlocal over
thermal stress

From Figure 8, the thermal stress along the length of the
nanobeam for the ceramic phase starts from a low value at
the beginning =x 0( ) and increases monotonically towards
the end of the beam, reaching its maximum at the free end

=x 1( ). This trend indicates that the highest thermal stress
occurs at the tip of the nanobeam under the given conditions.
Higher nonlocal parameters typically distribute stress more

Figure 4: Effect of Mach number on axial vibration (ceramic phase) of FG
nanobeam: Displacement vs time.

Figure 5: Effect of Mach number on axial vibration (metal phase) of the
FG nanobeam: Displacement vs time.

Figure 6: Effect of frequency over free stream velocity for variable
nonlocal (ceramic phase).
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evenly, potentially reducing peak stress levels. Similarly, from
Figure 9, the thermal stress along the length of the nanobeam
for the metal phase increases continuously and reaches its max-
imum value at the free end =x 1( ). Although the overall beha-
vior is similar to the ceramic phase, the magnitude of the peak
stress differs due to the higher thermal conductivity anddifferent
thermal expansion properties of metals. Metals, having higher
thermal conductivity than ceramics, tend to exhibit a more uni-
form temperature distribution, which can reduce thermal gradi-
ents and potentially lower thermal stresses. Higher nonlocal
parameters in the metal phase also contribute to a more even
stress distribution and a slight reduction in peak stresses.

4.5 Effect of velocity over magnetic potential
for ceramic and metal phases

In Figure 10, the contour lines indicate specific values of
magnetic potential across varying velocities. The intensity
at 0.02 to 0.04 suggests that the magnetic potential remains
relatively stable or reaches a critical point at this value.
Similarly, from 0.04 to 0.06, the magnetic potential inten-
sifies to 0.004–0.006. In Figure 11, the metal phase exhibits
a more intense reaction, with magnetic potential reaching
above 0.005 compared to the ceramic phase. This indicates
a significant point where the nanobeam may exhibit

Figure 7: Effect of frequency over free stream velocity for variable non-
local (metal phase).

Figure 8: Effect of thermal stress over position along the length of the
nanobeam with varying variable nonlocal (ceramic phase).

Figure 9: Effect of thermal stress over position along the length of the
nanobeam with varying variable nonlocal (metal phase).

Figure 10: A contour plot for magnetic potential over velocity for the
ceramic phase of FG nanobeam.

8  Rajendran Selvamani et al.



enhanced magnetic response or stability under specific
velocity conditions for both ceramic and metal phases.
The intensification and coloring of contours at specific
magnetic potential levels in both figures highlight critical
points and gradients, offering a nuanced understanding of
magnetic behavior under different operational conditions.

4.6 Effect of aerodynamic force over length
for ceramic and metal phases

The contour plot in Figures 12 and 13 illustrates variations
in aerodynamic force across the x in the FG nanobeam for

both ceramic and metal phases of the nanobeam. Intensi-
fied contours suggest regions of higher aerodynamic force,
potentially influenced by the structural stiffness and sur-
face characteristics of the ceramic material. In contrast,
metal contours display a broader but less intense distribu-
tion, indicating the material’s damping capacity and flex-
ibility under aerodynamic loads.

5 Conclusions

The study presented above investigates the interplay
between the nonlocal parameter and material variations
in FG nanobeams under unsteady aerodynamic thermal
loads, defined by the first-order piston theory. The gov-
erning equations for FG Euler nanobeams were formu-
lated by using Eringen’s nonlocal elasticity theory and
numerically tested through the Bernstein-based
Rayleigh-Ritz method. The results demonstrate a strong
correlation with previously published data, affirming the
accuracy and reliability of the current model.
Furthermore, the study reveals a significant impact of
nonlocal ceramic and metal components on the key para-
meters such as magnetic potential and aerodynamic pres-
sure on the FG nanobeam. These findings contribute to a
deeper understanding of the behavior of FG nanobeams,
paving the way for enhanced design and optimization in
advanced engineering applications. Moreover, graphical
solutions are presented to illustrate the dispersion sub-
jected to aero thermal loads and external factors as mag-
netic fields incorporating the influence of both ceramic
and metal properties, thereby offering insights into the

Figure 11: A contour plot for magnetic potential over velocity for the
metal phase of FG nanobeam.

Figure 12: A contour plot for aerodynamic force over x for the ceramic
phase of FG nanobeam.

Figure 13: A contour plot for aerodynamic force over x for the metal
phase of FG nanobeam.
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influence of these variables on the nanobeam’s vibra-
tional behavior. Key findings are summarized as follows:
• At higher Mach numbers, the nanobeam experiences
increased natural frequencies and enhanced aerody-
namic damping, resulting in quicker dissipation of vibra-
tional energy and affecting the displacement decay rate.

• As free-stream velocities rise, aerodynamic forces on the
FG nanobeam intensify, leading to notable alterations in
natural frequencies and damping characteristics.

• The thermal stress along the nanobeam’s length peaks at
the free end, with both ceramic and metal phases experi-
encing maximum stress, though the metal phase shows a
more uniform distribution due to its higher thermal
conductivity.

• Higher velocities amplify aerodynamic forces, intensi-
fying dynamic responses and increasing the risk of reso-
nance and flutter phenomena in both metallic and
ceramic phases, thereby impacting structural stability.

• Elevated stresses in the metallic phase predominantly
lead to increased bending and torsional effects, whereas
in the ceramic phase, localized stress concentrations and
vibrational behaviors emerge, influencing the nano-
beam’s performance and durability.

• The findings can serve as benchmark results for future
studies focusing on the dynamic analysis of nanostruc-
tures under variable small-scale parameters and aero-
thermal conditions. Further integration with multi-phy-
sics experimental setups and consideration of material
degradation over time would enhance the practical
applicability of the model for advanced engineering
applications.
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