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Abstract: This article presents for the very first time a
layerwise bending analytical solution for cross-ply lami-
nated composite plates with clamped boundary conditions
at all edges. The displacement field is implemented within
the framework of the Carrera unified formulation at a
layer level by employing Legendre polynomials. The gov-
erning equations are obtained by using the principle of
virtual displacements statement. This work utilizes the
boundary-discontinuous double Fourier series to provide
analytical solutions. The high accuracy of the proposed
solution is demonstrated by comparing the results with
three-dimensional finite-element model (FEM) solutions
of multilayered and sandwich plates for various side-to-
thickness ratios. In conclusion, the highly accurate pro-
posed solution might be used as a benchmark problem
for new analytical or FEMs.

Keywords: CUF, layerwise theory, clamped, boundary dis-
continuous, analytical

1 Introduction

Composite multilayered plates have become ubiquitous in
a diverse range of engineering applications, including aero-
space, mechanical, biomedical, marine, automotive design,
and civil structures. Indeed, composite plates boast a multitude
of advantageous mechanical properties, such as a high stiff-
ness-to-weight ratio, low density, and exceptional resistance to

both impact and corrosion. The expanding applications of com-
posite material structures underscore the need for the
advancement of precise and efficient numerical methods
capable of accurately simulating the intricate behavior
exhibited by laminated composites.

Three-dimensional (3D) theories grounded in elasticity
theory result in significant challenges when dealing with
laminate plates. Pagano [1,2] analyzed the deformation
behaviors of cross-ply laminated plates using 3D elasticity
theory. Ren [3] obtained closed-form solutions for special
types of simply-supported angle-ply laminated plates under
transverse loading by employing the bending theory pre-
sented in [4,5]. However, 3D solutions have some extra chal-
lenges when different than simply-supported boundary
conditions are a concern. Then, a simplified two-dimensional
(2D) mathematical model for the elasticity theory of lami-
nated composites is an alternative solution for such difficult
problems related to free or clamped boundary conditions.

Regarding 2D models, classical theories such as the
works of Kirchhoff [6], Love [7], and the so-called classical
lamination theory [8] are suitable only for thin laminated
plates as they neglect the out-of-plane strains. The first-
order shear deformation theory (FSDT) [9,10], accounting
for constant transverse shear components, incorporates a
shear correction factor, leading to improved results for
both thick and thin plates. Nevertheless, the calculation
of the shear correction factor poses a challenge, as it is
contingent on the lamination sequence, loading conditions,
and boundary conditions. Higher-order shear deformation
theories (HSDTs) overcome the limitations of FSDT by the
introduction of higher-order terms in their displacement
field. HSDTs can be formulated by expanding the displace-
ment components in both polynomial and non-polynomial
series of the thickness coordinate, allowing for flexibility
in achieving any desired order. Generally, based on the
variable description, two approaches stand out: the equiva-
lent single layer (ESL) and the layerwise (LW) models. The
ESL approach assumes that the number of unknowns is
independent of the number of layers, whereas the LW
approach posits that each layer has its own set of variables.
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In fact, ESL models present a lower computational cost;
however, they encounter challenges in accurately reprodu-
cing the characteristic Zig-Zag effects observed in lami-
nates. Conversely, LW models offer nearly 3D predictive
capabilities, albeit at the cost of increased computational
expense.

A variety of ESL models have been developed. Reddy
[11] presented a simple HSDT for multilayered simply-
supported plates considering a parabolic distribution for
transverse shear strains. Murakami [12] proposed his so-
called Zig-Zag theory by adding a local Zig-Zag function in
the displacement field. Touratier [13] introduced an inno-
vative approach for expanding the thickness coordinate to
derive a plate formulation that accounts for cosine shear
stress distribution and free boundary conditions. Li and
Liu [14] presented an independent-layer generalized Zig-
Zag theory to study the static behavior of simply-supported
cross-ply laminated plates. Carrera [15] presented a histor-
ical review of the Zig-Zag theories for multilayered plates
and shells. Regarding LW theories, Reddy [16] developed
his well-known 2D generalized LW theory, where Lagran-
gian interpolation functions are utilized to satisfy the Cz

0

continuity. Furthermore, Ferreira [17,18] implemented an
LW theory in a mesh-free method known as the multi-
quadric radial basis functions to analyze laminated compo-
site and sandwich plates. Comprehensive reviews of current
ESL and LW models are available in the referenced litera-
ture [19–22].

Two decades ago, Carrera [23,24] introduced a unified
theory for multilayered structures known as the Carrera
unified formulation (CUF). This formulation enables
researchers to employ diverse series expansions of the
unknown variables along the thickness in a compact
manner. In [24], Carrera utilized both the principle of virtual
displacements (PVDs) and Reissner’s mixed variational the-
orem (RMVT) statements to formulate ESL and LW theories,
respectively. Carrera and Ciuffreda [25] conducted a com-
parison of approximately 40 CUF-based theories for
multilayered composites and sandwich plates subjected to
transverse pressure, considering various in-plane load dis-
tributions. Ferreira et al. [26] integrated CUF with a radial
basis function collocation technique to conduct static and
free vibration analyses of thick isotropic and cross-ply lami-
nated plates employing FSDT and HSDT. Ramos et al. [27]
employed a modified non-polynomial CUF-based displace-
ment field for the analysis of simply-supported laminated
plates under thermal loads. Trigonometric, exponential, and
hyperbolic series were employed to build the cross-section
functions for refined beam models [28]. Carrera et al. [29]
presented solutions for mechanical responses of angle-ply
laminated plates by using refined FE models and Chebyshev

expansions within the framework of CUF. Pagani et al. [30]
adopted Lagrange polynomials and FE formulation under
the ESL approach for modeling laminated structures.
Recently, Petrolo et al. [31] and Carrera et al. [32] proposed
hierarchical expansions built by using Jacobi polynomials to
analyze multilayered beams, plates, and shells. Demasi [33]
developed an interesting extension of CUF to the so-called
generalized unified formulation. Further literature on CUF
models can be explored in the literature [34–39].

The boundary-discontinuous double Fourier series was
formulated by Chaudhuri [40,41]. This solution methodology
was applied successfully in static and free vibration analysis
of plates and panels in previous studies [42–52]. Chaudhuri
and Kabir [53,54] presented analytical solutions for the
static deformations and rotations of cross-ply laminated
and isotropic rectangular plates under SS1, SS2, and C4-
type boundary conditions. Oktem and Chaudhuri [55,56] pre-
sented a Levy-type analytical solution to the problem of
deformation of a general cross-ply thick rectangular plate
HSDT under mixed boundary conditions. In another study
[57], the same authors studied the effect of end clamping on
the response of a thick laminated plate under C3-type
clamped boundary conditions while keeping the in-plane
end constraint unaltered. Oktem et al. [58] explored the
static behavior of functionally graded (FG) plates and doubly
curved shells using Reddy’s HSDT [11]. Canales and Mantari
[59,60] provided analytical closed-form solutions of fully
clamped laminated beams by employing ESL-based CUF
and the boundary-discontinuous method. Recently, Laur-
eano et al. [61,62] presented an extension of previous unified
formulations to study fully clamped laminated and FG plates
based on ESL models.

In this work, closed-form solutions for the static beha-
vior of fully clamped cross-ply laminated and sandwich
plates are presented. The principal innovation in this
article lies in the adoption of a CUF-based model under an
LWapproach employing Legendre polynomials alongwith the
boundary-discontinuous generalized double Fourier method
to solve complex boundary problems in an analytical manner.
Indeed, this hybrid methodology is expressed at a layer level
for the very first time in the literature. The strong form of
governing equations is obtained through the PVD. Thus, the
strong and unified formulation is utilized to provide quasi-
3D numerical results. The results clearly highlight the dis-
tinct advantages and superior performance of the current
approach in accurately capturing displacement behavior
and stress distributions across the entire thickness.

The structure of the article is outlined as follows:
Section 2 comprehensively details the analytical modeling,
including the analytical solution. Section 3 showcases the
numerical results obtained through the proposed approach
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for various benchmarks. Finally, Section 4 addresses the
main conclusions drawn from the study.

2 Analytical modeling

Consider the laminated composite plate in Figure 1 where the
geometry and coordinate system are shown. Nl denotes the
number of layers, whereas integer k , which can be used as a
subscript or superscript, indicates the layer number starting
from the bottom of the plate. x and y are the plate middle
surface coordinates, while z denotes the thickness direction.
The structure is situated within the following region:

≤ ≤ ≤ ≤ − ≤ ≤x a y b
h

z
h

0 , 0 ,
2 2

.

Unlike ESL description, an LW approach uses local
variables for each layer:

− ≤ ≤
h

z
h

2 2
,

k

k

k (1)

− ≤ ≤ζ1 1,k (2)

where zk is the physical coordinate of the k -layer whose
thickness is hk . Additionally, ζk is a non-dimensioned layer
coordinate with =ζk

z

h

2 k

k

.

2.1 Elastic stress–strain relations

A generalized displacement vector u
k for each layer is

given as follows:

{ }=u u v w .k k k k T (3)

The stress and strain components are expressed in
vectorial form with no loss of generality:

{ }=σ σ σ τ τ τ σ ,k
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k
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where ( )=σ i x y z, , ,ii

k and ( )≠τ i jij

k denote normal and
shear stress components, respectively. Similar notation
is used for strains where ( )=ε i x y z, , ,ii

k and ( )≠γ i j
ij

k

denote normal and shear strains, respectively.
The stress and strain vectors in Eqs. (4) and (5) are

divided into in-plane ( )σ ε,p

k

p

k and out-of-plane ( )σ ε,n

k

n

k

components:
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k

xz

k

yz

k

zz
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The in-plane εp

k and out-plane εn

k are linearly related to
the displacement u

k :

=ε D u ,p

k
p

k (8a)

( )= +ε D D u .n

k
np nz

k (8b)

Dp, Dnp, and Dnz denote in-plane and out-of-plane dif-
ferential operators:
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(9)

The linear stress–strain relations are as follows:

Figure 1: Coordinate frame of the plate model.

Table 1: Thickness expansion functions

Fτ (( ))F ζk

Fb
ζ ‒ 1

2

k

F2 ζ3 ‒ 3
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k
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= +σ C̃ ε C̃ ε ,p

k

pp

k

p

k

pn

k

n

k (10a)

= +σ C̃ ε C̃ ε .n

k

np

k

p

k

nn

k

n

k (10b)

Table 2: List of materials

Material E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa)

1 172.5 6.9 6.9 3.45 3.45 1.38 0.25 0.25 0.25
2 6.9 6.9 6.9 3.45 3.45 1.38 0.25 0.25 0.25
3 172.5 6.9 69 3.45 3.45 1.38 0.25 0.25 0.25

Figure 2: Convergence of nondimensional (a) transversal displacement

w̅
⎛
⎝

⎞
⎠, , 0

a b

4 4
and (b) in-plane normal stress σ̅xx

⎛
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⎞
⎠, ,

a b h

4 4 2
of a Problem I

thick square plate ⎛
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⎠4
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.

Figure 3: (a)–(c). Problem I. Through-the-thickness variation of displa-

cement components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a moderately thick

laminated plate ⎛
⎝ = ⎞

⎠10
a

h
.
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Figure 4: (a)–(f). Problem I. Through-the-thickness variation of stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a moderately thick laminated

plate ⎛
⎝ = ⎞

⎠10
a

h
.
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Here, C̃pp

k , C̃pn

k , C̃np

k , and C̃nn

k are matrices of material
coefficients of the k -layer. In this work, orthotropic mate-
rials are employed:
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(11)

For the sake of brevity, the relations between the coeffi-
cients of C̃ and the engineering constants of thematerial are not
reported here; they can be found in the textbook by Carrera [35].
It is assumed that orthotropic laminae are oriented on planes
parallel to the (x, y) plane. As a limitation, the boundary-discon-
tinuous double Fouriermethod is applicable exclusively to cross-
ply laminated structures, where laminae are oriented at 0° or
90° from the X-axis, similar to Navier-type solutions.

2.2 Displacement field

According to Carrera [23,24], an LWmodel based on CUF can be
written for the vector displacement { }=u u v wk k k k Tas follows:

Figure 5: (a)–(d). Problem I. Through-the-thickness distribution of in-plane and out-of-plane stress components at a clamped edge ⎛
⎝ = = ⎞

⎠x y0,
b

2
of a

moderately thick ⎛
⎝ = ⎞

⎠10
a

h
square plate.
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( ) ( ) ( ) ( ) ( ) ( )= + +u F ζ u x y F ζ u x y F ζ u x y, , , ,k
b b

k
r r

k
t t

k (12a)

( ) ( ) ( ) ( ) ( ) ( )= + +v F ζ v x y F ζ v x y F ζ v x y, , , ,k
b b

k
r r

k
t t

k (12b)

( ) ( ) ( ) ( ) ( ) ( )= + +w F ζ w x y F ζ w x y F ζ w x y, , , ,k
b b

k
r r

k
t t

k (12c)

where b and t denote the bottom and the top of the plate.
Eqs. (12a)–(12c) can also be written in a compact form:

( ) ( )=u uF ζ x y, ,k
τ τ

k

( ) ( ) ( )= = =u uδ F ζ δ x y τ s t b r r N, , , , , 2, 3 ,…, ,k
s s

k (13)

where the thickness functions F Fandτ s are defined in
Table 1.

The interlaminar displacement continuity is a priori
imposed as follows:

= = −+
u u k N, 1, 1,t

k

b

k
l

1 (14a)

= = −+
v v k N, 1, 1,t

k

b

k
l

1 (14b)

= = −+
w w k N, 1, 1.t

k

b

k
l

1 (14c)

2.3 Governing equations

The displacement approach is formulated in terms ofu
k by

variationally imposing the equilibrium via the PVD state-
ment. Therefore, the strong form of governing, differential
equations, and the related natural boundary conditions are
obtained. The PVD can be written in its static version as

=L Lδ δ ,int ext (15)

where Lint represents the internal elastic work, Lext is for
the work done by the external forces, and, as before, δ

stands for a virtual variation.
Taking into account strain–displacement relations (Eqs.

(8a) and (8b)), stress–strain relations (Eqs. (10a) and (10b)), the
compact form of CUF (Eq. (13)), and integrating by parts to
obtain strong form equations [24]:
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τ

k
k s
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τ

k
k
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1

1 Γ

l

k k

T T

l

k k

(16)

where K
kτs is the stiffness matrix in the form of the funda-

mental nuclei and Πkτs is the matrix of the natural boundary
conditions. The components of K

kτs and Πkτs are provided in
Appendix A, where a generic parameter in the thickness
direction is used and is defined below:

∫= ∼
J C F F zd ,ab

kτ s

A

ab

k

τ s

ϕ θ

k

ϕ θ

, ,

, , (17)

where τ sϕ θ, , indicate which functions are to be used,
whether Fτ and Fs or their derivatives Fτ z, , Fs z, . Moreover,
a b, stand for indexes of the employed coefficient of ∼

C
k .

The virtual variation in external loadings is expressed
as follows:

∫∑=
=

u PδL δ Ωd ,

k

N

Ω

s

kT

s

k
kext

1

l

k

(18)

Table 3: Problem I. Numerical results of displacements and stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
for different values of a h/

a h/ Model
==u10 ̅

z

2
h

2
==v10 ̅

z

2
h

2
==w10 ̅ z

2

0 ==σ̅
xx z

h

2 ==
σ̅

yy
z

h

2
==

τ10 ̅xy
z

h

2
==τ10 ̅xzz 0 ==

τ10 ̅ yz
z 0 ==σ̅

zzz 0

4 LD1 −0.703 0.732 0.935 −0.074 0.101 −0.133 1.480 0.477 0.284
LD2 −0.776 0.805 0.969 −0.108 0.141 −0.152 1.758 0.763 0.452
LD3 −0.835 0.866 1.015 −0.176 0.215 −0.172 0.699 0.754 0.539
LD4 −0.835 0.866 1.017 −0.182 0.222 −0.172 0.792 0.756 0.490
FEM 3D −0.843 0.873 1.025 −0.156 0.191 −0.170 0.729 0.802 0.493
ED5 [61] −0.839 0.869 1.008 −0.180 0.220 −0.172 0.722 0.754 0.498

10 LD1 −0.562 0.564 0.268 −0.090 0.093 −0.146 1.410 0.362 0.471
LD2 −0.569 0.572 0.274 −0.100 0.104 −0.150 1.698 0.635 0.442
LD3 −0.591 0.593 0.285 −0.114 0.118 −0.155 0.583 0.591 0.565
LD4 −0.591 0.593 0.285 −0.114 0.119 −0.155 0.574 0.590 0.492
FEM 3D −0.597 0.599 0.289 −0.106 0.110 −0.155 0.591 0.632 0.495
ED5 [61] −0.591 0.594 0.283 −0.114 0.118 −0.155 0.584 0.587 0.5

50 LD1 −0.486 0.486 0.139 −0.096 0.097 −0.171 1.245 0.325 5.493
LD2 −0.489 0.489 0.139 −0.097 0.097 −0.172 1.489 0.568 0.350
LD3 −0.490 0.490 0.140 −0.098 0.098 −0.172 0.517 0.518 0.625
LD4 −0.490 0.490 0.140 −0.098 0.098 −0.172 0.517 0.518 0.477
FEM 3D −0.489 0.489 0.137 −0.094 0.094 −0.172 0.533 0.534 0.485
ED5 [61] −0.486 0.486 0.135 −0.097 0.097 −0.173 0.515 0.515 0.495
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where )(= ⎡
⎣⎢

⎤
⎦⎥=P F q0 0 s

k
s

z z

T

h

2

is the external load applied at

the top surface ⎛
⎝ = ⎞

⎠z
h

2
of the plate.

In a compact form, replacing Eqs. (13) and (15) in Eqs.
(12a)–(12c), the following system of linear algebraic equations holds:

=u K u Pδ : .s

kT kτs
τ

k

s

k (19)

2.4 Boundary conditions

Geometric boundary conditions for simply-supported plates in
terms of the displacement variables given in Eqs. (12a)–(12c)
are expressed as

( ) =u y0, 0,τ x

k

,
(20a)

( ) =u a y, 0,τ x

k

,
(20b)

( ) =v x , 0 0,τ y

k

, (20c)

( ) =v x b, 0,τ y

k

, (20d)

( ) =w y0, 0,τ

k (20e)

( ) =w a y, 0,τ

k (20f)

( ) =w x , 0 0,τ

k (20g)

( ) =w x b, 0.τ

k (20h)

In addition, if the clamped boundary conditions are consid-
ered at the four edges (CCCC), the following conditions are added:

( ) =u y0, 0,τ

k (21a)

( ) =u a y, 0,τ

k (21b)

( ) =v x , 0 0,τ

k (21c)

( ) =v x b, 0.τ

k (21d)

However, for clamped edges, the conditions in Eqs.
(20a)–(20d) changed to inequalities:

( ) ≠u y0, 0,τ x

k

,
(22a)

( ) ≠u a y, 0,τ x

k

,
(22b)

( ) ≠v x , 0 0,τ y

k

, (22c)

( ) ≠v x b, 0.τ y

k

, (22d)

2.5 Boundary-discontinuous solution

In order to fulfill the clamped boundary conditions stated in
Eqs. (21a) and (21b) and (22a) and (22b), the boundary-

Figure 6: (a)–(c). Problem II. Through-the-thickness variation of displa-

cement components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a thick case ⎛

⎝ = ⎞
⎠4

a

h
.
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Figure 7: (a)–(f). Problem II. Through-the-thickness variation of stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a thick case ⎛

⎝ = ⎞
⎠4

a

h
.
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discontinuous double Fourier series is used. The assumed
solutions and their derivatives will be replaced in Eq. (19)
to furnish a linear system of equations. Based on the studies
of Chaudhuri [40,41], the displacement variables uτ

k , vτ

k , and
wτ

k are expanded as follows:

( ) ( )∑ ∑=

< < ≤ ≤
= =

u U αx βy

x a y b

cos sin ,

0 ; 0 ,

τ

k

m

m

n

n

τmn

k

0 1 (23a)

( ) ( )∑ ∑=

≤ ≤ < <
= =

v V αx βy

x a y b

sin cos ,

0 ; 0 ,

τ

k

m

m

n

n

τmn

k

1 0 (23b)

( ) ( )∑ ∑=

≤ ≤ ≤ ≤
= =

w W αx βy

x a y b

sin sin ,

0 ; 0 .

τ

k

m

m

n

n

τmn

k

1 1 (23c)

The load q
z
is also expanded in Fourier series:

( ) ( )∑ ∑= ≤ ≤ ≤ ≤
= =

q Q αx βy x a y bsin sin , 0 ; 0 ,
z

m

m

n

n

mn

1 1

(23d)

where

( ) ( )∫∫=U
ab

u αx βy x y
4

cos sin d d ,τmn

k

b a

τ

k

0 0

(24a)

( ) ( )∫∫=V
ab

v αx βy x y
4

sin cos d d ,τmn

k

b a

τ

k

0 0

(24b)

( ) ( ) ( ) ( )∫∫=W Q
ab

w q αx βy x y,
4

, sin sin d d ,τmn

k

mn

b a

τ

k

z

0 0

(24c)

=α
mπ

a
, (24d)

=β
nπ

b
. (24e)

These assumed solutions introduce [ ( ) ]− +N Nu 1 1l

( )+ +mn m n3 unknown variables where m and n repre-
sent the wave number of each trigonometric term in Eqs.
(23a)–(23d) and (24a)–(24e). The load q

z
is also expanded

using a Fourier series in Eq. (23d) to analyze different types
of loads such as distributed load, hydrostatic load, and
localized load. Moreover, the explicit form of the differen-
tial equations in Eq. (19) can be expressed as follows:

( ) ( )

− −

− + + − =

u u u

v w

δu J J J

J J J J

:

0,

τ

k

τ xx

k

τ yy

k

τ xy

k

τ x

k

s

k kτ s kτs kτs

kτs kτs kτs kτ s

55 11 , 66 ,

12 66 , 55 13 ,

z z

z z

, ,

, ,

(25a)

( )

( )

− + + −

− + − =

u v v

v w

δv J J J J

J J J

:

0,

τ xy

k

τ

k

τ xx

k

τ yy

k

τ y

k

s

k kτs kτs kτ s kτs

kτs kτs kτ s

12 66 , 44 66 ,

22 , 44 23 ,

z z

z z

, ,

, ,

(25b)

( ) ( )− + −

+ − − =

u v

w w w

δw J J J J

J J J F Q

:

.

τ x

k

τ y

k

τ

k

τ xx

k

τ yy

k

s

k kτs kτ s kτs kτ s

kτ s kτs kτs
s mn

13 55 , 23 44 ,

33 55 , 44 ,

z z z z

z z

, , , ,

, ,

(25c)

From Eqs. (25a) to (25c), the derivatives of the displace-
ment variables ( )u v w, ,τ

k

τ

k

τ

k need to be calculated. Besides,
these derivatives must also satisfy the discontinuities speci-
fied in Eqs. (22a) and (22b). In the next lines, the core aspects

Table 4: Problem II. Numerical results of displacements and stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
for different values of a h/

a h/ Model
==u10 ¯

z

2
h

2
==v10

z̄

2

‒
h

2
==w10 ¯z

2
0 ==

σ̄xx
z

h

2
==

σ10 ¯yy
z

h

2
==

τ10 x̄y
z

h

2

==τ10 x̄zz 0 ==τ10 ȳz

2

z 0 ==σ̄zzz 0

4 LD1 −0.231 0.794 0.999 −0.109 0.352 −0.156 1.179 13.482 0.500
LD2 −0.280 0.823 1.019 −0.143 0.413 −0.169 1.155 13.459 0.499
LD3 −0.300 0.861 1.052 −0.188 0.433 −0.178 1.198 17.247 0.501
LD4 −0.300 0.861 1.052 −0.190 0.434 −0.178 1.199 17.256 0.501
FEM 3D −0.301 0.868 1.059 −0.177 0.406 −0.179 1.202 17.232 0.502
ED5 [61] −0.290 0.836 1.018 −0.177 0.423 −0.172 1.257 17.189 0.502

10 LD1 −0.164 0.397 0.256 −0.094 0.160 −0.102 1.994 6.671 0.501
LD2 −0.178 0.405 0.262 −0.108 0.166 −0.107 1.979 6.780 0.500
LD3 −0.179 0.409 0.266 −0.112 0.171 −0.107 1.982 9.090 0.500
LD4 −0.179 0.409 0.267 −0.112 0.172 −0.107 1.982 9.092 0.500
FEM 3D −0.181 0.411 0.269 −0.105 0.161 −0.107 1.991 8.955 0.501
ED5 [61] −0.176 0.393 0.256 −0.108 0.165 −0.103 2.019 8.627 0.501

50 LD1 −0.148 0.111 0.067 −0.062 0.073 −0.056 2.622 0.171 0.498
LD2 −0.148 0.112 0.067 −0.063 0.072 −0.056 2.623 0.176 0.498
LD3 −0.148 0.112 0.068 −0.064 0.072 −0.056 2.631 0.195 0.498
LD4 −0.148 0.112 0.068 −0.064 0.072 −0.056 2.631 0.195 0.498
FEM 3D −0.150 0.113 0.069 −0.060 0.069 −0.056 2.642 0.164 0.500
ED5 [61] −0.148 0.111 0.067 −0.063 0.071 −0.056 2.636 0.160 0.498
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of the proposed approach and its procedure are explained.
For instance, according to Eqs. (22a) and (22b),uτ x

k

, is forced to

vanish at =x 0 and =x a whereas vτ y

k

, at =y 0 and =y b.
Likewise, for further differentiation, if a function presents
discontinuities, the derivative of the Fourier series is not
necessarily the same as the Fourier series of the derivative
of the function. In that case,uτ x

k

, is expanded in Fourier series:

( ) ( )∑ ∑=

< < ≤ ≤
= =

u U αx βy

x a y b

sin sin ,

0 ; 0 ,

τ x

k

m

m

n

n

τmn x

k

,

1 1

, (26a)

where Uτmn x

k

, is the Fourier term associated with the Fourier
series of uτ x

k

, :

( ) ( )∫∫=U
ab

u αx βy x y
4

sin sin d d .τmn x

k

b a

τ x

k

,

0 0

,
(26b)

Then, integrating Eqs. (26a) and (26b) by parts and
using the vanishing boundary conditions given in Eqs.
(21a) and (21b):

( )∣

( ) ( )

∫

∫

=
⎛

⎝
⎜

−
⎞

⎠
⎟

=
=

U
b a

u αx

α
a

u αx x βy y

2 2
sin

2
cos d sin d ,

τmn x

k

b

τ

k

x

x a

a

τ

k

,

0

0

0

(27a)

( ) ( )∫∫= −U α
ab

u αx βy x y
4

cos sin d d ,τmn x

k

b a

τ x

k

,

0 0

,
(27b)

= −U αU ,τmn x

k

τmn

k

,
(27c)

replacing Eq. (27c) in Eq. (23a):

( ) ( )∑ ∑= −

< < ≤ ≤
= =

u α U αx βy

x a y b

sin sin ,

0 ; 0 .

τ x

k

m

m

n

n

τmn

k

,

1 1 (28)

Eqs. (26a) and (26b) show that uτ x

k

, can be obtained
through term-by-term differentiation.

Next, the calculation of uτ xx

k

, is made. The Fourier

series of uτ xx

k

, is given by

( )

( ) ( )

∑

∑ ∑

=

+

< < ≤ ≤

=

= =

u a βy

U αx βy

x a y b

1

2
¯ sin

cos sin ,

0 ; 0 ,

τ xx

k

n

n

τ

k

m

m

n

n

τmn xx

k

,

1

1 1

,

n

(29a)

where Uτmn xx

k

, is the Fourier term associated with the
Fourier series of uτ xx

k

, :
Figure 8: (a)–(c). Problem III. Through-the-thickness variation of dis-

placement components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a thick case ⎛

⎝ = ⎞
⎠4

a

h
.
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Figure 9: (a)–(f). Problem III. Through-the-thickness variation of stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a thick case ⎛

⎝ = ⎞
⎠4

a

h
.
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( ) ( )∫∫=U
ab

u αx βy x y
4

cos sin d d .τmn xx

k

b a

τ xx

k

,

0 0

,
(29b)

Then, integrating Eq. (27b) by parts, the following
expression is obtained:

( )∣

( ) ( )

∫

∫

=
⎛

⎝
⎜

+
⎞

⎠
⎟

=
=

U
b a

u αx

α
a

u αx x βy y

2 2
cos

2
sin d sin d .

τmn xx

k

b

τ x

k

x

x a

a

τ x

k

,

0

, 0

0

,

(30)

Unlike Eq. (27a), in Eq. (30), there are no vanishing
conditions for uτ x

k

, at =x 0 and =x a according to Eqs.
(22a) and (22b). Subsequently, grouping as follows:

[( ) ( ) ( )] ( )

( ) ( )

∫

∫∫

= − −

+

U
ab

u a y u y βy y

α
ab

u αx βy x y

4
1 , 0, sin d

4
sin sin d d ,

τmn xx

k

b

m
τ x

k

τ x

k

b a

τ x

k

,

0

, ,

0 0

,

(31a)

[( ) ( )

( )] ( )

∫= −

− +

U
ab

u a y

u y βy y α U

4
1 ,

0, sin d ,

τmn xx

k

b

m
τ x

k

τ x

k

τmn x

k

,

0

,

, ,

(31b)

[( ) ( )

( )] ( )

∫= −

− −

U
ab

u a y

u y βy y α U

4
1 ,

0, sin d ,

τmn xx

k

b

m
τ x

k

τ x

k

τmn

k

,

0

,

,
2

(31c)

replacing Eq. (31c) in Eq. (29a):

( )

[

] ( ) ( )

∑

∑ ∑

=

+ − +

+

=

= =

u a βy

α U γ a

ψ b αx βy

1

2
¯ sin

¯

¯ cos sin ,

τ xx

k

n

n

τ

k

m

m

n

n

τmn

k

m τ

k

m τ

k

,

1

1 1

2

n

n

n

(32)

where āτ

k

n
, b̄τ

k

n
introduce [ ( ) ]( )− +N nNu 1 1 2l new unknown

variables. The definition of these constant coefficients is
given by

( ) [ ( ) ( )] ( )∫= ± −a b
ab

u a y u y βy y¯ , ¯
4

, 0, sin d .τ

k

τ

k

b

τ x

k

τ x

k

0

, ,n n
(33)

In Eq. (33), āτ

k

n
and b̄τ

k

n
are directly related to the dis-

continuities of uτ x, at the edges =x 0 and =x a. Further-
more, ( )u y0,τ x

k

, and ( )u a y,τ x

k

, can be expressed in terms of

āτ

k

n
and b̄τ

k

n
as follows:

( ( ) ( )) ( ) ( )∑= − ± +
=

u y u a y
a

a b βy0, , ,  
4

¯ ¯ sin .τ x

k

τ x

k

n

n

τ

k

τ

k

, ,

1

n n
(34)

γ
m
and ψ

m
are defined as

( )
( )

( )
= ⎧

⎨
⎩

=
=γ ψ

m

m
,

1, 0 , even

0, 1 , odd 
.

m m
(35)

Subsequently, the first and second partial derivatives
of vτ

k are also required. Then, an analogous process is
applied. The first partial derivative vτ y

k

, is given by

Table 5: Problem III. Numerical results of displacements and stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
for different values of a h/

a h/ Model
==u10 ¯

z

2
h

2
==v10

z̄

2

‒
h

2
==w10 ¯z

2
0 ==σ10 ¯xx

z

2
h

2
==σ10 ¯yy

z

2
h

2
==τ10 x̄y

z

2
h

2
==τ10 x̄zz

2
0 ==τ10 ȳz

z

2

0 ==σ̄zzz 0

4 LD1 −0.238 0.727 0.996 −13.309 3.780 −1.468 10.512 16.523 0.345
LD2 −0.277 0.788 1.028 −16.593 4.202 −1.638 10.488 23.682 0.487
LD3 −0.281 0.805 1.046 −19.265 4.335 −1.664 10.596 20.420 0.511
LD4 −0.280 0.805 1.047 −19.277 4.362 −1.664 10.609 20.910 0.502
FEM 3D −0.282 0.811 1.053 −18.081 4.058 −1.668 10.636 20.956 0.504
ED5 [61] −0.278 0.800 1.024 −18.338 4.243 −1.653 10.670 20.990 0.505

10 LD1 −0.145 0.362 0.247 −9.330 1.344 −0.901 15.240 11.650 0.348
LD2 −0.155 0.371 0.255 −10.403 1.442 −0.937 15.567 18.702 0.467
LD3 −0.155 0.373 0.256 −10.541 1.462 −0.935 15.468 16.434 0.507
LD4 −0.155 0.373 0.257 −10.573 1.471 −0.935 15.471 16.349 0.499
FEM 3D −0.156 0.376 0.259 −9.840 1.354 −0.937 15.533 16.411 0.501
ED5 [61] −0.154 0.368 0.251 −10.338 1.420 −0.926 15.627 16.087 0.501

50 LD1 −0.135 0.128 0.063 −5.995 0.547 −0.627 19.994 2.921 1.530
LD2 −0.136 0.128 0.063 −6.061 0.540 −0.628 20.210 4.687 0.468
LD3 −0.136 0.128 0.063 −6.101 0.541 −0.628 20.148 4.109 0.508
LD4 −0.136 0.128 0.063 −6.106 0.541 −0.628 20.148 4.104 0.495
FEM 3D −0.138 0.129 0.064 −5.775 0.516 −0.629 20.236 4.226 0.502
ED5 [61] −0.136 0.127 0.063 −6.073 0.539 −0.627 20.171 4.062 0.498
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( ) ( )∑ ∑= −
= =

v βV αx βy  sin sin .τ y

k

m

m

n

n

τmn

k

,

1 1

(36)

The second partial derivative vτ yy

k

, is written as follows:

( ) [

] ( ) ( )

∑ ∑ ∑= + − +

+
= = =

v c αx β V γ c

ψ d αx βy

1

2
¯ sin ¯

¯ sin cos ,

τ yy

k

m

m

τ

k

m

m

n

n

τmn

k

n τ

k

n τ

k

,

1 1 1

2

m m

m

(37)

where c̄τ

k

m
and d̄τ

k

m
introduce [ ( ) ]( )− +N nNu 1 1 2l new

unknown variables. These coefficients are given by

( ) [ ( ) ( )] ( )∫= ± −c d
ab

v x b v x αx x¯ , ¯
4

, , 0 sin d .τ

k

τ

k

a

τ y

k

τ y

k

0

, ,m m
(38)

As in Eq. (34), the discontinuities of vτ y

k

, at the edges
=y 0 and =y b can be expressed as

( ( ) ( )) ( ) ( )∑= − ± +
=

v x v x b
b

c d αx, 0 , ,
4

¯ ¯ sin .τ y

k

τ y

k

m

m

τ

k

τ

k

, ,

1

m m
(39)

γ
n
and ψ

n
are similar functions as Eq. (35).

The remaining partial derivatives can be obtained
through term-by-term differentiation as they do not deal
with discontinuities.

Later, the introduction of the displacement functions
uτ

k , vτ

k , wτ

k and their corresponding derivatives into Eq. (25)
results in the following:

( ) ( ){( )

( ) ( )

( )}

∑ ∑ + +

− + + −

− + =

= =
U

V W

ā b̄

αx βy α J β J J

αβ J J α J J

J γ ψ

cos sin

0,

τmn

k

τmn

k

τmn

k

τ

k

τ

k

m

m

n

n

kτs kτs kτ s

kτs kτs kτs kτ s

kτs

m m

1 1

2

11

2

66 55

12 66 55 13

11 n n

z z

z z

, ,

, ,
(40a)

( ) ( ){ ( )

( )

( ) ( )}

∑ ∑ +

+ + +

+ − − +

=

= =
U

V

W c̄ d̄

αx βy αβ J J

α J β J J

β J J J γ ψ

sin cos

0,

τmn

k

τmn

k

τmn

k

τ

k

τ

k

m

m

n

n

kτs kτs

kτs kτs kτ s

kτs kτ s kτs

n n

1 1

12 66

2

66

2

22 44

44 23 22 m m

z z

z z

, ,

, ,

(40b)

( ) ( ){ ( )

( ) (

) }

∑ ∑ −

+ − + +

+ − =

= =
U

V

W

αx βy α J J

β J J α J β J

J F Q

sin sin

0,

τmn

k

τmn

k

τmn

k

m

m

n

n

kτ s kτs

kτ s kτs kτs kτs

kτ s
s mn

1 1

55 13

44 23

2

55

2

44

33

z z

z z

z z

, ,

, ,

, ,

(40c)

( ) ( )∑ ⎧
⎨
⎩

+ −
⎫
⎬
⎭

=
=

U āβy β J J Jsin
1

2
0,

τ n

k

τ

k

n

n

kτs kτ s kτs

1

2

66 55 0 11 n

z z, , (40d)

( ) ( )∑ ⎧
⎨
⎩

+ −
⎫
⎬
⎭

=
=

V c̄αx α J J Jsin
1

2
0.

τm

k

τ

k

m

m

kτs kτ s kτs

1

2

66 44 0 22 m

z z, , (40e)

Until this point, Eqs. (40a)–(40e) provide only
[ ( ) ]( )− + + +N mn m nNu 1 1 3l equations, whereas the

Figure 10: (a)–(c). Problem IV. Through-the-thickness variation of dis-

placement components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a moderately thick

case ⎛
⎝ = ⎞

⎠10
a

h
.
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Figure 11: (a)–(f). Problem IV. Through-the-thickness variation of stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a moderately thick case ⎛

⎝ = ⎞
⎠10

a

h
.
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unknown variables are [ ( ) ]( )− + + +N mn m nNu 1 1 3 3 3l .
Hence, [ ( ) ]( )− + +N m nNu 1 1 2 2l equations are required
to match the number of variables. These remaining equa-
tions are provided by Eqs. (21a)–(21d).

Replacing Eq. (23a) in Eqs. (21a) and (21b), the following
expressions are obtained:

∑ =
=

∞

U 0,
τmn

k

m 1,3,5,…

(41a)

∑+ =
=

∞

U U 0.
τ n

k

τmn

k

m

0

2,4,6,…

(41b)

Subsequently, Eq. (23b) can be replaced in Eqs. (21c)
and (21d):

∑ =
=

∞

V 0,
τmn

k

n 1,3,5,…

(42a)

∑+ =
=

∞

V V 0.
τm

k

τmn

k

n

0

2,4,6,…

(42b)

Eqs. (41a), (41b), (42a), and (42b) generate the remaining
[ ( ) ]( )− + +N m nNu 1 1 2 2l equations for the solution. Thus, a
complete solution is furnished.

3 Results and discussion

In this section, the accuracy of the proposed LW approach
is assessed. Four cases of cross-ply laminated and sand-
wich plates under uniform distributed load have been

selected. The clamped boundary condition is set at all
four edges for all cases. Table 2 presents the mechanical
properties of the materials employed in this study. The
following dimensionless parameters are used for displace-
ments and stresses:

( ) ( )=u v
E h

q a
u v¯, ¯ , ,

z

2

bottom 2

3

=w
E h

q a
w¯ ,

z

2

bottom 3

4

( ) ( )=σ σ τ
h

q a
σ σ τ¯ , ¯ , ¯ , , ,xx yy xy

z

xx yy xy

2

2

( ) ( )=τ τ
h

q a
τ τ¯ , ¯ , ,xz yz

z

xz yz

=σ
q

σ¯
1

.zz

z

zz

To compare the results, FEM 3D results are presented.
These were obtained by using ANSYS commercial code. For
each scenario, ten brick elements per layer along the thick-
ness are established. The code has been implemented in
MATLAB, utilizing “sparse” as a matrix construction tool to
enhance computational efficiency. Additionally, this article
examines and compares the proposed LW approach with
the work previously developed by Laureano et al. [61],
which introduced theories based on the ESL approach.
Besides, the out-of-plane stresses are calculated viaHooke’s
law. Several LW theories are implemented, where “L”

Table 6: Problem IV. Numerical results of displacements and stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
for different values of a h/

a h/ Model
==u10 ¯

z

2
h

2
==v10

z̄

2

‒
h

2
==w10 ¯z

2
0 ==σ10 ¯xx

z

2
h

2
==σ10 ¯yy

z

2
h

2
==τ10 x̄y

z

2
h

2
==τ10 x̄z

2

z 0 ==τ10 ȳz

2

z 0 ==σ̄zzz 0

4 LD1 −0.764 0.767 1.030 −13.580 17.073 −1.569 12.525 13.001 0.356
LD2 −0.795 0.801 1.051 −16.882 20.748 −1.690 12.297 17.082 0.498
LD3 −0.813 0.818 1.075 −19.610 23.571 −1.721 12.560 12.293 0.516
LD4 −0.813 0.819 1.076 −19.620 23.635 −1.720 12.566 12.717 0.502
FEM 3D −0.818 0.823 1.082 −18.416 21.970 −1.724 12.607 12.939 0.503
ED5 [61] −0.798 0.804 1.027 −18.925 22.918 −1.668 13.720 14.076 0.505

10 LD1 −0.333 0.334 0.252 −9.541 9.895 −0.872 16.442 10.398 0.363
LD2 −0.346 0.347 0.258 −10.634 11.004 −0.913 16.429 17.758 0.477
LD3 −0.346 0.347 0.260 −10.798 11.190 −0.909 16.334 16.318 0.509
LD4 −0.346 0.347 0.260 −10.828 11.233 −0.909 16.335 16.329 0.500
FEM 3D −0.349 0.349 0.262 −10.118 10.455 −0.912 16.409 16.400 0.500
ED5 [61] −0.335 0.336 0.243 −10.326 10.686 −0.875 16.600 16.636 0.501

50 LD1 −0.189 0.189 0.068 −6.153 6.166 −0.763 14.210 8.876 1.415
LD2 −0.190 0.190 0.069 −6.212 6.225 −0.765 14.289 15.310 0.463
LD3 −0.190 0.190 0.069 −6.241 6.255 −0.765 14.231 14.233 0.519
LD4 −0.190 0.190 0.069 −6.245 6.259 −0.765 14.231 14.229 0.498
FEM 3D −0.192 0.192 0.070 −5.959 5.972 −0.768 14.541 14.283 0.503
ED5 [61] −0.189 0.189 0.067 −6.197 6.211 −0.766 14.168 14.168 0.498
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represents the Layerwise approach, and “D” signifies the
use of the displacement-based statement (PVD). The nota-
tion “LDN” indicates an Nth-order theory; for example, LD2
refers to a second-order theory, while LD4 represents a
fourth-order theory.

3.1 Convergence analysis

The precision of the boundary-discontinuous method is
significantly influenced by the number of trigonometric
terms, denoted as m n, . To determine an appropriate value
for m n, , Figure 2 illustrates the behavior of dimensionless
transversal displacement and in-plane stress as m n,

are incrementally varied. The plate in study is a cross-ply
[0°/90°] moderately thick square plate whose layers are
made of Material 1. From first-order (LD1) to fourth-order
(LD4) model is plotted along with the reference FEM 3D
solution and the ESL-based fifth-order theory (ED5) solu-
tion provided in [61]. Figure 2a shows the high accuracy of
the present LD4 as it is closer to 3D FEM solution than ED5.
In Figure 2b, the oscillatory pattern of σ̅xx is noticeable,
consistently approaching the FEM reference as the values
of m n, increase. However, choosing larger values for m n,

results in escalated computational costs. Therefore, for the
forthcoming tables and figures, a value of 140 is selected
for m n, , striking a balance between precision and the
required computational resources.

3.2 Problem I. Two-layer antisymmetric
square plate

For this initial problem, an antisymmetric cross-ply lami-
nated [0°/90°] square plate made from Material 1 is exam-
ined. Figures 3 and 4 show the through-the-thickness
distribution of displacements ( )u v w̅ , ̅ , ̅ and stresses

( )σ σ τ τ τ σ̅ , ̅ , ̅ , ̅ , ̅ , ̅xx yy xy xz yz zz at the point ⎛
⎝

⎞
⎠,

a b

4 4
of a moderately

thick ⎛
⎝ = ⎞

⎠10
a

h
plate. For this problem, a very close agree-

ment is obtained in every stress profile. The results of LD3
and LD4 for the transversal displacement w̅ are more accu-
rate than ED5. Moreover, Figure 5 shows the in-plane
( )σ σ̅ , ̅xx yy and out-of-plane ( )τ σ̅ , ̅xz zz stress profiles at a

clamped edge ⎛
⎝ = = ⎞

⎠x y0,
b

2
. As illustrated, the current

approach adeptly captures the in-plane stress distributions
along with 3D FEM and ED5 solutions. However, in the case
of τ̅xz profile, LD4 predicts more accurately than ED5 as its
results closely align to the FEM 3D outcomes. Table 3

Figure 12: (a)–(c). Problem V. Through-the-thickness variation of dis-

placement components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a thick case ⎛

⎝ = ⎞
⎠4

a

h
.
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Figure 13: (a)–(f). Problem V. Through-the-thickness variation of stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
of a thick case ⎛

⎝ = ⎞
⎠4

a

h
.
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presents the numerical results of displacements and
stresses for different side-to-thickness ratios. Remarkably
accurate solutions are achieved even with low orders such
as LD1 or LD2 for thin structures.

3.3 Problem II. Three-layer symmetric
square plate

For the second problem, a symmetric cross-ply laminated
[0°/90°/0°] square plate constructed from Material 1 is ana-
lyzed. Figures 6 and 7 show the through-the-thickness
distribution of displacements ( )u v w̅ , ̅ , ̅ and all six stress

components at the point ⎛
⎝

⎞
⎠,

a b

4 4
of a thick ⎛

⎝ = ⎞
⎠4

a

h
plate. In

Figure 6a, the superior performance of the proposed LW
theories is exhibited. Even low-order LW theories like LD1
and LD2 can accurately reproduce the zig-zag effect charac-
teristic of laminated materials, whereas ED5 is unable to
capture it. For transversal displacement w̅, higher-order
models LD3 and LD4 showcase quasi-3D capabilities as indi-
cated by their performance, while ED5 exhibits similar
behavior to the present lower-order model LD2. Figure 7(a
and b) shows excellent predictive capabilities of LD3 and
LD4 throughout the entire thickness direction. Accurate
numerical results of displacements and stresses for different
side-to-thickness ratios are reported in Table 4. For thicker
structures, it is imperative to utilize higher-order models to
predict accurately the transversal displacement.

3.4 Problem III. Four-layer symmetric
square plate

For the third problem, a symmetric cross-ply laminated
[0°/90°/90°/0°] square plate made of material 1 is consid-
ered. Figures 8 and 9 show the through-the-thickness dis-
tribution of displacements ( )u v w̅ , ̅ , ̅ and stress components

( )σ σ τ τ τ σ̅ , ̅ , ̅ , ̅ , ̅ , ̅xx yy xy xz yz zz at the point ⎛
⎝

⎞
⎠,

a b

4 4
of a thick ⎛

⎝ = ⎞
⎠4

a

h

plate. It is observed that all LW models, including lower-
order LD1 and LD2, can capture zig-zag effects in the long-
itudinal displacement u̅. In the case of the σ̅yy profile, only
higher-order models LD3 and LD4 exhibit excellent agree-
ment with the FEM 3D reference. For out-of-plane distribu-
tions, LD3 and LD4 consistently exhibit their superior
capability over lower-order models by satisfying free-surface
conditions without the need for stress-recovery procedures.
Table 5 presents the numerical results of displacements and
stresses for different side-to-thickness ratios. Good agreement
is obtained for all side-to-thickness ratios presented, i.e., from
thick to thin structures.

3.5 Problem IV. Four-layer antisymmetric
square plate

For the fourth problem, a symmetric cross-ply laminated
[0°/90°/0°/90°] square plate, whose layers are made of
material 1, is examined. Figures 10 and 11 show the
through-the-thickness distribution of displacements

Table 7: Problem V. Numerical results of displacements and stress components at the point ⎛
⎝ = = ⎞

⎠x y,
a b

4 4
for different values of a h/

a h/ Model
==u10 ¯

z

2
h

2
==v10

z̄

2

‒
h

2
==w10 ¯z

2
0 ==σ10 ¯xx

z

2
h

2
==σ10 ¯yy

z

2
h

2
==τ10 x̄y

z

2
h

2
==τ10 x̄zz

2
0 ==τ10 ȳz

z

2

0 ==σ̄zzz 0

4 LD1 −0.255 1.145 1.129 −15.989 5.898 −2.131 11.870 8.957 0.502
LD2 −0.309 1.258 1.168 −19.578 5.547 −2.480 12.284 9.248 0.503
LD3 −0.316 1.277 1.189 −22.026 5.211 −2.510 12.396 10.079 0.505
LD4 −0.316 1.277 1.190 −21.662 4.878 −2.509 12.394 10.084 0.506
FEM 3D −0.318 1.284 1.197 −20.190 4.552 −2.513 12.427 10.079 0.507
ED5 [61] −0.315 1.267 1.15 −20.359 4.852 −2.488 12.402 10.031 0.508

10 LD1 −0.184 0.520 0.307 −12.879 3.594 −1.281 19.884 2.928 0.500
LD2 −0.199 0.542 0.320 −12.951 2.474 −1.358 20.339 2.972 0.499
LD3 −0.199 0.545 0.322 −12.963 2.370 −1.356 20.410 3.218 0.499
LD4 −0.199 0.545 0.322 −12.975 2.343 −1.356 20.410 3.218 0.499
FEM 3D −0.201 0.547 0.324 −12.054 2.212 −1.356 20.482 3.197 0.500
ED5 [61] −0.197 0.535 0.314 −12.689 2.316 −1.336 20.552 3.109 0.5

50 LD1 −0.173 0.112 0.079 −7.899 1.523 −0.564 26.452 −0.325 0.497
LD2 −0.176 0.111 0.080 −7.370 0.970 −0.562 26.926 −0.402 0.497
LD3 −0.176 0.111 0.080 −7.409 0.966 −0.562 27.137 −0.434 0.497
LD4 −0.176 0.111 0.080 −7.411 0.961 −0.562 27.137 −0.434 0.497
FEM 3D −0.178 0.112 0.082 −7.001 0.923 −0.562 27.166 −0.440 0.500
ED5 [61] −0.176 0.111 0.08 −7.375 0.961 −0.56 27.159 −0.439 0.498
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( )u v w̅ , ̅ , ̅ and stress components( )σ σ τ τ τ σ̅ , ̅ , ̅ , ̅ , ̅ , ̅xx yy xy xz yz zz at

the point ⎛
⎝

⎞
⎠,

a b

4 4
of a moderately thick ⎛

⎝ = ⎞
⎠10

a

h
plate. The

results for transversal displacement w̅ from both lower
and higher-order models surpass those obtained from
ED5. Out-of-plane shear stresses τ τ̅ , ̅xz yz are well-repro-
duced by LD3 and LD4, whereas LD1 and LD2 appear to
require a post-processing technique to capture them accu-
rately, particularly in regions where the laminates are rotated
90°. Table 6 presents the numerical results at specific points of
displacements and stresses for different side-to-thickness
ratios. There are some oscillations for shear stress τ̅yz, the
reason is illustrated in Figure 11e where lower-order models
are being calibrated as the order of expansion is increased.

3.6 Problem V. Three-layer square sandwich
plate

In the final problem, a sandwich [0°/90°/0°] square plate is
studied. This specific case was originally presented by
Demasi [33] with the consideration of simply-supported
boundary conditions applied to all edges. In this work, as
mentioned earlier, clamped boundary conditions at all
four edges are considered. The thickness of each layer is
considered as: =h h0.25skins and =h h0.5core . The two skins
( )=φ 0° are made of material 3 while the core layer
( )=φ 90° is made of material 2. Figures 12 and 13 show
the through-the-thickness distribution of displacements

( )u v w̅ , ̅ , ̅ and all six stress components at the point ⎛
⎝

⎞
⎠,

a b

4 4

of a thick ⎛
⎝ = ⎞

⎠4
a

h
plate. As exposed in the earlier cases, the

proposed LW theories can accurately capture the zig-zag effect
presented in the u̅ profile while ED5 struggles. An interesting
situation happens in the transversal distribution, where all LW
theories reproduce correctly the behavior of the deformation.
The difference just lies in the precision of every model. The
challenges associated with using ED5 for in-plane stresses
( )σ σ̅ , ̅xx yy are evident, as it struggles to accurately trace these
profiles. Nevertheless, the advanced higher-order LW models,
LD3 and LD4, can accurately predict them. For normal stress
σ̅zz, it is seen that even LD3 fails to reproduce the stress profile
at external layers. Therefore, the most reliable option appears
to be LD4. The numerical results of displacements and stresses
are reported in Table 7. The impact of employing LW theories
becomes more evident compared to the previous cases, parti-
cularly for thicker configurations.

4 Conclusions

This article deals with the development of LW plate models
with quasi-3D capabilities to obtain analytical solutions for
the study of cross-ply laminated composite plates with
clamped boundary conditions at one or more edges. The
CUF is employed to analyze deformation theories of arbi-
trary order in a systematic manner. The explicit form of
the governing equations is derived by substituting the
stress-strain and strain-displacement relationships, along
with the CUF framework, into the static formulation of the
PVD. The boundary-discontinuous double Fourier series
methodology is utilized at a layer-level for the very first
time to obtain accurate numerical results. The following
main conclusions can be drawn:
• By leveraging the versatility of CUF framework, the
results indicate that LW theories surpass ESL models in
accurately capturing quasi-3D effects, even without
including zig-zag terms in the displacement field.

• The convergence analysis shows the strong dependence
of the boundary-discontinuous method on the number of
trigonometric terms. A more detailed research related to
the evaluation of computational cost may be required for
a clearer evaluation.

• It is concluded that, unlike ESL models, higher-order LW
models such as LD3 and LD4 do not need a post-proces-
sing technique to accurately predict the out-of-plane
stress distributions. However, if a more precise perfor-
mance is required, it can be implemented.

• The analytical closed-form solutions based on the LW
description, derived through the integration of CUF and
the boundary-discontinuous method, entail higher com-
putational costs compared to ESL-based theories.
However, their analytical nature makes them highly
accurate and valuable for comparison purposes during
the product design process.

Future works could include the use of Jacobi polyno-
mials in the displacement field. Another important further
research work is the development of mixed theories by
employing the RMVT, so the Cz

0 requirements are a priori
fulfilled.
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