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Abstract: This article introduces a unique analytical solu-
tion with a layerwise approach for cross-ply laminated com-
posite cylindrical and doubly curved panels with clamped
boundary conditions at all four edges. Under a layerwise
(LW) description, from lower- to higher-order models based
on the Carrera unified formulation are built with Legendre
polynomials. The strong-form governing equations are
obtained by employing the principle of virtual displace-
ments displacement-based statement. The boundary discon-
tinuous Fourier-based method is employed to yield purely
analytical solutions. The high accuracy and efficiency of our
proposed methodology are evaluated by comparing the
results against those from the 3D finite element method
and the literature for various side-to-thickness and radius-
to-depth ratios. As a conclusion, the numerical results pre-
sented can be used as a benchmark for future comparative
analyses and finite elements.

Keywords: shell, CUF, layerwise theory, clamped, boundary
discontinuous, analytical

1 Introduction

Over the last few years, researchers have increasingly
focused their efforts on exploring the potential of multi-
layered structures, drawn by remarkable attributes such
as an impressive stiffness-to-weight ratio, low density,
exceptional resilience against impact and corrosion, and
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the capacity to tailor material properties to meet specific
requirements [1]. As a result, laminated composites have
gained widespread acceptance across a multitude of engi-
neering disciplines, encompassing aerospace, mechanical,
biomedical, marine, automotive design, and civil structures.
Notably, the application of multilayered curved structures,
often referred to as shells, stands out due to their intrinsic
curvature and aesthetically pleasing geometric shapes. These
characteristics endow them with outstanding load-bearing
capabilities, making them highly covered in the industry.
Theories for composite multilayered structures are
mostly classified as three-dimensional (3D) theories [2-10],
which are developed by employing the 3D elasticity equili-
brium equations and exhibit a high accuracy in exchange
for computational cost, and two-dimensional (2D) theories,
which emerge through the adoption of axiomatic hypoth-
eses derived from conjectures and practical experiences.
Within 2D theories, classical models such as classical shell
theory [11-14], based on Kirchhoff-Love [15-17] assump-
tions, first-order shear deformation theory [18], based on
the Reissner and Mindlin [19,20] assumptions, and higher-
order shell theories [21-29] mostly adopt two different
approaches: equivalent single layer (ESL) and layer-wise
(LW) approaches. ESL-based theories [30—33] consider multi-
layered structures as a single layer with homogenized prop-
erties, ie., the variables are independent of the number
of layers, reducing the computational resources required.
However, ESL models encounter challenges in accurately
reproducing the characteristic Zig-Zag (ZZ) effects observed
in laminates. Conversely, LW models can accurately capture
this behavior, as demonstrated by Reddy [34], where his so-
called generalized LW theory is presented. Carrera [35,36]
utilized Legendre polynomials to expand the displacement
field at a layer level. He employed the principal virtual of
displacement (PVD) and Reissner’s mixed variational the-
orem statements to build displacement-based and mixed
shell theories, respectively. Displacement-based LW theories
consider independent displacement fields within each layer.
They then enforce compatibility conditions at the interfaces
of laminae, effectively reducing the number of unknown
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variables in the analysis. Carrera [37,38] introduces his uni-
fied formulation (Carrera unified formulation [CUF]), which
allows us to express the displacement field as an arbitrary
and hierarchical expansion of the primary unknowns along
the thickness of both the plate and the shell. Carrera and
Brischetto [39,40] investigated the thickness locking for a
large variety of ESL and LW theories. An interesting exten-
sion was developed in previous studies [41-43], where
Demasi presents a generalized unified formulation (CUF)
based on either PVD or the Reissner mixed variational the-
orem (RMVT). Ferreira [44] and Ferreira et al. [45] discre-
tized an LW shear deformation theory for composite lami-
nated plates using a meshless method called multiquadrics.
Tornabene et al [46] investigated the static behavior of
doubly curved laminated composite shells and panels by
using CUF and the differential quadrature method. Plagia-
nakos and Papadopoulos [47] presented a novel higher-
order LW theoretical and the finite-element method (FEM)
for shallow cylindrical composite and sandwich simply sup-
ported shells. Li [48] and Li and Zhang [49] described an
accurate description of the multiple delamination and trans-
verse cracks in doubly curved laminated composite shells
by using the extended finite-element method and an LW
theory, previously developed for beams in the study of Li
et al [50]. Carrera and Valvano [51] performed static ana-
lysis of multilayered shells using ESL and LW theories and
even further variable kinematic models that combine ESL
and LW approaches. Carrera et al [52] extended the last
work to multilayered shell structures embedding piezoelec-
tric layers. Kumar et al [53] considered the modal analysis
of delaminated composite shell structures with double cur-
vature geometry by employing CUF and mixed interpolation
of tensorial components. Petrolo and Carrera [54] provided
guidelines for the modeling approaches adopted over the
years to develop shell theories for composite structures.
Recently, Carrera et al [55] proposed hierarchical expan-
sions built using Jacobi polynomials in the CUF framework
to derive beam, plate, and shell models. Petrolo et al. [56]
implemented three types of structural theories based on
Taylor, Lagrange, and Jacobi polynomials in both ESL and
LW ways and exploited the stress recovery technique to
analyze composite structures.

As noted, there has been considerable advancement in
the investigation of cylindrical and doubly-curved panels
using 3D, ESL, and LW theories. However, a predominant
emphasis in these investigations has been on structures
with simply supported boundary conditions, resulting in
a comparatively limited examination of clamped shells.
Specifically, there is a notable lack of analytical solutions
for these types of structures. Chaudhuri and Kabir [57,58]
developed analytical solutions for moderately thick cross-
Pply laminated doubly curved panels under diverse boundary
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conditions, such as SS1- and SS2-type simply supported and
C4-type clamped constraints. They employed their boundary-
discontinuous double-Fourier series-based method, which
was developed in previous studies [59,60]. The boundary-dis-
continuous methodology alongside a higher-order theory
allowed Oktem and Chaudhuri to model a cross-ply thick
rectangular plate [61] and a doubly-curved panel [62]. They
studied a shell structure with C4-type clamped support on two
opposing edges, while the remaining two edges were sub-
jected to SS3-type constraints. Moreover, Oktem and Chaud-
huri [63] extended their analysis to a cross-ply-laminated
plate with C3-type clamped boundary conditions at all four
edges. Canales and Mantari [64,65] combined CUF and the
boundary-discontinuous method to develop a static analysis
of cross-ply laminated beams. Laureano et al successfully
applied this technique and extended it to isotropic, cross-ply
laminated, and sandwich plates [66] and functionally graded
(FG) structures [67], obtaining accurate numerical results.
For more details about the boundary-discontinuous double
Fourier series-based method, refer to previous studies
[68-71]. Excellent and comprehensive reviews of composite
shell theories can be found in the literature [72-76].

This article presents analytical closed-form solutions
for analyzing the static behavior of cylindrical and doubly
curved panels with clamped boundary conditions applied
to all four edges. The governing equations for doubly
curved panels are derived from the PVD. The core innova-
tion of this research lies in a unique methodology that
integrates CUF with the boundary-discontinuous double-
Fourier series method, implemented under the LW
approach, to yield quasi-3D numerical results. To the
authors’ best knowledge, the boundary-discontinuous is
expressed at a layer level of a shell structure for the very
first time in the literature. The present analytical modeling
clearly shows robustness and superior performance over
the ESL-based shell models in accurately capturing displa-
cement behavior and stress distributions across the entire
thickness.

2 Analytical modeling

In Figure 1, (a, 5, z) is a curvilinear reference coordinate
system where a and S are orthogonal coordinates of the
multilayered panel. The radii of curvature, R, and Rp, are
constant at each point of the middle (reference) cross sec-
tion (z=0). In some other studies [48,57,58], the global
thickness coordinate is alternatively denoted by (. k sig-
nifies the layer starting from the bottom. N; is the total
number of layers. The region occupied by the midsurface
of the shell is:
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Figure 1: Geometry and reference system of a doubly curved panel.
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In order to develop an LW model, the following local
variables are required:
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where z; and {; are the physical coordinate and non-
dimensioned layer coordinate, respectively. Both corre-
spond to crucial terms to work with each layer. In this
work, doubly curved panels and cylindrical panels (either
Ry — o or Rg — =) are considered.

2.1 Elastic stress-strain relations

The transposed displacement vector u¥ for each layer is
introduced in the following:

uk = {uk vk wkit, 3
The components of linear normal and shear stress and

strain in the orthogonal curvilinear coordinate system are
expressed as:

0% = {04y Ol Tis Tay Thy Th1T, )
&5 = {eqq Eip Vig Vo Vi, €3 6)

Note that Egs. (4) and (5) use analogous notations to distin-
guish between normal (o and ¢) and shear (7 and y)
components.

The stress and strain vectors in Egs. (4) and (5) are
divided into in-plane (o}, &,) and out-of-plane (oy, &)
components:

o, = {04y Tfp Tapl, (6a)
o = {1, T, o) (6b)

Layerwise generalized formulation solved via boundary discontinuous method for shells

-_ 3
&y = {ek, s VU’&,}T, (7a)
&x =, Vi, et (7b)

In the case of shells with constant radii of curvature,
the in-plane el’,‘ and out-plane &) are linearly related to the

displacement u*:

gy = (Dp + Apuk, (8a)
S,If = (Dnp + Dy - Apuk, (8b)

where Dy, Dy, Dy, Ap, A, denote in-plane and out-of-plane
differential operators:

19 0
H, da 00 —
19 HqR,
= 0 . A 0 =
De Hiof | % oo —H1R , ©a)
10 10 Y
Hp 0B H,oa 00 0
)
10 — 0 0
00 ——
H, da 0z 3
an_ 1 0] Dyp=({0 — 0]
00 ——— 0z
Hp op 5
0 0 —
00 0 0z (9b)
! 0 0
HR,
Ac=| o 1|
HgRp
0 0 0

Details of Eqs. (8a), (8b), (9a), and (9b) are given in the
study of Carrera [38]. The parametric coefficients used in
Egs. (9a) and (9b) are

Hyo=1+ 2% 10
a Ral ( a)
Zk
Hg=1+ R (10b)
B

where R, and Rg are the radii of curvature in the a, 8
directions, respectively.
Then, the stress-strain relation can be written as below:

k- gk ok, pkoLk
6, = Cp, & + Cy &, (11a)
ok = G gk + ¢Xgk (11b)
n np€p nn®n -+

. sk xk ok ~k
In the above equations, C,,, Cy,, Cy, and Cy, are
matrices of material coefficients of the k-layer. As ortho-
tropic layers with cross-ply lamination are considered,

each matrix is defined as follows:
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Ch Gy 0 Gs 0 0
sk _ | xk o xk L =k
Cpp‘ Cp Cp O Cu=[0 Cy O}
sk =k
0 0 Cg 0 0 Cx 12)
00 G
&= el k
pn= =nmp 710 0 Cps
00 O

Since orthotropic materials are the focus of this study,
the mathematical relationships between the stiffness coef-
ficients and the material properties are detailed in Reddy’s
book [1]. Fibers are oriented on planes parallel to the (a, )
plane.

2.2 Displacement field

Based on Carrera [38], the CUF-based model introduces a
free parameter, denoted as N, which represents the order
of the model under the LW description (for each layer). In
this way, several theories can be built in a compact form as
follows:

k= B(Ouj(a, B) + EQuf(a, B) + B(Ouf(a, B), (13a)
vk = B(OVvi(a, B) + BV (a, B) + BV (a, ), (13b)
wk = B(Owj(a, B) + E(wi(a, B) + E(w{(a, B),

where b and t denote the bottom and the top of the shell,
respectively. Eq. (12) can also be written in a compact form:

uk = E(Q) uf(a p),

Suk = K({) suf(a, B),
(r=2 3,.., N),

(13c)

7,s=t b, r
(14)

in which thickness functions F; and F; are Legendre poly-
nomials, defined in Table 1.

The displacement components should be linked in the
interfaces (compatibility) as follows:

uf=uf, k=1,N-1, (15a)
vE=v k=1,N-1, (15b)
wf=wk, k=1,N-1 (15c)

2.3 Governing equations

In order to extract the governing equations, the static ver-
sion of the PVD statement is used as follows:

SLin¢ = SLext, (16)
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Table 1: Thickness expansion functions
E(t=Db,2,3,4,1) F(C)
Fb &t
2
F 323
2
Fs 502 - 50k
2
Fy4 350 - 420%+7
8
F: Gt

2

Lins and Ley denote the virtual variation of internal and
external energy, respectively.

Considering strain—displacement relations (Eqs. (8a)
and (8b)), constitutive equations (Egs. (11a) and (11b)), the
compact form of CUF (Eq. (14)), and integrating by parts to
obtain strong form equations [38]:

]Vl T T
8Ling = ) ”(68{,‘ o) + 8g; 0,)dzdQ

k=1
QO Ay (17)

N
= 3 [oulRioukdey + [sulrmeuk dn,
k=1gk T

where K¥* is a 3 x 3 matrix called fundamental nucleus
and IT¥ js the matrix of the natural boundary conditions.
Unlike the version for plates, additional operators con-
taining curvature terms are included, e.g., A, and A,. The
components of KX and I*™ are provided in Appendix A,
where the following integral parameter is defined in the
thickness direction:
Tv¢Syg _ ~
]abaﬁ - _[Cabpr)f;,gHaHﬁdZ (18)
Ay

Eq. (18) includes curvature terms H, and Hpg. This is due to
the nature of panels, unlike the generic parameter used for
beams and plates in [65-67]. Functions F; and F; are used as
in Table 1.

Moreover, RHS of Eq. (16), which is related to the
mechanical loading, is defined as follows:

N
SLew = 3 [ SulTPEdD, (19)

k=19,

T
where P¥ = [O 0 F.'s[z=%]qz] is the external load applied at

the top surface |z = g] of the shell.

Then, the explicit form of the differential equations is
given by:

SukT ;. Kksuk = pk, (20)



DE GRUYTER Layerwise generalized formulation solved via boundary discontinuous method for shells == 5
H m n
2.4 Boundary conditions V= S S VE singaa)cos(BB),
m=1n=0 (24b)
Egs. (21a)—(21h) list the geometric boundary conditions of 0<as<a 0<B<b
displacements for simply-supported (SSSS) shells:
m n
ufo(0,B) = 0, (212) wi = 3 Y Wi, sin(@a)sin(Bp),
' m=1n=1 (24C)
uk(a,p) =0, (21b) 0<a<a 0<B<h.
vr’fﬁ(a, 0)=0, (21¢) The load g, is also expanded in the Fourier series:
m n
vep(a, b) = 0, (21d) 4,= Y Y Quisin@a)sin(Bp),
m=1n=1 (24d)
wi(0, ) = 0, (21e) 0<as<a 0<B<h,
wk(a, B) = 0, (1f) where
ba
k = 4 _
w (@, 0) =0, 21g) Uk - EJ"[urk cos(@a)sin(Bp)dadp,  (25a)
wX(a, b) = 0. (21h) 00
ba
Additional constraints have to be added if clamped vk = 4 J’ J’ VK sin(@a) cos(BB)dadp, (25h)
(CCCC) boundary conditions are treated: ™ ab 00

uk(0,p) =0, (22a)
uk(a, p) = 0, (22b)
vK(a, 0) = 0, (22¢)
vK(a, b) = 0. (22d)
Likewise, Eqgs. (21a)—(21d) need to be rewritten as
inequalities:
uk,(0,B) # 0, (23a)
ukf(a,p)#0, (23b)
vip(a, 0) # 0, (23¢0)
vig(a, b) # 0. (23d)

2.5 Boundary-discontinuous solution

The well-known Navier-type solution is a commonly used
method for solving differential equations of simply sup-
ported structures. However, it is not applicable to fully
clamped shells, as it fails to satisfy the boundary conditions
specified in Eqs. (22a)—(22d) and (23a)—(23d). Therefore, the
robust boundary-discontinuous Fourier-based method
emerges as an alternative analytical approach. Based on

previous studies [59,60], the displacement variables uX, vX,

and w)X are expanded as follows:

uk= 3 Y UK cos(@a)sin(Bp),

m=0n=1

<a; 0<B<bh

(24a)
0<

5]

ba
(W, Q) = %{{(WT’% 4,)sin(@) sin(BB)dad, (250

a="% (25d)
a
B = % (25e)

This step introduces [N;(Nu - 1) + 1](3mn + m + n)
unknown variables, where m and n represent the wave
number of each trigonometric term in Eqs. (24a)-(24d)
and (25a)-(25e). Note that the load is considered trans-
versal to the cross-section, e.g., only bending phenomena
is studied. The Fourier-expansion is commonly used to
analyze several kinds of loads (see Reddy [1]).

The explicit form of the governing equations provided
in Appendix A highlights the presence of several partial
derivatives of displacements in Eqs. (24a)—(24c). It is impor-
tant to note that discontinuities arise due to the inequal-
ities in Egs. (23a)-(23d). In the next lines, the core aspects of
the proposed approach and its procedure are explained.
For instance, according to Eqgs. (23a) and (23b), uT’fa is forced
not to vanish at a = 0 and a = a, whereas VT’f p at B =0and
B = b. This idea should be removed, as it reflects basic
concepts of infinitesimal calculus. In that scenario, uf’fa is
expanded in the Fourier series:

ug = % iUrl; sin(@a) sin(Bp),

m=1n=1

O<a<a 0<p<Dh,

(26a)

The amplitude term Uy, is defined as:
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Tmn a b J’I T aSIH(aa) Sln(ﬁﬁ)dadﬁ (26b)

The determination of whether to use term-by-term
differentiation or Fourier coefficients is analyzed through
the following procedure:

b

ot - %{ 2

uk sin(aa)|2z8

(27a)

a
_2 _
- aa‘!uf cos(aa)da

sin(Bp)dB,

vk =-a —_U uk, cos(aa) sin(Fp)dadp,  (27b)
Uy, =-aUug. 27c)
Replacing Eq. (27¢) in Eq. (24a):
m n
W= -a UX sin(aa)sin(Bp),
mz=1n§1 " PP (28)

0O<a<a 0<B<Dh.

Therefore, Eq. (28) shows that uT’fa can be obtained by
term-by-term differentiation.

Since discontinuities are presented for ur’fa, the second
derivative is expressed as follows:

k
u‘[,aa -

+ N =
Mz LM

ax sin(Bp)

2 Ux, .. cos(aa)sin(Bp), (292)

1n=

0O<a<a 0<B<Dh,

3
I
N

where the amplitude associated with the displacement
variable is:

ba
- iJ— I U q cOS(@a) sin(BB)dadp.  (29b)

Tmn,aa ab
00
An analogous procedure of Eq. (26b), by applying inte-
gration by parts in Eq. (27b), the following is obtained:

b

ok, -2

0

uk cos(@a)lizs

. (30

I P
" aEJ—ur,asm(aa)da sin(BB)dp.
0

Since discontinuities are well-stablished in Egs. (23a) and
(23b) as inequalities, no vanishing conditions can be applied here:
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b
Uk, - %{[(—1)%;‘,&((1, B) - uku(0, )] sin(FH)B

ba (31a)
¥ aiﬂufﬂ sin(d@a) sin(BB)dadg,
4 ’ X _
vk, = EI{(—l)Muf’fa(a, p) -l pIsnBpIp
+avg,,
4 ‘ _
U = a—bIK—l)Mur’fa(a, B) - uki 0. plsnBpAE

— a2Uk

Tmn

Replacing Eq. (31c) into Eq. (29a):
1 n

w3 L0

+ 4, b ] cos(@a) sin(Bp),

where dT’; , ET’; introduce [N;(Nu-1) + 1](2n) new unknown
variables. According to Chaudhuri and Kabir [57,58], they
are defined as:

52 17K =k
—a Urmn Ynlz,

sin(Bp) + ¥ Z

m=1n=1

N

(32)

b
- 4 L
@k, by) = —Jl#ulo(a B) ~ uk 0, Plsin(BB)ap. (B3)
0
In the inverse manner, the derivatives of the longitu-
dinal displacement can be expressed in terms of the new
Fourier coefficients:

(a0 B, k@ B) = =3 3 (saf + B)sinBp). 30
And y,,, ¥, are defined as
|4, 0), m = even
O ¥) = (0,1, m = odd. =

Furthermore, for the latitudinal displacement VT", an
analogous procedure is developed.

Z Zﬁ k sin(aa)sin(Bp). (36)

m=1n=1

The second partial derivative v 'pp 1s written as follows:

Zc sin(@a) + Z Z [-B%V, X+ per

m=1n=1
+ 4,d, | sin(@a) cos(Bp),

where CT , ETI; introduce [N;}(Nu-1) + 1](2n) new unknown
variables. These coefficients are given by

k
V. =
768 = 37)
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i} 47
@, ak = Ej[ivflfﬁ(a, B) - vi4(a, 0)]sin(@a)da. (38)
0
As in Eq. (34), the inverse manner of Eq. (38) is:

(v 5(a, 0), vy(a, b)) = -

| S

Y (+ck + df)sin(@a). (39)
m=1

Y ¥, are similar functions as Eq. (35).

The remaining partial derivatives can be obtained
through term-by-term differentiation as they do not deal
with discontinuities.

In order to match the number of equations, Egs.
(22a)—(22d) are required:

After substituting the longitudinal amplitudes in Egs.
(22a)-(22b), the clamped boundary conditions are devel-
oped as follows:

0

2 Uk =0, (40a)
m=13,5,...
vk + ) UK =o. (40D)
m=2,4,6,...

Analogous procedure with lateral amplitudes replaced
in Eqgs. (22¢)-(22d):

2 VE.=0, (41a)
n=13,5,...
vk + ) VE =0 (41b)
n=2,4,6,...

Finally, this procedure results in a linearly determined
algebraic system, yielding an analytical boundary-discon-
tinuous solution to the static problem.

3 Numerical results and discussion

In this section, the level of accuracy of the proposed LW
approach is investigated. The assessment is developed
within four problems including cross-ply laminated and
sandwich panels subjected to uniform distributed load.

Table 2: List of materials

Material E, E, Es Gz Giz Gy Vi Vi3 Vs
(GPa)

1 1725 6.9 6.9 345 345 138 025 0.25 0.25

2 (Al) 70 26.92 0.3

3(Zn) 168 64.62 0.3

4 0.7 0.269 0.3

Layerwise generalized formulation solved via boundary discontinuous method for shells
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The clamped boundary condition is set at all four edges
for all cases. The mechanical properties of the materials
employed in this study are reported in Table 2. The fol-
lowing dimensionless parameters are used for displace-
ments and stresses:

o Ezhottomhz
@v) = ——=—Wwv),
q,a
~ Ezbottomhg
w = - W,
q,a

2

o h
(Oaas Opp» Taﬁ) = D (Faas OpB, Taﬂ),
q,a

(a) 9 T r r : . . i
o A dbddddddddddddddddddtdddddd
AdA

85 £0000000000000000000000000000060009
Rad

103w
75
i
71
= = =Present LD1
6.5 Qe Present LD2
» @+ Present LD3
—A&— Present LD4
6 A I . L A I A
0 20 40 60 80 100 120 140 160 180 200
Number of trigonometric terms
b

= = =Present LD1

Qe Present LD2
1.5 Al @+ Present LD3
—&— Present LD4

0 20 40 60 80 100 120 140 160 180 200
Number of trigonometric terms

Figure 2: Problem 1. Convergence of non-dimensional (a) transverse

displacement 1031~y and (b) in-plane stress 10%G [ ,,] of two-layer
aa|z=7

antisymmetric [0°/90°] spherical panel at the point [a = %, B= —] as

. a R
m, n are increased. [E =4, = 5].
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_ h
(Taz> Tpz) = qz_a(Taz; Tz)s

_ 1
Ozz = — 0z
z
The proposed approach was implemented in a MATLAB
code, where stress components are computed through consti-
tutive relations (Eqs. (11a) and (11b)). Both past semi-analytical
[26] and analytical [56] solutions are utilized for comparison
purposes. Furthermore, 3D FEM and EDZ4 through-the-thick-
ness distributions, which were provided by Tornabene et al
[46], are also used to assess the validity of the shell models
presented.

3.1 Convergence analysis

The accuracy of the boundary-discontinuous method is
highly dependent by the number of trigonometric terms,
denoted as m, n. Figure 2 shows the variation of both trans-
versal displacement (w) and normal stress (G,,) as m, n are
increased. The structure in the study is a [0°/90°] cross-ply
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laminated spherical panel made of material 1. Particularly
for higher order models such as LD3 and LD4, an oscilla-
tory pattern of g, is noticeable in Figure 2b even for the
highest values m, n =2 200. Then, it is crucial to select an
appropriate value for m, n, considering that higher values
of m, n lead to increased computational expenses. Hence,
for the upcoming tables and figures, a choice of 150 is made
for both m and n. This selection strikes a good balance
between achieving accuracy and managing the necessary
computational resources.

3.2 Problem I: Cross-ply laminated spherical
panel

For the initial problem, symmetric [0°/90°/0° and 0°/90°/90°/
0°] and antisymmetric [0°/90°] lamination schemes, which
are made of material 1, are studied. The numerical results
of central transversal displacement (W) of the present LW
models and those of the literature [26,56] are reported in
Table 3. From shallow to deep spherical shells and various
length-to-thickness ratios are considered. A strong

Table 3: Problem I. Numerical results of the dimensionless central transversal displacement (10°w) for different values of a/h and R/a

R/a Model a’/h =10 a/h =20 a/h =50
0°/90° 0°/90°/0° 0°/90°/90°/0° 0°/90° 0°/90°/0° 0°/90°/90°/0° 0°/90° 0°/90°/0° 0°/90°/90°/0°
2 Bigdeli and Aghdam [26] — 1.715 1.723 — 0.518 0.523 — 0.092 0.092
Present LD1 1.960 1.786 1.773 0.620 0.519 0.539 0.090 0.090 0.092
Present LD2 1.966 1.800 1.783 0.619 0.520 0.539 0.090 0.090 0.092
Present LD3 1.976  1.798 1.783 0.617  0.519 0.538 0.089  0.090 0.092
Present LD4 1.976 1.798 1.783 0.617 0.519 0.538 0.089 0.090 0.092
3 Bigdeli and Aghdam [26] — 2.715 2.688 — 0.943 0.956 — 0.209 0.217
Present LD1 3.203 2.883 2.831 1.252 0.965 0.996 0.228 0.202 0.214
Present LD2 3.226  2.922 2.866 1.253 0.971 0.998 0.228 0.202 0.214
Present LD3 3270 2.929 2.869 1253  0.970 0.998 0.227  0.202 0.214
Present LD4 3.270 2.929 2.869 1.253 0.970 0.998 0.227  0.202 0.214
5 Bigdeli and Aghdam [26] — 3.777 3.685 — 1.535 1.556 — 0.492 0.521
Present LD1 4.622 4.105 3.984 2365 1.622 1.653 0.646  0.482 0.514
Present LD2 4.678 4.185 4.058 2.375 1.643 1.665 0.646  0.483 0.514
Present LD3 4785  4.207 4.069 2.385 1.644 1.666 0.645 0.483 0.514
Present LD4 4785  4.208 4.069 2.385 1.644 1.666 0.645  0.483 0.514
10  Chaudhuri and Kabir [57] 5.580  4.730 — — — — — — —
Bigdeli and Aghdam [26] 5.970  4.493 4.345 — 2.049 2.075 — 1.018 1.069
Present LD1 5.644  4.963 4.780 3.653 2.229 2.249 1.814 1.020 1.072
Present LD2 5.733 5.081 4.892 3.681 2.269 2.273 1.818 1.025 1.074
Present LD3 5.900 5.120 4.909 3.715 2.273 2.276 1.819 1.025 1.075
Present LD4 5.901 5.120 4,909 3.715 2.273 2.276 1.819 1.025 1.075
20 Bigdeli and Aghdam [26] — 4.715 4.545 — 2.231 2.259 — 1.356 1.416
Present LD1 5.968 5.233 5.029 4212 2.452 2.466 3.075 1.379 1.438
Present LD2 6.069 5.364 5.154 4.251 2.501 2.497 3.090 1.388 1.443
Present LD3 6.258  5.408 5.173 4299 2.506 2.500 3.094 1.388 1.443
Present LD4 6.260  5.409 5.173 4299 2.506 2.500 3.094 1.388 1.443
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agreement for thin structures is achieved. Moreover, a
good concordance with the study by Petrolo et al. [56] for
the moderately thick three-layer symmetric case [0°/90°/0°]
is obtained. Figure 3 shows the through-the-thickness dis-
tribution of W, Ggg, Taz, Tz, Of @ two-layer [0°/90°] moderately

thick and moderately deep lg =10, % = 10] cross-ply lami-

nated case at the point

low-order and higher-order theories (from LD1 to LD4) are
plotted. It is worth mentioning that only constitutive equa-
tions were employed to obtain the out-of-plane stresses. As
it is seen in Figure 3c, the interlaminar continuity (IC) for

a-= %, B= g]. The performance of

Layerwise generalized formulation solved via boundary discontinuous method for shells
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the shear stress 7,, is met at the top and the bottom only for
higher-order models such as LD3 and LD4. Furthermore,
the best performance of normal stress g, is achieved with
LD4 as the free boundary conditions is fulfilled at the
bottom and the top of the structure. The through-the-thick-
ness distribution of it, w, Ggg, Tp,, and d,, the symmetric case
[0°/90°/0°] is shown in Figure 4. Figure 4a illustrates the
capability of all LW models to capture the ZZ effect of the
longitudinal displacement & at the interfaces. As is seen in
Figure 4d and e, for out-of-plane components 7g,, d;;, there
is a slight discontinuity at the interfaces; hence, the IC
conditions are not fulfilled a priori and a post-process
stress recovery technique might be required.
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Table 4: Problem II. Numerical results of displacements and stress components at the point |a = %, B= Z]

Theories 10%q , 1029 102G aa(z=0) 10%%Tap( 10%Tay 4 102G,
-4 -4 -4 -4

FEM 3D [46] 1.004 0.347 2.083 1.088 4.066 47.390

EDZ4 [46] 1.006 0.347 2.077 1.003 4.064 46.350

Present LD1 1.052 0.337 2.051 0.873 4.246 42.682

Present LD2 1.052 0.339 2.058 0.864 4.170 42.564

Present LD3 1.051 0.339 2.059 0.864 4.256 42.612

Present LD4 1.051 0.339 2.059 0.864 4.255 42.613

3.3 Problem II: Sandwich (Zr/Al/Zr) spherical
panel

For the second problem, a three-layer sandwich spherical
panel (R, = Rg = 1) case is investigated in this work. The
external layers are made of material 2 (zirconia), whereas
the core is made of material 3 (aluminum). The thickness of
each layer is considered hgyi, = 0.03 m and Acppe = 0.04 m.
The side dimensions are as follows: a = 1.0472 m and b =
2.0944 m. The through-the-thickness distribution of i1, w,

a=1,
Figure 5. For comparison purposes, the 3D FEM and EDZ4
results provided by Tornabene et al. [46] are also plotted.
An excellent agreement is exhibited for the longitudinal
displacement i1, whereas for the deflection w, a slight
deviation is presented. For in-plane &,, and out-of-plane
0;;, stress components are described accurately by the
LD4 shell model. Furthermore, the shear stress 7, is
captured accurately all along the thickness except at
the interfaces where the discontinuities are exhibited as
only constitutive equations are employed. Moreover, LD3
and LD4 exhibit superior performance as they fulfilled
the free-surface boundary conditions at the top and the
bottom surfaces. In Table 4, the displacements and the
in-plane and shear stresses calculated by LW models are
presented. Clearly, LD4 is capable to accurately describe
the transverse displacement w and normal stress G, as
the maximum relative errors are less than 2.2 and 1.2%,
respectively.

o_'aa; Taz; and 622 at the point

b .
B= Z] are shown in

3.4 Problem III: Sandwich (Zr/Al/Zr)
cylindrical panel

As the previous problem, Tornabene et al. [46] provided
reference results which are compared with the proposed
LW shell theories in this work. In this case, a three-layer

sandwich cylindrical (R, — »,Rg = 2) panel is investi-
gated. The thickness of each layer is considered: hg, =
0.018 m and h¢gre = 0.024 m. The side dimensions are the
same as the previous spherical problem. Figure 6 shows
the through-the-thickness distribution of &t, w, dgg, Tup, Taz»

a=§B=1
excellent agreement by all LW models with the references
for the longitudinal displacement ii. For transverse displa-
cement 1w, the relative error is less than 3.2% in almost all
along the thickness between LD4 and references. Both
normal Ggg and shear 7,z stresses are captured accurately
even by lower order models, e.g., LD1 and LD2. Further-
more, an excellent response of shear stresses Ty, Tg, with
the reference solution is exhibited by LD4 as the IC and free-
boundary conditions are fulfilled. The numerical values of
displacements and stresses are reported in Table 5. For the
selected points, LD4 clearly achieves the best description for
all components, exhibiting a relative error of 1% for shear
stress 7., and less than 3.5% for d,.

and Tg, at the point . As it is seen, there is an

3.5 Problem IV: Sandwich (Zr/Soft Core/Zr)
cylindrical panel with a soft core

For the last problem, the same geometry of the previous
case is studied: a three-layer sandwich cylindrical panel.
However, the core utilized for this case is made of material
4, which is softer than aluminum. Figure 7 shows the
through-the-thickness distribution of &t, W, Gy, and 73, at

the point

b o
a= %, B= Z]' The main difference when a softer

core is utilized is the presence of the ZZ effect in the long-
itudinal displacement i1, which is well captured by all LW
models. Furthermore, the behavior of transverse displace-
ment w presents different slopes at each layer. An inter-
esting situation occurs for the normal stress g,, as the
value of this component is 0 in the core region. This
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Figure 6: Problem III. Through-the-thickness variation of i, W, Ggg, Tug, Tuz, Tpz

aluminum/zirconia lamination scheme.
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at the point [a = %, B= g] of a cylindrical panel with a zirconia/



14 —— Ronaldo Walter Laureano and José Luis Mantari DE GRUYTER
Table 5: Problem III. Numerical results of displacements and stress components at the point [a = %, B= %]
Theories 24, 2= 26 27, 27, 26;

10 uz:% 10°W(;-¢) 10 a““[z:%] 10 Taﬁ[z=%l 10 T“Z[ZJ] 10 o‘zz[z:%]
FEM 3D [46] 1.468 0.620 5.501 3.909 10.570 44.480
EDZ4 [46] 1.470 0.621 5.432 3.898 10.580 43.460
Present LD1 1421 0.598 5.913 3.792 10.253 41.581
Present LD2 1.437 0.606 5.673 3.832 10.248 41.818
Present LD3 1.437 0.607 5.691 3.832 10.465 41.751
Present LD4 1.437 0.607 5.690 3.832 10.465 41.757

4 Conclusions

indicates the superior capabilities of this material to
absorb more efficiently and manage the loads applied to
the structure. LD3 and LD4 exhibit a superior performance
capturing the shear stress 7z, as the IC and the free-
boundary conditions are met.

In this article, the static behavior of clamped cylindrical
and spherical panels is investigated using a robust analy-
tical methodology that leverages the versatility of CUF and
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the high precision of the boundary-discontinuous Fourier-
based method. Several lower- to higher-order models
based on CUF are implemented to predict the displace-
ments and stresses when a uniform load is applied to the
top of the structure. The strong form of governing equa-
tions is obtained by using the PVD statement. The
boundary-discontinuous Fourier-based method is used to
solve the governing equations of shells at a layer level for
the very first time achieving highly-accurate numerical
results. The following main conclusions can be drawn:

* The numerical investigation concludes that LW shell models
have superior capabilities compared to ESL models as they
are able to obtain quasi-3D results and reproduce the typical
77 effect in composite laminated shells.

* An appropriate value for the number of trigonometric
terms m, n leads to highly accurate results as the
boundary discontinuous method is strongly dependent
on this value.

* As demonstrated in the previous section, higher-order

LW shell theories are capable of fulfilling the free sur-

face boundary conditions and the interlaminar conti-

nuity in almost all cases without requiring a post-process
stress recovery technique.

The closed-form solutions for fully clamped shells obtained

through LW theories and the boundary discontinuous

Fourier-based method require higher computational cost

than ESL-based theories. However, the computational

time is significantly reduced in comparison to finite-ele-
ment solutions.

Future works can include other types of polynomials
such as Chebyshev and Jacobi in the CUF-based displace-
ment field. Furthermore, the development of mixed shell
theories by employing the RMVT would be quite inter-
esting as the C? requirements are fulfilled a priori.

Acknowledgements: The authors would like to thank the
University of Engineering and Technology, Barranco, Peru,
for supporting present work.

Funding information: Authors state no funding involved.

Author contributions: All authors have accepted responsi-
bility for the entire content of this manuscript and con-
sented to its submission to the journal, reviewed all the
results and approved the final version of the manuscript.
Ronaldo Walter Laureano: writing draft, date analysis,
editing. José Luis Mantari: conceptualization, writing,
revision.

Layerwise generalized formulation solved via boundary discontinuous method for shells

- 15

Conflict of interest: Authors state no conflict of interest.

Ethical approval: This work does not contain any experi-
ments with human participants or animals undertaken.

Data availability statement: The data supporting this
study will be made available upon reasonable request.

References

[11  Reddy JN. Mechanics of laminated composite plates and shells:
theory and analysis. Boca Raton: CRC Press; 2004.

[2] RenJG. Exact solutions for laminated cylindrical shells in cylindrical
bending. Compos Sci Technol. 1987;29:169-87.

[31 Varadan TK, Bhaskar K. Bending of laminated orthotropic cylind-
rical shells - an elasticity approach. Compos Struct. 1991;17:141-56.

[4] Bhimaraddi A. Three-dimensional elasticity solution for static
response of simply supported orthotropic cylindrical shells.
Compos Struct. 1992;20:227-35.

[5]1 Bhimaraddi A. Three-dimensional elasticity solution for static
response of orthotropic doubly curved shallow shells on rectan-
gular planform. Compos Struct. 1993;24:67-77.

[6] Fan), Ding K. Exact solutions for thick laminated closed cylindrical
shells with two clamped edges. Appl Math Model. 1993;17:632-41.

[71 Brischetto S. Exact three-dimensional static analysis of single- and
multi-layered plates and shells. Compos Part B. 2017;119:230-52.

[8] Monge JC, Mantari JL. 3D elasticity numerical solution for the static
behavior of FGM shells. Eng Struct. 2020;208:110159.

[91 Monge JC, Mantari JL, Arciniega RA. Computational semi-analytical
method for the 3D elasticity bending solution of laminated com-
posite and sandwich doubly-curved shells. Eng Struct.
2020;221:110938.

[10] Monge JC, Mantari JL. Exact solution of thermo-mechanical analysis
of laminated composite and sandwich doubly-curved shell.
Compos Struct. 2020;245:112323.

[11] Fliigge W. Stresses in shells. Berlin: Springer-Verlag; 1960.

[12] Leissa AW. Vibrations of shells. NASA Sp; 1973. p. 288.

[13] Kraus H. Thin elastic shells. New York: John Wiley & Sons; 1967.

[14] Gould PL. Analysis of shells and plates. Berlin: Springer-

Verlag; 1988.

[15] Kirchhoff G. Uber das gleichgewicht und die bewegung einer
elastischen scheibe. ] Reine Angew Math. 1850;1850(40):51-88.

[16] Love AEH. On the small free vibrations and deformations of the
elastic shells. Philos Trans R Soc A. 1888;17:491-546.

[17] Love AEH. A treatise on the mathematical theory of elasticity.
Cambridge: Cambridge University Press; 1927.

[18] Naghdi WT. The theory of shells and plates. Handb Phys.
1972;6:425-640.

[19] Reissner E. The effect of transverse shear deformation on the

bending of elastic plates. ASME ] Appl Mech. 1945;12:69-76.

Mindlin RD. Influence of rotatory inertia and shear in flexural

motions of isotropic elastic plates. ASME ] Appl Mech.

1951;18:1031-6.

[20]



16

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31

32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

= Ronaldo Walter Laureano and José Luis Mantari

Whitney JM, Sun CT. A higher order theory for extensional
motion of laminated anisotropic shells and plates. ] Sound Vib.
1973;30:85.

Whitney JM, Sun CT. A refined theory for laminated anisotropic
cylindrical shells. ] Appl Mech. 1974;41:471-6.

Reddy JN, Liu CF. A higher-order shear deformation theory for
laminated elastic shells. Int J Eng Sci. 1985;23:319-30.

Khdeir AA, Librescu L, Frederick D. A shear deformable theory of
laminated composite shallow shell-type panels and their response
analysis II: Static response. Acta Mech. 1989;77:1-12.

Alijani F, Aghdam MM, Abouhamze M. Application of the extended
Kantorovich method to the bending of clamped cylindircal panels.
Eur ) Mech. 2008;27:378-88.

Bigdeli K, Aghdam MM. A semianalytical solution for the bending of
clamped laminated doubly curved or spherical panels. ] Mech
Mater Struct. 2010;5:855-73.

Mantari JL, Oktem AS, Guedes Soares C. Bending and free vibration
analysis of isotropic multilayered plates and shells by using a new
accurate higher order shear deformation theory. Compos B.
2012;43:3348-60.

Tornabene F, Liverani A, Caligiana G. Static analysis of laminated
composite curved shells and panels of revolution with a posteriori
shear and normal stress recovery using generalized differential
quadrature method. Int ] Mech Sci. 2012;61:71-87.

Tornabene F, Liverani A, Caligiana G. Laminated composite rec-
tangular and annular plates: A GDQ solution for static analysis with
a posteriori shear and normal stress recovery. Compos B.
2012;43:1847-72.

Fares ME, Youssif YG. A refined equivalent single-layer

model of geometrically non-linear doubly curved layered

shells using mixed variational approach. Int ] Non-Linear Mech.
2001;36:117-24.

Reddy JN. On the generalization of displacement-based laminate
theories. Appl Mech Rev. 1989;42:213-22.

Dennis ST. A Galerkin solution to geometrically nonlinear lami-
nated shallow shell equations. Comput Struct. 1997;63:859-74.
Balah M, Al-Ghamedy HN. Finite element formulation of a third
order laminated finite rotation shell element. Comput Struct.
2002;80:1975-90.

Reddy . A generalization of two-dimensional theories of
laminated composite plates. Commun Appl Numer Methods.
1987,3:173-80.

Carrera E. Multilayered shell theories accounting for layerwise
mixed description, Part 1: Governing equations. AIAA J.
1999;37:1107-16.

Carrera E. Multilayered shell theories accounting for layerwise
mixed description, Part 2: Numerical evaluations. AIAA J.
1999;37:1117-24.

Carrera E. Theories and finite elements for multilayered, aniso-
tropic, composite plates and shells. Arch Comput Methods Eng.
2002;9(2):87-140.

Carrera E. Theories and finite elements for multilayered plates and
shells: a unified compact formulation with numerical assessment
and benchmarking. Arch Comput Methods Eng. 2003;10:215-96.
Carrera E, Brischetto S. Analysis of thickness locking in classical,
refined and mixed multilayered plates theories. Compos Struct.
2008;82(4):549-62.

Carrera E, Brischetto S. Analysis of thickness locking in classical,
refined and mixed theories for layered shells. Compos Struct.
2008;85:83-90.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51

[52]

[53]

[54]1

[55]

[56]

[571

[58]

[59]

DE GRUYTER

Demasi L. 6 mixed plate theories based on the generalized unified
formulation Part I: governing equations. Compos Struct. 2009;87:1-11.
Demasi L. © 6 mixed plate theories based on the generalized
unified formulation. Part III: advanced mixed high order shear
deformation theories. Compos Struct. 2009;87:183-94.

Demasi L. 6 Mixed plate theories based on the Generalized Unified
Formulation Part V: results. Compos Struct. 2009;88:1-16.

Ferreira AIM. Analysis of composite plates using a layerwise theory
and multiquadrics discretization. Mech Adv Mater Struct.
2005;12:99-112.

Ferreira AIM, Roque CMC, Jorge RMN, Kansa EJ. Static deformations
and vibration analysis of composite and sandwich plates using a
layerwise theory and multiquadrics discretizations. Eng Anal Bound
Elem. 2005;29:1104-14.

Tornabene F, Fantuzzi N, Viola E, Carrera E. Static analysis of
doubly-curved anisotropic shells and panels using CUF approach,
differential geometry and differential quadrature method. Compos
Struct. 2014;107:675-97.

Plagianakos TS, Papadopoulos EG. Coupled higher-order layerwise
mechanics and finite element for cylindrical composite and sand-
wich shells with piezoelectric transducers. Eur ] Mech A Solids.
2015;54:11-23.

Li DH. Extended layerwise method of laminated composite shells.
Compos Struct. 2016;136:313-44.

Li DH, Zhang F. Full extended layerwise method for the simulation
of laminated composite plates and shells. Comput Struct.
2017;187:101-13.

Li DH, Liu Y, Zhang X. An extended layerwise method for composite
laminated beams with multiple delaminations and matrix cracks.
Int ] Numer Methods Eng. 2015;101(6):407-34.

Carrera E, Valvano S. Analysis of laminated composite structures
with embedded piezoelectric sheets by variable kinematic shell
elements. ] Intell Mater Syst Struct. 2017;28:2959-87.

Carrera E, Pagani A, Valvano S. Shell elements with through-the-
thickness variable kinematics for the analysis of laminated com-
posite and sandwich structures. Compos Part B Eng.
2017;111:294-314.

Kumar SK, Harursampath D, Carrera E, Cinefra M, Valvano S. Modal
analysis of delaminated plates and shells using Carrera Unified
Formulation - MITC9 shell element. Mech Adv Mater Struct.
2017;25:681-97.

Petrolo M, Carrera E. Methods and guidelines for the choice of shell
theories. Acta Mech. 2020;231(2):395-434. doi: 10.1007/s00707-019-
02601-w.

Carrera E, Augello R, Pagani A, Scano D. Refined multilayered
beam, plate and shell elements based on Jacobi polynomials.
Compos Struct. 2023;304:116275.

Petrolo M, Augello R, Carrera E, Scano D, Pagani A. Evaluation of
transverse shear stresses in layered beams/plates/shells via stress
recovery accountng for various CUF-based theories. Compos
Struct. 2023;307:116625.

Chaudhuri RA, Kabir HRH. Sensitivity of the response of moderately
thick cross-ply doubly-curved panels to lamination and boundary
constraint-I. Theory. Int ] Solids Struct. 1993;30(2):263-72.
Chaudhuri RA, Kabir HRH. Sensitivity of the response of moderately
thick cross-ply doubly-curved panels to lamination and boundary
constraint-II. application. Int ] Solids Struct. 1993;30:273-86.
Chaudhuri RA. On boundary-discontinuous double Fourier series
solution to a system of completely coupled PDE’s. Int | Eng Sci.
1989;27:1005-22.


https://doi.org/10.1007/s00707-019-02601-w
https://doi.org/10.1007/s00707-019-02601-w

DE GRUYTER

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Chaudhuri RA. On the roles of complementary and admissible
boundary constraints in Fourier solutions to boundary-value pro-
blems of completely coupled r-th order PDE’s. | Sound Vib.
2002;251:261-313.

Oktem AS, Chaudhuri RA. Fourier solution to a thick cross-ply Levy
type clamped plate problem. Compos Struct. 2007;79:481-92.
Oktem AS, Chaudhuri RA. Fourier analysis of thick cross-ply Levy
type clamped doubly-curved panels. Compos Struct.
2007;80:489-503.

Oktem AS, Chaudhuri RA. Boundary discontinuous Fourier analysis
of thick cross-ply clamped plates. Compos Struct. 2008;82:539-48.
Canales FG, Mantari JL. Boundary discontinuous Fourier analysis of
thick beams with clamped and simply supported edges via CUF.
Chin J Aeronaut. 2017;30(5):1708-18.

Canales FG, Mantari JL. A boundary-discontinuous based Fourier
analysis of thick laminated beam via a robust 1D-CUF model. Int |
Solids Struct. 2017;118-119:109-18.

Laureano RW, Mantari JL, Yarasca ], Oktem AS, Monge J, Zhou X.
Boundary Discontinuous Fourier analysis of clamped isotropic and
cross-ply laminated plates via Unified Formulation. Compos Struct.
2024;328:117736.

Laureano RW, Mantari JL, Yarasca ], Oktem AS, Zhou X,
Hinostroza MA. Closed-form solutions for clamped FGM plates via
the unified formulation and boundary discontinuous method.
Mech Adv Mater Struct. 2024;31(26):8546-63. doi: 10.1080/
15376494.2023.2261000.

Layerwise generalized formulation solved via boundary discontinuous method for shells

[68]

[69]

[70]

71

[72]

[73]

[74]

[75]

[76]

-_— 17

Chaudhuri RA, Kabir HRH. A boundary discontinuous Fourier
solution for clamped transversely isotropic (pyrolytic graphite)
Mindlin plates. Int ] Solid Struct. 1993;30:287-97.

Oktem AS, Mantari JL, Soares CG. Static response of functionally
graded plates and doubly-curved shells based on a higher

order shear deformation theory. Eur ] Mech A/Solids.
2012;36:163-72.

Oktem AS, Chaudhuri RA. Higher-order theory based boundary-
discontinuous Fourier analysis of simply supported thick cross-ply
doubly curved panels. Compos Struct. 2009;89:448-58.

Oktem AS, Chaudhuri RA. Levy type analysis of cross-ply

plates based on higher-order theory. Compos Struct.
2007,78:243-53.

Reddy JN, Robbins DH. Theories and computational models for
composite laminates. Appl Mech Rev. 1994;47:147-65.

Varadan TK, Bhaskar K. Review of different theories for the analysis
of composites. | Aerosp Soc India. 1997;49:202-8.

Carrera E. Developments, ideas and evaluation based

upon Reissner's mixed variational theorem in the

modeling of multilayered plates and shells. Appl Mech Rev.
2001;54:301-29.

Kreja L. A literature review on computational models for laminated
composite and sandwich panels. Open Eng. 2011;1:59-80.

Caliri MF, Ferreira AJM, Tita V. A review on plate and shell theories
for laminated and sandwich structures highlighting the Finite
Element Method. Compos Struct. 2016;156:63-77.


https://doi.org/10.1080/15376494.2023.2261000
https://doi.org/10.1080/15376494.2023.2261000

18 —— Ronaldo Walter Laureano and José Luis Mantari

Appendix A
The complete explicit form of the fundamental nucleus is

presented below. The following integrations over the thick-
ness are considered:
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