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Abstract: The transient response of thermoelastic mate-
rials subjected to a time-decaying thermal field is pre-
sented in this article using a nonlinear analysis. The basic
equations provided are based on a generalized thermoelastic
model under changing thermal conductivity, which is incor-
porated into the formulations. This problem is solved using
the finite-element techniques instead of the Kirchhoff trans-
forms since solving non-linear equations is quite difficult.
Laplace transformation and the eigenvalue approaches are
used to solve the problems in the linear context of the
Kirchhoff transforms. The study investigates and compares
the impact of varying thermal conductivity both with and
without employing Kirchhoff’s transform. The numerical out-
puts are graphically shown to display the displacement, tem-
perature, and stress variations.

Keywords: Kirchhoff’s transforms, variable thermal conduc-
tivity, Laplace transforms, eigenvalues approaches, finite-ele-
ment method

Nomenclature

u; Displacement components
w Decayed heat flux exponent
T Medium temperature

K Non-positive parameter
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T Thermal relaxation time

i Components of the stress

o Kronecker symbol

K, Thermal conductivity when T = T,
Ce Specific heat

A u Lame’s constants

T, Initial temperature of the medium
a; Linear thermal expansion coefficient
p Mass density of tissue

e;j Strain components

k Tissue thermal conductivity

t time

1 Introduction

Earlier perspectives presumed the independence of all
thermal parameters in thermoelasticity models from tem-
perature fluctuations. However, a more nuanced understanding
emerged as Noda [1] extensively analyzed materials in 1991,
demonstrating that thermal conductivity exponentially decreases
with increasing temperature. The importance of thermoelastic
material with varying thermal conductivity has increased,
finding recent applications in intriguing fields, particularly in
cutting-edge technology, notably within emerging energy sources.

In the thermoelastic field, employing the classical elastic
model for heating conduction is well-suited for a wide range
of engineering applications. Nevertheless, in scenarios involving
ultrafast heating, the classical model falls short in providing
precise temperature approximations. Generalized thermoelastic
theory, which characterizes the interaction between mechanical
and thermal loads in materials, introduces thermoelastic distur-
bances that propagate as waves with speeds more closely
reflecting real-world behavior compared to the classical model
proposed by Biot [2]. Consequently, to address these limitations
and enhance the accuracy of temperature distribution determi-
nations, various non-classical thermoelastic theories, including
the Lord and Shulman (LS) [3] and Green and Naghdi [4,5]
models, have been introduced.

As temperatures rise, it is conceivable that the pro-
perties of the materials may experience a reduction.
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In numerous materials, the thermal conductivity (K) typi-
cally reduces nearly linearly with rising absolute tempera-
ture (7) [6]. To solve the problem associated with varying
thermal conductivity [7], Kirchhoff’s transformation mapping
technique [6] is applied. For a one-dimensional problem
involving varying material parameters, Mukhopadhyay and
Kumar [8] employed the finite differences method.

Sherief and Hamza [9] proposed a model to account for
the change in thermal conductivity in thermoelastic cylin-
ders extending to infinity. Abbas et al. [10] investigated the
interactions between light and heat within a semicon-
ductor material featuring a cylindrical hole and changed
thermal conductivity. Othman et al [11] investigated the
impacts of initial stress and varying thermal conductivity
in infinite fibre-reinforced plates. Ghasemi et al. [12] stu-
died the thermal analysis studying on convective fins with
changes in thermal conductivity and heating generation.
Xiong et al. [13] discussed analyzing the impacts of change
thermal conduction in thermoelastic interactions within
an anisotropic fiber-reinforced medium. Khoukhi et al
[14] examined the influence of changing thermal conduc-
tivity on transient temperature fluctuation within wall-
embedded insulations. Abbas [15] utilized a finite-element
approach to study magneto-thermoelasticity interactions in
inhomogeneous isotropic cylinders. Xiong and Guo [16]
investigated the impact of movable heat sources and
varying properties in the context of magneto-thermoelastic,
employing a fractional thermoelasticity theory. Zenkour
and Abbas [17] examined a scenario that included density
and thermoelastic properties varying with temperature,
revealing important characteristics of materials exhibiting
such temperature-dependent properties. Othman [18] inves-
tigated thermoelastic interaction in a two-dimensional
thermoelasticity problem with temperature-dependence
elastic modulus. Aboueregal and Sedighi [19] applied the
Moore-Gibson-Thompson theory to examine the influences
of rotations and evolving properties in visco-thermoelasti-
city anisotropic cylinders. The model considers the impacts
of rotations and evolving properties, which can have a
significant effect on heat transfer. Youssef and Abbas [20]
conducted research on an unbounded medium containing
spherical cavities, exploring how the heat conductive
and elastic modulus change with temperature in materials.
Several experimental and theoretical inquiries have con-
sistently demonstrated a substantial association between
temperature variations and thermal conductivity. Pro-
posed solutions for a variety of issues have been derived
through the utilization of extended thermoelastic models
[21-40].

In this work, the effects of changes in relaxation time
and thermal conductivity on the propagation of ther-
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moelastic waves in different materials are going to be
investigated. The nonlinear problems were solved by the
finite-element methods (FEMs) without the necessity for
the Kirchhoff transformation. Using eigenvalue analysis
and Laplace transforms, solutions were found for the
linear problems that included Kirchhoff’s transformations.
The numerical results for various physical parameters
were acquired and shown graphically. Through a close
examination of the solution’s behavior, this study sought
to confirm the accuracy and reliability of the proposed
approach.

2 Basic equations

Consider elastic materials with constant elastic parameters,
adhering to the fundamental relations within the framework
of the generalized thermoelastic model. This model, which
involves one relaxation time and assumes a linear variation of
thermal conductivity within a specified temperature range, is
utilized. Notably, nobody forces or heat source is considered,
leading to the basic formulations that can be written by [3]
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In this case, K refers to the thermal conductive that
fluctuates with temperature and is specified as in [41]

K(T) = K,(1 + KT). @

Study an elastic material whose conditions are given
as a function of both time (t) and spatial variables (x). This
description enables the derivation of the nonlinear Eqgs.
(1)-(3), as outlined in [41]
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3 Application

To derive solutions for the formulations, the initial and
boundary conditions can be given by
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To streamline the basic equations, we can employ the
following dimensionless variables:

(t',15) = neX(t, 7,), T' = % o) = ne(x, ),
0

(10)
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In relation to the dimensionless quantities defined in
Eq. (10), the basic equations above are simplified (omitting
the dashed notation for convenience):
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3.1 Nonlinear model (FEM)

In this part, the basic equations were developed as non-
linear partial differential equations. FEMs are applied in
this context to obtain solutions for Eqs. (11) and (12). The
FEM, initially developed for the numerical solutions of
intricate problems in structural mechanics, remains a pre-
ferred approach for complex systems. The standard pro-
cesses of weak formulations, as outlined in [42,43], are utilized
in these approaches. The weak non-dimensional formulation
has been established through derivation from the funda-
mental relations. The explicit definitions of the sets of inde-
pendent test functions, indicated by temperature §T and dis-
placement Su are provided. The independent test function
multiplies these controlling formulations, which are then
integrated over the spatial domains in accordance with the
requisite boundary conditions. Hence, the temperature and
displacement nodal values can be expressed as

T= ) N(t), u= D Nauy(t). (15)

n=1 n=1

Here, N points to the shape function, while m indicates
how many elements there are in each node. It is important
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to note that, in accordance with Galerkin’s traditional
methods, the shape functions and weight functions are
identical. Therefore,

m m
Su= ) NySun, 8T = ) NySTp (16)

n=1 n=1
Subsequently, the time derivatives of the unidentified
factors are computed by an implicit procedure. The weak
formulations corresponding to the governing Eqs. (11) and
(12) are presented below for the FEM analysis:

L
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3.2 Linear model (Kirchhoff’s transform)

Now, to obtain the linearized forms of the governing equa-

tions from their original nonlinear state, Kirchhoff’s trans-

formation mapping [41] is applied to account for the varia-

tion in thermal conductivity, as defined in Eq. (4)

1 ¢T

0=—| K(T)dT. 19

This expression defines a new function that represents

heat conduction. The integration is carried out after sub-

stituting the expressions from (19) in (4), yielding the result
specified in Youssef [41]

1
0=T+ EKlTZ, (20)
K,— %6 -K(T)— K,— %6 = K(I)T,
° ot °ax >
520 (21)
Kooz = (K(DT ;.

In linear form, the governing Eqs. (11)-(14) can be
expressed as
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T= %1(-1 + JT+2K0), (25)
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Utilizing Laplace transform on Egs. (22)-(26),
fop) = LIf(x, 0] = Tf(x, t)ePdt. @7)

0
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The vector-matrix differential equations can be rewritten
using the combined equations presented in (28) and (29)

w

AV (32)
dx b
’g 0 0 1 0
w 0 0 0 1
where V = o and A = p? 0 0 al
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By employing the eigenvalue techniques, as outlined in
previous works [44-52], the characteristic formulation of
matrix A can be given by

(U= (pP+ (L + p)p + (1 + Top)pa,az)?
+p3(1 + 1,p) = 0.

(33)

The matrix eigenvalue is characterized by the four
roots of the formulation, expressed as +{j, +{3. The solu-
tions can be provided by

2

V(X,p) = Y (BiYie™™ + Biuq¥iuse®).
i=1

34

In this equation, By, By, B, and B, represent constants
that are computed based on the boundary conditions of the
problem. A numerical approach [53] can be employed to
invert the equation and acquire the final solutions for the
studying variables displacement, temperature, and stress
distributions.

DE GRUYTER

4 Results

Now, let us consider a numerical example to demonstrate
the issue, utilizing an elastic isotropic material as the
chosen material for numerical evaluations. The relevant
physical data are provided as [15]

A =776 x 10° (kg)(s) 2(m) ™, ¢ = 0.5,
u =386 x 10° (kg)(m)(s) %, w = 0.3,

Ty = 293 (K), p = 8.954 x 10° (kg)(m)?,
Ky = 3.86 x 10% (kg)(m)(s)*(K) ™,

a =178 x 1078 (K)l, ¢, = 3.831 x 102 (m)2(s)2(K)™".

We studied how temperature, displacement, and stress
change over distance in a material. We used a generalized
thermoelastic model that includes one thermal relaxation
time for heat transfer. Numerical simulations were run to
model these physical properties. The simulations consid-
ered how thermal conductivity and other factors affect the
results. Some simulations included Kirchhoff transforms,
and some did not. Standard values were used for the initial
temperature, displacement, and stress variations. The cal-
culations were done at a time of ¢t = 0.5. At this point,
numbers were computed to see how temperature, displa-
cement, and stress varied with distance. Figures 1-18 show
the effects of different parameter values. Some figures
show the impact of thermal conductivity. Others show
the differences between using and not using Kirchhoff
transforms. The figures give us temperature distribution
(thermal wave), displacement distribution (strain waves),
and mechanical wave distributions over distance.

Figure 1: The effects of relaxation time in temperature variation via the
distance.
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Figure 2: The effects of relaxation time in displacement variation via the
distance.

0 2< 10—3

Figure 3: The impacts of relaxation time on stress variation via the
distance.

Figures 1, 4, 7, 10, 13, and 16 illustrate the temperature
variations across distance x. All graphs show temperature
starting at maximum values (T(0, t) = e“?) in accordance

Figure 4: The effects of the exponent of decayed heating flux on the
distributions of temperature via the distance.
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Figure 5: The effects of the exponent of decayed heating flux on the
distributions of displacement via the distance.

Figure 6: The effects of the exponent of decayed heating flux on the
distributions of stress via the distance.

with the given boundary conditions, after which the tem-
perature declines as x becomes larger, eventually tending
toward zero. Figures 2, 5, 8, 11, 14, and 17 depict the changes

Figure 7: The temperature variations during the distances under varying
thermal conductivity.
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Figure 8: The displacement variation via the distances under varying
thermal conductivity.
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Figure 9: The stress variation via the distances under varying thermal
conductivity.

in displacement across distance x. Notably, the displace-
ment begins at zero in line with the given boundary con-
ditions, after which it steadily rises to maximum levels
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Figure 10: The temperature change at k; = -1 with and without the use
of Kirchhoff’s transforms.
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Figure 11: The displacement variations at k = -1 with and without the
use of Kirchhoff’s transforms.
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Figure 12: The stress variation at k; = —1 with and without the use of
Kirchhoff’s transforms.

prior to declining once more as x increases, ultimately
tending towards zeros. Figures 3, 6, 9, 12, 15, and 18 depict
the varying in stress via the distances x. There is evidence

0.8
— K, =-0.5, WKT

........ K1 =-0.5, NKT

0.7

0.6

= 04}
03}
0.2}

0.1

Figure 13: The temperature variation with and without the application of
Kirchhoff’s transform, considering the thermal conductivity para-
meter Kk = —0.5.
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Figure 14: The displacement variation with and without the application
of Kirchhoff’s transform, considering the thermal conductivity para-
meter k; = —0.5.
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Figure 15: The stress variation with and without the application of
Kirchhoff’s transforms, considering the thermal conductivity para-
meter k = —0.5.
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Figure 16: A comparison of changes in temperature when k = 0: Results
from analytical and FEM.
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Figure 17: A comparison of changes in displacement when & = 0:
Results from analytical and FEM.

that the stress has a pattern, peaking at a negative number
and then progressively declining to almost zero.

Figures 1-3 show a comparison of the outcomes obtained
for physical parameters such as displacement, temperature,
and stress, considering two models of thermoelasticity: the
coupled theory without thermal relaxation time (z, = 0) and
the LS model with one relaxation time (z, = 0.05, 0.1,0,..., 15)
under varying thermal conductivity (k = —0.5). As predicted,
the relaxation time notably influences the distribution of the
values of the studying variable.

The impacts of the exponent of the decayed heating flux
w on the distributions of all quantities along the distances are
also investigated in Figures 4-6. As anticipated, the exponent
of the decayed heating flux significantly affects the distribu-
tions of temperature, displacement, and stress values.

Without using the Kirchhoff transforms, Figures 7-9
show the effects of variable thermal conductivity on the
studying variables via distance x (the nonlinear case).
The distributions of the studying variables values are

x107%

o K1 =0.0 Anal. Sol.
r —— K, = 0.0 FEM Sol.

-8 . . . L |
0 0.5 1 L5 2 2.5

Figure 18: A comparison of changes in stress when k; = 0: Results from
analytical and FEM.
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significantly impacted by differences in thermal conduc-
tivity, as expected.

Figures 1015 show a comparison of the results obtained
when utilizing the Kirchhoff transform (WKT cases) versus
not utilizing it (NKT cases). Specifically, these figures show the
temperature variation, the displacement variation, and stress
distribution via the distances x for & values of —1.0 and -0.5.
Notably, substantial differences can be seen between the
WKT and NKT cases. When the Kirchhoff transform is
employed (WKT), the variation of temperature, displacement,
and stresses along x is smooth. However, when the Kirchhoff
transform is not used (NKT), the variation is non-smooth and
exhibits singular behaviors. This demonstrates the impor-
tance of incorporating the Kirchhoff transform for obtaining
physically realistic solutions in this model.

Figures 16-18 show a comparison of the analytical solu-
tion obtained using the Laplace transform and the eigenvalue
approaches with Kirchhoff transforms versus the numerical
solution from the FEMs without using Kirchhoff transforms.
This comparison is shown for the case where k = 0. The
studying variable variations via the distances x, as obtained
from the numerical solutions, show excellent agreement with
the analytical results. This validates the finite-element imple-
mentation, demonstrating its ability to accurately solve this
problem without requiring Kirchhoff transforms, even though
the analytical solution was obtained using those transforms.
The close match between numerical and analytical solutions
confirms the robustness and reliability of the finite-element
approach for this thermal stress analysis.

5 Conclusion

The transient thermoelastic response of materials under a
time-decaying thermal field is examined in this work by
employing nonlinear analysis techniques. The studying
variable distributions were thoroughly understood by inte-
grating varying thermal conductivity into a generalized
thermoelasticity model with one thermal relaxation time.
In solving nonlinear thermoelastic problems with variable
thermal conductivity, the results demonstrate the robust-
ness of the finite-element technique. This research study
helps to comprehend the interactions existing between
mechanical and thermal fields of a thermoelastic material
which will further assist in better modeling in real
applications.
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