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Abstract: This study addresses the problem of thermoelastic
interaction in functionally graded isotropic unbounded media
owing to a timed pulse within the framework of generalized
thermoelastic theory without energy dissipation (TEWOED).
Functionally graded material (FGM, or material with spatially
variable material characteristics) has its governing equations
for the generalized thermoelastic model without energy dissi-
pation (GNII) developed. These formulations are expressed in
terms of Laplace transforms. The analytical solutions in the
transform’s domain are obtained through the eigenvalues tech-
nique. The Laplace transforms are inversed using numerical
methods. Finally, the acquired data are visually illustrated to
illustrate how inhomogeneity, laser intensity, and laser pulse
length affect displacement, temperature, and stress.

Keywords: functionally gradedmaterial, eigenvalues approach,
Laplace transform, laser pulse length,without energy dissipation

Nomenclature

δ Absorption depth of heating energy
ui Displacement components
Q External heat source
To Initial temperature of medium
δij Kronecker symbol
λ μ, Lame’s constants

Io Laser intensity
tp Laser pulse time duration
αt Linear thermal expansion coefficient
T Medium temperature
ce Specific heat
eij Strain components
σij Stress components
Ra Surface reflectivity
K ⁎ The additional material constant
l The length
ρ The mass density
t The time

1 Introduction

Functionally graded material (FGM) is a unique composite
material whose volume fractions of different composite
elements continuously shift from side to side. It was first
developed as a heat barrier material for aircraft projects
[1]. Because of its remarkable thermo-mechanical proper-
ties, this novel inhomogeneous medium can withstand high
temperatures. Pressure tanks, chemical plants, pipelines,
nuclear reactors, airplanes other vital constructions are
among the many important structures that employ them.
One of the most intriguing aspects of FGMs is the ability to
engineer their property gradient. This gradation may be pro-
duced using a variety of functional forms, with exponential
variation garnering the most interest. The exponential varia-
tion of material features in FGMs improves stress distributions
and minimizes stress concentration, allowing for smooth transi-
tions between different components or phases. This is especially
useful when mechanical stresses and significant temperature
gradients are present. Considerable progress has been made
in researching non-homogeneous FGMs with exponential fluc-
tuations in their characteristics. Researchers have investigated a
variety of analytical and numerical techniques to comprehend
how these materials behave under varied loading and environ-
mental circumstances. The material’s exponential gradation is
very appropriate for applications in the aerospace, automotive,
and civil engineering industries because it provides special

Zuhur Alqahtani: Department of Mathematical Sciences, College of
Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh, 11671, Saudi Arabia, e-mail: zumalqahtani@pnu.edu.sa



* Corresponding author: Ibrahim Abbas, Mathematics Department,
Faculty of Science, Sohag University, Sohag, Egypt,
e-mail: ibrabbas7@science.sohag.edu.eg

Alaa A. El-Bary: Institute of Basic and Applied Science, Arab Academy for
Science, Technology and Maritime Transport, Alexandria, Egypt,
e-mail: aaelbary@aast.edu
Areej Almuneef: Department of Mathematical Sciences, College of
Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh, 11671, Saudi Arabia, e-mail: aaalmuneef@pnu.edu.sa

Curved and Layered Structures 2025; 12: 20240023

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/cls-2024-0023
mailto:zumalqahtani@pnu.edu.sa
mailto:ibrabbas7@science.sohag.edu.eg
mailto:aaelbary@aast.edu
mailto:aaalmuneef@pnu.edu.sa


benefits for adjusting the material’s response to mechanical and
thermal stresses.

In 1991, Green and Naghdi [2] introduced three signifi-
cant theories for generalized thermoelastic in isotropic and
homogeneous media, which they labeled as Models GNI,
GNII, and GNIII. The primary distinction among these
models lies in their handling of heat conduction and
thermal wave propagation. Model GNI reduces to the clas-
sical heat conduction model, which is upon Fourier’s law,
when the corresponding theories are linearized. This model
maintains the traditional view of heat transfer, where
thermal disturbances propagate instantaneously, leading
to infinite speeds of thermal wave propagation. In contrast,
the linearized model versions GNII and GNIII permit the
propagation of thermal waves at finite speeds, thus addres-
sing a key limitation of the classical theory. Specifically,
Model GNII offers a novel characteristic not seen in other
well-established thermoelastic theories: it does not allow
heat energy to dissipate. As explained in detail in Green
and Naghdi’s later studies [3,4], this model incorporates
the gradient of thermal displacement among other constitu-
tive variables and derives its constitutive equations begin-
ning with the reduced energy formulation. The dynamic
response, thermoelastic behavior, and failure mechanisms
of exponentially graded FGMs have been the subject of
recent studies. These studies have shown that by improving
the stress distribution and lowering the chance of failure,
exponential grading may greatly improve the material’s per-
formance. Furthermore, the advent of sophisticated compu-
tational approaches has made it possible to model and simu-
late FGMs more accurately, giving researchers a better
understanding of their intricate behavior.

No transient thermoelastic problems involving function-
ally graded materials have, as far as the authors are aware,
been resolved using generalized thermoelastic models in the
absence of energy dissipation (GNII model). The thermome-
chanical issue of FGM hollow cylinders, whose material char-
acteristics are supposed to be temperature-independent
and to fluctuate continuously in the radial directions, was
addressed by Shao et al. [5]. A finite difference approach
was used by El-Naggar et al. [6] to investigate the tran-
sient thermal stress in inhomogeneous orthotropic cylin-
ders. The one-dimensional thermal stress of functionally
graded spheres [7] and cylinders [8], whose elastic mod-
ulus and linear thermal expansion coefficients change line-
arly with radius, have accurate solutions given by Lutz and
Zimmerman. Using perturbation methods, Obata and Noda
[9] have studied the 1D functionally graded hollow sphere
and hollow cylinder. Qian and Batra [10] and Vel and Batra
[11] examined the 3D constant or transient thermal stresses
problem of functionally graded rectangular plates, whose

material properties vary with the power product form
across the thicknesses. However, the thermoelastic analysis
of cylindrical panels composed of FGM, spheres, and cir-
cular cylinders becomes significant due to the widespread
application of shell-type structures in numerous industrial
domains. Sankar and Tzeng [12] investigated the issue of
thermal disturbances in functionally graded beams with
two-dimensional steady state and with differences in ther-
moelectric properties which vary exponentially with thick-
ness. The stable thermoelastic issues of nonhomogeneous
slabs were analytically treated by Jeon et al. [13], assuming
that the thermal conductivity, the coefficient of linear thermal
expansion, and the shear elastic modulus change with the
power product form of the axial coordinate variable. In a study
conducted by Sugano [14], the transient thermal stress issue of
an inhomogeneous plate in one dimension was examined.
Othman and Abbas [15] studied the thermoelastic interactions
with energy dissipation in an inhomogeneous isotropic hollow
cylinder. Gunghas et al.’s study on the impact of magnetic field
on functionally graded thermoelastic material [16]. In viscoe-
lastic functionally graded plates, Sur and Kanoria [17] demon-
strated thermoelastic interaction. Abbas [18] investigated
the impacts of relaxation times in an inhomogeneous
hollow cylinder by the finite element approach. Reddy
and Chin [19] examined thermomechanical interaction
in functionally graded cylinders and plates. Abbas and
Zenkour [20] have applied the Lord and Shulman model
for the magneto-electrothermoelastic responses of infi-
nite functionally graded cylinders.

Numerous researchers have examined potential solu-
tions to numerous problems in the context of various gen-
eralized thermoelasticity theories. The different aspects of
the problem are examined in these studies by using more
complicated models like hyperbolic two-temperature photo-
thermal interaction in semiconductors media [21,22], vibra-
tional analysis of microbeams with twotemperatures [23], or
thermoelectric phonon coupling in metals [24,25]. The the-
ories of the GreenLindsay model have also changed with
constraints in the continuity of Green-Lindsay structural
analysis model have been introduced with force modifica-
tion [26]. The models of isotropic and transversely isotropic
plates in terms of nonlocality, rotation and two-temperature
effects have also been examined going further from modi-
fication [27–29]. Most other authors have also investigated
the microstructure and intrinsic rotation and contraction
in thermoelastic bodies [30,31] and deformation of voided
thermoelastic dipolar material [32]. In other studies, further-
more, finite element techniques were used to nonlinear
dual-phase lag bioheat models which assisted in heat
transfer formulations to living tissues [33,34] whereas,
fractional order three-phase lag models were used to
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study mechanical thermal stress in microstructures with
non-homogenous materials [35]. Generalized thermoelas-
ticity framework has been employed to model microscale
beams with moving heat sources [36]. Nonlinear thermo-
dynamics of laser bioheat models analyzed the biological
effects of laser on biological tissues [37]. There has also been
some research in thermomechanical analysis of shells made
of laminated composites and FGMs. Use of the equivalent
layer-wise formulation [38,39]. By the testing of 3D shell
models within the framework of the thermomechanical
modeling of FGM structures, predictors of the thermoelastic
models have been improved in many aspects [40,41].

The present work is to investigate non-homogeneous
FGMs with exponential fluctuations in more detail to better
understand their features and potential uses. This work
aims to clarify the impact of exponential gradation on
the thermo-mechanical performance of the material by
using both numerical and analytical methods, providing
important information for the development and refine-
ment of sophisticated engineering materials.

2 Basic equations

With timed pulse heat sources dispersed throughout a
plane region, we examine functionally graded materials
isotropic indefinitely extended thermoelastic medium with
an uniform reference temperature To. The Green–Naghdi
model GNII (TEWED)-based dynamic coupled generalized ther-
moelasticity’s governing field equations are expressed as [3,4]:
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3 Formulations of the problem

An isotropic thermoelastic functionally graded medium is
the subject of the study. The half-space’s bounding plane
points inward when the x-axis is taken perpendicular to it,
and this is the region where it is situated, ≤ ≤x l0 , as in
Figure 1.

Temperature T and displacement vector →
u may be

expressed as follows, assuming that the state of the mate-
rial depends solely on x and t:

( ) ( ( ) )= → =T T x t u u x t, , , , 0, 0 . (7)

Presumably, the only variable affecting the properties
of the material is the x -coordinate. As a result, we regard

( )f X as ( )f x . The constitutive equation, the motion equa-
tion, and the heating conduction relation in the context of
the generalized thermoelastic theory upon one GNII model
can be stated by
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Now, let us suppose that ( ) =f x e

ax , where a is a con-
stant without dimensions [42] and the energy source,

( )Q x t, , on the surface of the material may be used to char-
acterize conduction heat transfer as a one-dimensional
problem [43]:

X
Func�onally graded material 

( ) = 0,
( )

= 0

Figure 1: Schematic of the problem.
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Next, simplifying Eqs. (8)–(10) to
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4 Initial and boundary conditions

The formulae can only be solved if the beginning and
boundary criteria listed below are met:
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The basic equations might be made simpler by using
these dimensionless variables.
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Applying Laplace transforms to Eqs. (18)–(22) may
result in the following:
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Combining formulations (23) and (24) yields the
following expression for the vector-matrix differential
equations:
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The eigenvalues approach has been successfully used
to represent the characteristic equation of matrix A in
terms of the solution obtained from (27) as previously
stated in works [35,44]. As a result, the following is the
distinctive formulation of the A matrix:
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The eigenvalues of matrix A are determined by the
four roots of the equation, denoted as ω ω ω ω, , ,
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solutions to this equation are as follows:
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The problem boundary conditions represent the con-
stants B B B B, , ,

1 2 3 4
and [ ]=f f f f f, , ,
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Numerical inversion methods were used to find the
general solution’s displacement, temperature, and stress
distribution. The use of Riemann-sum approximation
methods allowed for the observation of the numerical find-
ings. The following method was used to translate the func-
tion from the Laplace domain to the time domains:
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Here, the real component is represented by Re, while
the imaginary unit is denoted by i. Equation [45] is satisfied
when =p t4.7/ is used, as shown by numerical testing.

5 Numerical results

This work applies extended thermoelastic theory without
energy dissipation to an isotropic medium and examines
the thermoelastic responses to laser heat sources with
timed pulse. An outline of the material specifications is
provided below [18]:
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The generalized thermoelastic model without energy
dissipation is used to numerically calculate the physical
parameters for the distance x as in Figures 2–10. The pur-
pose of this study is to examine how nonhomogeneity
affects temperature, stress, and thermal displacement for
FGMs. The findings are shown graphically in Figures 2–4.
The temperature, thermal displacement, and stress under (GN
II model) variation for time t = 0.3 and nonhomogeneity para-
meter a = 0, 2, and 4 is shown in Figures 2–4. To investigate
how nonhomogeneity affects temperature T with distance x ,
Figure 2 is shown. As x increases, the temperatures first
approach maximum values, satisfying the given boundary
requirements, and then, they progressively decrease until
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1
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Figure 2: The impacts of non-homogeneity on temperature variation. Figure 4: The impacts of non-homogeneity on the stress variation.
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Figure 3: The impacts of non-homogeneity on the variation of
displacement.
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they approach zeros. It is found that for a certain x , the mag-
nitude of T decreases with the nonhomogeneity parameter
and that at this value, the magnitude of T goes to zero. The

change of thermal displacement u vs x is shown in Figure 3,
where the nonhomogeneity parameter is assumed to be a = 0,
2, and 4 for (GN II model) to investigate the impact of non-
homogeneity in the range ≤ ≤x0 1. As can be seen from the
figure, the displacement starts from zeros according to the
problem boundary conditions and then the displacement
will rise to a maximum close to x = 0.15 and then decline
to zero. It is also noted that in this model, the displace-
ment component’s peak magnitude would decrease with
an increase in the nonhomogeneity parameter.

The thermal stress variation σxx vs distance x is shown
in Figure 4. It is evident that the stress follows a pattern,
starting its peak at negative values before steadily declining
to practically zero. Figures 5–7 illustrate how the length
of the laser pulse under inhomogeneity affects the stress
distribution, temperature, and displacement. As expected,
there are significant impacts of the laser pulse duration on
the temperature, displacement, and stress distributions.
Based on the results, Figures 8–10 illustrate how all physical
quantities fluctuate along the distances x for various laser

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
T

 t p = 0.2

 t p = 0.25
 t p = 0.3

Figure 5: The impacts of laser pulse time duration on temperature
variation.

Figure 7: The impacts of laser pulse time duration on the stress variation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 

-0.01

0

0.01

0.02

0.03

0.04

0.05

u 

 t p = 0.2

 t p = 0.25
 t p = 0.3

Figure 6: The impacts of laser pulse time duration on displacement
variations.
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Figure 8: The impacts of laser intensity on temperature variations.
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Figure 9: The impacts of laser intensity on the displacement variation.
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intensity values under non-homogeneity. Based on these
results, it can be said that all of the physical quantities are
significantly impacted by the laser’s intensity when it is
exposed to non-homogeneity.

6 Conclusion

The investigation establishes that the factors of nonhomo-
geneity, the duration of laser pulses, and the level of laser
beam focus play a significant role during the thermoelastic
responses of the FGMs. The approach of GNII model has
been useful in explaining how these effects combine and
influence the temperature, stress and displacement distri-
bution. The results lead to the following conclusions:
• Nonhomogeneity significantly influences the tempera-
ture, thermal displacement, and stress distributions. As
the nonhomogeneity parameter increases, both tempera-
ture and thermal displacement decrease, resulting in
reduced material deformation and stress.

• Temperature peaks at the surface and then declines to
zero as xx increases. This behavior becomes more pro-
nounced with higher nonhomogeneity.

• Displacement reaches a maximum at a particular dis-
tance before decreasing, with larger nonhomogeneity
causing a reduction in the peak displacement.

• Stress follows a similar pattern, starting with a negative
peak and decreasing towards zero, with higher nonho-
mogeneity resulting in smaller stress magnitudes.

• The length of the laser pulse greatly impacts the thermo-
elastic responses. Longer laser pulses lead to higher
values of temperature, displacement, and stress in non-
homogeneous materials.

• Increasing laser intensity leads to stronger variations in dis-
placement, temperature, and stress distributions, particularly

in the presence of nonhomogeneity, highlighting the signifi-
cant effect of laser power on the thermoelasticity behavior
of FGMs.
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